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Introduction.

The aim of this paper is to define vanishing cycles of non regular D-modules and use
them to study the solutions of these modules.
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The vanishing cycles of a D-module were originally introduced in the case of regular
holonomic D-modules [12][23]. The definition was extended to non holonomic D x-module,
to complex of D x-modules and to microdifferential equations in several papers [27][28] [21]
[22].

If X is a complex manifold and Y a smooth hypersurface of X, the vanishing cycles of
a Dx-module M is a Dy-module ®(M). Under a suitable condition (M “specializable”),
the module ®(M) is coherent. This condition is always satisfied for holonomic D x-modules
and, then ®(M) is holonomic.

In the regular holonomic case, the Riemann-Hilbert correspondence is compatible with
vanishing cycles. This means that ®(Sol(M)) = Sol(®(M)). Here, Sol(M) is the complex
of holomorphic solutions of M that is RHomp, (M, Ox) and ®(Sol(M)) is the sheaf of
geometric vanishing cycles in the theory of Grothendieck-Deligne [7].

If M is holonomic but not regular, the solutions of ®(M) correspond to formal solu-
tions of M, they have no connection with holomorphic solutions. This is, of course, related
to the fact that formal solutions of non regular holonomic modules are not convergent.
So, it appears that we have to define another notion of vanishing cycles which would be
compatible via Riemann-Hilbert with the geometric vanishing cycles for any holonomic
module.

On the other hand, the solutions of non regular differential equations in dimension
1 where studied in details by Ramis [25] [26]. He calculated the growth and the index
of solutions from the Newton polygon of the equation that is from a finite sequence of
rational slopes and of integral heights.

In this paper, we define a family ®(r)(M) of vanishing cycles indexed by a rational
number 7 running from r = 1 (corresponding to holomorphic solutions) to 7 = +oo (formal
solutions). They will not be coherent Dy-modules but perfect Dg°-modules.

In the holonomic case, the family will be constant in r except for a finite number of
values and each module will be a holonomic D§°-module (that is equal to Dy° @p, N
for some holonomic Dy-module N'). These values of r generalize in higher dimension the
slopes of the Newton polygon of Ramis while the integral heights are replaced here by
the characteristic cycles of the D{°-module. We have ®(c0)(M) = D ®p, (M) and
®(Sol(M)) = Sol(®(1)(M)). If M is regular holonomic ®(r)(M) is the same for all r.

More generally, we define a family of vanishing cycle for any Dx-module M and any
object of the derived category of Dx-module. They are defined for each pair (r,s) of
rational number such that 1 < s < r < 400 as objects of the derived category of Dy-
modules and denoted by ®(r,s)(M).

The properties of these sheaves are connected with the microcharacteristic varieties
Cha(r,s) (M) of [19]. We show that, under a geometric condition on Cha (ro,s0)(M),
D(r,5)(M) is independent of (r,s) if sp < s < r < 9. Moreover it is a D§°-module
(not only an object of the derived category), and admits locally a finite resolution by free
Ds°-modules. We show that the functor ®(r,s)(.) is compatible with duality.

The formal power series used by Ramis are not adapted to the higher dimensional
case. We use the sheaf C§| « of microfunctions of Sato-Kawai-Kashiwara [29] which lives

on the conormal bundle 73 X and some connected sheaves C& +(r,s) of [20] to control the

growth. To work with them we use the sheaf of 2-microdifferential operators Di(R’oo)(r,s).



Vanishing cycles of Irregular D-modules 3

This sheaf is in fact the sheaf of differential operators associated to C§l§| (r,s) exactly as the
sheaf DY of differential operators of infinite order is associated to holomorphic functions.

We prove a kind of microlocal Cauchy theorem, that is an isomorphism between the
solutions of M in the sheaf C§| «(rs) and the solutions of ®(r,s)(M) in the sheaf Oy of
holomorphic functions on Y.

This shows in particular that these solutions do not depend on (r, s) when ®(r,s)(M)
do not. We deduce from this a control on the growth of solutions of M in more familiar
sheaves as holomorphic functions with essential singularities on Y or the formal completion
of the sheaf of holomorphic functions along Y (see corollary 4.4.3).

With holonomic modules, the geometric condition is always satisfied when r = s. More
precisely, we proved in [19] that, for each holonomic Dx-module M, there exists a finite
number of indexes r, the critical indexes or slopes of M, such that the condition is satisfied
for (r, s) as soon as no slope is between r and s.

Let us denote by 7o =1 < r; < --- < ry = 400 the sequence of slopes of a holonomic
Dx-module M. We may therefore associate to each interval [r;_1,7;] a sheaf of ®;(M)
such that ®(r,s)(M) = ®;(M) when r;_; < s <7 < r; and s < r;. This family will be
called the family of vanishing cycles of the irregular holonomic module M.

In fact, we use more convenient notations. If r = r; is a slope then ®{r}(M) denotes
the sheaf ®;(M) and ®(r)(M) denotes the sheaf ®;1(M) and if r,_; < r < r; then
B} (M) = 2(n(M) = &;(M).

If M is holonomic, the sheaves ®(.)(M) are Dj°-holonomic and we prove that the
characteristic cycle of @, (M) is equal to the corresponding microcharacteristic cycle of
M.

Using the microlocal Cauchy theorem, we deduce that the growth of solutions is given
by the slopes of M and we get an index theorem analogous to Kashiwara’s theorem [11].
More precisely, we prove that the complex of microfunction solutions of the holonomic
module M are perverse sheaves whose Euler characteristic may be calculated from the
microcharacteristic cycles of M and this is true for any value of r in [1, +00]. From this,
we show analogous results for holomorphic functions with singularities on Y and Nilsson
classes.

The family ®(r)(M) makes thus the connection between the geometric invariants de-
fined in [19] and the solutions.

In the one-dimensional case, a detailed study of growth of solutions in sectors of C
through Fourier transform has been performed by Malgrange in [24].

In the case of holonomic modules, N. Honda [9][10], using the techniques of Kashiwara-
Kawai[14], proved the isomorphism between solutions in C$ x(s,1) and C& « when s is lower
than some sy. This number sg is independant of the manifold Y. If we compare to our
results, it seems to be the maximum of the first slopes r; over all manifolds Y of X.

The paper is divided in five sections. In the first one, we recall several definitions that
will be used later, namely the Newton polygon of an operator, the microcharacteristic
varieties, the holomorphic microfunctions and the 2-microlocal operators.

In section 2, we recall the definition of several sheaves of micofunctions and of their
symbols. We show that in some special cases we may restrict microfunctions to a hyper-
surface.

The key result of the paper is in the third section, namely theorem 3.1.1. This theorem
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is of the same kind than a theorem of [11] showing that an operator with principal symbol
t™ is equivalent to the operator t™. The theorem of Kashiwara uses microlocal operators
of E§. Our theorem replaces the principal symbol by a microlocal symbol and the sheaf
ER by the sheaf D2 (4.

In section 4, we apply this theorem to define the sheaves of vanishing cycles ®(r,s)(M).
We study their properties, prove the microlocal Cauchy theorem and deduce results about
non holonomic D x-modules.

In section 5, are the results about holonomic modules, their solutions and the index
theorems.

We have added an appendix in which we give another proof of the results of part which
does not use the results of Kashiwara-Kawai on regular holonomic modules.

1 Microcharacteristic varieties of a D-module.

1.1 Some notations.

Let X be a complex analytic manifold and Y a submanifold of X. We will denote by
A =Ty X the conormal bundle to Y with canonical projection 7 : A — Y and by T*A the
cotangent bundle to A.

Local coordinates of X, when used, will be denoted by (z1,...,Zn—g,t1,...,tq) and
chosen such that Y = {t = 0}. In this case, we have A = Ty X = {(z,t,{,7) € T*X [t =
0,¢ = 0}. We will denote by (z,7,z*,7*) the corresponding coordinates on T*A.

The sheaf of holomorphic functions on X will be denoted by Ox and the sheaf of differ-
ential operators with holomorphic coefficients on X by Dx. The sheaf of microdifferential
operators of [29] on T*X will be denoted by £x.

We recall that the restriction to the zero section X of T*X of the sheaf £x is Dx and
that 7~ !Dyx is a subsheaf of £x.

1.2 Newton Polygon of a differential operator.

The Newton Polygon of a differential or microdifferential operator near Y is a convex
subset of R? defined in [18] and [19]. We recall here its definition in local coordinates.

A differential operator P defined in a neighborhood of Y or a microdifferential operator
P defined in a neighborhood of A has a symbol

P = E ‘Pj(xataéaT)
j<m
where each P; is a holomorphic function near A homogeneous of degree j in (§,7) (in the

differential case, they are polynomial in (£, 7) and j is positive). They have a representation
in Taylor’s series :

Pi(z,t,6,7) =Y P (z,7)t¢"
o,
and we define the following functions on T*A :

Py(w,ma",m) = Y PP(a,)(—1") (")
|a|+|B|=1



Vanishing cycles of Irregular D-modules 5

The Newton Polygon Ny (P) of P along A is the convex hull of the union of the sets
Sij={(\p) ER* A+ p <jpu<j—i}

for all (7,7) such that P;; # 0.

For each rational number r such that 1 < r < +o0, D, is the supporting line of N (P)
with slope —1/r. It is the line with equation {i + r(j — i) = a} which meets the boundary
of Np(P). The principal symbols of the operator P are defined in the following way :

For 1 < r < 400, 01(() (P) (resp. 01{\T}(P)) is the function P;; where (i,j — i) is the
point of Ny (P) N D, such that 7 is maximum (resp. minimum).

It is proved in [19] that these functions are well defined (i.e. independent of coordinates)
on T*A and they are multiplicative, that is a/(() (PQ) = 01(() (P)UX)(Q).

For 1 < s < r < 400, the symbol af(’s)(P) is defined as P; ;1 if the intersection of D,
and D; has integral coordinates (i, k) and it is 0 otherwise.

Another way to define these symbols is to consider the ’critical indexes’ of P. A number
r such that 1 < r < 400 is a critical index if —1/r is a slope of N (P) that is if D, NN (P)
is not reduced to one point.

Then if r is not a critical index we have 0/(() (P) = O';{XT}(P) = P;j where (i,j — i) is the
unique point where D, meets N (P). If r is a critical index, then a/(\r)(P) (resp. UJ{XT}(P))
is equal to 01((_6) (P) (resp. 0X+6) (P)) for 0 < € << 1. The function ag’s)(P) is equal to
JX)(P) if there is no critical index between r and s and 0 otherwise.

These definitions are independent of local coordinates and they may be extended to

any conic lagrangian submanifold A of T*X.

1.3 Microcharacteristic varieties.

The microcharacteristic varieties were defined in [19] where we refer for details about the
definitions recalled here.

Let A be a lagrangian conic submanifold A of T*X and T*A its cotangent bundle.
When we consider Dx-modules, we assume that A is the conormal bundle Ty X to a
submanifold Y of X.

The manifold A is provided with a canonical action of C* which defines an action of C*
on T*A denoted by Hy,. On the other hand, T*A is a vector bundle on A and is therefore
provided with another action of C* denoted by Hjy.

If r is a nonnegative rational number, written as r = p/q with relatively prime integers
p and g, we set H, = H5 H{.

In local coordinates H, is given by :

Hy(A) : (z,7,2%,7") — (z, 7, \2", A\T")
Hyo(N) : (z, 7,25, 7%) — (2, A1, 2%, A 71r%)
H.(\) :(z,7,2%,7) — (x, NP1, Xlz* , ATPr¥)
We denote by Ojr-;(7,j) the sheaf of holomorphic functions on 7*A which are homo-

geneous of degree j for Hy and ¢ for Hy and are polynomial in the fibers of 7 : T*A — A
and by Ojp«,) the sum ©O7- (4, 7)-
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The restriction to Y of the sheaf Dy is provided with two canonical filtrations. The
first one is the usual filtration by the order of operators witch is denoted by (Dx )m>0
and the second one is defined by [12] :

ViDx ={P € Dx|y/Vj € Z, PT} c T %}

where Zy is the ideal of definition of Y and I{, =Q0x if j <0.

These definitions extend to the sheaf £x and any lagrangian conic manifold A in the
following way [15],[19] : the usual filtration denoted by (£x ), we define VpEx as the sub-
algebra of Ex|p generated by the operators of order 1 whose principal symbol vanishes on
A and chX = 8X,k%5X-

Now if r = p/q is a rational number such that 1 < r < oo, we define a F,-filtration on
Ex|a by :

FFex = Z Ex nNVn€x
(p—q)m+gn=k

The associated graded ring grp,&x is isomorphic to T, 0=y

Now we may define the microcharacteristic varieties of a coherent £x-module or of
coherent Dx-module like the classical definition of the characteristic variety of a coherent
Dx-module. A filtration of a coherent £x-module M is a good F,-filtration if it is locally
of finite type that is of the form M, = F,f“EXul + -4+ F,f“EXup for some local sections
Uly---,Up of M.

If M is a coherent £x-module, it has (locally) a good F,-filtration and the associated
graded ring grp, M is a coherent m,Ojr«p-module which defines an analytic subvariety
EE\T) (M) of T*A and a positive analytic cycle f]g()(./\/l) with support this subvariety.

They are independent of the good filtration and we call them the microcharacteristic
variety and the microcharacteristic cycle of type r.

It is proved in [19] that ZS()(M) is involutive and homogeneous for H, and that there
exists a finite sequence 1 = ryp < r; < -+ < ry = 400 of rational numbers such that
EE\T) (M) is independent of r €]r;, 1| for ¢ =1... N — 1. The numbers r; are called the
critical indexes or slopes of M.

If r is not one of the critical indexes the variety EX) (M) is homogeneous for several r
hence for any r, we will say that it is bihomogeneous.

So, the family ES\T) (M) for 1 < r < 400 is the union of two finite families, the first one
indexed by the critical indexes 7 ... 7y and the second one by the open intervals |r;, r;iy1][-
The members of the second family are bihomogeneous.

Because of their relations to the solutions of the module, which we will study in this
paper, it is convenient to rename these varieties in the following way :

Chatry(M) = S7(M) and  Cham(M) = =7 (M)

where 0 < e << 1.
By definition, these microcharacteristic varieties are all bihomogeneous and if r is not
a critical index we have :

Chatr}(M) = Cha@ (M) = 57 (M)
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The microcharacteristic cycles Chy{r}(M) and Chy(r)(M) are defined in the same way
$(r)
from X}’ (M).
If 7 is a coherent ideal of £x, the microcharacteristic varieties of M = Ex /T are :

Cha{r}(M) ={0 € T*A/ VP € T, o1(P) =0} (1.3.1)
Cha)(M) = {0 € T*A/ VP € I, o\"(P) =0} (1.3.2)

The same is true for the varieties EE() with the functions Z P;;.
(4,4)€Dr
As we will see later, the microcharacteristic variety 25() characterizes the solutions of
a given growth (r). If we want to prove a relation between solutions of growth (r) and
(s), we need double indexed varieties Chy (r,s)(M). Their definition, given in [19], uses the

bifiltration associated to the two filtrations F, and Fj :
FMex = FFex N FlEx

Then the definitions of a good filtration and of the associate bigraded module are similar
to the previous one, this bigraded module is a coherent 7, Ojp«jj-module which defines a
microcharacteristic variety Chy (r,s)(M).

A point @ € T*A is not in Chp(r,s)(M) if and only if for each germ of M at 7(6) there
is an operator P such that Pu = 0 and aj((’s) (P)(9) # 0.

The functor Chy(r,s)(.) is additive, that is Chp(r,s)(M) = Chp(r,s)(M")UCh(r,s)(M')
for any exact sequence :

0—-M —>M—-M'"—0

There is a relation of inclusion between these varieties :

Lemma 1.3.1. Let M be a coherent £x-module and r,7',s,s" be four numbers such that
r>r'">s" >s. Then

Cha(r)(M) C Chp(r',s") (M) C Chp(r,s)(M)
and the first inclusion is an equality if 0 <r —s << 1. We have also :
ES;’J) (M) - ChA(r,s)(M)

This result was proved in [19, prop. 3.3.1.]. The proof is easy in the case of one operator
and the extension to the case of a module follows from 1.3.1 and the corresponding formulas

for £ (M) and Cha(r.s)(M).

1.4 Critical indexes and holonomy.
(r,5)

In the case of one operator P, the critical indexes and the functions o) ™’ (P) are closely
related. In the case of Dx- or £x-module, such relations are still true under additional
assumptions, for example holonomy.
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There is a canonical hypersurface in 7% A which is denoted by Sx. It is the characteristic
variety of the Euler vector field associated to the action of C* on A. In local coordinates
we have :

Sy ={(z,7,z*,7")) <7,7" >=0}

This hypersurface is important here because our main hypothesis on coherent Dx- or
Ex-modules will be Chy (r,s)(M) C Sh.

This condition is equivalent to “for each section u of M there is an operator P such
that Pu = 0 and af\r’s) (P) is a local equation for Sy”.

This condition is satisfied by large classes of Dx- and £x-modules as shown by the
following results.

Proposition 1.4.1. If M is a holonomic Ex-module, the microcharacteristic varieties
Cha(r)(M) and Chp{r}(M) are subvarieties of Sa for any r € [1,+00].

This proposition was proved in [19]. More precisely, we proved that the microchar-
acteristic varieties of a holonomic module are lagrangian bihomogeneous subvarieties of
T*A [19, theorem 4.1.1.] and that all lagrangian bihomogeneous subvarieties of T*A are
contained in Sy [19, proposition 4.3.1.].

Proposition 1.4.2. Ifry and ry.1 are two consecutive critical indexes of a coherent Ex -
module M then for any (r,s) such that ry > r > s > ri1 we have :

Cha(r,s)(M) = Chp(r)(M) = Chp(ri)(M)

This proposition will be proved at the end of the section. It implies in particular
that, if 5 and rg1 are two consecutive critical indexes and if Chp(r)(M) C Sy for some
T €|rg, re+1[, then Cha(r,s)(M) C Sy for any (r,s) with rp > r > s > rgy1. Conversely,
we have :

Proposition 1.4.3. If M is a coherent Ex-module such that Chp(r,s)(M) C Sp, M has
no critical index for M in |s,r].

Proof. We know from lemma 1.3.1 that ES(’)(M) C Chp(r,s)(M) if 7 > 7' > s hence by
the hypothesis we have Z]E\T )(M) C Sx. We conclude with [21, Lemma 4.5.1.] which

asserts that if ES\TI)(M) C S) then EX’)(M) is bihomogeneous and thus ' is not a critical
index. O

In the holonomic case, these results take a very simple form :

Corollary 1.4.4. If M is a holonomic Ex-module, the condition Cha(r,s)(M) C Sy is
true if and only if there is no critical index between r and s.

To prove proposition 1.4.2, we will use the following lemma, :

Lemma 1.4.5. Let M be a coherent £x-module and r,7',s,s" be four numbers such that
r>r'>s">s. Then

ChA(r,s)(M) = ChA(r,s’)(M) U ChA(r’,s)(M)
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Proof. The proof of the lemma make full use of the results of [18], in particular Ch (r,s)(M)
is the support of the sheaf E/%(r,s) ®g-1£x g "M with g : T*A — T*X.

The sheaf €2 (r,s) is a sheaf of rings on T* A whose definition will be recalled in 2.3, but
here we use only two propeties of this sheaf :

1)E3(r,s) is flat on ¢71Ex ([18, theorem 2.6.10.])

2)If 7 > 7' > s, then E3(,s) /E4(rs) is independant of s ([18, theorem 2.3.1.]), we
denote it here by E['7].

So we get an exact sequence :

0— 812\(7“,5) — Si(r',s) — E[T’,r] — 0
As Eﬁ(r’,s) is flat on ¢~ 'Ex we get an exact sequence :
0— 7—01‘1(5[1"’,7‘], M) — gi(r,s) QM — E/%(r',s) QM

and the same with s replaced by s'.

This shows that Chy (r,s)(M), which is the support of £2(r,s) ® M is contained in the
union of Cha(',s)(M) and of the support of Tory(E[r'r], M) which itself is contained in
Ch(r,s')(M), hence :

ChA(r,s)(M) C ChA('r,s’)(M) U ChA(r’,s)(M)
Lemma 1.3.1 shows that this inclusion is an equality. O

Let us now come to the proof of proposition 1.4.2. We have to prove that r¢ = ry,
where rg is the highest 7 in [rgy1,7%] such that :

Cha(rres)(M) = Chp(r)(M)

Lemma 1.3.1 says that Chp(r)(M) C Chp(r,s)(M) and that the inclusion is an equality
fO0<r—s<<1,s0ry)>rge1-

On the other hand, if s is not a critical index for M then ZS\S) (M) is biconic and the
same proof than that of [19, prop. 3.3.1.] shows that there exists some € > 0 such that
Chp(s+e,s—e)(M) = Chp(s)(M). This property and lemma 1.4.5 show that o = 7.

2 Microlocalization and second microlocalization

We will use several families of sheaves which were defined in previous papers. Let us
try first to classify them and then we will recall as briefly as possible their definitions.
So sections 2.1 to 2.4 will simply remind known definitions while the next sections will
introduce new results for multivalued sections of some of these sheaves.

There are three levels to consider: local, microlocal and 2-microlocal.

At the local level, that is on the complex variety X, are the sheaves of holomorphic
functions, holomorphic hyperfunctions and differential operators. The principal results of
this paper, at least the most explicit ones, are given at this level in section 5 but they are
corollaries of microlocal results.
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At the microlocal level, that is on the cotangent bundle T* X to X, are the sheaves of
holomorphic microfunctions, real holomorphic microfunctions and microdifferential oper-
ators. There is also a class of 2-differential operators. This level is the natural one for our
results, for example to define the vanishing cycles.

The 2-microlocal level is the cotangent bundle T*A to a lagrangian submanifold A of
T*X as in section 1. It will appear in section 3.2 and will be fully used in the appendix.

At each level, the sheaves are indexed by a couple (r, s) of rational numbers giving the
growth of the symbols.

2.1 Holomorphic hyperfunctions.

We keep the notations of §1.1 and denote by d the codimension of Y in X.
The sheaves B;}o‘ x and By |x of holomorphic hyperfunctions on Y have been defined

primitively in [29] (see also [31]). The sheaf By is the d-th local cohomology group of
Ox with support on Y while By|x is the corresponding algebraic cohomology group :

B x = H{(Ox) By|x = Hfy1(Ox)

If Y has codimension 1, By is thus the sheaf of holomorphic functions on X —Y
modulo holomorphic functions on X while By is the subsheaf generated by meromorphic
functions on Y.

If d > 1, there is a similar representation if we write Y as a complete intersection
Y = Y1 N...Y; of smooth hypersurfaces: let V be a domain of holomorphy in Y and U
any holomorphic neighborhood of V' in X. Let U be the complementary in U of U;—1,.. 4Y;

and fori=1,...,d, T/J\'z be the complementary in U of Uy;Y;. Then

I(V,By|x) = Ox(U) /@izl...doX(ﬁi)

In [18], we generalized these definitions to sheaves By |x(r) and By x{r} for all rational
r > 1. The sheaf By|x(r) (resp. By|x{r}) is the subsheaf of B Yix corresponding to

functions whose growth is less than exp(C/|t| r—l) for some C' > 0 (resp. any C > 0) if
t = (t1,.-.,tq) is a local system of equations of Y.

To unify the notations, we set By | x{1} = B?’O|X and By |x(c0) = By|x-

Let us fix local coordinates (z1,...,Zn—d,t1,--.,tq) such that Y = {¢ = 0}. A function
fof O X(ﬁ) may be represented in Laurent series as :

= Y fal@)ift.
aEZ™

Let us denote as in [29] :
1 n!
2%t (—t)n+1
As positive powers of any t; gives 0 in BY‘ x» & section of B;’,°| x on V, hence of By x(r) or
By x{r} for any r, has a unique representation as :

Z ga a1 tl ¢O¢d (td)

aeN?

@, (1) =
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By definition, the symbol of the hyperfunction represented by g(z,t) is the function :

u(e,r) = Y gala)r®

aceNn

The growth conditions on the functions give the following characterization of the
sheaves of holomorphic hyperfunctions through their symbols [29],[18] :

The sections of By|x(r) on an open set V of Y are the holomorphic functions u(z, 7)
on V x C? such that :

VK CCV, 3Co,C >0, ¥(z,7) € K x C%, [u(z,7)| < Coexp(C|r[*/")
while the sections of By x{r} are the holomorphic functions u(z,7) on V x C¢ such that :
VK CCV, Ve >0, 3C. >0, Y(z,7) € K x C%, |u(z,7)| < C.exp(e|r|'/")

If r = 400, the function u is polynomial in 7.
The sheaf D of differential operators of infinite order on X may be defined as the
cohomology group :

DY = B%O\XXX ®p2_1(’)x pEIQX =Hx(Oxxx) ®p2—1@X pEIQX (2.1.1)

where X is identified to the diagonal of X x X, po is the second projection X x X — X
and Qx is the sheaf of holomorphic differential forms of maximum degree n = dim X.

This definition means that a differential operator is represented by its kernel which is a
holomorphic form on X x X with singularities on the diagonal X. The sheaf of differential
operators of finite order on X is :

—1
Dx = Bx|xxx @10, P2 2x

The representation by symbols given for holomorphic hyperfunctions gives the ordinary
symbols for differential operators. This means that the form

(=DFL g

!
T VT

O (t —t)dt' =

. k .
is the kernel of the operator (%) whose symbol is 7%

Cauchy formula.

. This is nothing else than the

2.2 Real holomorphic microfunctions.

The sheaf CX, - of real holomorphic microfunctions has been defined in [29] as the mi-
crolocalization of the sheaf Ox of holomorphic functions, that is the Fourier transform
of the localization of Ox along Y (see [16] for a detailed study of microlocalization). By
definition, it is a sheaf on Ty X which is conic for the canonical action of RY .

A symbolic calculus for these microfunction was established by Boutet de Monvel [5]
and Aoki [1]. In [20], we defined a family of sheaves C§| x(rs) for +o0 > r > s> 1 s0
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that C§1§| (1) = C§1§| - The definition did not use microlocalization but was given by the
symbols :

We consider an open subset Uj of Ty X with coordinates (z,7). An open subset U of
Up is said to be R-conic if it is invariant under the action of R’ in 7 and convex if the
fiber over each z is convex. For such sets, U’ CC U means that U' N{(z,7)/|7| = 1} is
relatively compact in U. Then we set [20] :

(i) S4(c,r,U) is the set of holomorphic functions on U such that :
YU' cc U, 3C > 0, Y(z,7) € U, |f(z,7)| < Cec™"”"
(ii) S_(s,U) is the set of holomorphic functions on U such that :

YU' cc U, 36 >0, 3C > 0, ¥(z,7) € U, |f(z,7)| < Ce?IT"*

If U is a R-conic convex open subset of Uy, if +00 > r > s > 1 the set of sections of
C§|X(r,s) on U is equal to :

L(U,Cy x(r9) = lim limS. (c,r,U) /S-(s,U) (2.2.1)
U'ccUc>0

If r = s we take the same formula, the injective limit on ¢ > 0 being replaced by the
projective limit :

P(Ua C;%\X(rﬂ")) = @1 (hﬂl‘S’-F(ca T, U) /S— (’I", U)
U'ccUc>0

If r = 400 and s is finite, S; (¢, r,U) is the set of holomorphic functions with polyno-
mial growth. If r = s = 400, the definition of [20] is a little more complicated and will
not be used in this paper.

The sheaf C§|  (r,8) is now given on R-conic convex open subset of Uy and this generates

a unique sheaf C% x(rs) on Up. To define sheaf on Ty X, we have need the formulas
connecting the symbols in two different coordinate systems and for this we refer to [20,
Prop 2.2.5.].

Real holomorphic microfunctions have also a representation by an alternate system of
symbols which, after Boutet de Monvel, we call formal symbols :

(i) 8,(c,r,s,U) is the set of series 3 x>0 f& of holomorphic functions on U such that :
YU' CC U, 3C >0, 3A > 0, Y(z,7) € U', Yk > 0, |f(z,7)| < CA*|7|~F(k)sec ™"
(ii) S_(c,r,s,U) is the subset of Sy (c,r, s, U) of series 3 fj such that ¥ g with :
k—1
g(w,m) =Y fi(w,gt)
=0

is still an element of S, (c, r, s, U).
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If U is a R-conic open subset of Uy, if +00 > r > s > 1 the set of sections of C$|X(7‘,s)
on U is equal to :

T(U,CE x(re) = lim Lim&, (c,r,s,T) /§_(c,r,s,U)
U'ccUc>0

Note that here U does not need to be convex as before. It U is convex, the isomorphism
between the two kinds of symbol is induced by the natural map S (¢,r,U) — Si(¢,7,8,U)
which associates to a function f the series given by fo = f and fr = 0,7 > 0 [20].

The sheaves Cy|x(r,s) of holomorphic microfunctions on 7y-X are simply the global
section of real holomorphic microfunctions, that is :

CY|X(T75)|Y = C&|x(7‘a5)‘Y CY|X("'=S)|T}*,X = 7_1’)'* (C%X(Tys)'f;;x) (2-2-2)

where T;iX = Ty X — Y and v is the canonical projection of T;X to the associated
projective bundle Py X.
They were defined in [18], generalizing the definitions of [29] with the correspondence :
Cyix() =Cyly  Byx() =By
Cy|x(01) = Cy|x By | x(0) = By|x

HTy X = {(z,t,&,7) € T*X /t = 0, = 0}, a section of Cy|x(r,s) on an open set U of
Ty X is a formal series .y fj(z, 7) of holomorphic functions on U such that :

(i) f; is homogeneous of degree j in 7.
(ii) VK cC U, 3C >0, V5 <0, V(z,7) € K, |fi(z,7)| < C7I(—j)®

(iii) VK cc U, 3C >0, Vj >0, Y(z,7) € K, |fj(z,7)| < CJ'+1( ﬁ)r

If r = s then (iii) is replaced by

(iii)) VK cC U, Ve >0, 3C. >0, Vj >0, Y(z,7) € K, |fj(z,7)| < Cgejﬁ

and if 7 = 400 then (iii) is replaced by
(iii)” ImeZ, Vi >m, f; =0
(if s = 400 condition (ii) is void).
From this definition, we can see that By x(r) is the restriction to the zero section ¥

of Ty X of the sheaf Cy x(r;s) when r > s and that By |x{r} is the restriction of Cy|x/(r,)
when r = s.

The canonical morphism from C;’,‘i x(r:s) to C$| «(r5) is injective. To a symbol ) jez fi

of Cl"f"X(r,s) we associate a formal symbol Zkzo gi of C$|X(r,s) given by gg = ijo f; and
g = fr if £ <O.

Microlocal operators and microdifferential operators of finite or infinite order are de-
fined from holomorphic microfunctions as in (2.1.1) :

R _ (R —1

Ex = Cx|xxx @pz1o, Po x
00 _ 100 -1

€X = CX|xxx ®Ops1ox P2 Qx

1
Ex = Cx|xxx @10, Py dx
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2.3 Second microlocalization.

The sheaf DY of differential operators of infinite order on X may be defined as a coho-
mology group by (2.1.1). It is shown in [20] that Ox« x may be replaced in this definition
by real holomorphic microfunctions to define ”2-microlocal operators” :

) _
DRt = My x (Chevixnx(s9) B0, P2 Ox

and by holomorphic microfunctions to define ”2-microdifferential operators” :
2(o0, _
DA(OO oo)(r,s) = H%{;X (C?’OXY\XXX(’"’SO ®p§1(9x fos lox

This is possible because the cohomological properties of C;’,o‘ x (r,s) and C;l§| x(r,5) are very
similar to those of holomorphic functions ([20]). We remark that the definitions together
with formula (2.2.2) give immediately

2(R,00)

DY) 1) = 40 DR

We get in this way sheaves of rings on A = T3 X. There are canonical inclusion of
sheaves of rings E|p C Di(oo’oo) (rys) C Di(R’OO)(r,s) and 8§| A C ’Di(R’OO)(r,s) where £x and
EX are the sheaves of microdifferential and microlocal operators of [29].

It is proved in [20] that C x(rs) is a D2®>)(, -module and that :

R x(rs) = D™ rs) @ Cyix

When r > r’ > s’ > s, the canonical morphism C& x(r,s) — C$| (r',s") induces a mor-

phism of sheaves of rings D%R’Oo)(r,s) — Di(R’OO)(r’,s’) which makes Cglf‘ x(1',s') a D%R’Oo)(r,s)-

module.

We defined in [20] symbols for sections of Di(oo’oo)(r,s) and D (r,s) generalizing
those of £§ and 8;1?. It is the same proof than the existence of symbols for By|x in section
2.1. The coordinates are (z,7) on A and (z,7,z*,7*) on T*A.

2(R,00)
A

Definition 2.3.1. Let (r,s) be two real numbers with 1 < s < r < +00 and let V be an
open subset of A, R-conic in 7.

For each a > 0 82(r)(a, V) is the set of holomorphic functions u(z,7,z*,7*) on (V N
{Ir] > a}) x C" such that :

e, C >0, Y(z,7,2%,7") |u(z,7,2%,7")| < Cexp(c|7|1/r + a(|z*| + |7]|7*])

S? (r)(a, V) has the same definition but with ¢ replaced by —c.

S%(rs)(V) = @@Sﬁm(a, V') /82 (s)(a, V')

a>0 V!

where the limit is taken over all open subsets V' of V which are R -conic in 7 and such
that V' N {|7| = 1} is relatively compact in V.
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We proved in [20] that, if V' is contained in some half space {Re < A, 7 > > 0}, there is

an isomorphism between S%(r,s)(V) and Di(R’oo)(r,s)(V). The product of two operators of
’DX(R’OO)(r,s) is defined in [20] by a formula which is not easy to explicit in S%(r,s)(V). These

symbols are issued from the symbols of C% x (r,s) of section 2.2 while the good formula is

defined in other symbols coming from formal symbols of Cg‘%‘ x (758)-
However, if the symbols are independent of 7* the formula is meaningful in ordinary
symbols, the product of P(z,z*,7) by Q(z,z*,7) is R(x,z*,7) with :

R(z,a%7) = 3 é(a‘z*)ap(x,x*,f) (%)QQ(:B,Q:*,T) (2.3.1)

a€eN?

This product appears as the product of differential operators in z with holomorphic pa-
rameter 7.

In the same way, symbols of C;’,ol « (rs) are used to define symbols of Di(oo’oo)(r,s) [18][20],
they have the following form :

If r > s, the set I'(U, Di(oo’oo)(r,s)) of sections of Di(oo’oo)(r,s) on an open set U of A is
in bijection with the formal series

P = Z Pi(z,1,2*,77)
(i,k)ENXZ

such that Py (z, T, z*,7*) is polynomial homogeneous of degree i in (z*, 7*) with coefficients
holomorphic on U and homogeneous of degree i + k in (7,z*) and satisfy the following
inequalities :

VK ccU, 3C >0, Ve >0, 3C: >0, VY(z,7) € K, (2.3.2)

(=18 .
(i) |Pu(z, 7,2, 7)| < (cs)kg%(m FIr)t > 0,k<0

(i) | Py (z, 7, z*, 7*)| < Coe'C* (|z*| + |7*])" ifi>0,k>0

k" 4!
Substituting C§l§| x(r,s) and C1°/°| x(r,s) to Ox in the definition of the sheaf D of differ-

ential operators gave us the sheaves Di IR’oo)(r,s) and Di(oo’oo)(r,s). We may use the same

substitution in the definition of 5§ and £F to get the four sheaves EK(R’R) (r,s), EK(R’OO)(r,s),

Ei(w’R) (r,s) and Ei(m’oo)(r,s). Each of them is a sheaf of rings on T*A.
So, the definition is :

Ei(R’R) (r,s) = UTy X (C$XY|X><X(T’S)) [n] ®p§1(9x pEIQX

where ppx x is the microlocalization along Ty X diagonal of Ty X x Ty X

We get Ei(w’R)(r,s) by substituting C*® to CK, Ei(R’oo)(r,s) and Ei(w’oo)(r,s) by taking
the global sections on the fibers of the projection of T*A to the corresponding projective
fiber bundle. By restriction to the zero section we recover the sheaves of section 2.3:

g?\(RaR) 2 (R,OO)

OO)(TVS)'A = DA (T75)

Ex N wa)la = E3 ) = Dy (r9)

(rs)|A = 5,2\(R’



16 Yves Laurent

In fact, we will not make here full use of these sheaves which were studied more closely
in [20]. The sheaf Ei(R’R) (r,s) will be used in a special case in the appendix, the sheaf

Ei(R’OO)(r,s) only in theorem 4.1.8 to calculate the characteristic variety of vanishing cycles.

The sheaf Ei(oo’oo)(r,s) will be used in section 3.2 only through its symbols which we
redefine now. We use local coordinates of X as in 1.1 so that T*A is provided with
coordinates (z,7,z*,7*) and consider an open subset U of T*A where they are defined.
We assume that U is C-conic in (7,2*) and in (z*,7*). We assume also that the rational
numbers (r, s) satisfy oo > r > s > 1 (the cases 7 = oo or r = s are not very different but
not used here).

If r > s, the set I'(U, 5i(m’m)(r,s)) of sections of 5i(w’m)(r,s) on U is in bijection with
the formal series

P = Z Pik(xaTax*aT*)
(i,k)eZ?

such that Py(z,7,z*,7*) is homogeneous of degree i in (z*,7*) and of degree ¢ + k in
(1,2*) and satisfy the following inequalities :

VK ccU, 3C >0, Ve >0, 3C. >0, VY(z,1,2"*,7%) € K,

(2.3.3)
(i) | Pz, 7, 2%, 7%)| < CTH(—i)(=k)¥® ifi<0,k<0
. —\!
(i) | Pz, 7, 2, 7)| < C"*k% ifi<0,k>0
(—=F)s
ii1)| Py (z, 7, 2%, 7%)| < (C- *kel( k)' ifi >0,k<0
(44d) | Pix ( ) < ( A
o1
) |Py(z, 7,5, 7%)| < Cee*C*F — ifi>0,k>0
k'rz'

The restriction of 52(00’00)(7«,5) to the zero section of T*A is Di(oo’oo)(r,s) and this is

clearly compatible with our definitions of the symbols.
We say that P is of finite order if there exists (%o, ko) such that Py, = 0 if i+rk > ip+rko
or ¢ + sk > ig + skg. The sheaf of operators of finite order is denoted by 812\(7",5).

2.4 Inverse image.
Let 7 : Y < X be the canonical map. The inverse image of an Ox-module N by i is

’L*N = Oy ®i_1OX 'L._IN

The definition of inverse image of left Dx-modules is the same but to explicit its
structure of left Dy-module, was introduced a (Dy, Dx)-bimodule (see [31] for example) :

Dy_x = Oy ®i-10, i 'Dx
and then if M is a left Dx-module :

"M =0y ®i-10, i "M =Dy_x ®-1p, i ‘M
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In this paper, we will define the vanishing cycles as the inverse image by 7 of a

Di(R’OO)(r,s)—module. So, we define now ’Df,(llf’xo)(r,s) which is a (W‘l’Dl"/o,Di(R’oo)(r,s))—

bimodule on A (with w : A — Y'). It may be defined as the inverse image of the D x-module
D2®) 0 by i1 Y — X that is :

D) ) = 17 Dy L x ®p-1p, D))

In this way, it is the quotient of Di(R’OO)(r,s) by the right ideal generated by the equations

of Y.

In local coordinates it may also be assimilated to the subsheaf of D (r,s) of opera-
tors with a symbol independent of 7* (i.e. operators which commutes with the operators
of symbols 71,...,74). To make precise calculations in the next section we will need a
cohomological definition of this sheaf.

Let us consider the canonical injective morphism 7 : ¥ X X — X X X. It defines a
morphism p : T3 X x Ty X — Y x Ty X which is the canonical projection.

The morphism j* : j7'1Oxxx — Oyxx defines a morphism [29, lem. 2.2.5. chl] :

2(R,00)
A

. R R
J* : Rpy CYxY|X><X[d] — Cyxy|yxx

and it was proved in [20] that this morphism may be extended to :

J*: Rpy C§XY|X><X(7"7S)[d] — C§XY|Y><X(T’5)

Taking the (n — d)-th cohomology group we get a morphism :
Hs x (C§XY|X><X(T’3)) ®p, Qx — "H%;Si( <C§XY\YXX(T’3)) ® py Qx

The first term is D> ™) (r,5) by definition and it is not difficult to verify that the second
is equal to Df,((ﬂi’xo)(r,s) [18, §2.10.].

In the same way we may define a (Di(R’OO)(r,s), 7r*1’D§,°>—bimodu16

R R — — _
D/2\(_)§O)(T7s) = D/Q\( ,OO)(T7S) ®7T_1'DX ™ 1DX<—Y = H?;g( (ngywxx(’”as)) ®p1 IQY

It is the quotient of Di(R’oo)(r,s) by the left ideal generated by the equations of Y.

The sheaves Dy _, x and Dx .y are duals as Dx-modules, that is :
]RHOIII'DX (‘DX(_}Q Dx) [codim Y] = Dy_>X
and, Dy_, x being flat over Dx, we deduce immediately the corresponding result :

RHomDi(R,oo) (Df\(ﬂ%g—o)(ﬁs), 'Di(R’oo)(r,s))[COdim Y] = 'Df,-((ﬂi’xo)(r,s)

(r)s)

The same definitions may be stated for the sheaves £2, in particular we may define the

sheaf SRR
8Y((7,A)(T’5) = /'I’T;X (C$XY‘YXX(T’S)) [’n, — d] ®p;19X

)

and this sheaf is, in local coordinates, isomorphic to the subsheaf of Si(R’R (r,s) of operators

commuting with the operators of symbol 71, . .., 74. Replacing CX by C*® we get E}Q,(Eﬁo) (r,s).



18 Yves Laurent

2.5 Symbols of holomorphic microfunctions.

The symbolic calculus for germs of the sheaf C;l% « Wwas defined by Boutet de Monvel [5]
and Aoki [1]. We will here to be more explicit in the case of multivalued sections of this
sheaf. This point will be the key of the proof of theorem 3.1.1.

It follows from the definition of C$|X and [29, prop.1.2.4. ch I] or [17, th 4.3.2.] that
if U is an open subset of Ty X with convex conic fibers we have :

F(U, C&X) = h_n)lH%(V, OX)
V,Z

where V ranges through the family of open subsets of X such that VNY = #n(U) and Z
through the family of closed subsets of X such that Cy(Z) C U°.

Here 7 is the canonical projection of Ty X on Y, U? is the antipodal of the polar set
of U in Ty X and Cy(Z) is the tangent cone to Z along Y.

We assume now that Y is a domain of holomorphy of C*~% and X =Y x C%. The coor-
dinates will be denoted by (z1,...,2Zp,t1,...,tq) on X and the corresponding coordinates
(z,7) on Ty X.

Let G ={(z,7) € Ty X |Re7; > |Imm;|,i =1,...,d }, we have :

[(G,Cy x) = lig HE (V,Ox)
Ve>1

where V ranges through the family of open neighborhoods of Y in X and
Z. ={(z,t) € X | Ret; <e|Imt;|,i=1,...,d}

From a theorem of Siu, Y has a fundamental system of neighborhoods in X which are
domains of holomorphy, so we may assume that V' is a holomorphy set and define :

W = {(z,t) € V |Ret; < e|Imt;|}, WH=wWY, w.= (| wi
i 1<i<d

Then Cech cohomology gives an exact sequence :

P rwll, 0x) — T(W.,0x) — HZ (V,0x) — 0
1<i<d

A section u of C&  on G is thus represented by a holomorphic function f on some W-,.
Following [29] and [1] we will say that f is a defining function for w.
For any (o, A) € ((R%)? x C?, we may replace G,WE(Z), and W, by :
G, = {(:L‘,T) € T{;X | aiRe)\Zln > |ImAZITZ’|,i =1,... ,d}
W = {(a,t) €V |z €Y,Re Xty < (o +€)|Im Aty }, i =1,...,d, £ >0

W)HE = m W)E:?E
1<i<d
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Let C be the universal covering of C* = C — {0} and p be the canonical projection
Y xC? - Y xC%. As usual, a section u ofp_IC;@‘X on'Y x C? will be called a multivalued
section in 7 on {(z,7) € Ty X | 7, #0, i = 1,...,d}. We recall that the sheaf C&X has
the property of unique continuation [29, th. 2.2.8. ch III].

For any a; > 0,A; € C, u has a defining function on W), for some open set V. Two
such functions differ from the sum of d functions, each of them being holomorphic in one

variable ¢; near 0. More precisely, given A and X', u has defining functions ¢ on W ., ¢’ on
Wy . and ¢ — ¢’ = 3~ ¢; with ¢; holomorphic on W)[\Z,]E N W)[\Z,], .- But the union W)[f,]g U W)[f,]

»E

]

is still Stein and thus we have a decomposition ¢; = 1; — 4} with 1; holomorphic on W)[\Z .

and ¢} holomorphic on W}, .. So a defining function for u is ¢ — 3 9; = ¢' — Y44} which
is holomorphic on W) . U Wy ..

We may iterate this procedure on Y x (A[id, therefore u has a defining function f which
is multivalued in each variable t; on V N {t; # 0,i = 1,...,d}. Two such functions differ
from the sum of functions which are holomorphic in one of the variables #; near 0.

In fact this is not absolutely true because the open set V has to be shrinked at each
turn around ¢; = 0. This will not affect our results because we will use only a finite number
of turns.

The symbol of the section u as defined in [1] is calculated from a defining function.
Here we will use the same formula, but we will take a special path :

For b € C*, we consider a path 7, in C* beginning at b, ending at b, and such that the
index of the point {0} is 1 relatively to 7. If ¢(t) is a holomorphic multivalued function
defined on D* = {¢t € C | 0 < |t| < ¢} then the integral of ¢ on -y, is well defined if
vy C D*, it depends only on b and on the choice of the determination of ¢ at b.

If a is a point of (C*)?, we define Y,(V'), or Y, for short,as the subset of Y of points z
such that (z,ea) € V for any ¢ € [0, 1].

A symbol of the microfunction u with defining function f is the function :

Fu(z,7) :/ fz,t)e™<bT> dt; ... dtg (2.5.1)
Yay X--XYay

It is defined on Y, (V) x C? and satisfy :

VK cC Y,,Ve>0,3C. > 0,Vz € K,V¥7 € C¢,Rea;7; > 0,i=1,....d,

|Fo(z,T)| < Cee€|”|+"'+5|7d|

Hence F is a symbol for u on {(z,7) € Y, x C¢ | Rea;r; > 0}. The difference of
two defining functions being the sum of holomorphic functions in one of ¢;, the symbol is
independent of the choice of the defining function and for the same reason, it is independent
of the choice of the determination of f.

Usually, that is in the results of Aoki and in 2.2.1, the symbols of u differ from an
exponentially decreasing holomorphic function. Here we have chosen one of them which
depends only on a. Another crucial difference is that the symbol is dominated by a product
efIml++eltal on an open set which is itself a product. This will allow to take a punctual
value as follows.
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Let us fix some value o such that Reagjo > 0 and consider the resulting function
F,(z,7",0). It is well defined and subexponential as a function of 7/ = (71,...,74_1) on
{(z,7") € Yo x C¥1 | Rear; > 0} hence it is the symbol of a section u,, (o) of C$|YX@,1
on this set.

This section depends on o and on a4 but not on (aj,...,a4s—1) because moving a;
modifies F' by a function which is exponentially decreasing in 7;. So we may define u,, (o)
as a section of C%}Yx(cd—l multivalued in 7 on Y, x C%' where Y, is the set Y, for
a1 = =ag_1=0.

Finally we proved :

Lemma 2.5.1. Let Y be a domain of holomorphy in C"~¢, X =Y x C% and X' =
Y x CL. We identify T3 X to Y x C? with coordinates (z,T).

(i) Any section u 0fC$|X on'Y x (C*)? multivalued in 7; fori =1,...,d, has a defining
function on V N {t; #0,} multivalued in t; for i = 1,...,d and some neighborhood V of
Y in X.

(i3) Given a point a € (C*)%, such a section has a uniquely determined symbol F,(x, )
on Y (V) x C* where Y, (V) is subset of Y of points x such that (z,ea) € V for any
e €1[0,1].

(iii) For any o € C* such that Re ago > 0, the function (z,7") — Fy(z,7',0) defines a
section ofC;1§|X, on Y(g,q,) (V) x (C*)4 multivalued in 7; and independent of (a1, ... ,aq—1).
This section will be denoted by uq, (o) and called the value of u at 79 = 0.

Remark 2.5.2. The lemma is still true if d = 1. In this case Y = X’ and thus C§‘X, = Oy.

As we will see later, it is sometimes necessary to define u,, (o) as a section on the

whole of Y x (C*)4~!. This is possible only on a subsheaf of C& I

Lemma 2.5.3. Let Y be a domain of holomorphy in C*~%, X =Y x C?% and X' =
Y x C4 L. We identify T4 X to Y x C? with coordinates (z,T).

If C is a positive number, let f[(;} (Y x ((C*)d,CgX) be the set of multivalued sections
of C&X on Y x (C*)® which have a defining function on Y x {t € C¢ |0 < |t;| < 1/C'}.

(i) For any (o,aq) such that Reago > 0 and |ag| < 1/C, the value uq (o) is well
defined as a multivalued section of C&X, onY x (C*)4-1,

(i1) The result uq,(o) is an element of f[c](Y X ((C*)d_l,C%X,).
(15i) Let u be a multivalued section of Cyix on Y x (C*)? represented by a symbol

U(.’It, T) = Z uk(xa T)

neZ

where each uy, is a holomorphic multivalued function on'Y x (C*)¢ homogeneous of degree
n in 7. We assume that :

AC > WK CC Y,3Ck,V¥n < 0,Vz € K, |up(z,7)| < CkC™"(—n)!

Then u is an element of f[c/n](Y X (C*)dac§|x)-
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Proof. Let us first remark that any multivalued section of Cg’/‘" « onY x (C*)4 has a symbol

similar to the symbol of the lemma except that the constant C' usually depends on K.
With the additional condition of the lemma, the defining function of u as it is calculated

in [29, Proposition 1.4.3.] is defined on V =Y x {t € C? | 0 < |t| < 1/C} and we get the

result if we apply lemma 2.5.1 to this set V. O

These lemmas extends to all sheaves Cg « (rs) defined in [20] :

First, we remark that C$| x(r,1) is the subsheaf of C§I§| x of the sections whose sym-
bols have growth exp(c|7|'/"). This means that the defining function f(z,t) has growth
exp(c|1/t|*/1), The value of u at ¢ is thus well defined as a section of C$G|X,(r,1).

If s > 1, we use the map (7) — (77,...,7]). It defines an isomorphism between the
sections of C&X(r,s) outside {7; = 0} and the sections of C&X(r/s,l). This proves that

lemma, 2.5.1 and lemma 2.5.3 extend to the sheaves C$|X(r,s) and C;C"X(r,s) for all (r,s)
such that +oo >r > s> 1.

2.6 Non local operators

These non local operators will be used in the next section to apply the morphism of lemma
2.5.1. In this section X is of dimension n and Y of codimension d.

A differential operator, that is a section of DS on some open set U of X is represented
in local coordinates (x1,...,%,) as :

P(z,D;) = ) pa(z)D
a€EN"?

where p,(z) is a holomorphic function on U satisfying :
VK CC U, Ve >0, 3C. > 0,Vz € K, |pa(z)| < Ceel®lat (2.6.1)

and such an operator defines a endomorphism on the sheaf Ox of holomorphic functions.
If we replace 2.6.1 by :

3§ >0, VK cC U, 3C > 0,Vz € K, |pa(z)| < C6¥a! (2.6.2)

we get an operator wich is not local on Oy, the series 3 po(z) f(¥(z) is convergent only
if the Taylor series of f at = converges on a polydisk of radius J, i.e. P defines a map from
I'(U,0x) toI'(Us,Ox) withUs ={z €U |Vy ¢ U,Vj=1,...,n—d,|z; —y;| > }.

The sheaf of operators satisfying 2.6.2 may be defined by 2.1.1 where the diagonal of
X x X is replaced by {(z,z') € X x X | |z; — ]| < d}. Of course, this is coordinate
dependant. Our aim here is to develop the same definition for 2-microdifferential operators,
that is replace Ox by C§‘X(r,s).

We set Ay = {(z,7,2',7") e Ty X x Ty X |Vi=1,...,n—d,|z; —z}| <6, 7=17"}
and define :

Di(R,w)(r,s;d) = ,HZ& (C$XY|X><X(T’S)) ®p2—10X p;lQX
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Lemma 2.6.1. For all k # n we have :

,HkA(; <C§XY|X><X(T’S)> =0

Proof. Let € be a Stein open subset of T3-X x Ty, X which is R’ -conic and contained in
some half-space in 7, we define :

Q; ={(z,7, 2", 7") ETYy X x Ty X | |z —z;| > 6 } ifi=1,...,n—d
Qirna={(z,7, 2", 7)) ey X x Ty X | |7, —7/| >0} ifi=1,...,d

These sets are R’} -conic Stein open sets hence Hk(Qi’C$'><Y|X><X) = 0 for ¢ > 0 [20, Prop

2.5.1]. As Q— Ay is covered by n acyclic open sets, the lemma is true by elementary Cech
cohomology. O

Proposition 2.6.2. Let V be an open set of Ty X and
Vi={(z,7)eV | V¢V, Vi=1,....,.n—d, |z —y;| >}
A section of Di(R’OO)(r,s;J) on'V XV defines a morphism
D(V,C¥ x(r9) — T(Vs, Cy|x(r9))

R,00)

This action extends the natural action of Di( (r,s) on the sheaf C$|X(r,s).

Proof. Consider the the two projections p and ¢ from Ty X x T3 X to Ty X. There is a
canonical morphism :

(C%Xy‘Xxx(T,S) ®q—1(/)X q_IQX) Qc q_1C$—|X(r,s)[—n] — p_1C$|X(r,s) (263)

This morphism may be defined by inverse image under X x X «— X x X x X or as in [18,
Proposition 2.1.4.] using the isomorphism :

(C§|X(r,s) R0y QX) D& (r,5) Oy x ()] = RHomer . ) (¥ x (1), CF x (1)
= RHome, (Cy|x,Cy x) ® Ex(rs) ~ Cry x
The fibers of p being of dimension n, there is a morphism of direct image [8] :
Rpip™'Cy x (ns)[2n] — Cy x (15)
hence a morphism :
RpiRC A, p ' CY x (9)[2n] — Rpip 'Oy x (9)[2n] — Cy|x (r9)

which composed with (2.6.3) gives :

Rp! (RFA5 (C$Xy|xxx(ﬂ5) ®q_1(’)x q_IQX) ®c C&x(ﬂs)) ['n'] — C&x(ﬂs)
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and using lemma 2.6.1 this gives :
2(R,00) —1,-R R
jo (DA (r,5;0) c q Cy|X(T,s)) — Cy|X(T,S) (2.6.4)

If A; is replaced by the diagonal of Ty X x Ty X, p is an isomorphism on the diagonal

and we get the action of Di(R’OO)(r,s) on Cgl%‘ x(r,s). Here we remark that the projection

p:qg (V)N AsNp Y (U) — U is proper if U is contained in V5 and this gives the
morphism of the proposition :

T(V x V, D3 (r,5:0) ®c T(V, CF x (r.9)) — T(V3, C x(rs)

We may also consider a sheaf ’Df,((ﬂi’xo) (r,5;6) as in section 2.4 :

R,00 n— —
D?,—((_A )(T,S;J) — HAisd (C&Xy‘yxx(’r,s)) ® p2 IQX

with A§ = {(z,2',7) € Y x Ty X |Vi=1,...,n—d,|z; — zi| < d}. It is identified with

the subsheaf of Di(R o) (r,5;0) of sections commuting with 7,...,74.

2.7 Symbols of 2-microlocal operators.

Let X' = {(z,t) € X |t4=0}) and A’ =Ty, (Y x X'). We want now apply the results

of section 2.5 to define the “value at 74 = ¢” of a section of Df,((ﬂi’xo)(r,s) as a section of
Df,(?i’r,’) (r,s). In fact, there is no such morphism and we will have to shrink the first sheaf

or to extend the second.

In this section, we fix a domain of holomorphy €2 of Y and consider the open sets

U={(z,1) €Ty X |2€Q, 7, #0}and U' = {(z,7) € A |2 € Q, 7, #0}. The set of

sections of D?/(E’Xo)(r,s) and of Df,(ioj’xoo) (r,s) on U and the set of sections of Df,((HE’X?)(r,s) on

U’ which extend analytically along any path will be denoted respectively by
T(U, DA (1)), T(U, DX (r,5)) and T(U', DEE) (r,59)

An element P of f(U, Df,(f_oj’xoo)(r,s)) has a symbol P = )., P (z,7,2*) given by formula
2.3.2 where each function Py is multivalued on U. Let us denote by f[c](U, D?,(ioj’xoo)(r,s))
the subset of these sections whose symbol satisfy the stronger condition :

VK cc U, Ve >0, 3C: >0, Y(z,7) € K, (2.7.1)

. —k)Is .
(i) |Pig(z, 7, 2%)| < CEaZC’C(i—k‘)'u*V ifi >0,k <0

(#4) | P (z, 7, z*)| < C.'C* lz*"  ifi>0,k>0

(k)" !
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Proposition 2.7.1. Let C > 0 and (0,a) € C* x C* such that Reao > 0 and |a| < 1/C.
The morphism of lemma 2.5.1 defines a morphism :

Ty (U, D (1)) — (U, DA r,9))

and a morphism :

f(U, Df,(fi’xo)(r,s)) — U f(U’, Df/((ﬂi’xc,))(r,s;ﬁ))
>0

Given a section P of f(U, Di(E’ZO)(r,s)) and an arbitrary 6 > 0, the image P,(o) of P
2(R,00)

is in f(U’,DY(_’A, (r,s:0) if |a| is small enough.

Proof. Let Z a IR} -conic subspace of (C*)4 contained in some half-space Re < A, 7 >> 0,
2 a Stein neighborhood of @ in Y xY and V=Qx ZCY xTyX. Let Uy =V NIy X
and for k=1,...,n—d:

Vi ={(z,2",7) €V |2 #£ 2} } Wk:ﬂVk W = ﬂ Vi
j#k 1<j<n—d

The sets Vj, are acyclic for C® (r,s) [20, Prop 2.5.1.], thus we have an exact

YXY|YxX
sequence of Cech cohomology :

(Wk’CYxY|Y><X(T s)) — P(W CYXY|Y><X(T s)) — P(Ul, Y(<—A )(r s)) —0 (2.7.2)

A section of Df,((ﬂi’zo)(r,s) on U; is thus represented by a microfunction on W which has a
symbol u(z,z’,7) on W.
In the same way we may define, for § > 0, Z’ a R’ -conic subspace of (C*)?~! contained

in some half-space and V' = Q x Z' :
VO ={(@a ) eV ||l —apl >0 WO =NV w@= N v
j#k j=l..n—d
and we get an exact sequence :

LW, C oy ywxr(rs) — TWDCE s xcrs) — TV, DY i) — 0

If we replace ngYW «x by C§°Xy|Y x> the corresponding result is true if Z is contrac-
tile. This was proved in [18, th. 1.1.3.]. So we get an exact sequence :

O (Wi, C¥y iy xx () — T(W, C vy x (1) — P(Ul’fo(ioz’\OO)("’s)) —0

A section of T'(Uy, D Y((_A )(r s)) is given by its symbol P = }7; yyenyz Pir(z, 7, 2%).
Each function Pj; is a homogeneous polynomial of degree ¢ in z* hence equal to :

Piy(z,7,z") ZPaka

|a|=i
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and by definition of this symbol (in [18] sections 1.5,1.6) the corresponding section of
r(w, ¥y iy xx 5)) is the microfunction of symbol v = 3 ux(z, z’, 7) with :

(z,2',7) Z Pop(z, 7)o (z — ')
aENP
—1)F+1 gl

2 .’I/'i;—’—l

with ®(z) = @q, (71) ... P, (zp) and Pp(z1) =

If P is a section of f(U, ’Df,((o_oj’xoo)(r,s)), the microfuntion u = ) uy extends as a multi-
valued section of Cg’,oxy‘YX x(rs) on'Y x U because the symbol ) P, of P is unique and
extends itself as a sum of multivalued functions. Now we may apply the results of the
previous section in two ways :

First, if P is a section of [je)(U, Dyo"y® (r,s)), the conditions 2.7.1 implies that u satis-
fies the conditions of lemma 2.5.3, hence for a suitable (a, ), the microfunction u, (o) is de-

fined on W' = Q x C* as a multivalued section. This define a section of T'(U’, ’DY(EX?) (r,s))-

Second, if P is any section of F(U, DY( A )(r,s)), u satisfies the conditions of lemma, 2.5.1,

hence for a given (a,c), the microfunction u,(c) is defined on the points of W’ = Q x C*
at a distance d of the boundary for some § > 0 hence on W(®). So this define a section of

v, ‘D?}E’X?)(T,S;J)) which extends to a section of I‘(V’ Dégﬁ)(r,s;&). d

When a local system of coordinate is given, DY(E A )(r s) 1s identified to the subset of

Di(oo’oo)(r,s) of operators whose symbol is independant of 7* and in this way is a sheaf of

rings. The same is true for Df,((ﬂf’xc,’)(r,s) subsheaf of Di(,R’OO)(r,s).

Proposition 2.7.2. A local system of coordinates being given, the morphism

Ty (U, D) (1)) — (U, Dy r,9))

of proposition 2.7.1 is compatible with the ring structures.

Proof. The product of two sections of DY(<_’A )(r,s) is given by the formula 2.3.1. In 7 it is

just the ordinary product and therefore, the operation of taking the value at a point o is
compatible with the product :

(PQ)a(J) = Pa(a)Qa(a)
]

To end this section, let us give some extensions of proposition 2.7.1 which will be used
only in the appendix.

First we may define f[c](U, ’Df,(ili’xo) (r;s)) as the subset of T'(T, ’Df,(ilixo)(r s)) which is
the image of f[ (W, C$XY|Y><X(T’S)) in the exact sequence (2.7.2). From lemma 2.5.3, we

deduce that f[ (U, DY(<_A°°) (r,s)) is a subset of f[ (U, ’DYS_’ )(r,s)) and that the morphism

of proposition 2.7.1 is defined from f[c}(U, Dz,(llf’xo) (r,s)) to F[C](U', Df/(l]i’xc,))(r,s)).



26 Yves Laurent

We may also extend the results to the sheaf E}Z,(E’jﬂf)(r,s). To make easier calculations,

we will assume that the dimension of Y is 1 which is the case needed in the appendix.
Let « be a point (zg =0,z =1, 7)) of Tq*w;X(Y x Ty-X'). Then from the definition of the
microlocalization we have :

2(R,R .
5Y(<—A)(T’5)a = M1y X (C$xY|Y><X(T’S)) [Ha = hﬂHIZ&-(UE’C;@xHYxX(T’S))
€

= @F(UE — Z€7C§l§xY|Y><X(T’5)) /F(Ug,C$XY‘YxX(T,s))

with
U= {(z,2',7) €Y xY xC¢ ||z —2'| <e,7 €T, }
Z.={(z,2",7) €Y xY x C¢ | Re(z — ') < ¢|Im(z — z')| }
where I'; is a fundamental system of open conic neighborhoods of 7.
If we define 512,(5’1{{)(7«,5)[0](1 as the subset of 5}2,(5’/]15)(7«,5)& of elements generated by sec-
tions of ') (U: — Ze, C&XY‘YXx(r,s)), we extend proposition 2.7.1 in the following way :

Proposition 2.7.3. (i)Let C > 0 and (0,a) € C* xC* such that Reac > 0 and |a| < 1/C.
The morphism of lemma 2.5.1 defines a multiplicative morphism :

512/((11},/11&{) (T,S)[C]a — 512/(5’115) (r,s)[C]a/

(i) If P is an element of 5)2,(5’/(\)0)&,5)& whose symbol P =Y Py (z,T,x*) satisfies the
conditions (2.3.3) but with (iii) replaced by 2.7.1 (i), if the functions Py (z,7,x*) extend

as ramified functions in 7, then P is an element of gf,((ﬂf’f) (r,5)[Cla-

This result is proved exactly as proposition 2.7.1.

3 Equivalence theorem for 2-microlocal equations.

3.1 The result.

In this section, Y is a submanifold of codimension 1 of the complex analytic manifold X
and A is the conormal bundle 7y X, while A=A-Y.

We assume that we are given local coordinates (z1,...,z,_1,t) of X where (t =0) is
an equation for Y. Then A = {(z,t,7,£) € T*X | t = 0,£ = 0} and the local coordinates
of T*A are (z,7,z*,7%).

The function ¢ may be considered as a differential operator on X and then has a symbol
a/((’s)(t) = 7* for any (r,s).

The aim of section 3 is to prove the following theorem :

Theorem 3.1.1. Let (r,s) € Q? such that r > s > 1 and let P be a microdifferential
operator (that is a section of Ex ), such that aj((’s) (P) = (%)™ in a neighborhood of a point
a € A. Then there is, on a neighborhood of o, an isomorphism :

Di(]R,oo) (rs) /Di(R,m) (rs)P ~ (Di(R,oo)(r,s) / Di(R,OO)(T,S)t)m
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In fact the isomorphism is given by a “multivalued” matrix :
Definition 3.1.2. The sheaf 15/2\(R’°°)(r,s) is the subsheaf of D

2(R,00)
. A
have a continuation along any path in the fibers of A — Y.

(r,s) of sections which

Proposition 3.1.3. Under the hypothesis of theorem 3.1.1, there is an isomorphism :
~ o~ ~ ~ m
D%R"’O)(r,s) / Di(R’oo)(r,s)P ~ (Di(R"’O)(r,s) / Di(R’oo)(r,s)t)

The proof will be made in three steps. First we will prove an equivalence theorem
when a/((’s)(P) = («7)™. In that case, the theorem is true in Di(oo’oo)(r,s).

The situation is similar to the case of microdifferential operators. An equivalence
theorem is true in £ for operators with principal symbol £]* [29] while the theorem is
true only in £X when the principal symbol is ™ [11].

Next we will ’add a variable’, perform a quantized canonical transformation and take
the value of an operator at some point using 2.7.1. This will give theorem 3.1.1 but for
s' > s. In section 3.4 we will prove the limit case s = s'.

The theorem is stated for a 1-codimensional manifold Y, but extension to any sub-
manifold is easy (using a quantized canonical transformation).

3.2 Equivalence theorem for 2-microdifferential equations.

In this section, the codimension of Y is d > 1. We keep the same notations for local
coordinates. The fiber bundle TA is thus provided with coordinates (z,7,z*,7*). We fix
numbers (r, s) such that 1 < s <.

Let U be an open subset of 7*A which is (complex) conic in (7,z*) and in (z*,7*). Let
g be a positive integer, u be a rational number such that 0 < p < 1 and G§ = {(4,k) €
Z? | i+rk<qi+sk<gq, 2+ (r+sk<2uq}

We define E,’f (U) as the set of formal series of holomorphic functions on U :

P = Z Pi(z,7,2%,7%)
(i,k)€GY

such that Py (x,7,2*,7*) is a homogeneous function of degree 7 in (z*,7*) and of degree
i+kin (1,z%).
For such a series we define a Boutet de Monvel formal norm as :

. _ 3
N¥(P;S,T) = Z s
i’k’a7ﬂ7776

O\ o\ [\ [0\ .
(£ () (2) (2) e

where the sum is taken over all integers (i,k) € GY, all (a,8) € N4 x N*=¢ and all
(v,0) € N¥ x N¢.

G2+ al+[Bl+y+0|p—2k
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The coefficient cf‘kﬁ,y 5 18, by definition :

N!
(N +lef + [y + |B] +[o])!
with N = inf(—i — rk + ¢, —i — sk + ¢, —i — "k + ug) and N! = T(N +1).

i+k
cgjgd = 2(2n)"t

When g = 1 this formal norm is the norm of [18, def. 2.4.3.] and the same proof as
[18, th. 2.4.9.] gives :

Lemma 3.2.1.

NF(P+@Q;8,T) < N} (P; S,T) + Ny (@Q; S, T)
Nq+q (PQ; S, T) < NF(P; S,T)N;(Q;S,T)

In this lemma, < means that at each point (z, 7, z*, 7*) the coefficient of each monomial
ST of the right side is greater than the corresponding term of the left side and the product
PQ is given by formula 3.2.4 of [20] (or theorem 2.3.3. of [18] but with other notations).

We will denote by E4(U) the subset of E’f (U) of elements P such that, for each
compact subset K in U, there exists some C > 0 such that N} (P,S,T) is convergent
when (z,7,2*,7*) € K and |S|" < &|T|,|T| < &|S)°.

It is clear that the union of E¥ (U) over all ¢ € N is independent of y, it will be denoted
by E(U).

Lemma 3.2.1 shows that E(U) is a ring. In fact, for 4 = 1 the definition is exactly

the same as the definition of 2-microdifferential operators of finite order in section 2.3 and
thus we have E(U) = &3 (r,s)(U).

Lemma 3.2.2. Let p be a real number such that 0 < p < 1 and for each ¢ € N let
P ¢ EY(U). We assume that :

VK CcC U, ElC, CO,CI > 0, V(.’L‘,T,]?*,T*) € K7

1 1 c?
T "< ST, |T| < 5|85, NEPW,S,T 1
V(Sa )a |S‘ —C‘ |, | ‘—C|S‘ ’ ( S )<COq

Then the series ), P9 converges in 52(00’00)& s)(U).
More precisely, if the symbol of P9 s > P k , the series

Py _ZP(Q

q>0

are convergent series of bihomogeneous holomorphic functions on U for each (i,k) and the
resulting functions Py, satisfy the following inequalities for some v > 0 :

VK ccU, 3Cy >0, V(z,7,2%,7%) € K,
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() |Pi(zx,T,2*, %) < Oy F(—i)!(—k)!® ifi<0,k<0
. —)!

(1) |Pig(x, 7,2, 7%)| < C;”’“(k'?' ifi<0,k>0

_p (=) 1
i) | P * % z—k( TERN k

(ZI”’)| 1k($’77$ s T )| <CZ ] [(1—“)(z+(s+y)k)]+| lf’L_O, <0
: 1 1

(iv) | P (z, 7, 2, 7%)| < CiTh T ifi>0,k>0

Emal [(1—p)(@ + (r —v)k)]4!
(la]+ is the lowest positive integer greater than the rational number a)

Proof. First, we remark that inequalities (i)-(iv) imply immediately (2.3.3) hence series
satisfying (i)-(iv) define a symbol of £2°*)(, ),
Applying Cauchy inequalities in (S, T) to N (P, S, T) we get for (z,7,z*,7*) in K

andN:inf(—z'—rk+q,—z'—sk+q,—i—@k—l—uq):

2 —i—rk—i—sk

|‘Pi(]<;q)(x77-;$ , T )‘ < C()Cil?C r—s

(We denote by r! the number I'(r + 1) for any r € Q).

If v is the strictly positive number ﬁ, we have :

N:—i—mk—{—uq if g > v|k|

2
N=—-i—sk+gq if 0 <¢g<—vk
N=—i—rk+gq if0<qg<+vk

Assume first that 7 < 0,k < 0, then lemma 2.4.8 of [18] gives a constant Cs depending
only on s such that :

| _4 _ ! .
N — (=i — sk +q)! < Oy SRR (—k)® if0<q< —vk

q! q!

Nt (—i—sk+q—(1—p)(g+vk)
g q!

1
(1= p)(g + k)]t

< Ok () (—k)1® if g > —vk

This shows that the series Pj, = Zq>0 Pi(,g) is convergent and satisfy :

1

* —i—k : s
‘Ijik(l'a’ram » T )‘ <0002 (_IL)‘(_k)' Z Cg + Z Cg(q—l—uk)!(l_l‘)

0<g<—vk q>—vk
<C R (=) (—k)®
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Let us consider now the case k > 0,7 < 0, then

| 7 — ! ) !
M _ okt a0 O 0 < g <k
q! q! kT
N!' (=i—rk+q—(1—pu)(qg—vEk))!
q q!
. —_7)!
< g-i+a (V) ! if g > vk

k(1= p)(g — kv))!

and we get :
|Pig(z, 7,2, 7%)| < C3 vt T

Now we consider k£ < 0,7 > 0, we have :

l(—i— ! ‘ ERATE
Nt _ (mi—sk+q)! SC;“SHQ& if0<q<—vk

q q! !

N!' (=i—sk+q—(1—p)(q+vk))!
q q!
. —_k)Is
< Cs—z—sk—‘rq( k) 1 if q > —vk

it [ —p)(g+vR)]!

but ¢ > i+ sk so ¢ < —kv will occur only if 1 < —k(v + s). We get :
e (k)
| P (z, 1, 2%, 7%)| < C’éfk( ,') ifi <—k(v+s)
il
(—k)!® 1
it (=)@ + (s+v)k))!

|Pi(z, 7, 2%, 7%)| < Cg if i > —k(v+ s)

The last case is ¢ > 0,k > 0. The same calculation shows that :

| Py (, 7, 2%, 7| <C%+kk!’"i! ifi <k(v—r)
|Pik (w7, 2%, 7)| < CHFF ! if i > k(v —r)
A TR (1 — )i — (v —r)k)]! =
This concluded the proof of the lemma. O

An operator P € 3 (r,s)(U) will be said of order (g, ) if its symbol is in E\ff(U)

Let a : N — N be any function. A (m X m)-matrix A of £2(r,s)(U) will be said of order
(g, p) if, for each (4, 7), the coefficient A;; of A is a microdifferential operator of order at
most (¢ + a(i) — a(j), ). Then the order of the product of a matrix of order (g, u) by a
matrix of order (¢', i) is not greater than (¢ + ¢/, ). The usual order of matrices is given
by a = 0 but in the proof of theorem 3.2.4 we will use a(i) = 4.

We define the formal norm of such a matrix as:

NF(A;8,T) = sup Z NH

20 Ny (ST

and it is clear that lemmas 3.2.1 and 3.2.2 are still true for matrices.
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The matrix A is said to be independent of D,, if the symbols of the microdifferential
operators A;; are independent of z7. This is equivalent to the fact that A commutes with
z1. Then A may be considered as a matrix of 2-microdifferential operators in the variables
(2, ..., Tp_g,t) with holomorphic parameter z; and we will write it as A(z1).

Such a matrix A(z1,z’,7,2"*,7*) will be said of medium order (4,u) if there exists
some ¢ € N such that any product of g terms

(wg ),w 2", ") A (wg ),w Tz, %) .. A(mgq),ac Tz, )
is of order at most (gd, u).
For example, if Ay is a matrix of order (1, ) and A; a matrix of order (1,1) nilpotent
of order m (i.e. AT =0) then Ay + A; is of medium order (1,1 — 1_7“)
We denote by I the identity (m x m)-matrix.

Proposition 3.2.3. Let U be an open subset of T*A which is (complex) conic in (T, z*)
and in (z*,7*). We assume that for each point (z1,x4, 70,24, 75) in U the set {\ € C |
(A, x4, 10,25, 75) € U} is a simply connected open subset of C which contains the origin.

Let A be a m X m-matriz of Eﬁ(r,s)(U) which is independent of Dy, and of medium
order (1, u) with p < 1. Then there exists on U an invertible matriz R with coefficients in
Ei(w’w)(r,s)(U) such that :

(Dg, I — A)R = RDy,

Moreover we may choose R such that R = I on {1 = 0} and then R is unique and
independent of D,,. The symbols of the coefficients of R satisfy the conditions (i)-(iv) of
lemma 3.2.2.

Proof. The proof is similar to the proof of theorem 5.2.1. ch.IT in [29] :
The equation (D, I — A)R = RDy, is equivalent to ( B )R AR where (Tl) is

the operator of derivation acting on the symbols of the coefficients of R.
We define a sequence Ry, of matrices with coefficients in £2(r,s) by Ry = I and the
relation :

(9.131

and we have to prove that the series > Ry is convergent.
The coefficients of ARy 1 are formal series of holomorphic function thus Ry is given

by the formula :
T1
Ri(or) = [ AR ()
0

where the integration is made along any path from 0 to z;. It is independent of the path
as U is simply connected in z;.
In a product A(A)A()N) there is no derivation in the variables (A, ') so we have :

0
( ) Ry = ARy Rilzi=0 =0

Ak A2
o(z1) / / AW AE1) - .. A dApdAe_s - . dy
From the hypothesis, there exists some g € N such that the matrix

B(at),...,s\) = A@{") A=) .. A1)
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is of order at most (g, 1) hence for each compact G x K of U, there exists some C,Cy > 0
such that N“(B,S,T) is bounded by Cy when ) € G for i =1...q, (¢',7,2*,7*) € K
and [S|" < &IT|,|T| < LIS]

Applying lemma 3.2.1 we get :

k 2
sup N (qu;S,T)§<supN“BST) / / g . .. )
r1€G r1€G

1
k
<Gt

The same proof apply to Ry for [ = 0...q — 1 and this proves that the series
> Ry, satisfy the hypothesis of lemma 3.2.2 hence is convergent as a m X m-matrix with
coefficients in 52(00’00)(r s)(U).

The matrix R = ) Ry is a solution of the equation (ax ) R = AR and R(0) = I. To
prove that R is invertible we use the method of [29], that is we define a matrix S such
that ( ) S = —SA and S(0) = I. The preceding proof gives a solution to this equation

and we have SR(0) = I with ( ) SR =0 hence SR =1 and R is invertible.

This proves also the uniqueness of R because if R’ is another solution then for the
same reason we have SR’ = I hence R’ = R. And R is independent of D, because [z1, R]
satisfy the same equation as R and is 0 on z; = 0. U

Theorem 3.2.4. Let P a 2-microdifferential operator of E2(rs) such that O'(T °) (P) =
(z7)™. Then there is, locally on A, an isomorphism :
m

52(00 ) (r,s) /51%(00’00)(r,s)P ~ (812\(00’00)(7",5) /gi(oo’w)(r,s)Dm)

Proof. Using the division theorem 2.5.2. of [18] we can write :

m—1
P(z,7,2*,7*) = E(z,7,2%,7") Pj(z,T,z5,. ..,a:;_d,T*)(:cf)j
J=0

where P; is a 2-microdifferential operator whose symbol do not depend on z] and E is
invertible.

A.S O-/(\T“g)((aﬁ)m - ZT:BIPj(maTﬂE;a'"’x;‘;—dvT*)(x;{)j) = (z1)™, the symbol P; =
> Py satisfy :
szk750:>(i+rk§m,i+sk§mandi<mifk:0)

and P; belongs to E\ﬁkj(U) with g = max(0,1 — 52).
The module £ (r.5) /€3 5)P is isomorphic to

(EX o)™ [(EX™ )™ (D T — 4)
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where A is the m X m-matrix Ay + Ay with :

0 0 0 ... O 0 1 0 0
A= S0 Ar= | 0
0 ... ... 0 0 0 ... ... 0 1
P, P, ... ... Pu 0 0 0

The matrix Ay is of order (1,u) for the function @ : N — N equal to a(i) = ¢ while
the matrix A; is of order (1,1) for the same function. As A; is nilpotent of order m the
matrix A is of medium order (1,u') with ' =1 — (r — s)/2m. So we apply proposition
3.2.3 to A and get the result. O

The symplectic structure of the manifold 7 A is given first by the structure of cotangent
bundle to A which gives a canonical 1-form w (hence a structure of homogeneous symplectic
manifold) and second by the action of C* on the fibers of A which gives an Euler vector
field on A whose principal symbol F' is well defined on T*A up to a multiplicative constant
[18].

These data are equivalent to the canonical 2-form of the symplectic manifold 7*A and
the two actions Hy and H, of section 1.3.

The 1-form w and the function F' define on T*A a structure of bihomogeneous symplec-
tic manifold and to each bihomogeneous symplectic isomorphism is associated an isomor-
phism of 512\(00’00) (r,s) and of E/%(r,s) which is called a “quantized bicanonical transformation”
([18] Theorem 2.9.11.).

From this we can transform theorem 3.2.4 into the following :

Corollary 3.2.5. Let f be a bihomogeneous holomorphic function on T*A and Q a 2-
microdifferential operator whose symbol is f. Let n be a point of T*A where w, dF' and df
are linearly independent.
Let P be a 2-microdifferential operator such that o/((’s)(P) = f™. Then there is an
isomorphism near n :
gi(m’oo)(r,s) /51%(00,00)(T,8)P ~ <5i(w’w)(r,s) /51%(00700)(1"75)@)7”

In local coordinates we have w = > zjdz; + > 7;/dr; and F =} 7;7}. The corollary
may be applied, for example, to f = 77 and @ = ¢; if 1 is a point where (72,...,74) # 0.

Let us consider a manifold Z and denote X' = X x Z,Y' =Y x Zand A' =Ty, X' =
Ty X x Z. It is proved in [29, theorem 5.3.1. ch. II] that, if a coherent £x,-module M has a
support in T*X x Z, then £5 ® M is completely determined by its inverse image on X by
j: X < X'. The corresponding result is true here (the inverse image of a £2,(r,s)-module
was defined in [18]):

Theorem 3.2.6. If M is a coherent SK,(r,s)—module with support in T*A X Z there is a
canonical isomorphism :

gigoo’OO) (T‘,5) ®£i’ (T,S) M = 82$0_0>k00) (7-’5) ®Q_1£/2\(rvs) Q_IJ*M



34 Yves Laurent

with 0 : T*A x Z — T*\, n : T*A x Z — X' and

51260_0)’:0) (rys) = gigoo’oo)(r,s) ®7r—1gX, 7T_15X’<—X
This theorem is a direct consequence of theorem 3.2.4 with the same proof than the
corresponding result of [29]. By restriction to the zero section of A’ we get :

Proposition 3.2.7. If M is a coherent D/Q\, (r,s)-module such that Chp(ris)(M) C T*Ax Z
there is a canonical isomorphism :

DA™ r5) @2 (1,59 M = DY 09) @3 1) ™ M

3.3 Equivalence theorem for 2-microlocal equations.

We assume now that the codimension of Y is 1. We fix local coordinates (z,t) of X such
that Y = {¢ =0} and thus coordinates (z,7) of A and (z,7,z*,7*) of T*A.

Then A is locally isomorphic to Y x C and T*A to T*Y x C2.

In the following proposition we consider a matrix A of operators of D%(r,s) independent
of 7*. This means that A commutes with the operator D; or that the symbols of the
elements of A are independent of 7*.

The sheaf ’D%(r,s) is the restriction to A of Eﬁ(r,s) and the order (o, ) has the same
meaning than in section 3.2.

Such a matrix A(z, 7, z*) will be said of medium order (4, i) if there exists some ¢ € N
such that any product of g terms

Az, 7V, ) A(z, 7P z*) ... A(z, 7D, 2¥)
is of order at most (gd, u).

Proposition 3.3.1. Let V be an open subset of Y and U = {(z,7,2*,7*) € T*A | z €
V,7#0}.

Let (r,s) be two rational numbers such that 1 < s <1 < 400 and A be a (m x m)-
matriz of 2-microdifferential operators in 'Di(r,s)(U) which is independent of T* and of
medium order (1,p) with p < 1.

For each s' > s, there exists on U an invertible matriz R in Di(R’OO)(r,s') with coeffi-
cients independent of T* and multivalued in T such that :

Proof. We first add a variable and apply Proposition 3.2.3:
We consider X' = X x Cand Y/ =Y x {0} C X' with coordinates (z,t,2), A’ =
Ty X' ~ A x C and the open set U’ = { (z,7,{,z*,7*,{*) € T*A' | 2 € V,7 #0,{ #0}.
The partial Legendre transform in (¢,z,7,¢) on T*X' is given by :

z :3:76 :‘fayl :chl’y2 :Z_I'tTCilanl = _tC7772 :C
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It defines a homogeneous isomorphism between A’ and the conormal A” to the submanifold
Y" = {(z,y) € X | y2 = 0} and a bihomogeneous canonical transformation ® from 7*A’
to T*A"” given by :

T = iL',.Z‘* = x*ayl = TC_la"h = C’yT = —T*Cﬂ?; = g* + T*TC_I

It is proved in [18, theorem 2.9.11.] that to any bihomogeneous canonical transforma-
tion @ is associated a “quantized” canonical transformation, that is an isomorphism of
sheaves of rings Eﬁ, (rys) —> (I)_IE/Q\" (r,s) which preserves orders and principal symbols. It is

shown in [20] that this transformation extend uniquely to sheaves 5i(w’°°)(r,s).

So, we can choose a quantized canonical transformation associated to ¢ which ex-
changes tD; and y1D,, and now we are in the situation of proposition 3.2.3 which gives
an invertible matrix R in Ei(oo’oo)(r,s) such that (D,,I — A)R = RDy, and R(y; =1) =1I.
The matrix R is defined as a multivalued function in y; because proposition 3.2.3 is global
on simply connected open sets.

As A commutes with z and ¢ it commutes with Dy, and g, so the same is true for R
by uniqueness.

Coming back to variables (z,t) by the inverse quantized canonical transformation, we
find a matrix R(z,z*,7,(¢) with coefficients in £5°"°(r,s)(U") (multivalued in 7/¢) which
is invertible and such that :

(tD;, — A)R = RtD, and R|,—c=1

In fact A is defined near the zero section of 7*A’ and is thus a matrix of Di(,oo’oo)(r,s).
This equation may rewritten as
0
(E) TR(7,{) = A(T)R(7,{) and R(r,7)=1

We want now to find a solution to the initial problem as the value of R(7,() at a point
¢ = Co-
s'+v

Lets'>sanddsuchthat1<6<T,Wehaveforallizﬂandk<():
s+v

(=F) 1 < Cik (=k)
v

Pk (2,2 < 0 (= G+ G+ )R (i1)?

This proves that P satisfy the conditions (2.7.1) as a section of Df/(}i’xo)(r,s’) and we

may apply proposition 2.7.1. So, we fix some a € C and {y and define the value of the
matrix R at the point ¢ = Cg. We get a matrix Ry with coefficients in D2°*)(r¢") and it

is clear from the definition that :

(%) TRy(T) = ((%) TR(T,00) = [(%) TR] (5 90)

On the other hand, we know from proposition 2.7.2 that A(7)Ro(7) = (AR)(1,00) and
also that Ro(T)R™!(7,00) = [RR™Y(7,00) = Id which proves that Ry is an invertible
solution to the initial problem. O
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Remark 3.3.2. The proof of the proposition shows that the matrix R has coefficients in
the subsheaf Di(R’oo)(r,s’) (definition 3.1.2).

Remark 3.3.3. If we replace proposition 2.7.1 by proposition 2.7.3 we get proposition
3.3.1 for a matrix A of £3(r,s) and the solution R is in Ei(R’R)(r,s’), more precisely in
S2(RR)

8Y<—A (r,s )[C]

3.4 The limit case.
We want to prove that the result of proposition 3.3.1 is still true when s’ = s.

Lemma 3.4.1. Let A be a matriz satisfying the conditions of proposition 3.3.1 and M be
the cokernel : N
tDy—
(Dhir))™ 22
Let s' such that r > s' > s.
Then the canonical (surjective) morphism C$|X(r,s) — C1H§|X(r,s’) induces an isomor-
phism :

Dirs)" — M —0

RHomp: ;. o) (M,C§|X(r,s)) = RHomps (. ) (M,C&X(r,s’»

The result is clear if A = 0 hence proposition 3.3.1 gives an isomorphism between
solutions in C$|X(r,s”) and in C;%'X('I‘,S’) for any s’ > s” > s. The problem is to get s =

Proof. Following the beginning of the proof of prop. 3.3.1, we add a variable z. Keeping the
same notations we find an invertible matrix of 2-microdifferential operators R(z,z*, T, ()
such that :

(tDI — AR = RtD,

Y|X(r,s’))m in a neighborhood of a point @ = (zg, 79) of Ty X
solution of (tDy — A)u = 0. We have :

tDiR™'u = R (tDyI — A)u =0

Let u be a section of (CR

Hence u = Rv for some section v of (Cglﬁ,‘ X! (r,s’))m satisfying tDyv = 0.

There exists some ¢ > 0 such that v is defined for |z — 2| < &, 7 # 0 and ¢ # 0.

We want now to define the value of v and of R at a point (5. We apply the second part
of proposition 2.7.1 and choose some a so that Ry = R({p) is a section of Di@’ﬁ")(m;s/@.
Proposition 2.6.2 shows that u = Ryvg on |z — o] < €/4.

The microfunction v is a section of C;@l x (r,s") satisfying tDyvg = 0 hence of the form

f(z)0=1(t) where f is a holomorphic function on Y and 6(~1)(¢) the microfunction of
symbol 1/7. So vy is in fact a section of C$‘X(r,s) and the same is true for u at a.

m
We proved that if u is a germ of (C§| X(T,s')) at a point o of Ty X and satisfies
m
(tDy — A)u = 0 then there is a unique @ solution of the same equation in (C& X(T,s)) at
m
«a whose image in (C&X(r,s’)) is u.

In the same way, we can prove that (tD; — A) is a surjective morphism on the germs
m
of (C%X(r,s)) . O
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Corollary 3.4.2. The conclusion of proposition 3.3.1 is true for s' = s.

Proof. The canonical projection g : X xY — X defines a projection g : Ty X xY — Ty X
and an injective morphism of sheaves of rings q—lpi(r,s) — ’D%xy(r,s). This means that
we consider an operator on X as an operator on X X Y constant in the second variables.

In this way the operator (¢D; — A) of proposition 2.5 may be considered as a matrix of
operators of D?\Xy(v‘,s) which satisfy the same hypothesis. Applying lemma 3.4.1 we get :

R%OIII&—IDIQ\(T’S) (M7C$XY|X>(Y(T’5)) (L RHOIII&—IDIQ\(T’S) (M’C$XY|X><Y(T75’))

(M is the module defined by tD; — A as in the lemma).
Applying the functor RT'7x x to this isomorphism we get :

Rﬂomqfu)[z\(,r,s) (M, ,sz((]li,})\o) (r,s)) (L R%0m671D% (r,5) (M, 'Df/,(lli’io) (7‘,5'))

The action of D2 (r,s) on D %)(r,s) defined here is, by definition, the action of D3 (r,s)
considered as a subring of Df/((ﬂf’io)(r,s). A solution of (tDy — A)R = RtD; is a section of

Homg-1p2 (1, o) (M, Df,(%zo)(r,sf)) hence it is a section of Homg-1p2 ;. (M, D?/((]Ri’zo)(r,s)).

(The same argument has been used in [11, §3.2]).

We have proved that for any R satisfying (tD;y — A)R = RtD; there exists R’ in
Dz,(l]i’xo) (r,s) satisfying the same equation and whose image in ’Df/((ﬂi’xo)
we have to prove that R’ is invertible.

1 Q(R,OO) 3 1 Q(R,OO) o -1 —
Let S be a section of Dy, " (r,s) whose image in Dy )" (r,s') is R™". Then RS = I+Q

where [ is the identity and @) is a section of Df,((ﬂi’xo)(r,s) which vanishes in D?}E’XO)(r,s’).

So, @ is very decreasing and it is easy to show that the series Y Q" is convergent and
defines an inverse to I 4+ @ in fo(}f’f)(r,s).

This proves that R’ is invertible. O

(r,s') is R and now

The proof of theorem 3.1.1 is now the same as the proof of theorem 3.2.4 using the
same division theorem [18, 2.5.2.] and replacing proposition 3.2.3 by corollary 3.4.2.

Theorem 3.4.3. Let M be a coherent Ex or D%(r,s)—module defined on an open subset U
of A. We assume that
Cha(r,s)(M) C Sa

and that M is provided with a good F,s-bifiltration whose bigraded module is free of finite
rank N over Op[z*].

N
Then Di(R’OO)(r,s) ® M is locally isomorphic to (Di(R’OO)(r,s) /Di(R’OO)(r,s)t) .

Proof. If M is a Ex-module we replace it by Di(r,s) ® Ex, s0 we may assume now that M
is a coherent Df\(r,s)—module.

The bigraded ring of D2 (r,s) for the bifiltration F, is isomorphic to Ox[z*,7*]. We
denote by 'Zv)[%('r,s) the subsheaf of D3 (r,s) of operators with symbol independant of 7*, its
bigraded ring is O[z*].
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Let u1,...,un a set of local sections of M whose classes %1,...,%4y is a base of the
associated bigraded module grM as a Op[z*]-module.

o N
Theorem 2.5.3. of [18] shows that the morphism A : (’D%(r,s)) — M defined by

Uu1,...,UN is an isomorphism of Zv)/%(r,s)—modules which respects the bifiltrations (with fixed
shifts due to the fact that the u; are not of order (0,0)). We may modify the bifiltration
so that all the u; have order (0,0).

The operator tD; (whose symbol is 77*) is an endomorphism of M, hence there exists
a matrix A of the same order than t such that tDyu = Au with u = (ug,...,uy). With
the notations of §3.2, this order is (1,1).

The morphism (D3 (r,s))™ /(D3 (r,s))™ (tDt — A) — M is clearly an isomorphism.

On A, the hypersurface Sy of T*A is equal to { 7* = 0} and by definition Chy (r, s)(M)
is the support of Or«; ® 7 1grM. Hence it is contained in 7* = 0 and there exists some
m such that (7%)™a = 0. This means that the principal symbol oj(\r’s)(Am) vanishes hence
that the principal symbol of A is nilpotent.

So, as in the proof of theorem 3.2.4, the matrix A is the sum of a matrix Ag of order
(1,1) whose principal symbol vanishes hence of order (1, x) with p = max(0,1 — %) and
of a matrix A; of order (1,1) which is nilpotent of order m hence A is of medium order
(1, 4) with ' =1 — (r — s)/2m.

We may apply corollary 3.4.2 and find an invertible matrix R of D
R Y(tD;y — A)R = tD,. This shows that :

i(R’OO)(r,s) such that

DY ) @ M = (DX )™ [ (DR )™ (Dt~ 4)

~ (Di(R’OO)(r,S) / Di(R’oo)(ﬂS) tDt)N

which proves the theorem (D; is invertible on A). O

4 Vanishing cycles.

4.1 Definition.

Let X be a complex analytic manifold and Y be a submanifold of codimension 1 of X. We
denote by A = Ty X the conormal bundle to Y and set A= T;X =Ty X -Y, n: A=Y
and ' : A > Y.

If A is any sheaf of rings, we will denote by D(.A) the derived category of the category
of left A-modules and by D,(A) the subcategory of perfect complexes that is of right
bounded complexes which are locally quasi-isomorphic to a bounded complex of free A-
modules, the bounds being uniform on the underlying space.

When A is a coherent sheaf of rings which is regular, that is satisfy the Hilbert syzygy
theorem, D, (A) is equivalent to the subcategory of D(A) of bounded complexes with co-
herent cohomology and is also denoted by D%(A). This is true in particular for the sheaves
Dx and Ex considered here. We will denote by D’'(A) and Dj,(.A) the corresponding cat-
egories for right modules.
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If M is a sheaf of A-modules, it is identified with the complex 0 - M — 0 with M in
degree 0 in D(A). Conversely, if M is an object of D(A) and if all its cohomology groups
vanish except in degree 0, we say that M is ”concentrated in degree 0” and identify M
with the sheaf H°(M).

A left A-module which lies in D, (A), i.e. which admits locallly a free bounded resolu-
tions will be said to be a perfect A-module. If A is coherent than the perfect A-modules
are coherent A-modules. The contrary is not true in general (because coherent modules
do not have bounded free resolutions) but this is true for all coherent sheaves considered
here.

The sheaf Df,((ﬂi’f;o)(r,s) has been defined in §2.3 for each (7, s) such that r > s> 1 as:

Di.(}i’io)(r,s) = (Eyox|a) Qex s 'Di(R’OO)(r,s) = ﬂ-—l(f)y ®r-10, 'Di(R’OO)(r,s)

It is a (771D, £$°|a)-bimodule on A and if ¢ is a local equation of Y we have :
Di(llj’xo) (rys) =~ Di(]R,oo) (r,s) /tDi(R’OO) (rys)
Definition 4.1.1. If M is an object of D(Ex) we set

‘i(r,s)(M) = D?/SE,ZO)(T’S) ®%5X|A) (M|A)[_1]
®(r,5)(.) is a functor from D(Ex|a) to D(n~1D$). It is a kind of inverse image by
1:Y — X.
If M is an object of D(Dx), we will define :

D(r,5)(M) = 5(7‘,3)(5){ r—1Dy ’/T_lM)

We have defined the vanishing cycle in the derived category. In that way, this definition
is always valid. In the following theorem, we show that, under suitable conditions, the
complex of vanishing cycles of a Dx-module is a single D{°-module.

In the following theorem, the variety Sy is the subvariety of T*A defined in §1.2.

Theorem 4.1.2. Let (rg, sg) be a rational numbers with ro > so > 1 and M be a coherent
left Ex-module (or a coherent DX (r,s)-module) such that :

Cha(ro, s0)(M) C Sp

Let (r,s) € Q* be such that ro > 1 > s > 8o and ro > s.

(i) The restriction to A of ®(r,s)(M) is an object of Dp(7r'_1’D§’/°) which is concentrated
in degree 0 and independent of (r,s) such that ro > 1 > s > so and 19 > s.

(ii) If N® is a Di(R’OO)(r,s)—module there is a canonical isomorphism :

RHom g, (M, NF)|j 5 RHom -1 peo (1) (M), BNF))
with B
q)(NR) = sz(E’XO)(TaS) ®]L2(]R,oo) N]R
DA rs)

r,8



40 Yves Laurent

. . . ’D2(R’°°)(r 5) 1 y2(R,00) .
The point (i) means that the torsion groups 7or,* "Dy 2y (r,5), M) vanishes

outside the zero section of A if k # 1 and that ®(r,s)(M) = Tory(...) is a perfect w’_lfoo—
module. This module has a local presentation by free 7’ _1’D§’/°-modules hence is locally of
the form 7'~'A for some perfect D-module A. (Here 7/~" is the inverse image in the
category of sheaves, not of D-modules !)

If ¢ is a local equation for Y, then $(r,s)(M) is the kernel of the surjective morphism :

DR @ M s DB @ M

To prove the theorem we need a lemma, :

Lemma 4.1.3. Let M be a coherent left ’Di(r,s)—module such that Chp(r,s) (M) C Sh.
Then M has locally a finite resolution :

0—L,—>Lp1— ... > Ly—M—0

by modules L; satisfying the hypothesis of theorem 3.4.3.

Proof. If a module M is such that Chp(r,s)(M) C Sy, then, for any section u of M, the
same is true for the module Exu. We assume 7 # 0 hence Sy = {7* = 0}. Thus u is
annihilated by some microdifferential operator P with 01((’5) (P) = (r*)™.

We take a finite set (u1,...,uq) of local generators of M and corresponding operators
Pi,...,P; and set L = ®Ex [ExP;. The morphism £ — M is surjective and its kernel
M’ satisfy the same property as M. Iterating the procedure we get long resolutions

Ly — L1 — ... Ly—>M—0

of M by modules £; of the same type than £ which satisfy the hypothesis of theorem
3.4.3.

We have now to prove that this resolution may be truncated. We assume that N > 2n,
and replace the complex by :

0—Kop Loy 1 — ... Lyg— M—0

where Ko, is the kernel of Lo, — Lo,_1. We get an exact sequence of D%(r,s)-module
and the associated bigraded sequence is an exact sequence of O [z*]-modules hence, by
the Hilbert syzygy theorem, grKq, is a projective of finite type hence stably free Oy [z*]-
modules. There exists thus an integer g such that griCo, @ (Oa[z*])? is free.

Let N = (Di(r,s) / Di(r,s) t)q and consider the sequence :

00— Kop®N — Loy 1N — ... — Ly — M —0

This sequence is exact, all modules satisfy Chp(r,s)(.) C Sz, and by construction, the
bigraded modules are free (except gr.M). O

Remark 4.1.4. This proof is very similar to the proof of the existence of finite free reso-
lution for Dx or Ex-modules (see [31] for example) and with a little more work we could
prove that the maximal length of the resolution of the lemma is n — 1 instead of 2n.
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Proof. The proof is of the theorem is a consequence of theorem 3.1.1 and is very similar
to the proof of [21, theorem 2.1.1.].

First of all we have to define the morphism (ii).

As 'D?/(E’Xo)(r,s) is a (7r_1’D1°/°,Di(R’OO)(r,s))—bimodule , we have a canonical homomor-

phism of right Di(R’OO)(r,s)—mOduleS :

DL ) — Homy e (DYER ), DYER 09)

which sends the unit of Di(R’OO)(r,s) to the identity morphism.

Let M(r,s) = DX(R’OO)(r,s) ®g, M, then using [21, lemma 2.3.1.], we define the following
morphisms :

RHome, (M, N¥) = RHom )
A
(M, ),

(r,s) (M(r,s),NR)

— RHomDi(R’w)(r,s

RHom ;-1pes (D?/(E’Xo)(’:s)a D?/(E’JO\O)(T’S)) ®H73i(k’°°)(r 5) NR)

R, R,
= R’Homﬂquo (Di&_[oxo) (7-,8) ®%12\(R’00)(7‘,5) M(T, S), D?}((_/O\O) (T,S) ®%12\(]R,oo)( ) NR)

r,8

= Rﬂomﬂ.—lpgo (fqv)('r',s) (M), 5(/\/‘]1{))
We have thus defined a canonical morphism
R%Omgx (M,N]R) — ]RHOII’I,,I.—ID(;_O (&)(r,s)(M), 5(/\/—11{))

Now the proof of the theorem is local on Y and we choose local coordinates (z,t) on X
as in the previous section.

Let us first prove the theorem when M = E£x.y, we know from section 2.3 that
M(r,s) = 'Di(E’;o)(r,s)

Let j: Y xY — X XY be the canonical immersion, this defines an exact sequence :

t 1
0 — Oxxy — Oxxy —J Oyxy —0
and by microlocalization :
0 — 77 'Oy xy — CY Ly cR —0
™ Yyxy YXY|X XY Y XY|XXY

with m : T3,y X XY — Y xY. As Exxx(rs) is flat on Exxx, we apply the tensor
product by Exx x(r,s) and get, for all (r, s), the exact sequence :

-1 R ty oR
0 — 7r1 OYXY — nyy|Xxy(’r,S) CYXY|XXY(T’S) — 0

and now we apply the functor ’HIT; () ® Og);(n; Y and get the exact sequence :
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0— F_IDSO/O — Di@’;o) (rys) —t) Diq{;ﬁo)(r,s) —0 (4.11)

In fact, we just need this exact sequence locally and we could get it by an elementary
calculation on the symbols of section 2.3.
This proves that ®(r,s)(Excy) = 7 1D for any (r, s) and that (i) is true in this case.

If NRisa ’Di(R’OO)(r,s)—module we have :
RHOIngX (5X<_y, NR) = ]RHOIIIEX (5}(4_}/3 8)() ®IL£4X NR
=&v,x ®H5X NE = 5(/\/1&)
= R?—[Omw—q);o (7T71'D§>f0, a(NR))
because RHomg, (Excv,Ex) = Eyvox ([29]).

The theorem is now proved for M = £x. y and we assume now that M is any Di(r,s)-
module such that Chy(rg, sg)(M) C Sp. Lemma 4.1.3 gives a resolution :

0— Ly —LNng— ... 5Ly —M—0

by modules £; which, by theorem 3.4.3, are such that £;(r,s) is locally isomorphic to some
power of D%E’;o)(r,s).

As Di(R’oo)(r,s) is flat on 'D%(r,s) this gives an exact sequence :

0— (Di(f’;o)(r,s))m — (Di@’{i")(r,s))m_la e (D%E’{f’)(r,s))po — M(rs) — 0

We proved that

2R, 2R, _
RHom 2.9, (D29, DY 00)) = DR

hence the morphisms in this exact sequence are given by matrices of m~1DS®.
We have a commutative diagram

0 0 0
0 — (w"lpg,O)pN EL NN (w"lpg) s Bes(M) — 0
PN A A Po
0 — (Di(]f’{;o)(r,s)) ¥ ! (Di(]i’;o)(r,s)) — Ms) — 0

t t t
0 — (P5P00)" 25 2 (DE00)" = Mew = 0
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which gives the theorem :

1) The middle and low lines are exact sequences hence ¢ : M(r,s) — M(r,s) is surjective.

2) The vertical lines are exact sequences, hence the higher horizontal line is exact and
thus ®(r,s)(M) is a perfect 7'~ D-module.

i

3) The isomorphism L;(r,s) ~ ( 2(1_%;;0 )('r s)) is given by a matrix R from proposition
3.3.1 which by corollary 3.4.2 does not depend on (r,s) such that 7o > r > s > so and
thus ®(r,s)(M) is independent of (7, s) as a 7r'71’D§’,°-module.

4) The diagram proves that locally

Mrs) = DRET) 1,5) © -1 pge D) (M)

Moreover this diagram proves that for any ¢ > 0, Tor; (D A(_>Y )(r s), 5(7",3)(./\/()) vanish
hence the equality is true in the derived category :

Mrs) = DY ) @71 pes Br) (M)

If NR is a ’Di(R’OO)(r,s)—module we have thus

R?-lomgx (M, NR) = RHOmDZ(R,OQ)(T 5) (M(r,s), NR)
A )

= RHomDi(R,OO)(T,s) (DJQX(E%’;O) (r,8) ®£/719§o &)(7’5) (M)aNR)

= Rﬂomﬂ_lflp(})/o (@(T,S)(M), RHOIHDIZ\(R’OO)(T, )( A(_>i0)(’r‘ S NR)>
= RHomﬂ_lflpgo (‘i)(r,s)(M), 5(1»,3)(,/\/‘1&))
O
If we replace theorem 3.1.1 by proposition 3.1.3 and define ’D%&_’ A )('r,s) from Df,(E’XO)(r,s)

as in definition 3.1.2 we get :

Proposition 4.1.5. If Chy(r,s)(M) C Sp then
B(r,s) (M) = DEE) ) @ Bex|n) (MIN[=1]

If M is a bounded complex of £x-module we denote by Chy(r,s)(M) the union over
all i of Ch(r,s)(H'(M)) and by D(;5)(Ex) the subcategory of D%(Ex) of the complexes
M such that Chp(r,s)(M) C Sy.

Corollary 4.1.6. O(r,5)(.) is an ezact functor from D (Ex|}) to Dy(n' 1 DYP).

This is a direct consequence of the theorem.
We define now a functor ®(rs)(.) from DY(D%(rs)[;) to Dp(ﬁ’_ng’/o) and a functor

O(r,s)(.) from Dp(ﬁ'_ngo) to Dp(Di(R’OO)(r,s)) by :

(M) = DY 00 @, ) (M)[-1]

@(r,s)(./\/) = DA(—)Y )(r,s) ®7r’_11)‘;,° (N)
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Proposition 4.1.7. If M is an object of Dy(D3(r,s)| i) which is locally equal to a tensor
product Di(R’OO)(r,s) QL L for some object L of D, 5)(Ex|4) then M = @(r,s)&;(r,s)(M).
If N is an object of Dp(ﬁ'_lfoo) then ®(r,5)O(r,s)(N) = N.

Proof. We know from the proof of theorem 4.1.2 that

DQ(R,OO) 2(R,00) 2(R,00) 2(R,00)

Y+~A (7'75) ®é[2\(R,oo)(r,s) DA_>Y (T,S) = RHom’DIZ\(R"X’)(T,s)(DA—)Y (’I",S),DA_>Y (7'75))

= ' D[]

This proves the second part of the proposition. To prove the first part, we have to define
a canonical morphism from M to O(r,s)®(r,s)(M).
In fact, theorem 4.1.2 shows that :

]R’Hompi(m,oo) ) (M, @(r,s)&)(r,s)(M))

(rys

= R}lomwl—lpgo (&)(r,s)(M), @(r,s)@(r,s)%(r,s)(M))

= ]R’HOIHW,—LD%O (EI;(T,S)(M), @(r,s)(M))

The identity of ®(r,s)(M) defines a canonical morphism M — O(r,s)®(r,s)(M) which
is an isomorphism. O

The microlocalization of <AI;(r,s)(M) hence its characteristic variety may be calculated
directly from M, in fact we will prove a ”2-microlocal” theorem 4.1.2.
The immersion ¢ : Y — X defines morphisms

TY & (T*X) xx Y 2% T*X
while the projection 7 : Ty X — Y gives
T*Y «Z— (T*Y) xy A -5 T*A

We denote by mo : T*A — A and 71 : (T*Y) Xy A — A the canonical projections.

As Y is of codimension 1, the variety Sy is the union of 7, *(Y) and of (T*Y) xy A
(Y is identified to the zero section of A).

Let :

82(R,oo)

yen (rs) = 7'('1—1 (5Y—>X|A) ®W;1(5X|A) Q—lgi(R,OO)(r,s)

It is a (w™ 1€, o~ 1£25) ;. 5))-bimodule.

Theorem 4.1.8. Let M, rg and sg satisfying the hypothesis of theorem 4.1.2.
The cohomology groups of

52(R,OO)

L
YA (Tﬂs) ®7;1€X

M

vanish on (T*Y) xp (A) except in degree -1. We denote the non vanishing group by
N‘(I)(T,S)(M)-
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/1,—5(7",5)(./\/[) is a left perfect w™1EXP-module on (T*Y) Xy (A), hence locally isomorphic
to w N for some perfect £°-module N and does not depend of (r,s) such that ro >r >
s> 59 and s < 1. _ N

The restriction of pu-®(r,s)(M) to the zero section A of T*A is ®(r,s)(M) and

p-®(rs) (M) = @' EF @ u-1pge ' D(rs)(M)
Proof. Using the proof of theorem 4.1.2 we have just to prove the theorem when M =

Excy, and thus the exactness of :

0— wilgf}o — Ei(igﬁo)(r,s) —t) gig&;o)(r,s) — 0 (4.1.2)

The functor ury x applied to the sequence 4.1.1 gives an exact sequence :

0— w_155 — gi(i{’g)(r s) —) EA(E}HS)(T s5) — 0 (4.1.3)
and the global sections of this sequence on the orbits of C* give 4.1.2. O

Let g be the projection g : T*Y — Y. The characteristic variety of a Dy-module N
is equal to the support of &y ®,-1p,, g 'N and, as £ is faithfully flat on Ey, it is equal
to the support of £° ®,-1p, ¢~ N.

So we can deﬁne the characteristic variety of a D§°-module N as the support of
&P ® ®g-1pge 4 IN. If Fis a perfect 7'~ 1D"o-module it is locally constant on A and
locally of the form =’ IV with M a perfect D§°-module. The characteristic variety of A/
is independent of the choice of . In fact w~!Char(N) is equal to the support of

w_]-g)O/O ®7T1_17TI_1D§,—0 ﬂl_lf
We define this set as the characteristic variety of F and denote it by Char(F).

Corollary 4.1.9. If Chy(ro, so)(M) C Sa, the characteristic variety of B(r,5)(M) is equal
to the support of u-®(r,s)(M) that is to the microcharacteristic variety Chp(r,s)(M) of M.

To prove the corollary we have just to prove that the support of u—EIv)(r,s)(M) is equal
to the microcharacteristic variety.

As Chy(r,s)(M) is the support of £3(r,s) ®rrley 7r2_1M according to the definition of
[18], and as Ei(R’oo) (r,s) is faithfully flat on £2 (r,s) [20], it is the support of EK(R’OO)(r,s)®W2—15X
Ty M.

To prove that this sheaf and /L—&)(r,s)(M) have the same support, we may use the

same proof as theorem 4.1.2 or prove that proposition 4.1.7 is still valid with Di(R’OO)(r,s)

replaced by Ei(R’oo)(r,s) which is easy.
In fact, with the same proof as theorem 4.1.2 we have :
If M satisfy the hypothesis of theorem 4.1.2 and N'® is a Ei(R’OO)(r,s)—module there is

a canonical isomorphism :
o 'RHom,1g, (7T M,NF) S RHom 150 (u-B(r,5)(M), p-DNE)

with

p-dWNE) = 7, Y€y Lx|a) ® O

L
Y (€Exa) @
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4.2 Monodromy.

We proved in the previous section that, if M is a coherent £x-module with Chy (r,s)(M) C
Sa then ®(rs)(M) is locally constant on the fibers of 7' : A — Y. In other words,
®(r,5)(M) is isomorphic to 7'~ A for some DyP-module N on any simply connected open
subset of A. As A is a complex fiber bundle of rank 1 over Y it is provided with a canonical
orientation. This defines a canonical endomorphism of monodromy on ®(r,s)(M) which
will be denoted by T'.

In order to define this endomorphism in the derived category, we use proposition 4.1.5
to define ®(r,s)(M).

The endomorphism of monodromy of Diﬂ_’A )('r s) is well defined as this sheaf has
the property of unique continuation hence it induces an endomorphism 7" on the object
B(r,5)(M) of Dy(n'~'D§?) for any M in D, o (Ex|;)-

Vanishing cycles are usually defined as a sheaf on Y instead of a sheaf on A as we did
here. If an equation of Y is given the two points of vue are equivalent :

Let o be a continuous section of A = T*X that is a continuous map ¢ : Y — A such
that 7/, o = idy. Such a section on Y is equlvalent to a C* -equation of Y.

As O, s)(M) is locally equal to 7'~ '\ the sheaf o1, s)(M) is a sheaf on Y of
DsP-modules with locally free resolutions.

Definition 4.2.1. Let ¢ be a continuous section of T{}X and let M be an object of
D(y5)(Ex). Then the complex of vanishing cycles of type (r.s) of M along Y is the object
of D,(D5®) given by :
CI)(r,s)(M) = 0'_1&)(7",5)(./\/1)

It is provided with the endomorphism of monodromy 7.

In this definition, 07" is the inverse image in the category of sheaves. If we consider
two sections oy and o9, then o] <I'(r s)(M) and o 19 (r,5)(M) are locally isomorphic.

Conversely, we may recover (I)A(/r s)(M) from ®@(r,s)(M) and its endomorphism 7" if M
is in Dy, 4)(Ex). This is clear if ®(r,s5)(M) is a single module, in the general case where
it is an object of the derived category, it is a little more complicated: we have to derive
the category of complexes provided with an endomorphism of monodromy instead of the

category of complexes (see [4]).
Let us still remark that ®(r,s)(.) is an exact functor from D, ;) (Ex) to D}(Dy).

Ezample 4.2.2.
(i) M =Cyx
We have Di(R’oo)(r,s) QM = C;%'X(r,s) (cf 2.3) and thus, for any (r,s) :

(T)(r,s)(./\/l) =&v_,x ®‘H§X C$|X(r,s)[—1] = 7!"_1(9}/
hence ®(r,s)(M) = Oy with T = Identity.

(i) M =Excy
From the proof 4.1.2 we have

(I)(r,s)(M) = 7T171D§>/O
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and thus ®(r,s)(M) = D§° with T' = Identity for any (r,s).

(iii) Assume that X =Y x C with a coordinate t on C. If M is the £xmodule
Ex [Ex(tDy — a) with a € C then ®(r,s)(M) = W'_1D§°T‘)‘+1 hence ®(r,s)(M) = D with
T = e*7 for any (r,s).

(iv) If M is Ex /Ex(t*Dy — 1) then ®(r,s)(M) = Dy with T' = Identity for 2 > r >
s>1and r =2 > s while ®(,s5)(M) =0 for r > s > 2.

Moderate vanishing cycles of a specializable x or Dx-module have been defined in
[21] for modules which are specializable. It is a coherent p~!Dy-module denoted by ®(M).

Proposition 4.2.3. Let M be a coherent Ex-module which is ry-specializable for some
rg > 1. Then for each r > s > rq there is a canonical isomorphism of 7T*1D§’,°—m0dules :

7D @p-1p, M) =5 B(r,s)(M)

Proof. The sheaf ®(M) is defined in [21] as we did here for ®(rs)(M) but the sheaf
Ei(R’oo)(r,s) was replaced by the subsheaf gﬁ(oo,l).
Hence there is a canonical morphism of p~'Dy-modules :

(i(M) — &)(r,s)(M)

which gives the morphism of the theorem.

When M = Exy this morphism is an isomorphism because &J(M) = 7Dy and
&)(r,s)(M) = 7T_1'D(1>/°.

It is proved in [21] (theorem 2.2.1.) that if M is ry-specializable then g/%(oo,l) T M
has (locally) a resolution by modules which are isomorphic to a power of gﬁ(oo,l)®7r715 XV
which proves the proposition. O

4.3 Duality and microlocal solutions.

If M is an object of D'(Ex) the derived category of the category of right £x-modules, the
definition of vanishing cycles is :

5(7‘,5)(/\4) =M ®ng\/\ Di(E’;O)(TaS)[_l]

If M is an object of D.(Ex), its dual is the object M* of D.(Ex) defined as M* =
RHomg, (M, Ex)[dim X].
In the same way, if N' € Dy(D5°) then N* = RHompee (M, DF)[dimY] and if N €

Dy(n'~'D§) then N* = RHom -1 (M, 7'~ D) [dim Y.
Applying theorem 4.1.2 to example 4.2.2 (ii) we get that ® commutes to duality :
Corollary 4.3.1. If M € D, ,)(Ex) we have

*

5(7‘,5)(./\4*) ~ E)(r,s)(M)
and for any continuous section o ofA

@(r,s)(M*) = @(T:S)(M)*
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If we apply now the same theorem to example (i) we get :

Corollary 4.3.2. Let M be an object of D%(Ex) such that Chp(r,s)(M) C Sa and (r',s")
withr >r' > s >s andr > s then :

RHomeg, (M, C&X(r’,s’))u = RHOm,n.I—ID%o (‘i(r,s)(./\/i), W,_loy)
and if o is a continuous section ofA then

o~ RHomg, (M, Cy x(r',s)) — RHompg (B(r,5)(M), Oy)

Let us denote as in [21] by 5y| x (r,s) the subsheaf of CE?-‘ x (r,s) of the sections which have

a continuation along any path in the fibers of A = Y. Then in the situation of corollary
4.3.2 the sheaf ®(r,s)(M) has this property of continuation (proposition 4.1.5 hence the
two members of the isomorphism of the corollary have it. This proves that :

R?'[Omgx (M, 5y|X(r,s)) = R’HOmgX (M, Cgl§|X(r,5))

Let us denote by id the identity morphism of ®(r,s)(M) and by Py(r,s)(M) the map-
ping cone of the morphism ®(r,s)(M) Tod, ®(r,5)(M) in the category D2(Dy). More

precisely, we consider the complex 7 = 1512/(5’20)&,5) T, 5?,(5’20)&,5) in D(Ex) and define

Bo(ra)(M) = T @5, M
The sheaf Cy | x (r,s) is equal to 7_17*C$|X(r,s) with ~y : T{}X — P§, X hence we have :

Corollary 4.3.3. Under the hypothesis of the corollary 4.3.2 we have :
R’HOIngX (M, Cy|X(r,s))|A = 71"_1 RHOIIID%o (@o(r,s)(M), Oy)

The proof is the same proof as corollary 3.1.8. in [21].

4.4 Growth of solutions.

Here Y is a complex submanifold of X of any codimension and M is a coherent £x-module
defined near A =Ty X.

Theorem 4.4.1. Let U be an open subset of T*X and let rg > s9 > 1 be such that :
ChA('I‘o,SO)(M) N 7T_1U C SA
Then we have on U:

R’Homgx (M, C$|X(r,s)) = RHOIHSX (M, évY\X(T,s)
= RHomg, (M, C%X(ro,so)))

for any (r,s) such that ro > 1 > s > so and 9 > s.
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Proof. The proof being local on X, we first choose a point z* of T{;X . Then after a
quantized canonical transformation, we may assume that T{iX has been transformed into
the conormal to a hypersurface of X. That is, we may assume that Y has codimension 1
and apply the results of section 4.3.

If now z* is a point of Y, we consider A = T;;x{o}X x C and M' = M ® Dc/Dct near
the point (z*;(0,1)) which is not on the zero section. We apply the preceding result and
we conclude as usually in this situation (see [31] §2.8. for example). O

The restriction of C% x (rs) to the zero section Y is equal to By x(r) if 7 > s and to
By x{r} if r = s hence :

Corollary 4.4.2. Let M be a coherent Dx-module and let ro > sy > 1 be such that :
ChA(To,so)(M) C SA
Then we have :

RHomp, (M, By x(ro)) = RHomp, (M, By|x(r))
= RHomp, (M, By|x{r}) = RHomp, (M, By x{s0})

for any r such that ro > r > sg.

Now we come back to codimension 1. Following [21] we consider several sheaves of
holomorphic functions and formal power series with exponential growth.

First, we denote by Ox|y the restriction to Y of the sheaf Ox and by O v its formal
completion along Y. We interpolate between them with the family Ox |y (r) :

by definition, Ox|y(r) is the subsheaf of O v of the elements which are written in a

local chart (z1,...,2p,t) such that Y = {¢t = 0} as :

u = Z an(z)t" with Z an(z)t" /(n!)"™! < +oo

n>0 n>0

When r = +o0 we set Oxy(00) = (9)?|~Y and by definition we have Ox|y (1) = Ox |y

On the other side we interpolate between the sheaf Ox[+Y] of meromorphic functions
with poles on Y and the sheaf Ox(«y) =5 15,0x (j : Y = X) of holomorphic functions
on X with essential singularities on Y with the family Ox(xv)((r)) of sections of Ox (xy)
with growth less than exp((1/t))Y/—1).

Such functions may be written in coordinates as

u = Zan(x)t" with z:an(ac)t"((—n)!)r_:l < 400

neZ n<0

We will also consider Ox (+Y)(r,s) = Ox (*Y)((r)) ® 0« Ox |y (s) and extend the sheafNX|y
of Nilsson class functions on Y to NX‘Y(T,s) = Ox(+Y)(r5) ®0x [+Y] NX‘Y

Corollary 4.4.3. Let M be a coherent Dx-module such that Chp(ro,s0)(M) C Sp and let
F(r,s) be one of the sheaves Ox |y (r), NX|y(r), Ox (+Y)((r)), Ox(*Y)(r,s) or N)(|y(7‘,s).

Then the complez of solutions RHomp, (M, F(rs)) is independent of (r,s) such that
To>T >8> ).
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To prove this theorem, we first remark that theorem 4.4.1 is still true for the sheaf
Cy|x(r,s) which is equal to 7_17*6’& +(rs). Then we use the exact sequences of [21] prop.
3.2.10. to conclude (see the proof of corollary 5.3.7).

If we interpret theorem 4.4.1 in terms of holomorphic functions, we get the growth of
holomorphic solutions in large sectors (i.e. larger then 7). It would be very nice to have
the corresponding results for small sectors. To do this it is necessary to translate theorem
4.4.1 through Fourier transform and get results on the specialization. This must not be
very difficult with the results of Malgrange’s book [24].

4.5 Non smooth hypersurfaces.

The sheaves of irregular vanishing cycles may be defined when Y is not smooth. The
results are exactly the same as in [21, §3.3].

We denote by A = Ox(—Y) the vector bundle over X whose holomorphic sections
are the holomorphic functions on X which vanish on Y at order 1. We denote by 7 the
projection A — X and by A the restriction of A to Y. On the regular part of Y there is a
canonical isomorphism A = Ty X.

Let U be an open subset of X and ¢ be a local equation of Y on U. We consider the
graph map g : U < U x C = X given by g(z) = (z,¢(z)) and the subvariety ¥ = U x {0}
of X.

The function ¢ defines a trivialization ]\\U ~ U x C and therefore an isomorphism :

§:Aly > T;X ~UxC
If M is an object of D(Ex), its direct image is
g+M = Rg, (gfﬂ—U ®%U M)

It is an object of D(£¢) with support in the graph g(U) of . If M is a coherent £x-module
then g, M is a coherent £ ;z-module.
We denote by D(, 5 (€x) the subcategory of D’(Ex) whose objects satisfy :

ChT;/X(r,s)(g*M) C ST)’.:X

and we define : _ -
B(rs)(M) = G ®(r5)(gs M)

where g~ ! is the inverse image in the category of sheaves.

The same proof as [21, §3.3.] gives :

1) The definition of Dy, ,)(£x) and ®(r,5)(M) are independent of the choice of the
equation .

2) ®(r,s)(.) is an exact functor from Dy;.5)(Ex) to the subcategory of D,(r~'DS) of
object with cohomology supported by A.

3) If a continuous non vanishing section o of A is given (i.e. a C'-equation for Y') than
B(r,s)(.) = 07 1B(r,)(.) is an exact functor from D, s(€x) to the subcategory of D,(DY)
of object with cohomology supported by Y.
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4.6 Submanifolds of higher codimension.

The theory may also be extended to smooth subvarieties Y of codimension greater than
1 and also to smooth conic lagrangian submanifolds of 7*X. The method is the same as
[21, §3.4.] and we refer to it for the details.

Let X be a complex analytic manifold and A be an homogeneous lagrangian subman-
ifold of T*X = T*X — X. We denote by PA = A/C* the associated projective bundle and
by v : A — PA the projection.

There exist on A a sheaf D which is locally isomorphic to v~ 1Dg the inverse image
by 7 of the sheaf of differential operators of infinite order on PA.

If A =Ty X then ’51‘{0 is canonically isomorphic to 7_11)]1?,‘31/ x-

An operator adapted to A is a microdifferential operator © of order 1 whose symbol
0 =61(z,&) +0p(z,&) + ... in some coordinate system (z,§) satisfy :

a) 91|A =0 and 9()|A =0

b) df; = wx modulo 152y where wx is the canonical 1-form of T*A and I, the
definition ideal of A in T*X.

This definition do not depend on the local coordinate system and such an operator
always exists locally.

We define :

Bp(rs)(M) = (Ex /OEx ) OF, (pim«,oo)(r,s) ®F, M) [—1]

This sheaf is independent of the choice of © as a ﬁxo—module.

This definition is clearly invariant under quantized canonical transformations. In this
way, we may transform A into the conormal of a smooth hypersurface and prove that the
results of the previous sections remain valid. We get :

Theorem 4.6.1. Let A be an homogeneous lagrangian submanifold of T*X and M an
object of Db(Ex).
Let (rg,80) be two rational numbers such that ro > so > 1 and

ChA(ro,so)(M) C Sy

Let (r,s) such that ro > r > s> sy and 19 > S.

(i) ®p(r,5)(M) is an object of Dp(ﬁxo) independent of the choice of © and of (r,s). It
is locally of the form vy~ N with N an object of D,(DEY)-

(i) If M is an object of D, 5)(Ex) and N an object of ’Di(R’oo) (r,s) then :

RHomg, (M,N) = R’Homﬁ?\o (51\(7«,5)(/\/[), 5A(?“,S)(/V-))

(i11) If Y is a submanifold of X and A = T{ﬁX, then ®(r,s)(M) is canonically an
object of Dy(y™1Dpy).
() If Y is a submanifold of X, then :

RHomey (M, C¥ x(r,s) = RHOm,-1p,, (Da(rs)(M), 7' Opa)

(v) The characteristic variety of &H\(r,s)(M) s equal to the microcharacteristic variety

ChA(r,s)(M)
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5 Vanishing cycles of holonomic modules.

5.1 Critical indexes.

If M is a holonomic Ex or Dx-module, we know (proposition 1.4.1) that Chp(r)(M) C Sp
for any r > 1 and (1.4.2) that Chp(r,s)(M) C Sy if and only if there is no critical index g
such that r > rg > s. The sheaf of vanishing cycles &)(T,s)(M) is thus well defined as soon
as there is no critical index in [s, r].

In the case of holonomic modules we set the following definitions :

(M) = Be)(M) ) (M) = B(rr—)(M)

(with 0 < € << 1 such that M has no critical index in [r — ¢, r[).
With these notations, the previous results may be stated in the following way :

Theorem 5.1.1. Let M be a holonomic Ex or Dx-module and let 1 =15 <171 < --- <
ry < ry+1 = +00 be its critical indexes.

(i) The sheaves of vanishing cycles ®{r}(M) and B()(M) are well defined as a perfect
7= D3 -module for any r > 1.

(i) If r; and riy1 are two consecutive critical indezes and r; < 1T < riy1 then :

(i} (M) = D(r)(M) = D}(M) = B(rig1)(M)

So that there is only a finite number of distinct sheaves of vanishing cycles and 5{r}(M) =
() (M) if r is not a critical index. _

(73i) The sheaf of vanishing cycles ®(r,s)(M) is well defined for any (r, s) with no critical
index in the interval Ir, s and equal to ®(r)(M).

(iv) The characteristic variety of ®{r}(M) (resp. ®(r)(M)) is equal to Chp{r}(M)
(resp. Chp(r)(M)).

If o is a continuous section of A, we have the same results with ® instead of ®, that is
with sheaves of D3°-modules.

As the microcharacteristic varieties of holonomic £x-modules are lagrangian, the char-
acteristic varieties of these modules are lagrangian.

Corollary 4.3.2 shows that the complex of solutions RHomg, (M, C§| «(r,5)) is indepen-
dent of (r,s) if ry, > 7 > s > 41 for some k and is equal to the complex of solutions of
®(r)(M) in 7 1Oy

5.2 Admissibility.

A D§P-module N is said to be holonomic admissible (or simply holonomic) if there exists
some holonomic Dy-module Ny such that :

NZD%O XDy No

The characteristic cycle of Ny is independent of the choice of Ay [11, th. 3.2.1.] and
will be the characteristic cycle of N.

If AV is holonomic admissible, the complex of solutions RHomp, (N, Oy) is perverse
and the module Ay may be obtained from this complex via the Riemann-Hilbert corre-
spondence. This shows that holonomic admissibility is a local property.
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Theorem 5.2.1. If M is a holonomic Ex-module then, for any r > 1, ®{+}(M) and
& (r)(M) are admissible holonomic DS°-modules. Their characteristic cycle are equal to
the corresponding microcharacteristic cycle of M :

@ 'Ch(®{r}(M)) = Chy {1} (M)
@ 'Ch(®(r)(M)) = Cha(r)(M)

Proof. Let us first assume that M is r-specializable. This is always true for great r [21,
th. 1.1.4.] and we may apply proposition 4.2.3 and [21, corollary 3.1.9.] to get the result.

Let us now assume r = 1 but M is not 1-specialisable. Theorem 5.2.1. of [15] shows
that there exists a regular holonomic £x-module Mg such that :

The sheaf D?/((HE’KO)(T,S) is a right £5°-module if r = s = 1 hence definition 4.1.1 shows that :
D{1}(M) = @{1}(Mreg)

A regular holonomic £x-module is 1-specializable [21, th. 1.1.4.] (this result was
proved by Kashiwara-Kawa in [14]) and we apply the first case to M.

(If M is regular the result is also known from [27] and [6]).

Let us consider the general case. We fix local coordinates and look at the map s, :
(z,7) = (z,7") on the universal covering of Ty X — Y. The inverse image by s, is well

defined on the symbols of C§1§| () and defines a morphism sj : s, 165‘ () — C§1§| X

The sheaf D?/(E’XO)(T,T) has been defined cohomologically from C§l§| (r,r) hence we get

a morphism of rings sy : s 17)?,(5’;0)@,@ — Df,((ﬂf’xo)(l,l). When restricted to £x this

morphism gives a morphism s : s71€x — Ex[1/q] where q is the denominator of 7 and
Ex[1/q] is the sheaf of microdifferential operators with fractional order. It is clear on the
definition that for any P in Ex we have ¢())(s:P) = ¢(")(P).

If M is a holonomic £x-module than s}M is a coherent £x[1/g]-module and we have :

aiLA(l)(s:M) = ailA(T)(M)

In particular Chy(1)(s;M) is lagrangian and as this variety is the tangent cone along A
to the characteristic variety of syM, this shows that syM is holonomic.

The theory of holonomic £x[1/q] is the same than that of holonomic £x-module (see
[30] for the details) and in particular there exists a regular holonomic £x-module Mg
such that :

EX @ex Mueg = EX ®ey(1/q M

We may now conclude as before because :
O{r}(M) = @) (s, M) = (I)(l)(Mreg)

As O(r) (M) = ®{r—c}(M) and é7LA(r)(M) = (%A{r_s}(/vt) if ¢ << 1, the same result
is true with ®(r)(M).
O

The proof of theorem 5.2.1 is rather simple but uses deep results of Kashiwara and
Kawai [14][15]. We give another proof in appendix.
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5.3 Index theorems.

Let X be a complex analytic manifold, 7% X its cotangent bundle and ¥ be a lagrangian
homogeneous analytic subset of T7*X. Then ¥ is a union of sets T* X where X; is a
subvariety of X and T* X the closure of the conormal bundle to the regular part of X;.

Any positive cycle E with support ¥ may thus be written :
R=Y m[Ti,X|  withm; €N
J

The Local Euler Obstruction of ¥ at a point z € X is defined as :

» 12) — ij(_l)codiijEXj (:E)
J

where Ex; () is the local Euler obstruction of X; at z. (see [3] for more details). Ex(z)
is a constructible function on X.

If M and F are two left Dx-modules we will say that (M, F) has finite index at = if
all £xt,, (M, F), are finite dimensional C-vector space and then we will set :

XM, F)g = > (1) dimc Extl, (M, F),
J
It was proved by Kashiwara in [11] that if M is a complex of Dx-modules with holo-
nomic cohomology, then RHomp, (M,Ox) is a complex of C-vector spaces with con-

structible cohomology and if M is a holonomic D x-module, it is a perverse sheaf. (M, F)
has finite index at each £ € X and :

(M OX) Ch(M)( )

where 57?,(./\/1) is the characteristic cycle of M.

Theorem 5.3.1. Let M be a holonomic Ex-module and 'Y be a submanifold of X (of any
codimension,).

i) For any r € [1,400], RHomgX(M,C§|X(r,r)) is a complez of C-vector spaces with
constructible cohomology on A = Ty X and a perverse sheaf on A = Ty X —Y. At each
point x € A we have :

X(M>C$|X(TW))$: &A{r}(M)(x)

i)If r, and rgyq1 are two consecutive slopes of M, then for any (r,s) such that ry >
r >8> 1,1, RHomg, (M,C&X(r,s)) is a complex of C-vector spaces with constructible
cohomology on A and a perverse sheaf on A. It is independent of (r,s) and at each point
z € A we have :

X(M’C$|X(Ta5))$: &A(r)(M)(x)
Remark 5.3.2. If r = s = 1 this theorem has been proved by Kashiwara and Schapira in
[17], their method is purely geometric.
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Proof. Assume first that z € A. After a quantized canonical transformation, we may
assume that Y has codimension 1.

Corollary 4.3.2 shows that ]R?-lonagX(/\/I,C%| «(r5)) is independent of (r,s) and equal
to RHompee (®(r,s)(M), Oy). Then we may use theorem 5.2.1 and apply the result of
Kashiwara to ®(r,s)(M).

We may also use directly theorem 6.2.1 which shows that the characteristic cycle of
the sheaf RHomg, (M, C§l§| (r,5)) as defined in [13] is equal to the microcharacteristic cycle

amA(r,s)(M). Then we apply the result of [13] which calculates the index of a perverse
sheaf from its characteristic cycle.

On the zero section we get the result by adding a variable. The proof is the same as
the proof of [21, theorem 4.4.1.] and we refer to it for the details. O

On the zero section Y of Ty X we have C§|X(r,s)|y = By x(r) if r > s and C§|X(T,r)|y =
By |x{r} hence :

Corollary 5.3.3. Let M be a holonomic Dx-module and Y be a submanifold of X.

For any r € [1,+o0], RHomp, (M, By |x(r)) is a complex of C-vector spaces with
constructible cohomology on'Y .

If ri, and rp—1 are two consecutive slopes of M then for any r such that rip, > r > r_1
we have :

RHomp, (M, By|x(rx)) = RHomp, (M, By|x(r))
= ]RHOIHDX (M, By|X{r}) = RHOIHDX (M, By|X{rk_1})

At any point £ € Y we have :

x(M, By|X(T))z = E&A(T)(M)(x)
X(M,By|x{7‘})w: ﬁA{T}(M)(x)

In this formula, we calculate the index of RHomp, (M, By x(r)) which a complex on

Y through é7LA(r)(M) which is a positive analytic cycle on T3 X. This is related to the
fact that this complex has constructible cohomology but is not a perverse sheaf.
We assume now that Y is a submanifold of codimension 1 in X and we will calculate
the index as the Euler function of the difference of two positive analytic cycles on Y.
The projection A = Ty X — Y and the embedding Y — A define maps :

TV & (T*Y) xy A 25 T*A
TY & (T*A) xA Y 25 T°A

The maps p1 and po are submersions while j; and jo are immersions. With local
coordinates (z,t) of X such that Y = {t = 0} and A = {(z,t,£,7) €e T*X/ t =0, = 0}
and the corresponding coordinates (z,z*) of Y and (z,7,z*,7*) of A, we get :

pl(z‘,iL‘*,T) = (:L‘,H,‘*) j1(l‘,1‘ ,’T) = (.13,7',:5*,0)

pa(e, 2, 7%) = (z,2%)  jolw,2",77) = (2,0,2%,77)
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This proves that the union of j; ((T*Y') xy A) and of jo((T*A) X Y') is the hypersurface
Sp of T*A.

Proposition 5.3.4. Let M be a holonomic Dx-module.
The microcharacteristic cycle Cha(r)(M) has a unique decomposition :

Cha(r)(M) = j1ip; 81() (M) + japy - Sa(r) (M)

where g{ and §; are positive lagrangian cycles of T*Y . Moreover g{(r)(M) is the charac-
teristic cycle of ®(r)(M).

The proof of this result is the same as [21, theorem 4.5.2.].
__ As a direct consequence of the definition, we can see that the Euler obstruction of
Cha(r)(M) is the difference of the Euler Obstructions of Si(r) and Sa(r). We get :

Corollary 5.3.5. Let M be a holonomic Dx-module and Y be a submanifold of X. Then
at any point x € Y we have :

XM, By x(0)e = Eg; (1)) () = Bg; () a) (2)

The index X(M By |x(r))z is therefore the Euler function of the (non-positive) analytic
cycle Si(r) — Sa(r). The same result is true with {r} replacing (r).
Lemma 5.3.6. Let M be a holonomic Ex-module and (r,s) such that +00 > 1> s> 1.

We assume that no slope of M is in |s,r[, then RHomg, (M,Cy|x(rs)) is a complex
of C-vector spaces with constructible cohomology on'Y and x(M,Cy x(rs)) = 0.

Proof. Corollary 4.3.3 shows that RHomg, (M, Cy| x(r,s)) is equal to the complex of holo-
morphic solutions of a complex of Dx-module with holonomic cohomology and a charac-
teristic cycle equal to 0. O

Let x be a point of Y and z* be a point of A whose projection is z. We denote by x(r)
the index x(M, By|x(r))z given by corollary 5.3.5 that is Eﬁ(r)(M) (z) — Eg;(r)(M)(w) and

x{rt = x(M, By | x{r})z-

Corollary 5.3.7. Let M be a holonomic Dx-module and Y a submanifold of X of codi-
mension 1. We have the following index theorems :

XM, Oxym)e = —x{r}

XM, Oxx¥](n)z = x(o0) — x{r}
X(M, Ox (:)((1)e = X(r) — X(1)
X(M, Ox(+Y)(r,9)z = X(r) — X{s}
X(M, Cy x(rs)zx = Xx(r) — x{s}

Proof. They are direct consequences of [21, proposition 3.2.10.] and the previous results.
More precisely, the exact sequence

0— BY‘X{T‘} — WI*CY‘X(T,T) — OX‘y(r) —0
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and lemma, 5.3.6 give the first equality while
0— By|X(r) — Cy|X(r,s) — OX|y(s) — 0

and
0— OX|Y(5) — Ox (Y)(r,s) — By|X('r) — 0

give the others. O

We may extend the result on Cy|x(r.s) to a submanifold Y of codimension greater than
1 and to &x-modules :

Proposition 5.3.8. Let M be a holonomic Ex-module and (r,s) such that +o00 > 1 >
s> 1.

Then RHomgX(M,Cy|X(r,s)) is a complex of C-vector spaces with constructible coho-
mology on Ty X and

X(M; CY|X(7'75)).’15 = &A{S}(M) (-'E) - Ea-ilA(’l‘)(M) (I)

Proof. On the zero section of T* X, the result is in corollary 5.3.3, hence we have to prove
the result out of the zero section.

Corollary 1.6.4. of [15] shows that there exists some quantized canonical transforma-
tion ¢ such that ¢(7y X) is the conormal bundle to a smooth hypersurface of X and
©(Char(M)) is in generic position.

So using a quantization of ¢, we may assume that Y has codimension 1 and Char(M)
is in generic position. A result of Bjork [2, theorem 8.6.3.] shows that there exists a
holonomic D x-module A such that M = Ex ®,-1p, TN

So, we may assume that M is a Dx-module and apply the corollary. O

Let us remark that the exact sequence (iii) of [21, prop. 3.2.10.]
0— CY‘X(T,S) — gy‘X(r,s) — 5y|X(r,s) — 0

shows that R*om (M, CNY‘X(r,s)) is not constructible if M has a slope in |s,r[. Indeed, if it
were constructible, then the index in Cy|x(r,s) would be 0 and this contradicts proposition
5.3.8. The same is true for Ny y (r.s).

If there is no slope of the Dx-module M between r and s they have both constructible
cohomology. The index of 5;/‘ x(r,s) is given by theorem 5.3.1 that is E§I(r)( M)(w) while
the index in Nx|y (r,s) is given by the exact sequence (iv) of proposition 3.2.10. in [21] and
is equal to EE;(T)(M) (z).

5.4 Reconstruction.

Theorem 5.4.1. Let M be a holonomic Ex-module or a complex of D.(Ex) with holo-
nomic cohomology. Let rp_1 and 1 be two consecutive critical indexes of M. Then, for
each (r,s) withr >r>s>rp_1 and g > S :

Di(R’OO)(r,s) ®5X\A M|A ~ R%OIH(C (RHOIngX (M, C$|X(r,s)), Cg‘X(r,s))

This theorem is a generalization of [21, theorem 4.3.1.] and is deduced from the
previous results in the same way.
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6 Appendix.

We give here a proof of the results of section 5.2 which does not use the difficult results of
Kashiwara-Kawai [14] and is more general as it is true for 2-microdifferential equations.

6.1 A new equivalence theorem.

Theorems of the same kind that proposition 3.2.3 and 3.3.1 may be proved when D, or ¢
is replaced by D; and z;. At points where the condition of corollary 3.2.5 is not satisfied
these theorems are not true in the sheaf Ei(R’oo)(r,s) but only in Ei(R’R) (r,s) (see §2.3 for its
definition).

As in the previous sections, we consider a complex manifold X of dimension n, a
submanifold Y of codimension d and denote by A =Ty X the conormal bundle to Y.

We consider a matrix A with coefficients in the sheaf Ei(r,s) of 2-microdifferential
operators of finite order. We assume that A commutes with D,,, which is equivalent to
the fact that it has a symbol independent of 1. We keep the order of section 3.2 and say
that A(z', 7, 2%, 2", 7*) is of medium order (4, i) if there exists some ¢ € N such that any
product of g terms

A’ T, 2" A, T, Ny 2 T LA T N 2L T
is of order at most (gd, ).

Proposition 6.1.1. Let A be a m X m-matriz of the sheaf gi(r,s) of 2-microdifferential
operators which is independent of 1 and of medium order (0,u) with u < 1.

)

There exists an invertible matriz R with coefficients in Ei(R’R
and such that :

(r,s) commuting with Dy,

(331] — A)R = Rz,

Proof. We use the same proof than proposition 3.3.1:

We add a variable y, that is we consider X' = X xC, Y’ =Y xCand A’ =T}, X'. Then
we make a “quantized bicanonical transformation” and apply proposition 3.2.3. In this
way, denoting =/ = (z2,...,T,_q), we find a matrix Ry (2, z*,y*, 7, 7*) with coefficients in

Ei$°°’°°)(r,s) solution of :

0
(8z*> Ry = A(z',z*,7,7") Ry
1
A solution to the initial problem is the value R of R; at y* = ;. To show that such a
value does exist we use the same proof than lemma 2.5.1. Indeed, we have defined

gi(OO,R)(r,S) = M%’;i (C?’OXY\XXX(T’SO

and we may copy the proof of the lemma, replacing X by Ty X x Ty X, Y by Ty X and
Ox by (3% v x xx (9)-
) 2(R,R)

In this way, we find a solution in Ei(oo’R (r,s) which is a subsheaf of £} (r,s). O
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Assume now that n —d = 1. The matrix Ry (z*,y*,7,7*) is given by proposition 3.2.3
hence satisfy the conditions of lemma, 3.2.2, hence for any s’ > s, R; isin 5}2,(5’1%) (r,s")[C] (see

the proof of proposition 3.3.1) and thus its value at y* = y§, that is R is in 5}2,(5’2{) (r,s")[C]-

In the next proposition, we assume that X = C2, Y = {(z,t) € X |t =0}.

Proposition 6.1.2. Let P and Q be two operators of E2(r,s) such that 01((’3) (P) = ()N

and O’X"’S)(Q) =aM. Let L = E(r,s) /Eﬁ(r,s)P + E2(r)Q and assume that L # 0. Then
there exists some integer L > 0 such that :

L
Ei(R:R) (r,5) g2 (r,s) L~ (S/Q\(KR) (r,s) /EK(R,R) (rs)t + SJQ\(R’R) (T’S)$>

Proof. We will denote in this proof by € the sheaf £2(r,s) and by EF the sheaf £20%) (1 s).

We will also denote by £[i, j] the subsheaf of £ of operators of order 7 for the F,-filtration
and j for the Fi-filtration. In particular, the operator ¢ of symbol 7* is in E[q — p,q' — p']
if r = p/q and s = p'/q’ while the operator z of symbol z is in £[0,0]. The hypothesis
implies that P is in E[N (¢ —p), N(¢' — p')] while @ is in £[0,0].

Using the preparation theorem [18, theorem 2.7.2] we may write

P=F (T*)N_ Z Pk(xaTa"E*)(T*)k
0<k<N

where E is invertible in £, each P, commutes with D; and O'I((’S)((T*)N — S P(mH)F) =
(7*)N which means that the order of Py(z, T, z*)(r*)* is at most (N(q — p), N(¢' — p')).
We may also divide @ by P using [18, theorem 2.7.1] :

Q=AP+ Y Qulz,7,z") (")
0<k<N
the orders of A and the Q’s being such that UX’S)(Q) = 0'/((’5) (AP) + 0'/((’5)(2 Qr(T*)k).
As O'E\T’S)(Q) = zM we have a/((’s)(Qo) = zM while the symbol of order (0,0) of Qi (7*)* is
0 if £ > 0. Finally we may assume that @) is equal to
Q=z"+ Y Qlz,1,2%)()*
0<k<N
where Qy(7*)* is in £[0,0] and its symbol of order (0,0) is 0 for k =0,...,N — 1.

The module £/EP is isomorphic to N /EN (tIy — A) where Iy is the identity matrix
and A is the matrix :

0 1 0 0
A= S (6.1.1)
0 0 1



60 Yves Laurent

This isomorphism is induced by ¢ : £V — £ defined by ¢(ay,-..,ay_1) = 3 a;tt
while its inverse is induced by 1 : £ — EV defined by % (8) = (5,0, ...,0).

Let &' be the subsheaf of £ of operators commuting with Dy, that is of operators
having a symbol independent of 7*. Thanks to the division theorem, the modules £/EP
and EN /EN(tIy — A) are both isomorphic to &’ N hence the image of an operator R of &
in EN /EN (tIy — A) has a unique representation in e,

This applies in particular to @ = 2™ + Y 4 <N Qyt* (recall that 7* is the symbol of ¢
hence they represent the same operator) whose image by 9 is (Q,0,...,0) which is equal
to (37M + Qo, Q1,---,QN—1) modulo (tIy — A).

We may also calculate the image of tQ: we have tQ = Qt — [Q,t] and the symbol of
[@,1] is %Q while Qt = Qn_1t" + 2™t + Y ) pon_y QitFt! has an image by 1 equal to
(@n-1P0,zM + Qo+ QN —1P1,...,QN—2+ Qn —1Py_1). So, the image of tQ by ¢ may
be written (modulo (¢Iy — A)) in the form

(O,])M,O,... ’0) + (Q(l)aQ%a"'aQ}V—l)

where the order of Q} is ((1 —1)(g — p), (1 —4)(¢' — p')) (that is Q}#' ! is of order (0,0))
. . . (r,s)
with principal symbol o, equal to 0.

The same calculation shows that the image of t*Q for 0 < k < N — 1 under 4 is of the
form (0,...,2z,0,...,0) + (QF,Q%,...,Q%_,) where QF is of order ((k —1i)(q — p), (k —
i)(¢' — p')) with principal symbol 0.

The module £ = £/EP+EQ is thus isomorphic to EN /EN (tIy — A) + EN(zM Iy — B)
where each element B;; of B is in £ and of order (( — j)(g — p), (¢ — 7)(¢' — p')) with
principal symbol 0.

The preparation theorem [18, theorem 2.7.2] shows that the matrix 2 Iy — B may be
written :

eMIy — B(z,1,2%) = E | 2MIy — Z By (7, z*)zF
0<k<M—1

where F is invertible and the elements of each By, satisfy the same conditions about the
order that B. (In fact the preparation theorem was proved for single operators and not
for matrices but its proof extends immediately to the case of matrices.)

Let K = NM. If we consider the morphism (agg,...,an—1,m—1) — Zaijtia:j from
EK to £ we get an isomorphism between £ = £/EP + £Q and

EX 1R — A') + EX (2] - B')

where I is the (K, K)-identity matrix, A’ is the (K, K) square matrix given by M diagonal
blocks equal to the (N, N) matrix A and B’ is the matrix given by the same formula that
A in (6.1.1) but with each P; replaced by a matrix B;.

The matrix A satisfy the conditions of proposition 3.2.3, hence there is an invertible
matrix Ro(z,7,z*) with coefficients in £X independent of 7, i.e. commuting with D,
such that :

Ro(tIy — A)Ry* = tIy
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If R is is the (K, K) square matrix given by M diagonal blocks equal to Ry, we get :
R(tI — AR =+¢I

The matrix B’ satisfies the conditions of remark 3.3.3, hence there is an invertible
matrix S(z*,7) with coefficients in £¥ such that S(zI — B')S~! = zI. As R commutes
with £, we get an isomorphism :

LR ~ 5RK/(€RKtI + ERK:EU(:U, T,2"))

where U = SR™! is invertible and commutes with D;, i.e. is independent of 7* and
LE=ERQL.

If U commutes with ¢, £® is isomorphic by U~ to ERK/(é'RKtI + 5RK:BI) and the
proposition is proved but this is not the case in general, so we will now prove that £X has
another representation where zU is replaced by a matrix commuting with ¢.

The kernel of £/EP — Lis EQ/(EPNEQ) and as a subsheaf of £/EP it is supported
by 7* = 0, hence there exits some P; with 01((’5) (P1) = (%)M and some C such that
P1Q = CP. We have an exact sequence :

£/EPL S /6P — £ —0

The matrix Ry defines an isomorphism between ER/ERP and ER" /ERV(T and for the

grRM

) . i ~ oRN .
same reason, there is an isomorphism EX /R8P, = gR™/ tI hence there is an exact

sequence :
gRML RNy Ay oRN eRNy L pR g

Let F be any (N7, N)-matrix with coefficients in £® such that the morphism X is equal
to the right multiplication by F. Dividing F' by ¢, we may assume that F' is independent
of 7%, but ¢tF is in the module ERN4I and thus we have [t,F] = %F = Zt. As F is
independent of ¢ this means %F = 0 and so F is independent of 7,7* that is commutes
with ¢ and Dy.

Remark : The sequence 4.1.3 shows that the subsheaf of operators of 5i(R’R) (r,s) com-
muting with ¢ and D; is isomorphic to the sheaf 83 of microlocal operators on Y. What
we did is an elementary proof of the fact that Homgr (EX/ERt, ER /ERY) = EX.

So we have found an exact sequence

gRIY grKy p F@2), oRE Ry p ¥/ (€ 4T + ¥ 4l (s,7,57) — 0 (6.1.2)

The second morphism being induced by the identity of ERK, this proves that there exists
some matrix H such that zU(z,r,2*) = H(z,7,2*)F(z, x*).
Let s’ such that 7 > s’ > s, C' > 0 and let us denote by £X[C] the sheaf gf,((ﬂfﬁg)(r,s’)[C].
Remark after proposition 6.1.1 shows that (for any s') there exists some C' > 0 such
that S is a matrix with coefficients in £X[C] and remark 3.3.3 shows that the matrix R
has coefficients in EX[C] for suitable C', hence U has the same property. For the same
reason, the morphism X /R8P = grRM /c‘,'RN1 tl is given by a matrix Ry with coefficients
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in ER[C] for some C. So, the exact sequence (6.1.2) is still defined and exact when the
sheaf £X is replaced by the sheaf £%[C] and the equality zU (z, 7, z*) = H(z,T,z*)F(z,z*)
is an equality of operators of EX[C].

Proposition 2.7.3 shows that U and H have a value at 7 = 1 which is well defined in
EX, the morphism U(z, 7,z*) — U(z, 79, z*) being multiplicative. As U is invertible we
have :

zU(z,1,2%) = H(z,1,z*)F(z,z*) and U(z,1,2")U " (z,1,2*) =1

Hence Uy(z,z*) = U(z,1,z*) is invertible, and zU(z, 1,2*) = H(z,1,z*)F(z, z*) belongs
to ERF(z,z*). Therefore zU(z,z*) belongs to the module ER 4T + ER* F(z, z%).

Let us remark that operators of EQ/R are identified with operators of X commuting
with ¢ and D; and that such operators are in Ei(R’R) (r,s) for any (7, s), hence the equality
zU(z,1,2*) = H(z,1,2*)F(z,z*) which was proved for some s’ > s is true for s’ = s.

As Uy commutes with £, this shows that :

Vo QERK/(ERKH + ER% zUp(z,z* ) + ERKIF(:C,ac*))

—1 *
Lo 0, ) (511 1 €% 4 €4 1y ("))

(We may divide F} by z and assume that it depends only on z*).
Our problem is now to show that F; is the constant matrix. As we do not know how
to prove conjecture 6.1.3, we remark that the previous proof is still valid if we reverse the

variables = and t. This shows that £X is isomorphic to 5RJ/(8RJtI +ER7zr + ERIG(T)).
So, we have an isomorphism :

5RK/ (ER%4T + R 21 4 RN B (1) S 5R"/ (ERTLT + R 2T + ¥ G (r))

This isomorphism is given by the multiplication by a matrix Z. We may divide Z by
tI and zI so that its symbol is independent of ¢ and z, and then, exactly as it was for
F', the symbol of Z is also independent of 7 and z*, that is Z is a constant matrix and
therefore F and G are constant, this shows that £X is 0 or a power of EX/(ERt+&Rz). O

Conjecture 6.1.3. The module E(]g / E(HC% has no proper submodule.

(The corresponding result for ¢ is easy to show.)

6.2 Micro-constructibility.

The sheaf 5/2\(7",5) is provided with two filtrations which extend the filtrations F, and Fj
of Ex [18]. If M is a coherent 2 (r,s)-module, the multiplicity of M along an irreducible
component of its support are defined with these filtration exactly as in section 1.3. If M
is a coherent £x-module, the multiplicity of £ (r,s) ® M is the same than the multiplicity

of the microcharacteristic cycle Chy (r,s)(M).

Theorem 6.2.1. Let 3. be a smooth lagrangian bihomogeneous submanifold of T*A and
My be a coherent Eﬁ(r,s)—module with support 32 and multiplicity 1. Let M be a coherent
Eﬁ(r,s)—module with support ¥ and multiplicity m.
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Let M§ = E3%9(r5) ®g2 sy Mo and ME = £359 ) @2,y M.

Then Homgz (, 5)(M0,MR) is locally isomorphic to (Cx)™ and <S'xt]‘%2 (r,s)(Mo, MR) is
’ A
equal to 0 if 7 #0. The canonical morphism :

MG ®c Homgs (, ) (Mo, MF) — MF

7,8
is an isomorphism.

Proof. A similar result was proved by Kashiwara in [11] for £¥-module and we follow
Kashiwara’s proof.

We first remark that the theorem is invariant under “quantized bihomogeneous canon-
ical transformation” of [18, Theorem 2.9.11] hence we may assume that ¥ is given by :

S={(z,,z*,7)ET*A |1 =35 =---=x =7"=0}

Let X' be the submanifold of X given by zo = --- =z, = 0 and j : X' < X. Let
Y =X'NnY, N =T3,X"and ¥ = {(z1,7,27,7*) € T*A’ | 21 = 7* = 0}. The module
§*M is a coherent &3, (r,s)-module with support in ¥’ [18, th. 2.10.4.] and its multiplicity
is m. In the same way j*Mj has multiplicity 1.

If the theorem is true for j* M and j*M, we use proposition 3.2.6 to prove the result
for M and M,.

So, in this proof, we may now assume that X = C? and ¥ = {(z,7,2*,7*) € T*A |
z =71*=0}. We denote by £ the sheaf E/%(r,s) and by ER the sheaf Ei(R’R) (r,5).

Proposition 6.1.2 shows that M](If is isomorphic to ER / ERt + Rz and we may assume
that My is equal to £ /Et + Ex.

A section u of M is supported in 7 = x = 0 hence there exists P and @ in £ such
that Pu = Qu =0, UX’S)(P) = (7*)Y and UX’S)(Q) =M,

Let (u1,...,u;) be a local set of generators of M, there exists, for j = 1,...,[, an
operator P; such that 01({’5)(}}) = (7*)Ni and an operator @; such that o/((’s)(Qj) =M.
Let us denote by My the direct sum :

M, = BE [EP; + £Q;

The kernel of the morphism M; — M satisfy the same properties than M hence M
is the cokernel of a morphism My — M; where My is of the same type than M.

By proposition 6.1.2, M} (k = 1,2), is isomorphic to (M§)™ where my, is the multi-
plicity of M}, and we have an exact sequence :

(ME)m2 5 (ME)™ 5 ME 0

As RHom gr (MY, ME) = C, the morphism (M§)™2 — (ME)™ is given by a constant
matrix hence we have :
ME o (ME)™
We have to prove now that m' is the multiplicity m of M.
By definition of the multiplicity, the graded module of M is, generically on ¥, a free
Osj-module of rank m. Then, using the division theorem of [18, 2.7.1] we conclude that
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generically M is a free &-module of rank m (where & is the subsheaf of & of operators
commuting with D; and D,). Then if we extend the coefficients to X we get (M5)™
which shows that m = m’. O

Let us say that a D-module M is a holonomic D§-module if it satisfy :

1) The support X of £F ®@-1pge 71 M is a complex lagrangian subvariety of T*X.

2) For any point & of the smooth part of ¥ and any holonomic £x-module M, with
support ¥ near ¢ and multiplicity 1, there is near ¢ an isomorphism between £x Or-1pge
7 IM and (£ ® Mp)™.

The number m is the multiplicity of M on X at £. It is constant on the irreducible
components of the variety X. In this way we define an analytic cycle with support ¥ which
we will call the characteristic cycle of M.

Kashiwara proved in [11] that any holonomic D x-module satisfy these properties, that
is for any holonomic Dx-module M, the D$-module D§ ® M is holonomic according to
this definition.

Applying the morphism of vanishing cycles to theorem 6.2.1 we get :

Corollary 6.2.2. Let M be a holonomic Ex-module. The DI°-module ®{r}(M) is holo-
nomic for any r > 1 and its characteristic cycle is (with w : (T*Y) xy A = T*Y ) :

@ LOh(@(r}(M)) = Cha{r}(M)

Moreover, the proof of the index theorem in [11] is still valid with no modification for
holonomic D$-modules (one step of that proof being precisely to show that what we call
here holonomic D§-modules satisfy the index theorem). So we recover all the results of
section 5.3.

In fact, this proves that the complex of holomorphic solutions of these modules is a
perverse sheaf, so the Riemann-Hilbert correspondence shows that they are admissible.
This definition of holonomic DS -modules is therefore equivalent to the definition of §5.2
but what we wanted to point here, is that the index theorems may be proved independently
of Riemann-Hilbert.
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