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A . — A Banach algebra " is AMNM if whenever a linear functional # on "
and a positive number $ satisfy % # ( &(' ) )*# ( & ) # ( ' ) %,+-$/.0&1.324.5'�. for all &768'�9:" , there is a
multiplicative linear functional ; on " such that .5#3)<;3. = = (1) as $3> 0. K. Jarosz [1] asked
whether every Banach algebra, or every uniform algebra, is AMNM. B.E. Johnson [2] studied
the AMNM property and constructed a commutative semisimple Banach algebra that is not
AMNM. In this note we construct uniform algebras that are not AMNM.

If ? is a Banach algebra, @ is a (possibly zero) multiplicative linear functional on

? , and A is a bounded linear functional on ? of norm B(ACB = D , a trivial calculation shows

that the linear functional E := @ + A is F -multiplicative with F = (3 + D ) D in the sense that
G E ( H,I ) J�E ( H ) E ( I ) G7K FLB(HMBON1B4I1B for all H�P�?RQ5IOP�?RS

Loosely, if the linear functional E on ? is near a multiplicative linear functional, then it is

approximately multiplicative. The notion of approximately multiplicative linear func-

tional, or even operator, is discussed in Krzysztof Jarosz’ monograph [1], in which it

is shown (Proposition 5.5) that if the linear functional E on ? is F -multiplicative then

B(ETB K 1 + F , which is a step in the direction of proving that E must be near a multiplica-

tive linear functional. Jarosz poses the problem (Problem 5, page 111): if ? is a Banach

algebra [resp. uniform algebra] and E is a F -multiplicative linear functional on ? , must

there exist a multiplicative linear functional on ? such that B4EUJ�@VB = W (1) as FYX 0? In

Barry Johnson’s definitive study [2] of approximately multiplicative linear functionals, he

calls commutative Banach algebras for which the answer to this question is affirmative

AMNM (approximately multiplicative is near multiplicative) algebras. Johnson shows

that many classical commutative Banach algebras are AMNM, while presenting (Exam-

ple 9.1) a commutative semisimple Banach algebra that is not AMNM. In particular, he

shows (Theorem 7.1 et seq.) that polydisc algebras are AMNM, but leaves open the ques-

tion of whether Z�[ , or indeed every uniform algebra, is AMNM. Our purpose here is to
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fill part of this gap by producing uniform algebras that are not AMNM. This is accom-

plished by means of the

T. — For any two positive numbers ��� 1 and F , there are a uniform
algebra ? and a F -multiplicative linear functional E on ? such that B(E J�@OB���� for every
multiplicative linear functional @ on ? .

C. — There is a uniform algebra ? that is not AMNM.

Proof of the corollary. — For � = 1 Q 2 Q4S(S(S let ?�� and E	� be as in the theorem for� � = 1 J ( � + 1) 
 1 and F � = �	
 1. ? � is a uniform algebra on some compact Hausdorff

space ��� . Let � be the one-point compactification of the disjoint union of the �
� , and

let

? :=

���
P�� ( � ) :

���� ��� P�?�� for all ��� S
Define E��� : ?�X C by E	�� (

�
) = E � (

� �� � �
). It is immediate that E	�� is F � -multiplicative

and that B(E��� J�@OB���� � for every multiplicative linear functional @ on ? , since @ must

be either identically zero, or evaluation at the point at infinity, or a multiplicative linear

functional on some ?�� .

Proof of the theorem. — The idea is simple. Imagine a fictitious “almost ana-

lytic” disc centered at some point � of the spectrum  of ? . For a true analytic disc, we

would have an algebra homomorphism

�"!
X [#� =0

˜
� �%$ � from ? into the algebra of power

series in $ with radius of convergence at least 1, where the ˜
� � are complex numbers and

˜
�

0 = ˆ
�

(� ). For our almost analytic disc, we simply arrange that our algebra ? can generate

appropriate numbers ˜
� � for � K�& but not for �'� &

, where
&

is some fixed integer, and

we consider the functional

�(!
X )#� =0

˜
� �+* � for some * P C. If �'� G * G � 1 and if

&
is large

enough, this functional has the right properties, assuming the functionals

�,!
X ˜

� � are

linear and of norm 1. We now give the details.

First, let-
:= .%/ P C :

G / G � 1 0 be the open unit disc,-
:= .%/ P C :

G / G K 1 0 the closed unit disc, and1
:= .%/ P C :

G / G = 1 0 =

-�2"-
= 3 - the boundary of

-
.45

:= .%6 P7� (

-
) : 6 is analytic on

- 0 is the disc algebra on

-
Q5

:= .%6 �� 8 : 6 P 45 0 is the disc algebra on
1 S

Let ( /LQ9$ ) denote the variable in C2. For (: Q;� ) P Z2 let < �=� P�� (
1 2) be < �=� ( / Q>$ ) = / � $ � .
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Fix a positive integer
&

and consider�
:= . ( :7Q;� ) P Z2 : ��� & + 1 Q or :�� 0 and ��� 0 0,Q

a sub-semigroup of Z2. The algebra ? we want is the uniformly closed linear span in� (
1 2) of .�< � � : (: Q;� ) P � 0 . If

�
P-? , for each / P 1 the function $ !X �

( /LQ9$ ) :
1 X C,

as a uniform limit of polynomials, belongs to
5

, so extends to a function ��� in
45

on

-
;

that is, � � P � (

-
), � � ( $ ) =

�
( /LQ9$ ) if $ P 1 , and � � is analytic in

-
, so has the form� � ( $ ) =

[#� =0
��� ( / )$ � where ��� ( / ) = (2 � ) 
 1 � 2 	

0

�
( /LQ�

��� ) 
%
�� � ����� = ( � !) 
 1 � �������� � (0). Thus��� P � (

1
); further, if � K�& then � � P 5 , so extends from a function on

1
to a function4� � in

45
on

-
. We write

���
( � � ) to indicate that ( � � ) is the sequence in � (

1
) associated

to

�
P
? in this way. For each � the mapping

�(!
X�� � : ? X � (

1
) is linear and of norm

1. If also � P-? and � � ( � � ) and

� � � ( Z � ), clearly Z�� =
�#� =0
����� � 
 � .

Fix * P - and define E : ? X C by

E (

�
) := ) � =0

4� � (0) * �
where

�!�
( � � ). E is a continuous linear functional on ? . We shall prove that:

(1) E is

& G * G ) +1

1 J G * G -multiplicative on ? ;
(2) If @ is any multiplicative linear functional on ? then B(E�J�@OB"� G * G .

The theorem follows by first taking * so that
G * G � � , then taking

&
so large that)$# %&#(' +1

1 
 # %&# K F .

To prove (1), let

�
P�? and �*P�? with

�)�
( � � ), � � ( � � ) and

� � � ( Z � ). Then

E (

� � ) = ) � =0

4
Z � (0) * � = ) � =0

*+ � � =0

4� � (0)
4� � 
 � (0),- * �

and

E (

�
) E (� ) =

*+ ) � =0

4��� (0) * � ,-/. ) 0
=0

4� 0 (0) * 0�1 =
2 ) � =0

*+ )32 � � =( � 
 ) ) 4 0

4��� (0)
4� � 
 � (0),- * � Q

so

G E (

� � ) J
E (

�
) E ( � )

G
=

������ 2 ) � = ) +1

*+ ) � = � 
 )
4��� (0)

4� � 
 � (0),- * � ������
K 2 ) � = ) +1

(2
& J � + 1) B

�
BON B��CBON G * G �

K�& B � BON B5� BON 2 ) � = ) +1

G * G �
K & G * G ) +1

1 J G * G B � BON B��CB S
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To prove (2), we must identify the nonzero multiplicative linear functionals on

? . Let  be the set of these. If @ P  let � ( @ ) := ( ��Q�� ) P C2 where � = @ ( < 1 � 0)

and � = @ ( < 0 � 1).
G � G K B�< 1 � 0 B = 1 and

G � G K B < 0 � 1 B = 1, so � ( @ ) P
-

2
. For all:"� 0, @ ( < 
 � � ) +1) � � = � ) +1. If ���= 0 then ���= 0 and for all :"� 0, 1 = B < 
 � � ) +1 B �G @ ( < 
 � � ) +1)

G
=
G � G ) +1 � G � G � , hence

G � G � 1 and � P 1
. Thus � ( @ ) P � where � :=

(
1
	 -

) � (

-
	 . 0 0 ) � C2. Conversely, suppose ( ��Q�� ) P � . If ( �<Q
� ) P 1
	 - define

@ (

�
) = ��� ( � ); if ( ��Q
� ) P

-
	 . 0 0 define @ (

�
) =

4� 0( � ). In either case @�P  and

� ( @ ) = ( �<Q
� ). Thus � maps  onto � . To verify that � is injective , it suffices to verify

that if @�P� then the values @ ( < �=� ) for ( : Q � ) P � are computable from � ( @ ) = ( ��Q
� ). If: � 0 and ��� 0 then @ ( < � � ) = @ ( < 1 � 0)� @ ( < 0 � 1) � = � � � � . Suppose :
� 0 and ��� &
+ 1.

If � = 0 then @ ( < � � )2 = @ ( < 2� � � ) @ ( < 0 � 1) � = 0 so @ ( < �=� ) = 0, while if ���= 0 then
G � G = 1

and @ ( <+� � ) @ ( < 1 � 0) 
 � = @ ( < 0 � 1) � or @ ( < � � ) ��
 � = � � , giving @ ( < �=� ) = � � � � .

Thus � is a bijection (homeomorphism, if  has its Gelfand topology) of  with� . In fact, we may view the functions in ? as extended from
1 2 to � by first extending to1�	 -

by analyticity in $ , then extending to

-
	 . 0 0 by analyticity in / .

Now let @ be a multiplicative linear functional on ? . If @�� 0 then B(E J @OB �G E (1) J @ (1)
G

=
G
1 J 0

G
= 1. If @�P� , then either � ( @ ) P 1�	 - and B4E J @OB � G E ( < 1 � 0) J

@ ( < 1 � 0)
G

=
G
0 J�� G = 1, or � ( @ ) P

-
	 . 0 0 and B(E�JY@OB"� G E ( < 0 � 1) JY@ ( < 0 � 1)

G
=
G * J 0

G
=
G * G .

Thus (2) is proven, and so is the theorem.

A few remarks are in order. First, the ? constructed in the proof of the theorem

actually has several alternative descriptions. For instance, ? consists precisely of those�
P � (

1 2) which extend to � P � (
1�	 -

) in such a way that $ !
X � ( / Q>$ ) is an

analytic function of $ P
-

for each / P 1
, and that for � = 0 Q(S4S(S5Q & the function/ !X �

� �
� � � ( /LQ 0) on

1
belongs to the disc algebra

5
. Also, ? is the uniform closure in� (

1 2) of (
5���5

) + ( � (
1

)
���

) where
�

is the principal ideal in
5

generated by $ ) +1; for

an analysis of many uniform algebras given by this type of tensor product construction

see [3].

The ? constructed in the proof of the theorem is actually generated, as a unital

Banach algebra, by three elements: < 1 � 0, < 0 � 1 and
[#� =1

(: !) 
 1 < 
 � � ) +1 (a simple exercise, or

see [3], section 5). It is unclear whether there are examples with fewer generators. This ?
is antisymmetric.

If the ? � used in the proof of the corollary are those constructed in the proof of the

theorem, the resulting ? has four generators but is not antisymmetric. Well-chosen point
identifications convert it to an antisymmetric example, but with no obvious control over

the number of generators.
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