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Abstract

We study the following question: How does the Casson-Walker invariant
A of a rational homology 3-sphere obtained by gluing two pieces along a
surface depend on the two pieces? Our partial answer may be stated as
follows. For a compact oriented 3-manifold A with boundary 9 A, the kernel
L 4 of the map from H;(9A; Q) to H1(A4; Q) induced by the inclusion is called
the Lagrangian of A. Let ¥ be a closed oriented surface, and let 4, A’, B
and B’ be four rational homology handlebodies such that 94, dA’, —0B
and —dB’ are identified via orientation-preserving homeomorphisms with X.
Assume that L4 = L4/ and Lp = Lps inside H;(3; Q) and also assume that
L4 and Lp are transverse. Then we express

/\(A Usg B) — )\(A/ Us B) — )\(A Usg Bl) + )\(Al Us Bl)

in terms of the form induced on /\3 L4 by the algebraic intersection on
Hy(A Us —A') paired to the analogous form on /\3 Lp via the intersection
form of 3. The simple formula that we obtain naturally extends to the exten-
sion of the Casson-Walker invariant of the author. It also extends to gluings
along non-connected surfaces.
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1 Introduction

In 1985, A. Casson defined an integral invariant of integral homology 3-spheres
by introducing an appropriate way of counting the SU(2)-representations of their
fundamental groups (see [A-M, M, G-M]). His invariant, and all of its inter-
esting original properties, were extended to rational homology 3-spheres (closed
3-manifolds M such that H.(M; Q) = H.(5% Q)) by K. Walker in 1988 (see [W]).
In [L], I defined an extension of the Casson-Walker invariant to all closed oriented
3-manifolds from a global surgery formula. Here, we study the following question:

How does the so-extended Casson-Walker invariant A of a closed 3-manifold,
obtained by gluing two pieces along a surface, depend on the two pieces?

Our partial answer is the homogeneous sum formula of Theorem 1.11 below.
Since the behaviour of the so-called quantum invariants in these circumstances is
crucial, our sum formula might be used to see how the Casson-Walker invariant
fits in in the framework of topological quantum fields theories. In particular,
it could lead to another understanding of the Murakami relation [Mu] between
the Witten-Reshetikhin-Turaev invariants and the Casson-Walker invariant. Our
formula may also be applied to generalize a result of Morita [Mo] which measures
how far some functions induced by the Casson invariant on the Torelli group are
from being homomorphisms (see Corollary 1.6).

In order to prove our sum formula we will be led to introduce a (tautologi-
cal) extension of the Reidemeister torsion to compact 3-manifolds with arbitrary
boundary. The study of this extension, that we call the Alexander function, is
performed in Section 3. This section may be of independent interest and can be
read independently.

We begin by stating our sum formula for the Walker invariant in Theorem 1.3
(it involves less notation in this case and the general formula is its natural exten-
sion). In order to state it properly, we list our conventions.

Conventions 1.1 e Throughout this paper, all the manifolds are compact
and oriented. We use the ‘outward normal first” convention to orient the
boundary 0 of a manifold. The symbol — in front of a manifold reverses its
orientation.

e We use the following normalization for the Casson-Walker invariant A. If
Aw denotes the Walker normalization (see [W]) of his invariant, then

A
N= W
2
This is Casson’s original normalization of his invariant used in [A-M, M,

G-M].

e We define a rational homology handlebody (or RHH) as an (oriented, com-
pact) 3-manifold with the same rational homology as a standard handlebody.

e We denote by <, >y the intersection form on a surface X..



e Lor a (compact) 3-manifold A with boundary, we denote by L4 the kernel
of the map:
H,(04;Q) — Hi(A; Q).

It is a Lagrangian of (H1(0A;Q), <, >s4), we call it the Lagrangian of A.

Note that, if A and B are two 3-manifolds whose connected boundaries are iden-
tified by an orientation-reversing homeomorphism, then A Uss B is a rational
homology sphere if and only if A and B are RHH and £4 and Lp are transverse
in Hi(04;Q).

Definition 1.2 Let A and A’ be two connected 3-manifolds whose boundaries
are identified via orientation-preserving homeomorphisms with a fixed connected
surface X and which have the same Lagrangian £4 in H;(X; Q).

e If both A and A’ are RHH, then the Mayer-Vietoris sequence provides the
isomorphism

8AAI ZHQ(A Us —A/,Q) — [,A

chosen so that it maps the homology class of an embedded surface S of
AUy —A’ transverse to dA to the class of SN JA oriented as the boundary
of SN A.

Let [A Uy —A'] be the homology class of AUy —A’, let D = [AUy —A']N -
be the Poincaré duality isomorphism:

D:HY(Aug —A';Q) — Hy(Auy —A';Q)
The intersection form T4 of (A, A’) is defined on A® L4 by:
IAAI(Oq N ag A Oég) =
(8AA/ o D)_I(Oq) U (8AA’ o D)_I(Ozg) U (aAA’ o D)_l(ag)([A Us, —A/])
e If Aor A’ is not an RHH, then we set 744 = 0.

Now, we can state the main result of the paper for rational homology spheres
that is for the Walker invariant:



Theorem 1.3 Let X be a closed, connected surface, and let A, A', B and B’
be four RHH such that 0A, 0A’, —0B and —0B' are identified via orientation-
preserving homeomorphisms with . Assume that L4 = Ly and L = Lp
inside Hy(X; Q) and also assume that L4 and Lp are transverse (L4 NLp = {0}
in H1(2;Q)). Let (ay,...,a,) and (By,...,5,) be two bases for L4 and Lp,
respectively, such that < o;,3; >x is equal to the Kronecker symbol é;; for any
i,7 in{l,...,¢9}. Then Formula (A, A’, B, B") below is satisfied:

AMAUs B) = M(A'Usg B) — AM(AUyg B') + AM(A" Uy B')

= -2 S Zaw(os Ao A ar)Ipp(Bi A B A Br)
i,k C{1, e}

(E(A, A", B, B))

Remark 1.4 Using the isomorphism i4 : £4 — L5 = Hom(£Lp; Q) which maps
ato (ig(a) =< a,. >yx) allows us to write the right-hand side of the equality above
as:

—2Z44(\i3")(ZBB)

A more elegant expression will be given in Notation 1.8.

Remark 1.5 Let (X, £4) be a closed, connected surface equipped with a rational
Lagrangian (as above). In [S], D. Sullivan proved that any integral form on
N*(Hy(X;Z) N L£4) may be realized as a T44 for two standard handlebodies A

and A’ with boundary ¥ and Lagrangian £ 4.

The sum formula of Theorem 1.3 may be applied to reduce the computation
of a A(AU B) to the case where A or B is a standard handlebody by choosing
standard handlebodies A" and B’ with the right Lagrangians. Note that the right-
hand side is zero when the genus of ¥ is lower than 3. In particular, in genus 0,
for A’ = B’ = B3, the equality is the additivity formula of the Casson-Walker
invariant under connected sum. The genus one formula, when A’ and B’ are solid
tori, is the splicing formula, shown by several authors (see [B-N, F-M]) for the
Casson invariant, and generalized by Fujita to the Walker invariant (see [F]). In
this case, there is a unique way of filling in A with a solid torus B’ having the
right Lagrangian, A’UB and A’U B’ are similarly well-determined (starting from
AU B), and the Walker invariant of the lens space A’ U B’ is a known Dedekind
sum.

This formula also evaluates how far the functions induced by the Casson-
Walker invariant on some subgroups of the mapping class group are from being
homomorphisms. Let us be more specific. Let a rational homology sphere be
cut into two pieces by an embedding of a surface Y, allowing us to write it as



AUy, B where 0A and —0B are identified with ¥ by the (orientation-preserving)
homeomorphisms:

ja:2X—0dA and jp:¥ — —0B

Note that the datum (A, B) (with the underlying (j4,78)) is equivalent to the
datum of the rational homology sphere equipped with the embedding of Y. For
an (orientation-preserving) homomeorphism f of ¥ which preserves £4 and Lp,
we define A(f™!) so that A(f™!) is equal to A as a manifold, but d(A(f™?)) is
identified with X by j4 o f~!; and we set:

AUy B=A(f"!) Us B(= AUz B(/))

and

/\AB(f) = /\(A Uy B) — /\(A Us B)
The formula of Theorem 1.3 yields the following corollary.

Corollary 1.6 For any lwo homomeorphisms f and g which preserve L4 and

»CB)
3
Aag(go f) = Aap(9) — Aa(f) = —2Zaa-1(\i3") TB(y)

When (the isotopy classes of) f and g are in the Torelli group of ¥ (that
is when they induce the identity on H;(X)), the right-hand side is independent
of A and B (but depends on £4 and Lpg), it is a function of the evaluations of
the Johnson homomorphism at f and ¢ (see [J, Second definition, p.170]). With
completely different methods (based mainly on Johnson’s study of the Torelli
group), S. Morita proved Corollary 1.6 for Heegaard embeddings into integral
homology spheres and homomorphisms of the Torelli group [Mo, Theorem 4.3],
but he did not think that it extended to general embeddings [Mo, Remark 4.7].

For integral homology spheres, reducing A mod 2 yields the Rohlin p-invariant
(see [G-M]). When A U B is an integral homology sphere, Corollary 1.6 proves
that puap defines a homomorphism from the Torelli group to Z/2Z. These ho-
momorphisms were first studied by J. Birman and R. Craggs [B-C], they are the
so-called Birman-Craggs homomorphisms.

To prove Theorem 1.3, we first find a sequence of simple surgeries on links
transforming A into A" and staying among the RHH with Lagrangian £4. Then
we apply the surgery formula of [L, B-L] to these surgeries and analyse how the
involved formulae depend on B when B varies among the RHH with boundary
—0A and with fixed Lagrangian.

The paper is organized as follows. In Section 2, we present the special types
of surgeries that we need to study, and we reduce the proof to the following

question. How do certain derivatives of Alexander polynomials of specific links of
a RHH (A C AU B) depend on B when B varies among the RHH with boundary



—0JA and with fized Lagrangian? To answer this type of question, we introduce a
(tautological) generalization of the Alexander polynomial to compact 3-manifolds
with boundary, in Section 3. The first properties of this Alezander function, also
given in Section 3, allow us to conclude the proof of Theorem 1.3 in Section 4.
In Section 5, we give formulae to describe gluings along non-connected surfaces.

Now, we finish this introduction with the complete statement of our sum
formula for the extended Casson-Walker invariant.

1.1 Complete statement of the sum formula

In our general statement, A’ and B’ will be standard handlebodies. It is not hard
to see that adding this hypothesis in Theorem 1.3 does not weaken its statement
(see Subsection 2.1). We first introduce suitable notation.

Notation 1.7 (Notation related to handlebodies)
Let 32 be a closed surface of genus g¢.

o A Y-system is a system a = (a1, as,...,a,) of g simple closed curves on
> such that the curves a; are pairwise disjoint and their union does not
separate ..

o A Y-system z = (z1,..., 2,) is said to be geometrically dual to the ¥-system
a,ifforany i,j € {1,...,¢}, a; and z; are transverse, a;Nz; contains exactly
d;; points and < a;, z; >x=§;; (as in Figure 1).

a1 az g
i\ i ii\i ii\i

Figure 1: ¥ equipped with its two geometrically dual systems ¢ and z

e Let £ be a Lagrangian of (H;(X,Q);< .,. >x). A (X, £)-system is a -
system whose components have their homology classes in L.

e Let a be a YX-system, ¥, denotes the handlebody with oriented boundary
>, where the components of ¢ bound 2-disks.

e Let A be a compact 3-manifold with boundary 3. Let b be a X-system.
Then Aj denotes the 3-manifold obtained by gluing thickened 2-disks along
the b; and filling in the resulting S?-boundary with a 3-ball (or by filling in
JA with —X;). The manifold Ay inherits the orientation of A.



e Let a and b be two X-sytems, then we define
Eab = (Ea)b
applying the definitions above one after the other.

e Let A be a RHH and let a be a (0A, L4)-system. Then we denote by Z4,
the form Z 454

a*

Now, we take care of the fact that the right-hand side of the equality of The-
orem 1.3 does not make sense anymore when the Lagrangians are not transverse.
We fix a genus g surface X and two Lagrangians £4 and Lp of (H1(X;Q), <, >x).

Notation 1.8 e Let £ be a Q-vector space of dimension g, and let @ be a
generator of A? L. We define the isomorphism

k g—k g—k
an: N — N L= N L™
I—ant

where

@nNINJ)=aZnJ)
(Recall that N L = (/\]C LY, v A Avg(wy A A wg) = det(v] (w;)).)

e We also denote by <, >y the bilinear form induced on A¥ L4 x A* Ly by
<, >y, for any integer k. (< ag A---Aag, by A---ANbp >x=det[< a;, b; >x].)

Note that the bilinear form defined on A® L X A? Ly by
(IA,IB) — < dﬂIA,I;ﬂIB >%

linearly depends on a @ b € N La®q N Lp. In particular, if £4 and Lp are
transverse, we may rewrite the right-hand side of the equation of Theorem 1.3 as:

< dﬂIAA/,l;ﬂIBBl >y

3
—2Taa (N7 (Zgp) = -2 -
(A iz Zs) Laion

for any generator @ ® b of N L4 ®qg N Lp. For the other cases, we will specify
a generator @ @ b of A9 L4 ®@q N LB.

Notation 1.9 Choose two bases ¢ = (ay,...,a4) and b = (by,...,by) of L4 N
H,(X;Z) and of L N Hy(X; Z), respectively, satisfying (*):

(*) Fori=1,...,d= di*m(,CAﬂ,CB), a; = b,.



(Such bases exist.) Let @ denote a3 A --- A a, and let b denote by A - -+ A by. Then
our canonical generator of A9 L4 ®q A? Lp is

@b

[=3

Y(E, La, L) = sign (det ([< a;,b; >x]ij=d+1,..9))

(where sign(z) def a1 ifz € R\{0}).
Let a and b be two bases of L4 N Hy(3;Z) and of LpN Hy (AE; Z), respectively,
which do not necessarily satisfy (x). Then we define signy (@, b) = +1 so that

(2, La, L) = signx (@, b)a © b
in any case.

Now, we can generalize Theorem 1.3 for the extension of A described in [L]
when AU B is not necessarily a rational homology sphere anymore.

Notation 1.10 e If M is a Z-module, we denote by |M| its order, that is its
cardinality if M is finite, and 0 otherwise.

e We denote by A the extension denoted by A in [L]. With the current notation,
we have the following relation between the two normalizations:
A

A7)

Theorem 1.11 Let X be a closed connected surface. Let A and B be two con-
nected 3-manifolds such that A and —0B are identified with 3. by orientation-
preserving homeomorphisms. Let a be a (X, L4)-system and let b be a (3, Lp)-
system. Let z be a X-system geometrically dual to a and let y be a (—X)-system
geomelrically dual to b. Then N(A U B) is given by Formula F(A, a, B,b) below.

AMAUB) =
|H1(A2) | X(Ba) + [Hi(By) | M(As) = |Hi(A2)] [Hi(By)| M2ab)
—2|H,(A,)||H\(B,)| signs (i, b) < aNTpq,bN gy >x
(F(A,a, B,b))

Easy homological considerations performed in Subsection 2.1 show that this
statement does generalize Theorem 1.3, and that it could be given in an analogous
form. The theorem is easily seen as a consequence of the geometrical interpretation
of A when the rank of AU B is larger than one in Subsection 2.2. The rank one
case will follow from the properties of the Alexander function, its proof will be
complete at the end of Section 4.

This article partially answers a question of Pierre Vogel. Il also benefited from
conversations with Steven Boyer, Lucien Guillou, Dielter Kotschick, Dantel Lines,
Alexis Marin and Gregor Masbaum. I thank all of them.
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2 Reducing the proofs to technical lemmas

In all this section, > denotes a closed connected genus g surface equipped with
two Lagrangians £4 and Lp of (H1(2;Q), <, >x), we set <,>=<,>y. Wecall a
connected 3-manifold with boundary ¥ and Lagrangian £4 a (X, £ 4)-manifold.

2.1 Preliminary remarks

Lemma 2.1 Let a and b be a (X, L 4)-system and a (X, Lg)-system, respectively.
Let z be a X-system geometrically dual to a and let y be a (—X)-system geometri-

cally dual to b. If A is a (X, L4)-manifold and if B is a (X, Lg)-manifold, then
[H1(AUs B)| = |Hi(A,)] |[Hy(By)| |[Hy(Xab)]
Proor: If A and B are RHH,

[Hi(AUs B)|  _
[H1(A:)| [Hi(By)]

/\?:1(2’%4 - ZZB) A /\?:1(‘1A - aB)

7 7

Nerzt AN P

7 1=

g o g B
Ai:l"' A Ai:lai

2

N2t AN P

7 1=

det[< b;, a; >]
det[< bj, yi >]

where Z;A denotes the class of z; in H1(A; Q), for example, and the exterior prod-

ucts are taken in /\?il(Hl(A; Q)@ H\(B;Q)). -

This proves that Theorem 1.3 is a particular case of Theorem 1.11 when A’
and B’ are standard handlebodies.

Now, assume that £4 and Lp are transverse. Fix a (X, £4)-RHH Ag, and a
(=X, Lp)-RHH By. Assume that £(A, Ag, B, By) is true for any (X, £4)-RHH A
and for any (=X, £Lp)-RHH) B. Then because of the identity:

Tang —Zaray =Zan

E(A, A, B, B') is true for all the (A, A’, B, B) (such that A and A" are (X, L4)-
RHH and B and B’ are (=X, Lg)-RHH with the given (X,L4,£Lg)). We have
just reduced the proof of Theorem 1.3 to the proof of the following statement:

Statement 2.2 Let X be a closed connected genus g surface equipped with two
transverse Lagrangians L4 and Lp of (H1(X;Q), <,>). There exists a (X,L4)-
system a and a (3, Lp)-system b such that:

For any (¥,L4)-RHH A and for any (=%, Lp)-RHH B:

AMAUB) = A(Ap) — A(Bg) + AM(Xap)

= -2 Z IAQ(OQ/\O&]' /\Ozk)IBb(ﬁi/\ﬁj /\ﬁk)
{7,5,k}C{1,....9}

11



where (o,...,04) and (B1,...,B,) are two bases for L4 and Lp, respectively,
such that < a;, B; >x=0;; for any i,j € {1,...,¢}.

Similarly, it is sufficient to prove F (A, a, B, b) for a particular (X, £ 4)-system a
and a particular (X, £g)-system b to get it in any case (for our given (X, L4, LB)).
We could also state Theorem 1.11 for any (A, A’, B, B') such that A and A’ are
(X, £4)-manifolds and B and B’ are (—X, £p)-manifolds.

Until the end of this subsection, A denotes a (3, L4)-RHH equipped with
a (X,L4)-system a and a Y-system z geometrically dual to a. We study the
homological properties of A once for all.

Definition 2.3 We define the integral Lagrangian EZ”" of A as the kernel of
ix: H1(0AZ) — Hy (A Z)
Note that:
Lt C Zay ® Zag® -+ ® Zay, = L4 N H,(0A; Z)

Lemma 2.4

|Torsion(H1(A))|  |LaNH(0AZ)]| |Hq(A)|
| Torsion(H1 (Aq))] Lo | Torsion(H;(A))]
Proor: (A
Hl(A ) 1( )

. :Zal@Zag@...@Zag

Since the a; are torsion elements of Hy(A), the same equality holds for the torsion
parts and we have the following short exact sequence:

Zay D Zay D ... D Za,
iy

0— — Torsion(H;(A)) — Torsion(H;(A,)) — 0

which proves the first part of the equality.
For the second part, we have:

_ H,y(A)
22102z ... D74z,

Hy(A)

where the rank of Hy(A) is g. Hence, if (fy,..., f;) is a basis of Hom(H(A); Z) =
H(A), then:

|H1(A)| = |Torsion(Hy (A))l[det[fi(z)]; j=1,..]

Choose a basis (ki, k2, ..., k) of EZ”’L. Using the Poincaré duality isomorphism
between H'(A) and Hy(A,dA) and the boundary isomorphism from Hy(A,dA)

12



to £ allows us to choose f; as ‘the algebraic intersection with a surface bounded

by k;’. Thus,
|Hi(A,)| = |Torsion(H; (A))||det[< ki, zj >54lij=1,..4]
where

|det[< ki, z; >a4lij=1,..4] _
|det[< a;, z; >a4lij=1,..4]

EiAkaA .. Nk
ap Nag N...N\ag

|det[< ki, z; >a4lij=1,..4 =

= ﬁzﬂf

The previous lemma implies the following one:
Lemma 2.5 The three following assertions are equivalent:
1. Hi(A;Z)=179.
2. Hi(A,0A) ={0}.
3. 1.t Hi(0A;Z) — Hy(A; Z) is onlo.
All of them imply: .
LY = La0 H(0A;Z)

Definition 2.6 An RHH A satisfying the assertions of the previous lemma is an
integral homology handlebody.

2.2 Proving F(A,a, B,b) when the rank of AU B is larger than 1

This case could be (at least as quickly) studied with the methods described in the
next sections. Since it does not require them, we give a geometrical proof of the
formula based on the geometrical interpretation of A of [L, Section 1.5] for the
manifolds of rank larger than 1. This proof should help feeling the general result
(but since it is almost independent of the rest of the paper, this subsection can
also be skipped).

For closed 3-manifolds with positive rank (of the H;), we interpret

A(M) /| Torsion(Hy (M))]

as the evaluation of a quadratic form gp; defined on /\ﬁl(M) Hy(M; Q) at a gen-
erator of A®M) H, (M;Z). Let us associate gas to M.

Definition 2.7 The linking number of two (oriented) rationally null-homologous
disjoint links in an (oriented, compact) 3-manifold M is the algebraic intersection
number of a rational 2-chain bounded by one of them and the other. We denote

it by lka(,)-

13



Definition 2.8 Let M be a closed 3-manifold of positive rank. ¢ps is defined on
/\ﬁl(M) Hy(M; Q) as follows.

If 3, (M) =1, let A(M) be the Alexander polynomial of M (the order of the first
homology Q[t,¢~1]-module of M with local coefficients in

Q[H(M;Z)/Torsion] = Qt,t™]

normalized so that A(M) is symmetric and A(M)(1) = 1). qp is defined
by its value

o) = SO0 _ 1

at a generator gy of Hy(M; Z).

If 51 (M) = 2, define gas(01/A03) so thatif o1 and o3 are two elements of Hy(M;Z) C
Hy(M; Q) represented by two surfaces S; and S; embedded in general po-
sition in M, then

qM(O'l /\0'2) = —lk(Sl ﬂSQ,SiI_ N 52)

where S1 N S; denotes the (oriented) intersection of Sy and Sy and Si" is a
parallel copy of Sy. (It is left to the reader to verify that this provides a
consistent definition.)

If 3;(M) =3, and if D(= [M]N.) : HY(M;Q) — H2(M;Q) denotes the

Poincaré duality isomorphism, then

au(o1 Aoz Aa) = (D7 (01) U D™ (02) U D™ (0))[M))

If 5:(M) > 4, then
g =0

Proposition 2.9 (see [L, Section 1.5]) Let M be a closed 3-manifold of positive
rank, and let gy; denote a generator of N*(M) Hy(M;Z), then

(M) = |Torsion(H (M))qa (9am)

Let A be a (X, £4)-manifold and let B be a (=X, £Lg)-manifold. The Mayer-
Vietoris sequence allows us to split Hy(A U B;Z) as

Hy(AUB) = Hy(A) @ Hy(B) @ L5 N LB (2.10)
(this is not canonical).

Proposition 2.11 F(A,a, B,b) is true when neither A nor B is a RHH.

14



PROOF: Proposition 2.9 and Equation 2.10 make clear that A(A U B) must be
zero in this case. ]

For symmetry reasons, we may assume that B is a RHH from now on. So do
we.

Notation 2.12 Recall that B is a RHH and that A is a 3-manifold such that
0A and —0B are identified with the connected surface . We denote by d the

dimension of L4 N Lp, we set § def B1(AU B) and we assume § > 1. We choose a
(3, L4)-system ¢ and a (X, Lg)-system b such that a; = b; fori =1,...,d. Wealso
choose a (—X)-system y geometrically dual to b and a X-system z geometrically
dual to @ such that y; = —z; for : = 1,...,d. We use the following notation:

< ib >5q= det ([< a5, by >x)ij=d,...q)
Lemma 2.13 Under the hypotheses of (2.12),
| Torsion(Hq (AU B))| =

-2

LaNLpN Hl((?A; Z)
Lortn Lyt

| Torsion (Hy (A.))| |Hi(By)|| < @,b >5q |

Proor: First note that the possible free part in H;(A,JA) may be isolated
in this homology computation. So, we assume without loss, that A and B are
RHH. Unglue AU B along the regular neighborhood in ¥ of the wedge of the z;,
t=1,...,d, joined by paths to a basepoint. Then fill in the obtained manifold
with a handlebody with meridians the z; , ¢ = 1,...,d, to obtain a closed 3-
manifold M. As in the proof of Lemma 2.1,

|H1(M)| — /\?ZI(Z;A_ZiB)/\/\;jZIZZA/\/\?:d-I—I(a;A_aiB) — | <& I;> |
[ (A [ (B,)] Ny A NP e
Now, according to Lemma 2.4,
|Hy (M)] |LancLen H(04;Z)[
| Torsion(Hy (AU B))| Lt Lint
O

Lemma 2.14 Under the hypotheses of (2.12), for © = 1,...,d, let A; denote
the homology class of a rational 2-cycle of AU B whose intersection with A has
boundary a; and let (6441,...,03) denote a basis of Hy(A;Z). Then

AMAUB) =

| Torsion(Hy(A,))| |H1(By)| | < d,i) >sa |lqauB (A A~ NAGAN 41 A= N og)

15



PRrooOF:

= qAUB (

Now, we assume § > 1. Let us get rid of the case where A is not a RHH.

MAU B)

| Torsion(H; (A U B))]

LaNLpN Hl(aA; Z)
LptnLyg

Al/\---/\Ad/\UdH/\---/\Ug)

Proposition 2.15 F(A,a, B,b) is true when A (or B) is not a RHH and AU B
has rank larger than one.

ProoOF: In this case, the formula to be shown is
X(AU B) = [Hy(B,)[N(As)
that is
qauB (A1 A~ NAgNANogp1 A Nog) =qa, (AL A ANAgA o1 A---Nog)

Since A is not a RHH all the involved intersections take place inside A. This
concludes the case where 3 is larger than 2. Thus, the only thing to see is that,
when 3 = 2, the involved linking number does not depend on the (-%, Lg)-RHH
B. Since this linking number can be viewed as the intersection number of one of
the links (C A) and a rational 2-chain of A cobounded by the other link and an
element of Lp, it is indeed independent of B. a

Proposition 2.16 F(A,a, B,b) is true when A and B are RHH and AU B has
rank larger than one.

ProoF: From now on A and B are RHH (in addition to the previous hypotheses).
So, d = 3. The case d > 4 is clear because all of the terms in the formula are
zero, and we are left with the cases d = 2 and d = 3.

If d = 3,

A(AUB)
|H1(A:)] [ Hi(By)|| < @b >53 |

= qauB(A1 AN Ay A As3)
= (IAG—IBb)(al/\ag/\ag)Q

and the conclusion is easy.

Here, we open a parenthesis to note that we have just proved the following
lemma which will be used later:

16



Lemma 2.17 Let A and B be two genus 8 RHH such that 0A and —0B are
identified and such that L4 = Lp inside H1(0A;Q). Let a be a (0A, L4)-system
and let z be a 0A-system geometrically dual to a. Then

XA Usa B) = [Hy(A)| | (B (Ta, - Tp.) (a1 A az A as)?

End of parenthesis.

If d = 2, choose a nonzero integer n such that na; (represented as n parallel
copies of a;) bounds properly embedded surfaces S# and SP in A and B, respec-
tively, for i = 1, 2. For C' = A or B, define J¢ as the (oriented) intersection
S9N SY and K¢ as its parallel (SY)T N SY. Then

AAUB)
[H1(A2) | [Hi(By)|| < @0 >52 |

1
= ﬁunB(Sf U-SEAStu-SE)
~1
= —lkaus(J* U TP KA U KP)
n

-1 ; ;
- (theaus(JA, K4) + lhaos(JP, KB) + 21k au(J4, 7))

Again, note that lkaup(J2, K4) = lka,(JA, K#) and that J=*¢ is (or may be
chosen) empty. This proves:

X(AUB) X(Eu)
- + =
(A H (B[ < @b >53 | 1< b >s

AMAs) ~
[(Hi(A)]] < a,b>s0 | [Hi(By)l|

-2
= —plkav(J*, J7)
We are now left with the proof of the following lemma:

Lemma 2.18
1 A B 1 ) .
—4”€AUB(J o ) = —< aﬂIAa,bﬂIBb >y
n < a, b >>2
PROOF OF THE LEMMA: First note that
g

1
E[JA] = ZIAa(al A az A ai)zlA

in Hy(A;Q) where

17



Here, for a curve z of & C AUB, z* denotes its parallel inside A4, and < 4, j)(g_z) >s9
J
denotes the determinant of the matrix of the < ay,b; >y =3, 4 where b; is re-

placed by z;. This determinant is in fact the cofactor of (¢, 7) in < d,l; >59.
In Hy(B;Q), we have:

g
— JB] = ZIBb(al Aaz A b]')y;3

2
n =3

Since, for a curve y of X, lkAuB(b]A, y) =< y,b; >x, we have:

B) 7 b_”) >>2
_lkAUB J o IZZ ZA) IAa(al/\ag/\ai)IBb(al/\ag/\b]')
This concludes the proof of the lemma a
and the proof of the proposition. a

We have proved that Formula F(A, a, B,b) is true as soon as the rank of AUB
is larger than one. For the other cases, we will use surgeries.

2.3 About surgeries

Let C' be a compact 3-manifold (possibly with boundary) equipped with a link
L = (Ki)ien={1,..,ny (in its interior). Assume that each component K; of L is
equipped with a parallel y;. Then L = (K, 1t;);en={1,...n} is said to be an integral
surgery presentation in C', and the manifold x¢ (L) obtained by surgery on L C C
is defined as: .
xe (L) = C\T(L) Usr(ry [] Do x S
i=1

where T'(L) is a tubular neighborhood of L, D,, is a 2-disk and d(D,, x S') is
glued with 9(7T(K;)) by a homeomorphism Wthh maps d(D,; x {1}) to p;.

If C' is a rational homology sphere, the linking matriz of L is the symmetric
matrix

E(L) = [Ik(Ki, )i j=1,..m

Note the following standard lemma:

Lemma 2.19 Let L = (K, Hi)ieN:{l,...,n} be an integral surgery presentation in
a rational homology sphere R, then

[H1(xr(L))|

L]~ der ()
Proor: H;(R\L) has rank n and
_ Hi(R\L)
Hy(xr(L)) = B, Zm

18



Therefore, if m; denotes the meridian of K,

R | p A A

— |det(E(L))|

where the exterior products are to be taken in

n

AL (R\L) ©7,Q) = A\ i (R\L; Q)

(Here, we use the following definition of the linking number (equivalent to Defini-
tion 2.7): The linking number lk(K;, ;) of K; and p; is defined by the condition
that p; is rationally homologous to lk(K;, t;)m; in Hy (R\K;; Q) which is gener-
ated by the meridian m; of K;.) a

2.4 Sketching the proof of the theorem for rational homology
spheres

We sketch the proof of Statement 2.2 which has been shown to be equivalent to
Theorem 1.3 that is the theorem for rational homology spheres.

Hypotheses 2.20 Let X be a surface of genus g. Let £4 and Lp be two trans-
verse Lagrangians of (H1(X;Q), <, >). Choose a (X, £ 4)-system ¢ and a ¥-system
z=(21,...,24) geometrically dual to a.

Choose a (0A, Lp)-system b = (by, ..., by) such that:
1>7 = <a;,b;>=0

Let A be a (X, £4)-RHH.
Consider the oriented link (K;,Z;) = ({—1} x a;, {—2} X z;) in a regular
neighborhood [—3,0] X A of A in A.

Equip K; with a parallel pg, lying on {—1} X 0A and Z; with a parallel
pz; lying on {—2} X A to obtain the framed link L; = ((K;, ux,); (Zi, pz,)) in
A. Define A% as the RHH obtained from AG~1) by surgery on L;, inductively,
starting with A = A,

Note that the surgeries on the L; do not affect dA. Note also the easy lemma:

Lemma 2.21 All the AY) are (X, La)-RHH. Furthermore, if B is a (=X, Lp)-
RHH, then |H, (A% U B)| = |H,(AU B)|.

Proor: It is clear that £, = L4. To prove that A is a RHH, it suffices to

know that A®) UB = A Uy, B is a rational homology sphere for some (=%, LB)-
RHH B. We prove this.
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Figure 2: (K1, 71), (Kg,Z3), ...in A

Since pg, is rationally null-homologous in A(i_l)\KZ-, k(K pk,) = 0 in
AG=DUB, and since K is rationally homologous to the meridian of Z;, k(K Z;) =
1. Thus, the linking matrix of L; has the form

0 1
B(L;) = ( U k(Zi, pz,) )

(in A=Y U B) and because of Lemma 2.19,
Hy(AO U B)| = [Hy(AC U B)| = |Hi(AU B)|
So, the A1) satisfy the same hypotheses as A does. a
Assume the following lemma which will be proved later.

Lemma 2.22 For any (X,L4)-RHH A and for any (=X, Lp)-RHH B,

(MAD U B) = MAUB)) — (MA]Y) - M(4y)

= Y Za(a1 Aaj Aap)Ip, (B A B A Br)
(k) E{L,rn}?

where a; also denotes its own homology class, and the 3; are the elements of Lp
defined by: < a;, B >x= ;i for any j, k€ {1,...,¢}.

Applying Lemma 2.22 to (A(i_l)7 a;,L;) (instead of (A, ay, L)) yields:
(/\(A(Z) @] B) — ,\(A(i_l) U B)) _ (/\(A(()Z)) . /\(Agz—l)))

= Z IA((;‘_l) (a; AN a; N ag)I,(B:i A Bj A Br) (2.23)
(7,k)e{1,...9}%
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where 7 -1y (a; A @j A ay) may be seen as the intersection number in A=) of

a
three rational 2-chains with respective boundaries a;, a; and ay.

e On the one hand, the surgery from A to A=) has been performed on knots
parallel to JA, which, when projected on 0A, do not intersect the a; for
7 > t. Therefore:

If > ¢ and k > 1, then:

IA((;'—I) (ai ANa; N ak) =14, (ai ANa; N ak)

e On the other hand, if j < ¢, a; bounds a 2-disk in AG-D) (a meridian of the
solid torus which replaces the tubular neighborhood of K; in the performed
surgery). Therefore:

If j<iorif k <z, then:

IAE;'—I) (a; Naj Nag) =0

Thus, Equation 2.23 is equivalent to

(AAD U B) = A(AD U B)) — (A(AF) = A(al™))
= > Zag(ai Naj Nag)Lp,(Bi A Bj A B)
(j,k)e{i,i—}-l,...,g}?

The sum of these equations for 2 = 1, ..., g is equivalent to:

(AAD U B) = A(AUB)) — (M(AY) - A(4y)

=2 Z Ly, (ai ANa; N ak)IBb(ﬂi AN ﬂj A ﬂk) (2.24)
{7,5,k}C{1,2,....9}

Now, note that A is the connected sum of 3, and a rational homology sphere
M. (This connected sum is performed in the interior of ¥,.) Thus, A¥) U B =
B.iM, Agg) = MM, and the additivity of A under connected sum allows us to
conclude the proof of Statement 2.2, and thus the proof of Theorem 1.3, assuming
Lemma 2.22.

2.5 Finishing the reduction of the case of rational homology spheres
to ‘the first main lemma’

In this subsection, we reduce the proof of Lemma 2.22 to ‘the first main lemma’
(Lemma 2.28). Let us first partially state the surgery formula of [L, T2, Section
1.5].

21



Theorem 2.25 For any positive inleger n, there exists a function F,, of symmet-
ric maltrices of order n with rational coefficients and with nonzero determinant
such that: For any integral n-component surgery presentation L = (K, Hi)ieN:{l,...,n}
in a rational homology sphere R, if xr(L) is a rational homology sphere, then

5 det(E(Lyy1)) ¢(Li)

der(BW) [ (r) T EL)

Alxr(L)) = A(R) =

{I,ICN,I#0}

where ( denotes the derivative of the several-variable Alexander polynomial de-

scribed in [L, Definition 1.4.1] or in Section 3, Definition 3.19 below, and, for a
subset I of N, L denotes the surgery presentation Ly = (K, it;)ie1-

(F is explicitly described in [L].)

Let us now apply Theorem 2.25 to compute (A(AM) U B) — A(AU B)) and see
how it depends on B, when B varies among the (-, Lg)-RHH.

We have the following lemmas:

Lemma 2.26 If J and K are two knols in A, their linking number does not
depend on B.

Proor: Indeed, (k(J, K) is the coordinate of the homology class of K in

B H1(A\J§ Q)

with respect of the meridian my of J. a

Hi((AUB)\J; Q) = Qmy

Lemma 2.27 If the components of a link L in A are rationally null-homologous

in A, then % does not depend on B.

ProOF: It is a straightforward consequence of Lemma 3.17 (with Definition 3.19
of ¢) which will be proved in Section 3. (It could also be proved without the
Alexander function.) O

Recall from the proof of Lemma 2.21 that

0 1
E(Ly) = ( 1 1k(Zy, 1z,) )

(where lk(Zy, pz,) does not depend on B by Lemma 2.26).
Putting all together, we obtain:

(MAD U B) — AMAUB)) — (MAY) — A(4y))
_ <C((I(1,Z1) C AU B) C((I(th) C Ab))

|Hi (AU B) [ H1(As)]|

The conclusion of the proof of Lemma 2.22 is now given by the following
lemma, which is the first main lemma of the paper:
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Lemma 2.28 Under the hypotheses 2.20, for any (-X,Lp)-RHH B,

C((Ky,Z1) CAUB)  C((K1,7Z1) C As)

|Hi(AU B)| [H1(As)|

=— Y ZalarAaj Aap)Ip, (B ABj A Br)
(k) E{L )2

where a; also denotes its own homology class, By, € L, and < a;, B >= 01 for
any.]7k E {17"'79}

To prove this lemma, we will associate to each RHH B a function Apg such
that: If B is embedded in a link exterior F, the Alexander series of the link
only depends on E\—B and Apg. The function A will be defined in Section 3 as a
tautological generalization of the Alexander polynomial to RHH. It will be called
the Alexander function. The properties that we will derive for the Alexander
function in Section 3 will allow us to see how ((Ky,Z;) depends on B, when
B varies among (—X,Lp)-RHH, and to prove our first main lemma (2.28) in
Section 4.

2.6 Reducing the proof of F(A,«a, B,b) when the rank of AU B is
one to ‘the second main lemma’

This subsection finishes the reduction of the proof of Theorem 1.11 to the two
main lemmas whose proofs rely on similar arguments. This reduction is very
similar, too. Thus, the reader is advised to avoid reading this subsection, written
for the sake of completeness.

Proposition 2.29 F(A,a, B,b) is true when L 4 and Lp are transverse and when
the rank of AU B equals one.

PrOOF: For symmetry reasons, we may assume that B is a RHH, and that A is
not (H3(A) = Z). The equality to be shown is:

MAU B) = [Hi(B,)[A(As)

In this case, A is obtained by surgery on a null-homologous knot K in a RHH
A, with respect to its preferred parallel. (To get Ag and K, choose a knot C'
of A intersecting a closed embedded surface generating H3(A) once transversally,
equip C' with one of its parallels, say u, perform surgery on (C, i) to get Ag from
A, and call K the core of the surgery torus.) Applying the surgery formula of [L,
T2, Section 1.5] yields:

X(AUB):C(KCAOUB)_W
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Lemma 2.27 implies that:

MAUB) XAy
|Hi(Ag U B)| — |Hi(Ao)|

And since, according to Lemma 2.1,
[H1(Ao U B)| = |Hy(By)| |H1(Ao)|
we are done. a

Reducing the proof of F(A,a, B,b) when A and B are RHH and when
the rank of AU B equals one to the ‘second main lemma’

Hypotheses 2.30 Again, we fix (X, L4, Lp). Here, we assume that LoNLp has
dimension one. We also fix a (X,L4)-system a, a (X, Lp)-system b, a X-system
z geometrically dual to a, and a (—X)-system y geometrically dual to b such that
a1 = by and y1 = —z1. (As it has been noticed in Subsection 2.1, we do not lose
generality with this choice.)

For a (X,L4)-RHH A, we consider the surgery presentation Z in A made of
the knot z1 equipped by with one of its parallels on X pushed together inside A.
(The underlying knot Z of Z is {—2} x 21 as in Figure 2.) We denote by A the
manifold x 4(Z) and we denote by K the core of the surgery torus.

Applying the surgery formula of [L, T2, Section 1.5] yields:

A(AU B) _ (K cA“uB)  [Hi(AUB)|
|Hi(A:)| |Hi(By)| — [Hi(A)| [Hi(By)|  24|Hi(A2)] |Hi(By)]

for any (—X, Lp)-RHH B.
Since, according to Lemma 2.1, |H,(AY U B)| / 24|H,(A,)| |H1(By)| does not
depend on the (=X, Lp)-RHH B, F(A,a, B, b) will follow from the equality:

((KCA“UB) ((KC(A%y) ((KcxluB)
[ Hy(Az)| [Hyi(By)] |H1(A:)] [Hy1(By)]

+C(K C (B0))

= —2signy(a,b) < aNTae,bNTpy >x (2.31)

Fork=2,...,g,let B € Lp be defined (up to a multiple of a;) so that < a;, B >
= 4, for any j. Then

aQb=<a,b>s1 (GQbIAPa A ABy)

where
~ 7 def
<a,b>51= det[< ai, by >i5=2,...]
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Referring to Notation 1.9, we may rewrite the right-hand side of Equation 2.31 as

—| <d,i)>>1 | Z IAa(al/\aj/\ak)IBb(al/\ﬁj/\ﬂk)
(7,k)e{1,...9}2

We have reduced the proof of Theorem 1.11 (to the proof of Theorem 1.3 and)
to the proof of our second main lemma:

Lemma 2.32 Under the hypotheses (2.30), for any (X, L4)-RHH A and for any
(-3, Lg)-RHH B,
((K c AU B) _
|H1(A)| [Hi(By)|| < @0 >51 |

C(K C (A9)) N ((KcxlUB)  ((KC (%))
[Hy(A)[| <@ b>s0 | [Hi(By)[[ <@, b>51 ] [ <ab>s ]

— Z T4, (a1 ANaj; N ak)IBb(al A ﬁ]‘ A ﬁk)
(7,k)€{2,....9}>

where B, € Lp salisfies < a;, B, >= 01 for any j, for any k > 1.
Thus, we are left with the proofs of Lemma 2.27 (easy) and with the proof of

the main lemmas (2.28 and 2.32) to finish proving the results announced in the
introduction.
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3 The Alexander function

Definition 3.1 Define the genus g(A) of a connected compact oriented 3-manifold
A with boundary as:

§(4) = 1= xX(4) (=1~ 2x(04)

In this section, we present a topological invariant of connected compact ori-
ented 3-manifolds with boundary and with non-negative genus. We call this
invariant the Alexander funclion owing to the fact that it is a straightforward
generalization of the Alexander polynomial or equivalently the Reidemeister tor-
sion. The main goal of this presentation is to provide a nice environment in which
to investigate the properties of the normalized Alexander polynomials, and, in
particular, to prove our main lemmas (2.28 and 2.32).

We define the Alexander function in Subsection 3.1. Next, we discuss its basic
properties. The statements of these are often longer than their proofs, and the
reader is advised to read them briefly. The first interesting property (10) of the
Alexander function is given in the last subsection of this section. This property
is crucial for our concerns. Its proof uses most of the previous properties.

Throughout this section, A denotes a connected compact oriented 3-manifold
with non-empty boundary and with non-negative genus g = g(A).

Notation 3.2 We denote by A4 the group ring:

Hy(A;Z) ]

Ay=17
4 [Torsion(Hl(A; Z))

Recall that

Ay = @ Zexp(z)

7€ Toriion
as a Z-module and that its Z-bilinear multiplication law is given by:
If x,y € {IA&L,
orsion

exp(z)exp(y) = exp(z + y)

We use the notation ezp(z) to denote z when viewed in A 4 to remind this multipli-

cation law. Note that the units of A4 are its elements of the form exzp(z € ﬁlrgé)n)
called the positive units, and its elements of the form —ezp(z € glr—gle)n) called the

negative units. We use the symbol = to mean ‘equals up to a multiplication by a
positive unit of Ag’.

The maximal free abelian covering of A is denoted by A and the covering map

from A to A by ps. We fix a basepoint % in A. Hl(fl,p;ll(*); Z)is a Ag-module.
We denote it by H 4.
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3.1 Definition

The Alexander function A4 of A is a A 4-linear function

g
Ay :/\%A—>AA

which is defined up to a multiplication by a unit of A4. It is defined as follows:
Take a presentation of 74 over Ay with (r 4+ g) generators vq,...,%,44 and r
relators py, ..., p, (which are A 4-linear combinations of the v;). Let & = u; A...A
ug, be an element of A7 4.

Then Ay (@) is defined by the following equality:

PG = Ag ()5 (3.3)

where p=p1 A .. AP, ¥ =71 A A Yryg, the u; are represented as com-
binations of the «;, and the exterior products in Equation 3.3 are to be taken in

A (@07 M)
PROOF OF WELL-DEFINEDNESS

That, for a fixed presentation of deficiency g of Ha, p A @ is a well-defined
multiple of 4 comes from the fact that two Aj4-linear combinations of the ;
representing u; differ by a combination of relators.

That the Alexander functions associated to two different presentations of H 4
differ by a multiplication by a unit of A4 comes from the following facts:

o If the rank of H 4 is larger than g, the Alexander function associated to any
presentation with deficiency g of H 4 is zero (the rank being the dimension

over the field of fractions Q(A4) of Ay of Ha ®a, Q(A4)).

e Otherwise, two presentations with deficiency ¢ of H 4 are obtained one from
the other by a finite number of operations of the following types. (See [L,
Lemma A.2.21].)

Renumbering the generators.

Changing the basis of the relators. (That is performing a A 4-isomor-
phism on the system of relators.)

Stabilizing the presentation by adding a generator, say vp, together with
a relator which is the sum of ~y and a combination of the previous
generators.

Unstabilizing that is, doing the inverse operation (when possible).

And each of these operations multiplies the Alexander function by a unit of

Ay.
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Last but not least, let us add that H4 has a presentation of deficiency g over
A 4. Indeed, (a strong deformation retract of) A has a cellular decomposition with
the basepoint as its only 0-cell, (¢ 4 r) 1-cells and r 2-cells (such a decomposition
may be obtained by Morse theory, it will be called a good cellular decomposition
of A). Then the associated cellular A 4-equivariant complex provides the required
presentation. a

Remark 3.4 About the basepoint. So far, A is a topological invariant of the
pairs (A, %) up to homotopy equivalence of pairs (connected compact oriented
3-manifold with boundary and with non-negative genus, basepoint). (Homotopy
equivalences provide identifications between the involved A’s and #H’s.) However,
changing the location of the basepoint x of A does not affect the homotopy equiv-
alence class of (A, x). Thus, A may be considered as an invariant of A. But we
need a reference basepoint that we may choose anywhere we want in A.

From now on, we fix a preferred lift xo of * in A.

Notation 3.5 The choice of xg provides a natural isomorphism between Ho(p}'(x)) =
A alxo] and A 4. We denote by 0 the boundary map from H 4 to Ho(pzll(*)) com-
posed with this isomorphism.

3.2 First properties
The first property of A is that it is a straightforward generalization of the Reide-

meister torsion. Namely, we have:

Property 1 (Relation to the Reidemeister torsion) If A is a link exterior,
then for any element u of H 4,

Ay(u) =20(u)T(A)

Proor: Note that g(A) =1 in this case. Compare with the definition of [T]. O

It is worth noting that Property 2 below shows that the Reidemeister torsion
is well-defined by Property 1 (in the field of fractions of A4, up to units of Ay).

Notation 3.6 Let v = (vq,...,vs) € H%, let w € H 4, then 0 denotes vy A...Avg,
and ﬁ(%) denotes © where the argument v; has been replaced by w, that is:

U
V(=)= A AV ANUAVp AL A s
U;
Property 2 Fiz a normalization of Aa, then for any v = (vy, .. .,*vg) c yip for

any u € Ha,
g

3 0(v:) Aa(B(—)) = Aa(8)0(u)

=1 ¢
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Proor: We extend all the coefficients to the field of fractions Q(A4) of Ay,
assume that the system of relators used to define A4 is free, (otherwise Ay is
zero) and consider the linear map:

fu : /\%A — Q(AA)

g
VLA Ay S D) Aa(B(=))
=1 g
Our goal is to compute f, for a fixed u. We only need to evaluate f, at a nonzero o.
Thus, we assume that the v; together with the relators of the defining presentation
P of H4 form a Q(A4)-basis of the QQ(A4)-vector space freely generated by the
generators of P. In this case, A4(%())/Aa(?) is the v;-coordinate of u with
respect of this basis, and f,(0) = AA(ﬁj(?(u). m]

Notation 3.7 We denote by ¢ the (Z-linear) augmentation morphism:

€:AA—>Z
H{(A
e.rp(we 1(,)>|—>1
Torsion

Property 3 Foranyi=u; A...ANuyz € N2 Ha,

SAA) = )

ProoF: Assume, for simplicity, that the presentation P used to define A4 comes
from a good cellular decomposition of A (as in Subsection 3.1). This makes clear
that mapping its coeflicients from A4 to Z via € transforms P into a presenta-
tion of Hi(A;Z). Adding the ps.(u;) as relators next yields a presentation of

Hy(A; Z) ) @izy Zpas(ui). O

Notation 3.8 Since Hy(A;Z)/Torsion is a subgroup of Hy(A;Q), A4 is a subring
of o

Ax = Z[H (4;Q)]
If we are given a basis, say X = {&1,...,zr}, of H1(A4;Q), we have another
natural inclusion:

¢X . AA — Q[['rlv .. .,CCk]]

exp (Z /\z%fi) — exp (E /\ﬂz’)

Here, Q[[z1, ..., 2] is the ring of formal series in the ; (seen as variables) over
Q, and we expand the exponential as usual. These inclusions associate a series to
any element of Ay.
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The order of the series associated to an element & of A4 by the process above
will be called the order of §. (The order of a nonzero series is the degree of its
term with lowest degree and the order of 0 is +00.) It does not depend on the
chosen basis. (A linear change of variables on its variables can only make it bigger
or equal.) It will be denoted by O(S).

If P and Q belong to A4, and if k£ is an integer, then we use the notation:

P=Q+0(k)

to say that:
OP-Q) >k

Property 4 Foranyi=u; A...ANuyz € N2 Ha,

O(Aa(i) > di ( 7 QPA*(W))

Proor: Let k = dim (%). We may assume that the generators
i=1 (Ui

Y15+ -+ Yg+r Of the presentation P of H,4 used to define A4 satisfy:

1. (pas(71),--.,pa<(7k)) is a Z-basis of

H1 A,Z
@?:1 ZpA*(ui)

Torsion

(easily obtained by stabilizations).
2. For ¢ > k, pa«(7i) is a torsion element of

Hy (A§ Z)
1 Zpas(uw;)

(easily obtained by a A 4-isomorphism on the generating system).

As in the proof of Property 3, adding to P the u; as relators and mapping all
the new-relator coefficients to Z via ¢ yields a Z-presentation of Hy(A; Z)/ @7, Zpa.(u;).
So, if u is a relator of P or a u;, its y;-coordinate is mapped to 0 by ¢, for j < k,
and thus has order at least 1. Now, the result follows from the standard properties
of the order function. a

Convention 3.9 When c is an oriented curve in A, ¢ will also denote the homol-
ogy class it carries. If furthermore ¢ is based at %, then depending on the context,
¢ will also denote its own class in 71 (A, ) or the class of the preferred lift of ¢
starting at g in A.
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The behaviour of A under gluing (thickened) 2-cells on the boundary (or
adding 2-handles) may be described as follows.

Property 5 Let § = (61,...,0;) be a family of k, (k < g) simple closed ori-
ented curves pairwise disjoint on 0A. Let As be the manifold obtained by gluing
(thickened) 2-disks along the §;. Let

qbg :AA —>AA(5

be the morphism induced by the inclusion of A into As. Assume that the §; are
equipped with paths connecting them to . Then

.AA(S i:I:Qﬁg(.AA((Sl/\52/\ /\(Sk/\))

Warning: Unfortunately, when the boundary of the manifold As is a sphere,
by Notation 1.7, As also denotes the closed manifold obtained from the current
one by filling it in with a 3-ball. It should be clear though from the context
whether the considered manifold must have a boundary or not. (If we compute
its Alexander function, it must, and if we compute its Walker invariant, it must
not.)

ProOOF: Assume (without loss of generality) that the presentation P of H 4 used
in the definition of A4 is given by a good cellular decomposition of A. Adding
the 2-cells with boundaries the §; to this decomposition of A yields a cellular
decomposition of As and thus a presentation Ps of H 4, (with the right deficiency).
Ps is obtained from P by letting ¢s5 act on the coeflicients of the relators of P and
by adding the §; as new relators. a

Remark 3.10 About the possible spherical components of the boundary. If JA
contains a sphere, then A4 is zero unless JA is a sphere. If JA is a sphere,

Ayg =1|H((A;Z)].

Proor: Indeed, if A strictly contains a sphere, this sphere is part of a good
cellular decomposition of A and A4 is zero. Now, assume that JA is a sphere.
g(A) = 0. If Hi(A;Z)/Torsion is trivial, then the augmentation morphism ¢ is
an isomorphism, and the statement comes from Property 3. Otherwise, filling in
A with a 3-ball, and next removing a solid torus -intersecting a closed embedded
surface of A exactly along one of its meridian disks- from A gives a knot exterior
B. If m denotes the boundary of the meridian disk mentioned above, then B,, is
homeomorphic to A. Therefore, A4 = Ag(m) by Property 5 above, where Ag(m)
is zero by Property 1. a

Let us now formalize the behaviour of the Alexander function under connected
sum along the boundary. Let A and B be two connected compact 3-manifolds with
non-negative genus equipped with basepoints on their respective boundaries. Let
D4 C 0A be a disk containing the basepoint of A in its interior, and let Dg C 0B
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be a disk containing the basepoint of B in its interior. These data allow us to
form the following connected sum AfsB of A and B:

AfsB=A |J B
Ds~-Dpg

(gluing D4 and Dpg so that the basepoints match together). This connected sum
depends on the connected components of the boundaries of A and B where the
basepoints were located. Note that

Hy\(AdsB)  Hy(A) @ Hy(B)
Torsion ~ Torsion ~ Torsion
and hence that: Agy,p = As @7z A and Huy,p = (Ha @z AB) & (HB @7 Aa)
Thus, we can see A4 as the subset Ay ® 1 of Ayy,B and H 4 as the subset Hy ® 1
of Hap,p. The same is true for B.

Property 6 Let h and k be two integers such that
h+k=g(AtsB) = g(A) + g(B)

Leti=ui A...Aup € N'Ha and let 6 =vi A...Avp € N* Hp.
If (h k) # (9(A),9(B)), then Aag,p(ia A ©) = 0.
We can assume that Aay,B, Aa and Ap are normalized so that:

If (h, k) = (9(A),g(B)), then Aag,p (@A ©) = As(d) © Ap(0)

ProoF: For C' = A or B, consider a presentation

(7107 ceey 720)+g(0); plov L) P7-C(C))
of He over Ag defining
~C
PN
Ac = —
,-)/C

Taking all the v7, for C' = A and B, as generators and all the p¢ as relators (with
coeflicients in A 44, containing A¢) yields a A4, p-presentation of H 44,8 which
allows us to define A4, by:

Let @ = wy A ... A wy(a)44(B) be an element of A? Hap,p. Split @ as @ =
wgg(A) A ’tf)>g(A) with wgg(A) = wy A...A Wy(A) and ’tf}>g(A) = Wy(A)+1 VAN
Wy(4)+¢(B)- Then

PN gy NPT N )
AAﬁaB(w) = 'AYA A :YB .
Applying this definition to compute A4, (% A 0) gives the result. O

The following statement asserts that replacing a RHH which is embedded in A
and rationally null-homologous there by another such with the same Lagrangian
multiplies the Alexander function by a rational number.

We denote by i, any map induced by an obvious inclusion.
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Property 7 Let X be a closed surface equipped with a Lagrangian Lg, with a
(X3, Lp)-system b, with a X-system y geometrically dual to b, and with a basepoint
* which will be shared with all the other mentioned manifolds. Let C be a compact
3-manifold whose boundary strictly contains Y. such that:

1. E¥ ¢ Uy =3Iy has non-negalive genus.

2. 4t Hi(=%;Q) — Hy(E; Q) is zero.
Let B denote any (=%, Lp)-RHH. Define
FEFg=CUx B

Then
Hi(Ep)

* Torsion ’

2. On N9B) Hy(pp(C), pg'(%); Z), we have:

and hence, Ap, and pEB (C) do not depend on B.

9(E) 9(E)
Aggo N i = £[Hi(By)|Ago N i

Proor: Since Hy(EB; Q) = H1(C;Q)/Lp is independent of B, i,(H;(B;Z)) is
in the torsion of Hy(FEp;Z). Thus, we get the isomorphism

Hi(C
() Hy(EB)

Torsion Torsion

and HlEs) 4 independent of B.

Torsion
Remove a regular neighborhood of an arc, properly embedded in C, joining 3

to another component of dC, from C'. Denote by C’ the manifold resulting from
this operation. Let ¥ = X N C’. (X' is obtained from ¥ by removing a small
disk.) Thus, (after a retraction)

FEp :C,Ugl B

If z is a curve of X2, zP will denote z viewed in B while 2¢ denotes z viewed in C".
We consider the family 6 of curves of 9(C'45B) (the connected sum identifying a
disk of ¥’ C 9C” with its image on —JB)

8= (07 (o9) - bg (0 Tyt (u) g ()T
where ¢ = g(X). With the notation of Property 5, we may write Eg as
Ep = (C'tsB)s
and according to this property,

Apy = £65(Acrgn(bf = 0P A= AB =0 Ayl —yP A Ayl =yl A )
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Expand this expression, use Property 6 and note that, since i.(H(B;Z)) is in
the torsion of Hy(FEp;Z), the restriction of ¢5(Ag) to

g g

N\ Hi(p5, (0B), p5, (%) = A\ (HL(9B) ® Agp)

is
by A---NbyA.
byA--Aby Ay A Ay,

This makes clear that on AY®) H; (p5'(C), pg'(%); Z), we have:

|Hi(By)|

9(E)
Agg o N\ ix = £|Hy(By)|¢s(Acr(by A=+ Abg A L))

and we are done. O

3.3 Further properties of the Alexander function of a RHH

From now on, we assume that A is a RHH equipped with two 0 A-systems, a and
z, z being geometrically dual to a (as in Figure 1).

We assume that the basepoint x of A is on dA, and we join the a; and the z;
to x as indicated in Figure 3. We denote by §; the oriented boundary of the genus
1 subsurface of A containing both @; and z; pictured in Figure 3. We write:

5= (81,82,...,0,).

Figure 3: 0A cut along the §;

Note that we have in 7;(A,%):
6; = Ziaizi_la-_l (3.11)

k3

and:

85165 ...0, =1 (3.12)
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Hence, in H 4,
g

> (eap(zi) — Da; + > _ (1 — exp(ai))z =0 (3.13)

Notation 3.14 To these data, we associate the oriented link L in the closed
manifold A, with meridians the z;, with longitudes the a; and with exterior Ass, .
If A, is a rational homology sphere, then

g
Hi(A;Q) = @Q’Zi
=1

and we denote by %, the injection of Ay = Z[H,(A; Q)] into Q[[z1, .. s 2Zg])

The images of the positive units of A4 under ¢y, are called the ezponential
units of Q[[z1, ..., 2,]] (because they are the elements of the form exp(A) for the
Q-linear combinations A of the z;). In Q[[z1,..., z,]], the notation = will mean
‘equals up to a multiplication by an exponential unit’.

We can refine the relation of A4 to the Reidemeister torsion of Aj\ s, given by
Properties 1 and 5 into the following signed comparison of A4 and the normal-
ized Alexander series D of [L, Section 2.2] for several-component links (for which

D(L) = pr(m(A\ L) = 7(Ass,) ) )-

Property 8 [or Definition] With the notation above, if A, is a rational homol-
ogy sphere, and if g > 1, then for any j, k € {1,...,g},

Aa(8(3
D(L) = sign(e(Aa(2))) ¢ (%;)k)))

where § = 8y Ay A .. A 8,. (See also Notation 3.6.)

ProOF: The proof is nothing but a careful comparison of the two normalizations.
O

Here, we take Property 8 as a definition (up to exponential units) of the
Alexander series of oriented links in oriented rational homology spheres. (Note
that any such link L can be obtained in this way where A is the complement of
a regular neighborhood of the union of L and paths joining the components of L
to a point. Note also that Property 2 applied to As s, proves that D(L) does not
depend on j while Equation 3.12 proves that it does not depend on k.)

To conclude the normalization it suffices to make D satisfy its well-known
symmetry property (see [L, Section A.3]), that is:

D(L) = (-1)D(L) (3.15)
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where the overlining replaces z; by —z; in Q[[z1,...,2,]]. To make D(L) %-
symmetric, we sometimes have to multiply it by the image under v, of a positive

unit of 1 Hi(A
Z[— 1( ):|C/~\A.

2 Torsion

Property 8 also gives a definition in the case of knots, but does not define a
genuine series anymore because it has a pole at zero. In [L], another definition
had been set in this case in order to always get a genuine series and in order to
fit in with the usual definition of one-variable Alexander polynomials.

Convention 3.16 Here, we take Property 8 as the definition of D(L) up to ex-
ponential units in any case, that is even if ¢ = 1. The normalization of D is next
fixed by Equation 3.15. If g = 1, then D(L) belongs to 27 'Q[[z1, - - -, 2,]]-

Lemma 3.17 Let A be a RHH. Let L be an oriented link in A such thal the
components of L are rationally null-homologous in A. Lel Lp be a Lagrangian of
(H1(0A;Q), <, >) transverse to L 4. Then the ratio

D(L C AUy, B)
|H1(A Uaga B)|

is the same for all the (—0A, Lp)-RHH B.

ProoF: It is a direct corollary of Property 7 together with the definition of D
given by Property 8. Here are the details.

Denote by m; the meridian of the component K; of L. Connect the components
of L together in A to see L as part of a graph I'(L) homotopic to the wedge of
the components of L (as in Figure 4). Denote by C' the exterior of I'(L) in A. Let
d; be the boundary of the part of dC intersecting ‘the’ tubular neighborhood of
K;. The definition of D(L C AU B) given by Property 8 (where A is replaced by
C'U B) says:

D(L C AU B) = sign(s(Acus () ¥rcavs (W) (3.18)

Since L4 and Lp are transverse, H1 (C'UB; Q) is the Q-vector space generated
by the m;. Since the components of L are rationally null-homologous in A, they
do not algebraically link the curves of 9A. Thus, tx(H;(0A;Q)) is null in Hy(C'U
B; Q) and

H1 (C,Z)
H\(CUB;Z)  L(H(942)
Torsion ~ Torsion
With this identification, ¥rcaup : Acup — Q[[m1, ..., m,]] does not depend on

B.
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Property 7 implies that if B and B’ are two (—0A, L)-RHH, then

A, My . 5(ACLJB’(Th)) 2, My
(6(=2L)) = ——22 §(—=2
Acub ( (5k )) S(ACUB(Th)) ACUB( (5k ))
Making the D(L) (defined by Equation 3.18) +-symmetric and placing them
into this equality concludes the proof. a

We recall the definition of the (-coefficient.

Definition 3.19 With the current homogeneous definition of P(L) (Conven-
tion 3.16), ((L) is the coefficient of [[?_, z; in D(L).

Remark 3.20 Why this definition fits in with the definition of [L]. Definition 3.19
is exactly the same as the one given in [L, Definition 1.4.1] for several-component
link. The current definition of the Alexander series D(K) of a knot K in a ratio-
nal homology sphere M with meridian m is related to the definition used in [L,
Definition 2.2.2, Bridge 2.1.1] of its Alexander polynomial A(K) by:

. A(K)(exp(m
DK) () = LS
Plzo,®) P\~ 20, &) m)
where Oy (K) def |Torsic1nH(1]§]1\{])\|4\I{)) Since A(K)(1) = |Torsion(H;(M\K))| and

-
A'(K)(1) = 0, the first terms of D(K) may be written as:

D(K) (m) =
OVJLK) <|Torsion(H1(M\K))| + %m? + 0(3)) (1 - % + 0(4))
= B (Goutma () - gl m o)

Thus, Definition 3.19 of ¢ also fits in with [L, Definition 1.4.1] for knots. O

From now on, we furthermore assume that a is a (0A, L4)-system.
In this case the a; are the preferred longitudes of the components of L which
do not link each other algebraically, and Property 8 can be rewritten as follows:

Property 9 With the notation of (3.14), for any j, k € {1,...,49},

D(L) = iy (Sign@(AA(é))) Lz (eap(=) ~ 1) AA<d<—'>>)

(ezp(z;) = 1) (exp(zx) — 1) ay
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Corollary 3.21 If g > 2, for any j, k€ {1,...,9},

~ .
~

AA(d(i)) = sign(e(Aa(2)))C(L)zjzk + O(3)
PRroOOF: As a consequence of the study of the first terms of the Alexander series
performed in [L, Proposition 2.5.2], we get:

D(L) = ¢(L) f[ 5+ O(n+2)

=1

Compare with Property 9 above. a

Remark 3.22 This corollary together with Property 4 gives a proof that the
(-coefficient of a rational homology unlink (that is a link whose components are
pairwise algebraically unlinked in a rational homology sphere) with at least 4
components is zero.

3.4 A nice property of the Alexander function

This subsection is devoted to the proof of the following property which will be
crucial for our concerns.

Property 10 There exists n = +1 such that, for any (A, a,z), where A is a
RHH, a is a (0A, L4)-system and z is a 0A-system geometrically dual to a :

Aa(3(22)) = e(Aa(2)0 Y La, (s Aaj Aay)(exp(z) — 1)+ O(2)

“k =1

Remark 3.23 The order one part of AA(é'(Z—i)) does not depend on the way in
which the curves of @ and z are joined to the basepoint. Indeed, changing the
way of joining a curve w to the basepoint replaces it by a curve @ such that:
@ = twt™! in 71 (A), and hence @ = exp(t)w + (1 — exp(w))t in H4.

For w = a;, 1 — exp(w) = 0, thus, AA(Z“(Z—;)) is multiplied by an exponential
unit and its order one part is unchanged. For w = z;,7 # k, a term of the form
(I — exp(z;))Aala; A @) may be furthermore added to AA(é(Z—;)), but, since the
order of this term is at least 2, the order one part of AA(,Q(Q—;)) still remains

unchanged.

ProoF oF PROPERTY 10: First note that Property 10 is clear for g = g(4) =1
by Property 1 and for ¢ = 2 by Corollary 3.21. (In these cases, the right-hand
side of the equality is zero.) Assume the following lemma (Property 10 for ¢ = 3)
for the moment:
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Lemma 3.24 There exists a unique n = +1 such that, for any (A,a,z), where
A is a genus 3 RHH, a is a (0A, L4)-system and z is a 0A-system geometrically
dual to a, we have

)) = e(Aa()n)_ La,(ai Aaj Aag)(exp(z) — 1) + O(2)

=1

Aa(3(2

73

Now, let g be any integer larger than 3. Applying the restriction property (5)
and the genus 3 result for A,/, to subsets 2’ of (¢ —3) curves of z (with z;, z, ¢ 2/)
concludes the proof assuming Lemma 3.24. ad

Lemma 3.24 is the consequence of the two following lemmas.
Lemma 3.25 For any (A, a,z), where A is a genus 3 RHH, a is a (0A,L4)-

system and z is a J A-system geometrically dual to a, there exists a rational number

J(A, a,z) such that:

Aa(2(32) ) . (a; A a; A ay)

k 12T (A ) —1)+0(2
T = 2 (R 7 (4,0, 5) (eap(z) ~ 1) + O
Lemma 3.26 There exists a unique n = £1 such that, for any (A, a,z), where
A is a genus 3 RHH, a is a (0A, L4)-system and z is a OA-system geometrically
dual to a, we have

T (A, a,2) = n|H1(Az)| La, (a1 A ag A as)
where J (A, a, z) is defined by the lemma above.

ProoF ofF LEMMA 3.25: Assume, without loss of generality, that A4 has been
normalized so that £(A4(2)) > 0.
We first prove the lemma for j = k, that is, for any k:

G

AA(z(i)) =0(2) (3.27)
Assume without loss of generality that £ = 1. Then by the restriction property 5
and by Corollary 3.21, ¢, (A4(2(%))) and ¢, (A4(2(2))) must be at least of
order 2. So must be AA( ().

Property 2 implies that

(exp(z1) = DAA(E(L)) + (eap(z2) — DAAG(L)) + (eap(zs) — 1) Aa(2(2)

zZ1 z3 zZ3

This together with Equation 3.27 yields:
az

(ezp(z1) — 1) A4(R(22)) + (exp(zs) — 1) AA(3(2

zZ1 zZ3
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In particular, we can define a rational number J(A, a, z) such that:
Aa(2(2) = T (A, a,z)(exp(z1) - 1) + O(2)

and Lemma 3.25 is true with this number when j = 2.
Equation 3.13, which becomes

(exp(z1) — 1)ay + (exp(z2) — 1)ag + (ezp(z3) — 1)ag =0

here, implies:

ay a3 as

(cap(er) ~ VARG + (erpl) — DAAG(D) + (eap(zs) DA = 0

(3.29)
This gives the result for {j, £k} = {1,3}. We are now left with the case (k =2,j €
{1, 3}) which follows from Equation 3.28. O

Now, we start proving Lemma 3.26 by proving the following lemma.

Hypotheses 3.30 Let (A,a,z) be a genus 3 RHH equipped with a (0A,L4)-
system a and a OA-system z geometrically dual to a, let I be the link of A,, with
meridians the z; as in Notation 3.14. Let (A',d,2', L") satisfy the same hypotheses
as (A,a,z,L).

Lemma 3.31 Under the hypotheses above,
2
|H1(A2)] [Hy(AL)] (Ta, (a1 A az A as) = La (a A dy A ah))
= [H1(AL)| (L C A;) +[Hi(A) [ C(L' C AL) = 2T (A, 0, 2) T (A, d', &)

PRroOOF:

Notation 3.32 Under the hypotheses (3.30), we construct the manifold M =
AU —A’ by gluing A and —A’ along their boundaries so that after the gluing,
a; = a; and z; = z;. We denote by p; the oriented parallel of the knot z; of M
lying on JA. Let R be the rational homology sphere obtained from M by surgery

on ((2,pi)i=1,2,3) and let C; C R be the core of the ith surgery torus. Orient
C; so that p; is its oriented meridian. Let C' be the link C' = (C1,C3,C5) in R,

(M\(z:)i=1,2,3 = R\C).

Lemma 3.31 is the consequence of the following results of two different com-
putations of {(C').

Sublemma 3.33

C(C) = [Hi(AL)IC(L C Az) + [Hi(AL)[C(L' C AL) = 2T (4,0, 2) T (A, d, )
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Sublemma 3.34
2
C(C) = [Hi(AL)| [Hi(A2)| (Za (a1 A ez Aas) = Ty (f Ady A dh))

ProOOF oF SUBLEMMA 3.33: We look at the exterior of C' in R as the exterior
E of the link of the z; in M that we construct as follows: Start with A and A’,
each of them being equipped with its basepoint and its §; as in Figure 3. Glue
a disk of JA intersecting the curves drawn in Figure 3 at the basepoint together
with its image on - A’ in order to obtain Afs — A’. Consider the collection &
of the curves of Ay — A": ky = 51_151, Ky = 55_152, KL = 2121_1, Ky = ZQZ;_I,
K3 = 23zé_1. With the notation of Property 5:

E = (Afs — A",
Thus, according to Property 5 and Property 8 (applied to (Afls — A")x ko )s

D(C) = sign(e(Aagy—ar (K1 ARz AKa A2)ScBn, s (AM@ _aA(ZS 4 23)) (3.35)

with 8 = K1 A...A K5 and 2 = 21 A 23 A z3. (Since both k4 and k5 are oriented as
the boundaries of the genus one subsurfaces of 9((Afs — A’)x,kyx, ) corresponding
with the knots Cy and C3, we have the right sign in Equation 3.35.)

Note that ¢y, ., ., identifies exp(z;) and exp(z!) in Agp,_ 4. From now on, we
S€€ G nons (AAgy—4ar), Aa and Ay as subsets of Q[[21, 22, 23]]. In particular, in
(Hapo—ar) @4y, pns Qll215 22, 23]], We have:

Kl = 21— 2
Ky = 29— 2b
K3 = 23— 2%
ke = (exp(z1) — 1)(a1 — ay)
ks = (exp(z2) — 1)(az — aj)

Thus, we can rewrite Equation 3.35 as:

D(C)(exp(zs) — 1)
(exp(z1) — 1)(exp(z2) — 1)

= Gy rgrs (Aapg—ar(z1 — 21 Aza — 25 Azs — 25 Aag — aj Aag — ajy A z3)) (3.36)

sign(e(Aag,—ar (K1 A ke ARz A 2)))

Now, we refer to Property 6 and assume that A4z, _ 4+ is normalized so that

if & € A>Ha and if © € A>H 4, then
.AAﬁa_A/(ﬂ/\ 0) = Aa(a)Aa(0)

and that A4 and A4 are normalized so that (A4 (2)) and £( A4/ (2')) are positive.
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In particular, e(Aap,—ar(K1 A K2 A kg A 2)) = e(Aag,—a (2 A 2')) is positive.
So, expanding the exterior product with the usual rules transforms Equation 3.36
into

D(C)(ezp(zs)—l) (3.37)

= Aa(z1 Az A z3)Agi(a)
+ Aular ANag A z3)Aa(2]
— Aa(zr ANag A z3)Aq(a
alar A za A z3) Ay (2
( )Aar(
A )Aar(

I
p N

+ Azl/\al/\23AA/a

+ as N zg A 23) A4 (2

Corollary 3.21 and Lemma 3.25 allow us to write the right-hand side of Equa-
tion 3.37 at order 2 as

[[HL (AL)IC(L C Az) + [Hi (AL C AL) = 2T (A, a,2) T (A, o, 2)] 25

+0(3)

and it suffices to apply Definition 3.19 of ¢ to conclude the proof of Sublemma 3.33.
O

PrOOF OF SUBLEMMA 3.34: M is obtained by surgery with null coefficients on
C = (C1,C4,C3) C R and C' is a rational homology unlink (the longitude of C;
which is the meridian of z; is rationally null-homologous in M\ (2;);=1,2,3 = R\C).
So, according to the theorem of [L, Section 1.5],

(M) = ¢(C)

On the other hand, according to Lemma 2.17 (and the fact that Zrar = Z(_ 41)ar),

—_ 2
X(M) = [Hi(AL)| |Hi(A2)] (Za, (a1 Aaz A as) = Ty (af Ay A d))

This concludes the proof of Lemma 3.31 a

Sublemma 3.34 also yields the following lemma.
Lemma 3.38 Under Hypotheses 3.30,
C(L) = |H1(AZ)|IAG((11 A as A (13)2

Proor: If A’ is the standard handlebody with meridians a}, ), a}, then L = C
and Ty (af A ahy Aaf)? =0. o

So, we can rewrite Lemma 3.31 as:
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Lemma 3.39 Under Hypotheses 3.50,
|Hi(AL)| |Hi(AL)|Za, (a1 Aag A ag)IA:I(all ANayAay) =T (A a,2)T(Ad, 2
O
Now, look at the following example of a genus 3 RHH. Consider the graph I'’
in S° made of the borromean rings R;, Ry, R3 each of them being attached by
an edge to the basepoint as in Figure 4. Denote by A” the exterior of (a regular

neighborhood of) I'® in $2. Denote by a? the longitude of R; and by zF the
meridian of R; as in Figure 4.

Figure 4: I'5, the a? and the 27

Lemma 3.40 The number

IAEB(alB/\aQB/\ a%)

J (AP, a¥, )

n=
is well-defined and is equal to £1.
Proor: AP satisfies |[H;(A5)| =1 and
B B By2
IAGBB(QI /\a2 /\(Z) —1

(because AaBB is (51)3, for example). Thus, applying Lemma 3.39 with (4, a,z) =
(A a,2") = (AB,dP, 2P) yields

j(AB7a8728) = =+1,
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and proves the lemma. a

Proor orF LeEMMA 3.26: We fix the number 7 defined by Lemma 3.40 and

apply Lemma 3.39 to any (A, q,z) as in the statement of Lemma 3.26 and to
(A" d',2") = (AB, a5, 25), |

This concludes the proof of Property 10 and this subsection.

Remark 3.41 We could compute 5 explicitly from its definition given by Lemma 3.40,
but it is not useful here.
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4 Proof of the two main lemmas

4.1 Proving Lemma 2.28

We prove Lemma 2.28. To do it, we fix a RHH A, we fix a rational Lagrangian £p
transverse to L4 in (H1(0A4;Q); < .,. >54), we let B vary among the (—=0A, Lp)-
RHH, and we try to see how (((K, Z) = (K1, Z1) C (AUB)) depends on B (with
the link ((K,Z1) C A) defined in Hypotheses 2.20).

We denote the intersection form <, >g4 simply by <,>. We fix a (04, L4)-
system a, a JA-system z geometrically dual to a, and a (0A, Lp)-system b =
(b1, ...,bg) such that:

1> 7 =< a;,b;>=0

We denote by F(Lg) any coefficient which does not depend on our fized data.
With this additional notation, Lemma 2.28 is obviously equivalent to the following
lemma that we are about to prove :

Lemma 4.1 Under the above hypotheses,

C((K,Z)C AUB)
|H1(AU B)|

Z ~Za, (a1 A aj A ag)Tp, (B AB; A Br) + F(LB)
(7,k)€{1,....9}2

where By € Lp is defined so that < a;, By >= 65, for any 5, k € {1,...,¢}.

To prove Lemma 4.1, we first express the Alexander series of (K, Z) = (K1, Z1)
in terms of the Alexander functions of A and B. B is a subset of the exterior E of
(K, Z). Retracting A onto A minus a regular neighborhood of its boundary which
contains (K, Z) allows us to see A as another part of E. These inclusions provide
canonical maps from A4 and Ag to A that we see as a subset of Q[[mx, mz]]
where mg and myz denote the variables corresponding to the meridians of K and
Z, respectively. A4 (respectively Apg) denotes Ay (respectively Ag) followed by
the previous canonical morphisms. A4 and Ap take their values in Q[[mx, mz]].
A4 and Ap are normalized so that:

Aa(2) = [Hi(Az)[ +0(2) (4.2)

and,

Ap(a) = |H1(B,)| + 0(2) (4.3)

Lemma 4.4 Let C & {a;,z;;1,7 € {1,...,9}}. Denote by P the set of the
subsets w of g elements of C '\ {a1}. The complement C' \ w of such an u is
denoted by v. Both u and v are assumed to be equipped with an arbitrary order
allowing us to write w = {uy, ..., us}, v =Hv1,...,v5}, & = ug ANug... ANy, and
U=v1 Ava...Av,.
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Then the Alezander series D(K, Z) is given, up to exponential units, by:

D(K,Z) =+ As(a)Ap (D) :

ZAa

ProOOF: Denote by a? and 2P the respective images of a; and z; under the gluing
homeomorphism on 0B.

Reconstruct F as follows. Start with A and B disjoint. Glue a disk of 0A
intersecting @ and z at the basepoint, together with its image on 9B in order to
obtain AfsB. Consider the collection x° of curves of d(AfsB): k; = z(2P)71,
Kirg = aPa;t for i =2 ... g. With the notation of Property 5, (A%5B) 0 is the
complement of a regular neighborhood of the subsurface ¥; of dA bounded by
containing a;. In this manifold which is naturally embedded in F, we may see the
meridians of K and Z as my = (2P)7'2; and my = aPa]?, respectively. (See
Figure 5.)

Figure 5: Around ¥ in (AfsB) .0
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Attaching to (A45B).0 a 2-cell with boundary

-1

wi= (P mef ((F)'a) (o)

representing (+) the boundary of the tubular neighborhood of K in E provides a

strong deformation retract of E. (Indeed, only a ring of JA remains unattached

and the core of this ring is Z.) Let &’ be the collection of curves {x; Ux®}. Thus,
= (AfsB),, and, according to Properties 1 and 5 of the Alexander function:

N Aagon (R A ap)
T(F) = £ ( 8(@{3) )

SetﬁgH:a{B and £ = K1 A Ko A ... A Kag.

In HagoB @, Ag, ki =z — ZZ-B and K;4q = a? —a;, for v =2,...,¢ while

k1 = cap(~2P) (eap(aP) - 1) (=P - 21) + (exp(z1 — 2P) - 1)a?

Thus, in A2y (Haz,B @4, Ap):

g g
& = +(exp(al) /\ »)/\a?/\/\(aB—

Now, Property 6 of the Alexander function allows us to write

s
DK, Z) =+ 3 Aq (i) Ap (8) oo
u€P ina

Notation 4.5 If X is a series, and if n is an integer, O,,(X) denotes the degree n

part of ¥2. Note that Og(A) = £(A).

Lemma 4.6 With the chosen normalizations (4.2, 4.3) of Aa and Ag, the nor-
malization of D(K,Z) has the following form:

(w3

A
AN

=

D(K,Z) = —exp(w) Y As(d)Ap(8)

ueP

[}

for a w independent of the (—0A,Lp)-RHH B (so that exp(w) = F(LB)).
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Proor: The study of the first terms of the Alexander series performed in [L,
Proposition 2.5.2] implies in particular that

Oo(D(K, Z)) = —|Hi (AU B)|

Thus, the normalization equations 4.2 and 4.3 allow us to replace the £ by — in
the statement of Lemma 4.4. So, if we set:

(43

A
ZAa

=

D(K, 7)== As(2)Ap(0)-
u€P
there exists w € Qmy @ Qmyz such that: D(K, Z) = exp(w)D(K, Z).
Now, we compute w and we prove that it is independent of B. To be symmet-
ric, D(K, Z) must satisfy O1(D(K, Z)) = 0. Thus, w is determined by:

O (D(K, Z)) + Oo(D(K, Z))w =0

where Og(D(K, Z)) = —|H1(A,)|Oo(Ap(a)). According to Property 4 of the
Alexander function, if 4 contains more than one element of the collection a, then:

O(As(a)) > 2
Since the chosen normalizations of the Alexander functions prevent w = z from
contributing to Oy(D(K, Z)), we get
Zi

O\(D(K,Z)) = > O1 (A4 (2(2))) Oo(Ap(a(34))

.. . Z; a;
(27])6{17"'79}27]9&1 7

B

where: .
Oo(Ap(a()))  <a(3),b>
Oo(Ap(a)) < a,b>
(Recall that < a,b >= det[< a;,b; >]; j=1 d(;—;) is defined as in 3.6.)
All these equations together give
<a(Z),b> Ay (5%
w=0 ( Z Y ;;( 1(421)))
(i,j)E{l,...,g}Q,ﬁél < a,b > | 1( Z)l

Therefore, w is independent of B. a
Let u be a curve of dA. In H1(0A;Q), we have:

g g
U= Zuaiai + g up,; b;

Let u? be the same curve on 9B C E. In H,(F;Q) = Qmg & Qmyz, we have:

B <U,b1>

U= ey Mz = — N (4.7
i
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Now, let u? denote uP pushed on {-3} x dA in AU B (through (K,Z)). In
H,(F;Q) = Qmg & Qmyg, we have:

uB—uA:< U, a1 > mr+ < u,z1 > myg

Thus:
< u,by >

< al,bl >

A

U :<a1,u>mK—|—< - < u,z >>mz (4.8)

We denote the partial derivatives in Q[[m g, mz]] evaluated at (mg = 0, mz =
0) by % and z2—. With this notation:

Lemma 4.9 Lel i be the number defined in the statement of Property 10,

(K, Z) ) (AB(( £)

|Hi(AU B)|

=7 > Za, (a1 Aaj A ag)

(G R)E{1,0mg)? |Hq(B,)|

omy

)+f(EB)

Proor: By definition,

C(K,z) 0? s (@) Ap(d) @nd
HU(AGB)| ~ dmgdmy \ <P u€P|H1 I H(B,)| 2 N

Since Equation 4.7 implies that Ap takes its values in Q[[mz]], this equation
may be rewritten as:

C(K,Z) %) Aa(@) %) Ag(8) N\ and
|H,(AU B)| %:Damf( (“”(w)|H1(AZ)|) Omy (|H1(Ba)|) N
d? Aa(i) \ Oo(Ap(8)) 4 AD
_%;amf(amz (ewp(w)ml(/xzﬂ) |H,(B.)| 2Aa (4.10)
Since exp(w) = F(Lp), and, since for any u € P,
Oo(Ap (1)) _ Oo(Ap(0)) _ <0, b>
|H1(B,)| Oo(Ap(a))  <ab> FLs)

we can rewrite Equation 4.10 as:

((K,Z) Aa(i) %) Ap(d) \ a4 AD
[H,(AUB)| Z < Om ( )|H1A(AZ)|) dmy (|H1B(Ba)|) a7 L)

Now, Property 4 of the Alexander function implies that the terms where u

contains more than one curve of a have at least order 2 and thus may be dropped
from the sum of the right hand-side. The term where u = z may also be dropped
because of the chosen normalization of Ag (see Equation 4.3). Then the remaining
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@ are of the form 2(2—;) Since the order of the corresponding terms is at least
one, we may drop w and find:

((K,Z)
|Hi (AU B)]

o [(AACG(EN) o [(Asa(2))
2 omn ( T (A,)] ) Dy ( [, (By)] ) +7(Lp)

(jvk)e{lv--vg}QJ#l

We conclude the proof by computing 872], ( - ’“?)) with the help of Equa-

tion 4.8 and Property 10 which imply:
Aa(2(3)) J
2
——= =0 Ta(a;Na;Nag)(< ay,z; > mg +c(z)mz)+ O(2
O

Thus, to prove Lemma 4.1, we are left with the proof of the following lemmas:

Lemma 4.11 For any (5, k) € {1,...,9}%

9 (%(a(j—p)

|H1(Ba)|

P ) =01, (61 ABr A B;)+ F(LB)

where, for any k € {1,...,g}, B is the element of Lp defined so that < a;, By >
=d;i for any j € {1,...,¢}.

Lemma 4.11 will be proved once we have proved the two following sublemmas:
Sublemma 4.12

9 (%(a(;—p)):n s S >
(

IBb(bl Abp A bi)

—I—f(EB)
Sublemma 4.13 In A\® L,
< a(ge), b(7) >

3 a5

(hi)e(Ty.gy < @b ><ay, by >

bl/\bh/\bi:ﬁ1/\ﬁk/\ﬂj

a

ProoF oF SUBLEMMA 4.12: We equip & with a geometrically dual 0B-system
y=(y1,...,Y,) (independent of B):

< bi,y; >oB=< yj, by >=0;;
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Computing Ap (jj(22))
Property 10 implies that:

AB@(%)) =e(Ap (ﬁ))nzg:IBb(bs A b Abi)(exp(ys) — 1)+ O(2)

s=1

Here: .
<y, b> _ |Hq(B,)|

=(As(9)) = =(Ap(@)) - ib> <ab>

and the image of exp(ys) in Ag is exp (Zgl’zgmz = <af1§1>mz). (See Equa-

tion 4.7.) Thus, we have the following equation

Ap(a(2)) = — 1Bl

= — IBb(bl ANby A bi)‘mz + 0(2) (4.14)
Y <ay, by ><a,b>

Naid
—_

Introducing more notation for the proof
To compute O (ZB(&(Z—‘“))) with the help of Equation 4.14, we first express

25
the a; and the z;, as Q[[mz]]-combinations of the b; and the y; in Hp. We write,
for a curve ¢t of OB based at x, in Hg:

g g
t=) <<ty >>bj+ > << t,b;>>y;
=1 7=1
We denote the Ag-coordinates of ¢ by << ¢,. >> to remind that
e(<<t,. >>) =<t,. >p4=<1,.>

Note that these coordinates (when written in Q[[mz]]) do not depend on B. If
w = {uy,...,uy} is a subset of {a;, 2}, and if v = {vy,...,v,} is a subset of
{bi, (—yi)}, << @, ® >> denotes the determinant:

<< U0 >>=del[<< u;v; >>55=1,

Computing O, (A5 (5)) B
With the chosen normalization of Ap (see Equation 4.3), we have:

0= 01(Ap(a))

b>> A P — b
=0 (<<ab>> A@) + Y 0 (<<a () >> Au(i(2))
(h72)€{177g}2 g yl
So,
A <, b(Fe) > b
O1(As(@)=- > ~ b O1 <AB(y(—}'))) + |H1(B.)|F(LB)
(hi)eflong < @b> ;



Computing Oy (Ap (d(Z—’j)))

— N z . R
ol(AB(a(a_’f))) = O (<< a(7r),b>> AB(y))
J J
W ZEN ,— — . b
Y <a®) > o (A()
(k)€1 9)2 g : vi
Lz <, b(=) > b
= <> Y 2 0y (A ()
a; (hie{lngl2 < a,b> Yi
k. o, — b
+ Y <)) > 01 (A1) + Hi(Ba) F(Ln)
(Ryi) a; bz Yi
clh,v,7,k
= 77|H1(Ba)| - ; J )b IBb(bl/\bh/\bi)mZ
(hi)e{l,g)2 < G0 ><a1,01 >
+|H1(Bo)|F (LB)
with:
. <a(),b> o
c(hyi,j k) = <a(Z) =2y > - 2T ca b2y s
a; bi <ayb> bi
<i(FE)b>a,
2 — Py O
— < d <a,b> ,b( yh) >
a; b;
By 5 —Un
= A
(M >
To justify the last equality, observe that:
9 < a(),b>
2y — B = ——uq;
L ; <ab>
and that < a(3),b(5) >=01if i # j. O

Proor or SuBLEMMA 4.13: Since the two forms < .,z > and < ., fr > are the
same on L4, we have:

Q~>
|a-

Q)
G“> o

< a,

< a,b(z) >

>

To compute < a(ﬁk) (A)(_b—zjh) >, we replace [ by this expression, and next
drop all the by for s # h, because for them < d(g—),l;(_bﬂ) > is zero. (The j*
7 B

b, (4.15)
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row of the underlying matrix is zero.) Thus, we get:

ab(zE) > by,

N b 2 —Yn
<a(—),b >= > <a(—),b > 4.16
EobE > = s < G > e
Observe that ;

N Y i (%

b a, b(—=

(), 6T > =< () >
because both sides are the cofactor of the term (s,f) = (7,¢) in the matrix

[< as, bt >]s4=1,.. 4. Thus, we can rewrite Equation 4.16 as follows:

Oy 5, a,b(f) >< a,b(2) >
< (), py = ST
a; bz <a,b>
So, in A? Lp, we have
< a(2e),b(72) >
> L (b A b)
: < a,b>

Hence, according to Equation 4.15:

s SAEHE >

(Byi)E{1,....g}2 < a, h>

(bh A bZ) =[G A ﬁ]‘ (4.17)

In order to conclude the proof of Sublemma 4.13, recall that we have chosen
b so that < a;,b; >=0, if ¢ > 7, thus:

1
pr=——F"7bh

< ay,by >

This concludes the proof of Lemma 2.28 and the proof of Theorem 1.3.

4.2 Proving Lemma 2.32

The proof of Lemma 2.32 will be very similar to the previous one. In particular,
we will need Lemma 4.11 that we restate to isolate its own hypotheses.

Lemma 4.18 Let X be a closed, connected surface equipped with a Lagrangian
Lp. Letb be a (X, Lp)-system. Let ¢ be a ¥-system which generates a Lagrangian
transverse to L and let x be a X-system dual to c. Assume that = and c are
equipped with paths joining them to the basepoint of ¥. Let (81, ..., [3,) be the basis
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of Lp defined by < c;, B, >xn=8; for any j, k € {1,...,9}. For a (=X, Lp)-RHH
B, we define the ring morphism

op, : Ap — Q[[t]

so that, if u € H1(0B), then ¢g, (exp(u)) = exp(< u,f1 >z t), and we denote:

Ap & g5, 0 Ap

Then there exists a number F(Lp) such that, for any (=%, Lp)-RHH B, if
Apg is normalized so that

Ap(é) = [Hi(Bo)| + 0(2),

then

0 (ZB(é(i—j))

ot \ |Hy(B.)| )tzo = nZp,(B1 A Br A B;) + F(LB)

Jor any (5, k) € {1,...,g}% with the number 1 defined in Property 10.

a

We assume that we are under the hypotheses (2.30). So, ¥, L4 LB, a, b, y
and z are fixed, L4 N Lp = Qay, a1 = by, y1 = —z. For a (X,L£4)-RHH A and
a (=%,Lp)-RHH B, K C A U B is the knot whose exterior is A Uy, B unglued
along z; and whose meridian is a parallel of z; on Y.

We let A vary among the (3, £4)-RHH and we let B vary among the (—X, Lp)-
RHH. We denote by F(A,Lp) any coefficient which does not depend on the
(=X,Lp)-RHH B (but may depend on A) and we denote by F (B, L4) any coef-
ficient which does not depend on the (X,L4)-RHH A.

We prove Lemma 2.32 in the following equivalent form:

Lemma 4.19 Under the above hypotheses,

((K c AU B) _
|H1(Az)[ [Hi(By)|| < a,b>51 |

— E IAa(al/\aj/\ak)IBb(al/\/@j/\ﬁk)—|—.7:(A,£B)—}—.7:(B,[,A)
(7,k)e{2,...9}2

where B € Lp salisfies < a;, B, >= 0;1 for any j, for any k > 1.

Proor: (Details which can be found in Subsection 4.1 are often omitted.)
Again, we first express the Alexander series of K in terms of the Alexander

functions of A and B. We view the exterior £/ of K as A Uy B unglued along

z1. Thus, F contains both A and B. This provides canonical maps from A4 and
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Ap to Ag that we see as a subset of Q[[z1]]. Ax (respectively Ag) denotes Az
(respectively Apg) followed by the previous canonical morphisms. A4 and Ap
take their values in Q[[21]]. We normalize them so that:

Aa(2) = [H1(A2)] +0(2) (4.20)
and, B

Ag(é) = |Hy(B.:)|+ 0O(2) (4.21)
where ¢ is the Y-system (21, ag, as,...,ay).

Consider the collection & of curves of (AfsB): k; = z;(zP)~1, fori=1,...,9,
Kirg = aPa7t fori=2,...,g. E is homeomorphic to (AfsB),. Thus,
T(E) - Zt¢,1 AAﬁaB(/\?Zl(Zi B ZZB) A 2! A A?:Q(aiB B a’l))
d(z1)

and since (exp(z1/2) — exp(—21/2))D(K) must be symmetric and positive at 0,

exp(G) — exp(—%)

D(K) =
AV
— o As(®) . a; AB(E(ZE))
exp(w)(As(Z)mrp 7 Y. AUCE) T
|H1(BC)| (G,k)E{2,.mg}2 %k |H1(BC)|
+ F(A, L)+ 0O(3))
where w € Qz; is independent of the (=, Lp)-RHH B.
Now, recall from Definition 3.19 that:
19 .
Therefore
N 1 82 21 —zZ1 . |H1(AZ)||H1(BC)|
(K = 5 52 ((eanG) - eon( 5 ) P01 ) - o
and

((K) 197 (exp(%)—ewp(‘il)

m ) 0—zf |H1(B.)] D(K)) + F(A,LB)

(Again, the derivatives with respect of z; are evaluated at (z; = 0).)
With the chosen normalizations of A4 and Ag, we get:
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((KcA°UB)
|Hy(A2)| [ Hi(Be)|

9 (Mz(z—;))) 9 (%(e(;—’;))

© 2 o Umanr ) aa \Tmisy

) +‘7:(A7'CB) —I_f(Bv'CA)
(7,k)€{2,....9}2

Applying Property 10 of the Alexander function to compute %(ZA) and
Lemma 4.18 with

t=(—a1,22,...,2) and [ =-q

to compute ai(ZB) now yields:

Z1

((KcA°UB) _
|Hy(As)| [Hi(Be)|

— Z IAa(al/\a]'/\ak)IBb(—al/\ﬁk/\ﬁ]‘)—l—f(A,ﬁB)—}—f(B,EA)
(7,k)e{2,....9}>

Thus, Lemma 2.32 is true and Theorem 1.11 follows.
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5 The case of non-connected surfaces

Definition 5.1 Let M be a connected oriented closed 3-manifold decomposed
along disjoint orientable embedded surfaces into connected pieces A; which are 3-
manifolds. (M is the union of the A;, and for i # 7, A; N A; is made of connected
components of 0A;.) We define the gluing graph I of this decomposition as
follows: The vertices of I' are in one-to-one correspondence with the A; and they
are labelled with the same symbols while the edges e of I' correspond to the

connected surfaces 3. of the decomposition: the endpoints of e are A; and A; if
and only if 3. C A; N A;.

In this easy and boring section, we generalize the previous formulas to compute
A(M) in terms of invariants of the A;.

Remark 5.2 Since M is connected, I' is connected. Furthermore, H'(I') injects
into H'(M). Indeed, let ey, ... eg ) be B1(I') edges whose interiors can be
removed from I without disconnecting F After orienting I', mapping the algebraic
intersection with an interior point of e; to the algebraic intersection with ¥, for
i=1,---,01(l"), yields the desired injection. In particular, if 51(I") is larger than
1, then A(M) is zero because of the interpretation of A for manifolds of rank larger
than 1 (see Proposition 2.9), and, if M is a rational homology sphere, then I' must
be a tree.

We first deal with the case where I' is a tree.

5.1 The formula when I' is a tree

We fix I', we denote by V = {1,...,v} the set of the vertex indices of I', and by
E the set of the edges of I'. We identify each edge of ¥ with the non-ordered pair
{i, 7} of its endpoints.

After the introduction of notation and conventions that the reader may guess,
the formula will be:

Proposition 5.3 For any collection a of systems associated to the decomposition

of M,
| Hy (M) A:(a)) — 7|H1(M)| AZij(a)) -2
M= 2 i) T 2 e ) 72 2

Now, for the notation. To avoid subscripts of subscripts of..., we sometimes
put what should be a subscript inside parentheses (e.g. ¥(a,b) = ¥,).
Let {7,j} be an edge of F.

Notation 5.4 We denote by X;; the surface corresponding to {7, j} oriented as
part of dA;. Cutting M along ¥;; splits M into two parts. We denote by M;j;
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the closure of the part containing A; and by M;[; the other. We denote by L;;
the Lagrangian of M;;;. Note that

i Hq(A;;Q) )
,CZ":KQI‘ H Ei' —
! ( (%) Dres()\(irix(Lik)

where, for j € V,
def

S(7) = {klk # 4, A0 A; # 0}

We equip each edge {7, 7} of I' with a (X;;, £;;)-system a;;, and a (X;;, £;;)-
system aj;;. We use this collection a of systems to transform the pieces of the
decomposition into closed 3-manifolds.

Notation 5.5
Yij(a) = Yij(aj, a;;)

o i I )

keS(7)

(The @ in the notation reminds of the dependence on the choices of the systems

a;;.) For an edge {i,5} of I, Z;;(A;, a) is defined on A\*(L;;) as follows:
Zij(Aj a) = Z((A;(a) \ Bij(aj)) , aij)

Remark 5.6 Evenif |H(A;(a))| = 0, the ratio K | (i ())|)| makes sense in a canon-
ical way.

Indeed, if z;; denotes a ¥;;-system geometrically dual to a;;, for any a;;, then
the following equality always holds:

|Hy(M)| = [Hi(Aj (@) TT [Hi(Mji(z50))]
1€5(7)

(see Lemma 2.1). Thus, we set

NH(M)] - get
[T [Hu(Mj(z0))]
[H(Aj(@)] &) [

in any case. Similarly, in any case,

|Hy(M)]  det
|H1(Xij(a))l

Let {i,{} C V. We define T';(a).

| Hy (Mpi(z5)) | | Hy(Mig; (2:5))]
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Notation 5.7 We denote by [¢,{] the image of an injective path that joins ¢ and
lin I'. Let j be the unique element of S(¢) N [¢,{] and let k& be the unique element

of S(I) N [i,1]. We are about to pair Z;;(A;, a) and Zy(A;, a).

Let t; : £;; — L1 be defined as follows. Let M def My 0 M.

o If L(My)N Ly # {0}, then t;; = 0.

e Otherwise, for z € £}, t;(z) is the unique element of Ly such that ¢;(z) —
z=0in H{(M;; Q).

If {¢,{} is an edge, then My = ¥;; and t; = Id. (¢; may be thought of as an
abbreviation for ¢;; x.)

def | Hi(M)]

3
= m Signg(m-) (d]‘i, &ij) < &jiﬂIji(Ai, (I), &ijﬂ(IkZ(Al, a)o/\ til) >E(i,j)

Tﬂ(a)

Note the natural behaviour of the t;; under composition of cobordisms:

Lemma 5.8 If ' is the graph I'y in Figure 6, then

mOnl, _ me],
|H1(A1(a))] |H1 (A1 ()]
Ay Ay As Ay
@ 4 \ 4 \
Figure 6: T'y
The proof is immediate. a

The following lemma (which can also be proved directly) will be obvious in a
moment.

Lemma 5.9 For any {i,l[} C V, Ty(a) = Ti;(a).

(Note only that it is already obvious if {7,1} is an edge.)

Of course, Proposition 5.3 is true if v = 1. If v = 2, it is nothing but Theo-
rem 1.11. Let us now prove it for v = 3. We may assume that I' is the graph I's
in Figure 7.

In this case, it suffices to apply Theorem 1.11 to compute A(M) from A; and
(Ag Ug(g,3) Az), first, and A((Aq Us(2,3) A3)a(2,1)) from Az and Asz, next, and to

use the following easy lemma (left to the reader).
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Ay Ay As

@ @ Py
Figure 7: I's
Lemma 5.10
i on) __mon) :
|H1(A1 (a))|I((A2UE(273)A3)7 012) - |H1(A1 (a))| 112(A27 (1) + IQS(AS7 (I) le] /\tlg

This gives rise to the formula of Proposition 5.3 with the number T13(a)
associated to the edge {1,3}. Exchanging the roles of 1 and 3 in the process
yields the same formula with T3y (a) instead of T3(a). This proves:

Tai(a) = Ti3(a)
and this is enough to prove Lemma 5.9 in general.
Now, the formula of Proposition 5.3 actually makes sense and it suffices to

prove it by induction on v using Lemma 5.8. This is left to the reader.
O

Remark 5.11 For the Casson-Walker invariant, the formula simply reads:

Tﬂ(a)

AM) =2 AA (@) = D A®(@) =2 3

JEV {i,j}€E {i,l}cVv
where
Tﬂ(a) _ < &ji N Iji(Aia a), &ij M (Ikl(Ah a) o /\3 tﬂ) >E(i,j)
|Hy (M) < iy g >x(,j)

As a conclusion, if M is a rational homology sphere, to compute A(M) the
only things that we need to know about an A; are A(A;(a)), the Z;;(A;, a), for
i € S(j), and the transfer morphisms ¢;x, for {¢,k} C S(j), (these are given by
L4,), for a collection a of systems associated to the decomposition of M.

5.2 The formula when I' is a simple cycle

In this case, M may be written as
A
Yt~ 3

where A is a 3-manifold with boundary dA = Xt U —X~ where X1 and X~ are
identified with a genus g surface ¥ via the (orientation-preserving) homeomor-
phisms ¢t and ¢~.

M =
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The homogeneous formula below expresses A(M) in terms of L4 (C H1(0A; Q))

and |Hy(A.)| for a QA-system c¢ transverse to L4 (that is the union of a X+-
system and a X7 -system which generate a vector space transverse to L4 inside

H,(0A,Q)).

Proposition 5.12 Under the hypotheses above, let o = (o, ..., ayq) be a basis

of L4, let 0= (01,...,09) be a basis of H{(X;Z) and let b; def (¢~ — ¢T)(o;) be

the corresponding basis of Ly < (¢~ — ¢7)(H1(Z; Q). Then

|Hi(A)| . e | [ 07 < a, (tV2 —t7V29T)(8) >4 < d,b>aa4
——————5ignaA(&,0) || 53 -
| < &,é>94 | ot? —1 2 12

where the intersection form on 0A is linearly extended over \?(H1(0A; Q) ®qQ
Q[tl/Q,t_l/Q]), the hats have their usual signification (e.g. & = og A -+ A ayg),
and signaa (@, l;) = %1 is defined so that:

1. signaa(@, b)(é®b) € A\* L4 ®q N Lp is independent of the bases o and
o up to a multiplication by a positive number.

2. Ifoay =10, fori=1,...d=dim (L4 N Lp), then
signaa(Q, l;) = sign(< &, b >54,>d)

~ 3 def
(<, b>pa50= det([< i bj >04lij=dt1,..,29) )
Proor: First note that the proposition is true if |H;(A.)| = 0. Indeed, in this
case, there exists a closed surface, say .5, in A such that the homology classes of
S and ¥t are independent in Hy(A). Thus, since S and X% do not algebraically
intersect, A(M) = 0.

Hypotheses 5.13 From now on, we assume that |H;(A.)| # {0}. Without loss,
we assume that o and b satisfy a; = b;, for i = 1,...,d = dim(L4 N Lp). For
i=1,...,d, we denote by A; the class in Hy(M) of a rational 2-chain of A with
boundary «;.

The proposition will be proved once we have proved the two following lemmas:

Lemma 5.14 Under the hypotheses of 5.13,

Y _ |H1(AC)|

X(M) | <@, b>sq lqu(STIAALA A AY)

_|<d,é>a,4|

where qp ts described in Definition 2.8.
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Lemma 5.15 Under the hypotheses of 5.13,
<a,b>5q qu([STIANAI A AAY) =

3_2 < &, (t1/2¢_ - t_1/2¢+)((3) >4 < 64,(;>3A
ot? —_ 2 12

PrOOF oF LEMMA 5.14: In order to use our previous work on connected surfaces,
we remove the interior of the tubular neighborhood T of a path connecting 3+
and ¥~ from A to transform A into A with §A = ©t4 — ©~. See Figure 8.
(H,(A; Q) = H,(A; Q) and Li=1La.)

We assume that (¢7)~1 (9T NET) and (¢7) "1 (T NEL7) are equal to the same
disk D of 3 so that the image of 7" in M is an embedded solid torus. Let k be a
meridian of T inside A. Equip it with its preferred parallel u(k) (which bounds
in A \ k, and which may be supposed to lie on 0/1) Let A denote the manifold
obtained from A by surgery on (k, u(k)). Observe that:

A

A= F D~ D)

Thus, setting

BY (S\D)x1

we may see M as
M=A Uss B
where X\ D x {0}, ¥\ D x {1} are naturally identified with ¢*(X\ D) and
¢~ (X\ D), respectively.
Note that the Lagrangian of B is actually Lp = (¢~ — ¢1)(H1(2;Q)). This
allows us to use Lemma 2.14 to conclude the proof of the lemma. a

Lemma 5.16 Lemma 5.15 is true when d = 0.

Proor: It suffices to prove the following equality (using the notation of Defini-
tion 2.8):
- N t1/2 - _t_1/2 —|— jal -
A = ST = 176 6) o,
< &, b >

Applying the Mayer-Vietoris sequence to compute the homology of the maximal
abelian covering of M (decomposed as the union of the trivial coverings of a
neighborhood of % and M minus a smaller neighborhood of 3*) proves this
equality up to units of Q[til/z]. Thus, it suffices to verify the symmetry of the
right-hand side of the equality.

To do this, it suffices to find a basis o of Hy(X;Z) and a basis « of £4 such
that

<&, (t"2% — 17 29%)(6) >a4
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A A
E-l— RN
-
. N4
k
»- Y-\ ¢ (D)
A M
£\ 6 (D) A
B
Yt\ ¢t (D)

Figure 8: Local slices of A, A, Aand M

is symmetric. Let us show such bases which make the symmetry clear. For o, we
take a symplectic basis ordered in the following way (to simplify notation):

o ifj<yg

< 0;,0 —k >y= o
71 929+41-k 7% {_]k lf]>g

Now, let « be the basis of £4 defined by:

S fj<g
< @iy bogi1_ g >oa= ik T
71 Y2941k ~0A { 5] lf] >g
Let y be a curve of 3. In H;(A4;Q) = ﬂi‘:—;Ql, we have:
9 29
o (y) = Z — <, 0 (y) >04 bagr1-i + Z <oy, ¢ (Y) >04 bagri—i
=1

i=g+1

Let ¢~ (y) also denote ¢~ (y) pushed inside A. With this notation, since byg41_;
may be viewed as a meridian of +o; in M (see Figure 9), we have:

lkpm(97(y),05) =< j, 67 (y) >a4
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¢+(029+1—i)

Figure 9: M \ o; fori < g

Similarly,

Uen (6% (y), 05) =< aj, 6% (y) >aa
Thus,
lkM(¢_ (Ui)v Uj)
= lkn(oi, 9% (o))
= < a;, ¢ (o)) >54

This proves the symmetry and concludes the proof of the lemma.

< aj, ¢ (0;) >54

In the other cases, the equation of Lemma 5.15 becomes:

<a,b>sqg qu(BTIAALA - AAY) =
( 0? ) <&, (1Y% —1712¢%)(5) >aa
t=1

o2 2

Lemma 5.17 Lemma 5.15 is true when d = 1.

PROOF: According to the hypotheses (5.13), (¢~ — ¢T)(o1) = b1 = oy belongs to

L 4. In particular, for any i, < a;, ¢T(01) >94=< a;, ¢~ (01) >54.

Thus, if ¢*(o1) € La, the right-hand side of the equality of Lemma 5.15 is
zero; since ¢¥ (o) bounds in A (rationally), its linking number with its parallel

along 31 is also zero and the conclusion is easy.

So, we may assume that ¢t (o1) ¢ L4 and that, for any i, < a;, ¢ (01) >5+=

d;2. We may also assume that < o1, 0; >x= ;5. We do. Thus,

<o, (1267 —t729%) (0)) >oa=< (67 — ¢T) (o), (11207 — 17267 ) (0;) >0

and
< ap, (1127 — 1729 (04) >aa= (112 = t71) 65

64



Hence, we have:
<&, (M7 — 17294 (6) >aa=
(2 =172 < @b >u0 +0((t = 1)%)

We are left with the proof that:

(—gm ([E1] A Ay)) is the linking number of ¢t (o) with its parallel on . Since
¢t (01) is zero in Hy(M;Q), ¢¥(01) may be written as a combination of the b,
i > 2, and of the «; in Hy(0A;Q); and its linking number with its given parallel
is the opposite of its by-coordinate. Thus,

- bt R

<@ (Tl s cahs
au([ST] A Ay) = b == 72
< b,b > < a,b >

Lemma 5.18 Lemma 5.15 is true when d = 2.

ProoF: In this case, gas ([ST] A A1 A A3) =< 01,09 >%. On the other hand, if i
or j € {1,2},

< oy, (t1/2o§_ - t_1/2¢+)(0]‘) >Sa94= (t1/2 — t_l/Q) < oy, ¢+(Uj) >94

Thus, dividing the first two columns in the matrix < a;, (£1/2¢~—t=12¢)(0;) >a4
by (t'/2 — t=/2) shows that:

<@, (1?07 — 17 2¢7)(6) >pa=

(2 = 7Y < gy 09 >E< @b >0 4+ O((E - 1)°)

Lemma 5.19 Lemma 5.15 is true when d > 2.

Proor: Here, we may factorize (t1/2 — t_1/2)3 in the underlying determinant of
the right-hand side of the equation of Lemma 5.15. Thus, this right-hand side is

Zero. O

This concludes the proof of Lemma 5.15 and therefore the proof of Proposi-
tion 5.12. a
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