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1. Introduction and results. —

We prove here some properties of a new integer-valued graph invariant which we
call v(G). This invariant is very close in spirit of our former u(G) ([CV1]). But while u(G)
admits a linear upper bound in terms of the genus of G (recall in particular that u(G) <3
if and only if G is a planar graph), v(G) admits no such upper bound.

Instead of working with real symmetric matrices, we work with complex Hermitian
matrices. In some sense which we not intend to make more explicit (see however [CV-
NO]J), it’s like adding a magnetic field to our Schrédinger equations. It’s well known
that the magnetic Schrodinger operator on R? with constant magnetic field has a ground
state whose eigenspace is infinite dimensional. In other words, planarity is not related to
multiplicities of ground states!! We will make this remark more quantitativ in this paper.

On the other hand, in their famous series of papers Graphs Minors, Robertson and
Seymour have introduced the tree-width of a graph G which measures how close GG to some
tree is ([R-S 1], [R-S 2]). This invariant turns out to be rather universal for measuring the
complexity of a planar graph: excluding a minor for a family F of planar graphs implies
an upper bound of the tree-width on F.

In this paper, we present some sharp relationships between v(G) and the tree-width
TW(G).

Now let us come to more precise statements.

Let G = (V, E) be a finite non-oriented connected graph without loops and multiple
edges. If (X,(.].)) is a N-dimensional complex Hermitian vector space, let Herm(X) be
the NZ2-dimensional real vector space of Hermitian endomorphisms of X. Let Mg C
Herm(CY) (we endow CV with the canonical Hermitian structure) be defined by:

DEFINITION 1. — A = (a;;) € Mg if and only if
i)a;; #0if{i,j} € E,
i) a; j =0if{i,j} ¢ E and i # j.



Mg is a submanifold of dimension |V| + 2|E| of Herm(CV).

Let us denote by W; C Herm(CV) the submanifold of non-negativ matrices 4 (ie
(Az|z) > 0Vz) whith [-dimensional kernel.

DEFINITION 2. — If G is a finite graph, let us define v(G) as the sup of those [ for
which there exists A € Mg N W such that both manifolds intersect transversally at A.

Our first result is an easy adaptation of [CV1]:
THEOREM 1. — If G’ is a minor of G (G' < G ), then v(G') < v(G).

We study now a family of planar graphs Py for which we can compute v(G)
explicitly. Py is embedded in C: Vy = V(Py) = {n+mw|l <n,m < N,n+m < N+ 1},
where w = '™/3. En = E(Pp) is the set of pairs z, z' € Viy such that |z — 2| = 1. In other
words Py is a triangulation of some equilateral triangle by equilateral triangles all of size

1.

Fig. 1: The graph Ps.
THEOREM 2. — v(Py)=N

As a corollary, v is not bounded for planar graphs. This is in sharp contrast with u

which is smaller than 3 if and only if the graph is planar.

Now we come to the tree-width for which we give a slightly different (but very close

to) definition than Robertson-Seymour’s.

First, if G1, G5 are two graphs, we define the product G = Gy x Gy by V. =V x V;
and {(a1,az),(b1,b2)} € E if and only if either (a3 = by and {az,b2} € E3) or (az = by
and {a1,b1} € Eq).



DEFINITION 3. — We define the tree-width TW(G) of the graph G as the smallest
N for which there exists a tree T' such that G is a minor of the product T x Ky (here Ky
is the complete graph with N-vertices).

Now we come to our next results:

THEOREM 3. — v(G) =1 if and only if G is a tree.

THEOREM 4. — For every G, v(G) < TW(G) .
In the last section, we formulate without proof the analogues for infinite graphs of
the previous results.

I would like to thank very much Lex Schrijver for inviting me to visit CWI where he
told me about tree-width and where most of the results in this paper were discovered.



2. Discrete holomorphic functions and v(Py) = N. —
We will prove theorem 2.

First, for any A € Mp,, dim(Ker(A)) < N: otherwise there would exists a nonzero
function in Ker A vanishing on the vertices 1+ w,2+ w,---, N +w. Such a function
vanishes identically since we can compute (using A) it’s values line after line moving up.

For the converse we need an explicit A. The simplest one has real coefficients and
is: J
af) = 3 f + ey

2~z

where d(z) is the degree of z (d(z) = 2,4 or 6 depending on the position of z).
Now, if D : CY¥ — CY¥ is defined by
Df(z) = f(z) + f(z +1) + f(z + w)
(or Df(z) = 01if z4 1 and z + w do not belong to Vy), then it’s easy to check that

A = D*D. This implies that A is non negativ and Ker(A) = Ker(D). Moreover an easy
exercise shows that dim(Ker(D)) = N. More precisely Ker D admits a basis

oy (Z:]_”N)
where (i +w) = 0; ;.

Now we can check transversality.

LEMMA 1. — The support of y; consists of z's in Vv which satisfy:
Z:l—l—(n—l—l)w—l—mw2,m,n20.

Easy.

By the same kind of arguments as in [CV 3], transversality means that the Hermitian
forms

rij(9:0) = Re(p(1)i (7)) » sij(e,¥) = Im(e(i)¢(j)) ({i,j} € E),
restricted to KerA generate Herm(KerA).

Now we can prove the transversality by induction on N. In fact the restrictions of
@1, ,pN—1 to Viy_1 are exactly the ¢}s for Pn_;.

We consideronly ¢., 2z = 14w, -,z =N+4w,and r. .y, $; .—w, {2,2—w} € Exn
which form a set of N? Hermitian forms.

So we need only to prove that, if we restrict them to Ker(Dy ), they are independant.
Assume a linear relation between them. By induction we can stay with a linear relation

between gn4w, " Ntwtjw?r SN+wtjw2,J = Lo+, N — 1. Now, if we test on (pn,¢1),l =
1,---,N — 1, we get a triangular invertible matrix because of the support of ¢js.
O



We started with a (slighly) more complicated example with is gauge equivalent to
this one. Let’s say that a triangle of Py is black if it’s of the form (z,z + 1,2 4+ w). Then
let’s define an holomorphic function on Py by asking the image of any black triangle to be
equilateral. In other terms if Dy f(z) = f(z+w)— f(2) —w(f(z+1)— f(2)), we ask Df = 0.
Now we put B = D} D;. Then B is unitarily equivalent to A (by gauge transform).

Fig.2: holomorphic map on Py.

Question: given some A € Mg, we may define the flux of the magnetic field through
each triangular face as a number in R/27Z which is the argument of the product II;a; ;44

on the oriented boundary. In our case the flux is = for each face.

Uur question is now: does there exist any upper bound of dim(KerA) for A € Mg
in terms of information on the flux? For example, if the flux is 0 for every cycle, then the
multiplicity of the lowest eigenvalue is 1 by Perron-Frobenius.

For that problem, it’s interesting to compare [L-L].



3. Minors. —

I'll give a sketch of a proof of theorem 1 wich is along the lines already described in
[BA-CV] and [CV2].

First, we need to consider a compactification of Herm(X) which is a slight modifi-

cation of the compactification already considered in [CV2].

Let (X, (.].)) be a complex Hermitian space of dimension N and w the sesquilinear

form on X & X defined by:
wlz+a'y+y') = (zly) — (@"y) .
The graph of a linear map A from X to X is w-isotropic if and only if A is Hermitian.
Now we define the manifold A x as the set of all N —dimensional complex subspaces

of X & X which are w-isotropic. It’s well known that Ax is a smooth compact manifold of
dimension N? whose tangent space at the point L is canonically Herm(L).

W; admits a smooth compactification in Ax which we denote by W; and which is
the set of all L C {(z,&)|(x|¢) > 0} such that dim(L N (X & 0)) =1L

Moreover, there is a bijection of Ax with the set of pairs (Y, B) where YV is a
subspace of X and B € Herm(Y). To any pair (Y, B) we associate L = {(y,{)ly €
Y, vy e, (£ly') = (Ayly')}-

Minors: let us recall that G’ is a minor of G (G’ < G) if we can relate G to G’ by

elementary moves consisting of contracting an edge {a,b}: G' = Cy,G or removing an
edge {a,b}: G' = R, 3G. So it’s enough to prove that

(1) v(CepG) < v(G) and

(i) v(Rq pG) < v(G).

The proof of ii) is rather easy because we can use smooth perturbation theory;
denote by A, , € Herm(CV) the map defined by

Ao p(za,zp,2") = (x4 — Tp,2p — T4, ")

then, if
G' = R, ;G

and A € M¢g
Ve#0, A+eM,p € Mg .

So, for ¢ small enough, if Mg intersects W; transversally at some point A,, then
Mg +eAq p intersects Wy transversally at some point A. € Mg, and a fortiori Mq intersect
Wi transversally at A..

Assertion (i) is more difficult because we cannot embed Mg into Herm(CY) but
we can easily embed it into Agv = Ay and mimic the proof of (i).

Let’s give some details.



Assume G' = C;,G. If B € Mg, we associate to it a pair j(B) = (Y,C) € Ay
in the following way: ¥ = {z1 = 22} and C(xg,20,2') = B(xo,z'). We denote by Zy the
submanifold of Ay which consists of all those C: Zg = j(Ma).

We claim that, if W] intersect Mq: transversally at B,, then W, intersect Zg
transversally at j(B,).

Now we will mimic the proof of (ii) by looking at
1
A.=A+ Ay
5

We prove now that L 4, converges smoothly in Ax as ¢ tends to 0 and compute the
limit.

Assume A is given by:

&1 = Ai(z1,22,2"), & = Ay(r,22,2"), § = A'(zy,29,2") ,
and so we can rewrite the equations of L4, as:
§14 & = (A1 4 Ag) (1, 29,2"), o1 — 22 = (&1 — Au(z1,29,2")), § = Al(21,29,2) .
From the second one we get:
xy = L(g,21,&,2")
where 1s smooth with respect to ¢ and using the others 2 we get:
& =M(e,x1,&1,2"), v2 = L(e,x1,&1,2"), € = N(e,z1,&1,2')

where L, M, N are smooth with respect to ¢. Now we can compute the limit:

x2 =1, o+ & = (A1 + Ar)(z1,21,2"), € = A(x1,21,2) .

Now, it is not always true that the limit is in Zy if A = (a; ;) is in M¢g: in the case
where 1 and 2 have a commun neighbourhood ¢ it may happen that:

ay;+az;=0.

Fig. 8: Zo,Z. and W].
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But we can easily build a submanifold Z. of Mg which converges smoothly to Zg:

assume that we split vertices close to 1 or 2 into 3 parts:

U consisting of vertices 1 # 2 such that {i,1} € E and {i,2} ¢ E, V the same by
permuting 1 and 2 and W the set of j € V for which {j,1} and {j,2} are in E. Now
given B € M¢, call 0 the vertex obtained by identification of 1 and 2 and keep the same
labelling for all others vertices. To B we associate w(B) = A € Herm(C") by taking:

(1)ifi e U, a1,; =boi, az; =0,

(i) ifi €V, az; =boi, a1, =0,

(i) if i € W, a1,i = az,; = Sbo.i,

(iv) @11 = boyo, az2 =0,

and keep all others coefficients with no indices in {0, 1,2}.

Then .
’LU(JWG/) + EALZ C Mg

and w(B) + %A172 converges smoothly to B.
Now the proof is the same as that of (ii).

Fig 4: contracting {1,2} to 0; U, V,W



4. Vector bundles on trees. —

Let G = (V, E) be a finite graph as before. A Hermitian vector bundle L = (L;);ev
over (G is a collection of isomorphic Hermitian vector spaces L;. To these data we associate
the Hermitian space of sections which is H = ®;cv L;.

A matrix Q = (£, ;) which is a Hermitian endomorphism of H is said to be (G,L)-
admaissible or simply admissible if we have:

i) Q;; = Q7 is invertible for each edge {7,7};
i) Q;; =0if {¢,5} ¢ E and 1 # j;

iii) €, ; is self-adjoint.

Basic example:

G' is another graph and L; = CV'. Then H = CV*V" and any A € Mgxg 1s
admissible: if {z, 7} is an edge of G, Q; ; is diagonal with non-zero entries.

Now, we have the following basic lemma:

LEMMA. — If Q is admissible, nonnegativ and G is a tree, then dim(Ker(Q)) <
N = dim(L;).

Proof of the lemma:

By contradiction. If the conclusion isn’t true, there exists a p € Ker({2) and an
edge {ip,jo} such that p(ig) = 0,¢(jo) # 0. Let T,---,T; be the collection of disjoint
trees such that T\ 1o = T4 U --- U T} and assume jo € T}.

Fig. 5: T ={io} U§:1 T;.
Let wq,---,w; be complex numbers of modulus 1 and ¢, be defined by ¢, (i) =
wjie(r) if 1 € Tj and ¢, (ig) = 0.



Then it is easy to check that, if Q(v.) = (Qpulpw), Qlps) = 0 and hence
Yw € Kerfl.

Now we can choose vg € L;, which satisfy (A;, j,»(jo)lve) # 0 ( (1) imply that
AioJoS‘g(jO) 7é 0)
So we can choose wj; such that
Re(AiOJOS‘Qw(jO”UO) >0
and
Re(Ai;,j¢w()vo) 2 0
for all 5 ~ iq.
We see now that
Q(pw + evodiy) = ac + 0(52)

where a > 0. So, by taking a small ¢ < 0, we get a contradiction with the fact that ¢} > 0.
O

As a corollary and using the basic example for 7' x K we obtain theorem 4.

In particular (7)) = 1 if T is a tree and the converse is true (theorem 3): if G is not
a tree, then P, < G and v(G) > 2.
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5. Infinite graphs. —
We will now extend the theory to graphs which are not necessarily finite.
If G =(V,E), we assume only connectivity and local finiteness of G.

Of course in that case we need to define operators carefully. We take as Hilbert
space Hy = [*(V,C). Now, if A is in Mg, A = (a; ;) is an essentially selfadjoint operator
(not necessarily bounded) in Hy, with the same algebraic conditions as for finite graphs

/s
on Gh] .

In that case, the spectrum is in general not discrete; so we need to add another
hypothesis which we can formulate in the following way: A = A, + K where there exists
m > 0 such that A, — mId > 0 and K is compact.

For example
(Az|z) = Q(z) = ZVZ‘|$Z‘|2 + Z cijlei — eV g2
i€V {i,j}eE
where ¢; ; > 0 and liminf, o V; > m.

Under those hypothesis, the spectrum below m is discrete and each eigenvalue is of
finite multiplicity. So we define M by both conditions.

We can now define v(G) for infinite graphs. Along the same lines, it’s possible to

define p(G).

We need to take another definition of minors; a minor of G is given in the following
way: take any partition of V into connected components. You get a new graph whose
vertices are the subsets of the partition and edges connecting two subsets having elements
already connected by some edge of G. A minor is obtained by removing from this new

graph an arbitrary number of edges.

We have:

THEOREM 1’. — If G' is a minor of G, then v(G") < v(G).
THEOREM 2’. — v(Py) = 0.

THEOREM 3’. — v(G) =1 if and only if G is a tree.
THEOREM 4’. — For every G, v(G) < TW(G).

For p, we need to define the notion of planarity which consists of being embeddable

in the plane, allowing accumulation points.

Then we have:

THEOREM 5. — u(G) < 3 if and only if G is planar.

11



All these results are proved using the same patterns as for finite graphs. We may
also prove that there exists always a finite minor G’ of G such that v(G") = v(G).

12



6. Some open problems on p and v. —

Here is a selection of open questions which were presented at CWI.

1. Computability questions. —

The question is to find algorithms producing p(G) and v(G) from G. Theoritically,
there are algorithms because everything is about intersecting algebraic manifolds. Of course
what would be nice is to have a computer programm computing these numbers.

2. Mazimizing the gap. —

Now we come back to real case. For many purposes it’s interesting to have matrices
A in Op with a large gap ( gap(A)=A2 — A\1). The problem is to find an appropriate
normalisation condition which insures that the problem is well posed. Moreover, it seems
reasonnable that if A maximize the gap then the multiplicity of A3 (A) is the largest possible.
Compare [NA] for the continuous case.

3. v(G) and TW(G). —
From general results of Robertson-Seymour, there exists an upper bound
TW(G) < F(v(G))
which holds for planar graphs. The question is to find an explicit £ : N — N.

4. Higher dimensional complexes. —

The question is to extend that kind of invariant to higher dimensionnal complexes,
in particular 2d simplicial complexes and find relationship with Hodge-de Rham Laplace
operators on forms.

5. Chromatic number. —
This problem is the most exciting: prove or disprove
C(G) <p(G)+1,
where C'(G) is the chromatic number of G. It would imply 4-color theorem and is weaker
than Hadwiger’s conjecture.

6. Prescribing spectras. —

Describe all possible spectra for A € Og or A € M. Already for special graphs like
trees this problem is not yet solved. It’s solved for paths and for cyclic graphs.

For the cyclic graph Cny = Z/NZ, we have the following set of inequalities for any
Ae OCN:
/\1</\2§/\3</\4§/\5<"' .

It’s known that for any graph G with N vertices and any set o = {A\] < Ay < +-+ <
An} there exists A € O¢g such that

o(A)=o0.

13



There is a general question: is it always true that the restrictions on possible spectra
is given by restrictions on multiplicities of eigenvalues?

7. Lex Schriver’s question. —
Is it always true that:
= inf !
wG) = dnof m(G)
where m(G') is the maximal multiplicity of the second eigenvalue for A € Og?
It’s true for example for planar graphs, because m(G) = 3 if G is a triangulation of

the 2-sphere ([HOJ).

Same question for v(G).

14
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Résumé. —

Dans cet article, nous introduisons un nouvel invariant numérique v(G) des graphes
trés voisin de notre invariant u(G): au lieu de considérer la multiplicité de la seconde
valeur propre d’un opérateur de type Laplacien, nous considérons la multiplicité de 1’état
fondamental d'un opérateur de type Schrodinger avec champ magnétique.

L’invariant v(G) (contrairement a u(G)) n’admet pas de borne supérieure sur les
graphes planaires, mais est controlé par la largeur d’arbre de G.

Mots-Clés. —
Graph, tree-width, Schrodinger operator.

Classification mathématique. —

05C10, 05C50, 91Q10.
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