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Abstract

The general problem which initiated this work is:

What are the quasiprojective varieties which can be uniformized by means of
bounded domains in @™ ¢

Such a variety should be, in particular, C-hyperbolic, i.e. it should have a
Carathéodory hyperbolic covering. We study here the plane projective curves
whose complements are C—hyperbolic. For instance, we show that most of the
curves whose duals are nodal or, more generally, immersed curves, belong to
this class.

Contents

1 Introduction

1.1. A complex space X is called C-hyperbolic if it has a (non-ramified) covering X
which is Carathéodory hyperbolic, i.e. the points of X can be separated by bounded
holomorphic functions [Kol, pp. 129-130] (see also [LiZa, 1.3]). In this paper we
study C-hyperbolicity of the complements of plane projective curves. In particular,
we are interesting in what the minimal degree of a plane curve with C-hyperbolic
complement is.

It is well known that any C-hyperbolic space is Kobayashi hyperbolic [Kol, p.
130]. The opposite property to Carathéodory hyperbolicity is liouvilleness. A complex
space X is called Liouwille if it has no non-constant bounded holomorphic functions.
For example, any quasi—projective variety X is Liouville, and by the theorem of V. Lin
its liouvilleness is preserved by passing to a nilpotent covering over X, i.e. a Galois
covering with nilpotent group of deck transformations [Li, Theorem B] (see also [LiZa],
Theorem 3 at p.119). Thus, if X is a quasi—projective variety whose Poincaré group
m1(X) is (almost) nilpotent, then any covering over X is Liouville and therefore X
can not be C-hyperbolic. In particular, this is the case for X = IP?\ C, where C is
a (not necessarily irreducible) nodal curve, i.e. a plane curve with normal crossing
singularities only. Indeed, in this case by the Deligne-Fulton theorem [Del, Fu] the
fundamental group m;(X) is abelian, and thus by Lin’s Theorem any covering over
X = IP?\ C is a Liouville one.

The fundamental group m,(IP?\ C) for an irreducible plane curve C' of degree d,
which is not necessarily nodal, is known to be abelian in a number of other cases, and



hence to be isomorphic to Z/dZ (see e.g. the survey article [Lib] and the references
therein). For instance, this is so for any rational or elliptic Pliicker curve except those
of even degree with the maximal number of cusps, and therefore also for the curves
that can be specialized to such ones [Zar, pp. 267, 327-330] (cf. [DL], [Kan]). This is
true as well for any irreducible curve of degree d < 4 with the only exception of the
three—cuspidal quartic; in the latter case m;(IP?\ C') is a finite non-abelian metacyclic
group of order 12 [Zar, pp. 135, 145], and so it is almost abelian. Therefore, in all
these cases any covering over IP?\ C' is a Liouville one.

1.2. At the same time, the complement of a nodal plane curve can be Kobayashi
complete hyperbolic and hyperbolically embedded into IP%2. The well known example
is the complement of five lines in IP? in general position [Gr3; KiKo, Corollary 3 in
section 4]; for further examples of reducible curves see e.g. [DSW1,2] and the literature
therein. There exist even the irreducible smooth quintics with these properties [Za3].
Moreover, Y.-T. Siu and S.-K. Yeung [SY] have announced recently a proof of a long
standing conjecture that generic (in Zariski sense) smooth curve in IP? of degree
d large enough (d > 1,200,000) has the complement which is Kobayashi complete
hyperbolic and hyperbolically embedded into IP* (while all its coverings are Liouville).

This shows that for the complement of a curve in IP? the property to be C—
hyperbolic is much stronger than those of Kobayashi hyperbolicity, and it can occure
only for the curves with singularities worse than the ordinary double points.

1.3. However, plane curves with C-hyperbolic complements do exist. The simplest
example is a reducible quintic (s with the ordinary triple points as singularities at
worst. Namely, Cs is the union of five lines which is given in homogeneous coordinates
(¢ : x1 : x2) in IP? by the equation

{L’()Zl/’l{l/’g(ilfo — {I/’l)(l’o — lL’Q) =0
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Figure 1

Indeed, IP?\ C5 is biholomorphic to (@**)?, where @** = IP'\ {3 points}, and thus its
universal covering is the bidisk A? (hereafter A = {z € @'||z| < 1} denotes the unit
disc).



Slightly modifying the previous example, consider further the reducible sextic
Cs C IP? which is the line arrangement given by the equation

l'o.rll'g(flfo — 331)(.’1,'0 — ZZ?Q)(CEl — .1'2) =0.

It is known [Kal] that the universal covering of the complement M, := IP?\ Cj is
biholomorphic to the Teichmiiller space T 5 of the Riemann sphere with five punc-
tures. Furthermore, via the Bers embedding Tg 5 — @' it is biholomorphic to a
bounded Bergman domain of holomorphy in @', which is contractible and Kobayashi
complete hyperbolic. The automorphism group of Tj 5 is discrete and isomorphic to
the mapping class group, or modular group, Mod(0, 5) [Ro].

Note that 5 is the minimal degree of a plane curve whose complement is C-
hyperbolic. Indeed, the complement of a quartic curve is not even Kobayashi hyper-
bolic [Gr2, section 6]. While there do exist irreducible plane sextics with C—hyperbolic
complements (see Proposition 4.5 below), there does not exist such an irreducible
plane quintic (see (4.8)-(4.10)), and so the minimal degree of an irreducible plane
curve with C-hyperbolic complement is 6 (Proposition 4.10).

1.4. To obtain examples of irreducible plane curves whose complements are C—
hyperbolic we can apply the method that was used by M. Green [Grl] (see also
[CaGr, GP]) for constructing curves with hyperbolic complements. In this paper we
study systematically the class of curves with C-hyperbolic complements which can
be obtained by this method. Let us describe briefly its main idea.

Let S™X denote the n—th symmetric power of a variety X and R, C S"X be
its discriminant variety, i.e. the ramification locus of the branched Galois covering
S, + X™ — S"X. For a plane curve C' C IP? there is a natural embedding po :
P?* — S*Cr, . . where C* C IP** is the dual curve, n = deg C* and C7,  is the
normalization of C*. It may happen that this gives an embedding of the complement
IP?\ C into the n—th configuration space S"C*\ R,,, and that either this configuration
space, or some subspace of it containing the image pc(IP? \ (') has nice hyperbolic
properties.

Here we give an example.

Suppose that the dual curve C* C IP** is smooth and of degree n > 4. For
z=(a:b:c) € IP?* denote by pc(z) the non—ordered set of n points of intersection
[, 0 C*, where [, is the dual line azj§ + ba] 4+ cz5 = 0 in IP?*; here an intersection
point of multiplicity m is repeated m times. In this way we obtain a morphism
pc : IP* — S™C* into n—th symmetric power of C*, which is a smooth variety (see
e.g. [Zar, p.253] or [Na, (5.2.15)]). The ramified covering s, : C*" — S*C* has the

ramification divisors D, :== U D;; C C*" resp. R, = s,(D,) C S"C*, where
1<i<i<n

Dy = A{x = (z1,...,2,) € C*"|z; = x;} is a diagonal hypersurface. Following
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Zariski [Zar, p.266] we call R, the discriminant hypersurface. Since C* is smooth, the
preimage p' (R,) coincides with C', and so we have the commutative diagram

pc
Y = C"\ D, e O
sl s (1)
P’\C =X < S"C"\R,

where 3, : Y — X is the induced covering. The genus g(C*) > 3, therefore C*" has
the polydisc A™ as the universal covering. Passing to the induced covering 7 — Y
we can extend (1) to the diagram

Z — A"
oo
Y s cn (2)
Sn l pc l Sn
P*\C=X < StC*

Being a submanifold of the polydisc, Z is Carathéodory hyperbolic, and so X is C—
hyperbolic. Therefore, we have proved the following assertion.

1.5. Proposition. Let C C IP? be an irreducible curve whose dual curve C* is
smooth and of degree al least 4. Then IP*\ C is C-hyperbolic.

1.6. Note that, furthermore, IP?\ C' is Kobayashi complete hyperbolic and hyperbol-
ically embedded into IP?. The latter is also true under the weaker assumptions that
(a) the geometric genus (G of C' is at least two; (b) each tangent line to C* intersects
with C* in at least two points, and (c) the following inequality is fulfilled: 2n < d,
where d = deg ' and n = deg C*, or, what is equivalent,

{

do(mi—1)<29-2, (3)

=1

where mj, ..., m; are the multiplicities of the singular branches of C* [Grl, CaGr,
GP]. Moreover, under these assumptions a stronger conclusion is valid. Namely, there
exists a continuous hermitian metric on IP?\ C' whose holomorphic sectional curvature
is bounded from above by a negative constant and which dominates some positive
multiple of the Fubini-Study metric on IP* [GP].
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1.7. It is clear that a subspace of a C-hyperbolic space is also C-hyperbolic. In
particular, if D C IP" is a hypersurface whose complement IP™\ D is C-hyperbolic,
then any plane section of D is a plane curve with C-hyperbolic complement. In this
way, considering curve complements, one might at least obtain necessary conditions

for IP* \ D to be C-hyperbolic (cf. [Za2]).

1.8. Contents of the paper. The main results are summarized at Theorem 7.12 at
the very end of the paper. Besides this Introduction, the paper contains six sections.
Sections 2 and 3 are preliminary. The first of them deals with some necessary facts
from hyperbolic analysis, while in the second one certain generalities on plane curves
are given. In section 4 we prove C-hyperbolicity of the complements of irreducible
curves of genus at least 1, whose duals are immersed curves (for instance, nodal curves)
(see Theorem 4.1). We give examples of such curves of any even degree d > 6.

Furthermore, we study the general case when the dual curve C* may have cusps.
Then, under the morphism po : IP? — S™C7, . the discriminant divisor R, C
SnCx .y besides the curve (' itself, cuts out a line configuration Lo C IP? which
consists of the dual lines of cusps of C* C IP**; they are the inflexional tangents and
some cuspidal tangents of C'. We call Lo the artifacts of C (see (3.3)). In Theorem
4.1 we prove C-hyperbolicity of IP?\ (C U L¢), where C' is an irreducible curve of
genus g > 1.

The case of rational curves is studied in sections 5 - 7. In section 5 we give neces-
sary preliminaries. If C is rational, then S"C* =~ [P" pc : IP* — P = S"C*
is a linear embedding and the discriminant hypersurface R, C IP™ is the projective
hypersurface defined by the usual discriminant of the universal polynomial of degree

n. Therefore, we have the following assertion.

1.9. Lemma (cf. [Zar, p.266]). Any rational curve C C IP? whose dual C* is of
degree n, together with ils artifacts Lo is a plane section of the discriminant hyper-
surface R, C IP".

We call po the Zariski embedding '. Using this lemma as well as a duality between
the Zariski embedding and a projection of the rational normal curve (see 5.4-5.5), we
establish an analog of Theorem 4.1 for a rational curve whose dual has at least one
cusp. This is done in Theorem 6.5, where also all exceptions are listed. A classification
of the orbits of the natural ¢™—actions is an important ingredient of the proof. We
give several concrete examples.

n an unexplicit way it is contained already in [Ve, Ch. TY, p.208]



In section 7 we deal with the rational curves whose duals are nodal Plicker curves,
i.e. with the maximal cuspidal rational curves. For such a curve of degree d > 8 we
prove that its complement is almost C-hyperbolic (Corollary 7.10; see 2.4 below for
the terminology). The proof is based on passing to the moduli space of the punc-
tured Riemann sphere and on a study of the orbits of the natural representation of
the group IPGL(2; @') on the projectivized space of binary forms.

The second of the authors had fruitful discussions on the content of section 7
with D. Akhiezer, M. Brion, Sh. Kaliman and H. Kraft; its his pleasure to thank all
of them. He also is gratefull to the SFB-170 ‘Geometry and Analysis’ at Gottingen
University for its hospitality and excellent working conditions.

2 Preliminaries in hyperbolic complex analysis

2.1. Lin’s Theorem. Here we recall some definitions and facts from [Li]. A complex
space X is called ultra-Liouville if any bounded plurisubharmonic function on X is
constant. For instance, any quasi—projective variety is ultra—Liouville. By Lin’s The-
orem [Li, Theorems B and 3.5] any almost nilpotent (or even almost w-nilpotent)
Galois covering of an ultra—Liouville complex space X is Liouville. A covering is
called almost nilpotent (resp. almost w—nilpotent) if its group of deck transformations
is so. Recall that a group G is almost nilpotent if it has a nilpotent subgroup of a
finite index (G is almost w—nilpotent if the union of the members of its upper central
series is a subgroup of G of finite index; for a finitely generated group GG the almost
w-nilpotency is equivalent to the almost nilpotency).

2.2. Super—liouvilleness. Let us say that a complex space X is super-Liouville if
any covering over X is Liouville. Super-liouvilleness is a property which in a sense
is opposite to C-hyperbolicity. It is clear that X is super-Liouville iff the universal
covering Uy of X is Liouville. By Lin’s theorem any ultra-Liouville complex space X
which has almost w-nilpotent fundamental group m;(X) is a super-Liouville one. In
particular, a smooth quasi-projective curve C' is super-Liouville iff the group m(C)
is abelian, i.e. iff C' is non-hyperbolic.

Note that if any two points of X can be connected by a finite chain of Liouville
subspaces (which are assumed to be connected but not necessarily closed), then X
itself is Liouville. More generally, we have the following lemma.



2.3. Lemma. Let X be a complex space (with countable topology) such that any
two points of X can be connected by a finite chain of super-Liouville subspaces of X .
Then X is super-Liouville. In particular, if X is a quasi-projective variety such that
each pair of points of X can be connected by a finite chain of non-hyperbolic curves,
then X is super-Liouville.

Proof. Let m : Ux — X be the universal covering. Suppose that there exists a
non-constant bounded holomorphic function f on Uyx. Let F be the collection of all
super-Liouville subspaces of X, and let F be the collection of subspaces consisting
of all connected components of preimages 7~ '(A), where A € F. We define an
equivalence relation on Ux as follows:
Two points in Ux are equivalent iff they can be connected by a finite chain of members
of F.
By the condition of the lemma it is easily seen that the union of the equivalence
classes of the points of a given fibre of m coincides with the whole space Ux. Since
m(X) is an at most countable group, the fibre of 7 is at most countable, too, and
therefore there exists an at most countable set of equivalence classes. If M is any of
them, then clearly f|M = const. Therefore, f takes at most countable set of values,
which is impossible.

The second statement is an easy corollary of the first one. O

2.4. Weak C-hyperbolicity. We say that a complex space X is almost resp. weakly
Carathéodory hyperbolic if for any point p € X there exist only finitely many resp.
countably many points ¢ € X which cannot be separated from p by bounded holo-
morphic functions (i.e. if the equivalence relation defined on X by the functions from
the algebra H>(X) is finite resp. at most countable). It will be called almost resp.
weakly C-hyperbolic if X has a covering ¥ — X, where Y is almost resp. weakly
Carathéodory hyperbolic.

These notions are meaningful due to the following reasons. It is unknown whether
the universal covering space Ux of a C—hyperbolic complex space X is Carathéodory
hyperbolic, or more generally, whether there is a Carathéodory hyperbolic covering
Y — X which can be defined in a functorial way. In contrary, one can make the
following observation.

A complex space X s weakly C-hyperbolic iff the universal covering space Uy is weakly
Carathéodory hyperbolic.

Hereafter we assume X to be reduced and with countable topology. In particular, the
universal covering Ux of a C—hyperbolic space X is weakly Carathéodory hyperbolic.
One may consider on X the pseudo—distance which is the quotient of the Carathéodory



pseudo—distance ¢y, on Ux (resp. the quotient of the inner Carathéodory pseudo—
distance cf;, resp. of the differential Carathéodory-Reiffen pseudo-distance Cp, ; see
[Re]). All three of these quotient pseudo—distances are contracted by holomorphic
mappings. Furthermore, the deck transformations on Uy being isometries, the quo-
tient of Cr, on X is locally isometric to Cpr, itself, and thus it is non-degenerate iff
Cuy is so (for a weakly C-hyperbolic space X it is at least non—trivial).

The proof of the following lemma is easy and can be omitted.

2.5. Lemma. Let [ : Y — X be a holomorphic mapping of complex spaces. If f
is injective (resp. f has finite resp. at most countable fibres) and X is C-hyperbolic
(resp. almost resp. weakly C-hyperbolic), then so is Y.

2.6. Brody hyperbolicity. Recall that a complex space X is Brody hyperbolic if it
contains no entire curve, i.e. if every holomorphic mapping @ — X is constant. Note
that sometimes by Brody hyperbolicity one means absence of Brody entire curves in
X, i.e. entire curves whose derivatives are uniformly bounded with respect to a fixed
hermitian metric on X (see e.g. [Za3]). Usually this is enough in applications. But
in this paper we do not need such a precision.

It is clear that any weakly C—hyperbolic complex space is Brody hyperbolic.

2.7. Kobayashi hyperbolicily. For a curve C' C IP? denote by sing C' the set of all
singular points of C'. Put reg C' = C' \ sing C..
The next statement follows from Theorem 2.5 in [Zal].

Proposition. Let the Riemann surface reg C' be hyperbolic and IP* \ C be Brody
hyperbolic (the lalter is true, in particular, if IP*\ C is weakly C-hyperbolic). Then
IP*\ C is Kobayashi complete hyperbolic and hyperbolically embedded into IP?.

Note that in Example 1.3 in the Introduction the first condition fails while the
second one is fulfilled. Tt is easily seen that in this example IP? \ C' is not hyperboli-

cally embedded into IP?. In fact, the condition ‘ reg C' is hyperbolic’ is necessary for
IP*\ C being hyperbolically embedded into IP? [Zal, Corollary 1.3].

2.8. Relative hyperbolicities. Let X be a complex space resp. a quasi—projective
variety and Z C X be a closed analytic subset resp. a closed algebraic subvariety.
We say that X is Brody hyperbolic modulo 7 if any (non-constant) entire curve @ — X
is contained in 7.



For instance, this is the case if X is Kobayashi hyperbolic modulo 7 (see [KiKo]).
(We mention that in [Zad] the above property of relative Brody hyperbolicity was
called strong algebraic degeneracy.)

We will say that X is C-hyperbolic modulo 7 (resp. almost resp. weakly C-
hyperbolic modulo 7) if there is a covering m : Y — X such that for each point p € Y
any other point ¢ € Y\ #7!(7) (resp. any other point ¢ € Y\ #7!(7) besides only
finitely many resp. besides only countably many such points) can be separated from
p by bounded holomorphic functions.

By the monodromy theorem weak C-hyperbolicity of X modulo Z implies Brody
hyperbolicity of X modulo Z.

The next lemma, which is a generalization of Lemma 2.5, easily follows from the
definitions.

2.9. Lemma. Let f:Y — X be a holomorphic mapping of complex spaces and let
7 be a closed complex subspace of X. If f|(Y \ f~Y(7Z)) is injective (resp. has
finite resp. at most countable fibres) and X is C-hyperbolic (resp. almost resp.
weakly C-hyperbolic) modulo Z, then Y is C-hyperbolic (resp. almost resp. weakly
C-hyperbolic) modulo f~'(7).

3 Background on plane algebraic curves

3.1. Classical singularities. Immersed curves. We say that a curve C' in IP? has
classical singularities if its singular points are nodes and ordinary cusps. It is called a
Pliicker curve if both €' and the dual curve C* have classical singularities only and no
flex at a node. If the normalization mapping v : C, .~ — C < IP? is an immersion,
or, which is equivalent, if all irreducible local analytic branches of (' are smooth, then
we say that C is an immersed curve. An immersed curve C' is called a curve with
tidy or ordinary singularities, or simply a tidy curve, if at each point p € C the local
irreducible branches of C' have pairwise distinct tangents. By M. Noether’s Theorem
[Co] any plane curve can be transformed into a tidy curve by means of Cremona
transformations.

3.2. Cusps and flexes. In the sequel by a cusp we mean an irreducible plane curve
singularity. In particular, an irreducible local analytic branch A of a plane curve C
with centrum p € (' is a cusp iff it is singular. The tangent line to a cusp A at p
is called a cuspidal tangent of C'. Recall that the multiplicity sequence of a plane



analytic germ A at py € A is the sequence of multiplicities of A at pg and its infinitely
nearby points. Following [Na, (1.5)] A is called a simple cusp if its first Puiseaux
pair is (m,m + 1), where m = mult,A > 2, or, what is the same, if the multiplicity
sequence of A is (m, 1, 1,...). By Lemma 1.5.7 in [Na] a cusp A is a simple cusp iff
the corresponding branch A* of the dual curve C* is smooth. In this case A* is a flex
of order m — 1 (see the definition below), and vice versa, if A* is a flex of order m —1,
then A is a simple cusp of multiplicity m. A simple cusp A of multiplicity 2 is called
an ordinary cusp if C' is locally irreducible at p.

A smooth irreducible local branch A of the curve C' at a point p € C' is called «
flex of order k if i(A,T,A;p) = k + 2 > 3. The tangent line T, A to a flex A at p is
called an inflexional tangent. An ordinary flex is a flex of order 1 at a smooth point
of C.

Thus, the dual C* is an immersed curve iff C' has no flex and all its cusps are simple.

3.3. Artifacts. If C* has cusps, denote by Lo the union of their dual lines in IP2.
Clearly, Ls consists of the inflexional tangents of (' and the cuspidal tangents at
those cusps of ' which are not simple. Due to some analogy in tomography, we call
L¢ the artifacts of C'.

Note that the dual curve C* of C is an immersed curve iff Lo = (). Such a curve C'
may have complicated reducible singularities, which correspond to multiple tangents
of C*; for instance, it may have tacnodes, etc.

3.4. The Class Formula. Let C' C IP? be an irrducible curve of degree d > 2, of
geometric genus ¢ and of class ¢. Then ¢ = d* = deg C* is defined by the Class
Formula (see [Na, (1.5.4)])

c=d"=2(g+d—-1)~ Z (mp —1p) =

pEsing C
=2(g+d—1)— > (ma-1), (4)
A=(A4,p), p€singC

where m, = mult,C, r, is the number of irreducible analytic branches of C' at p,
A = (A,p) is a local analytic branch of C' at p and my4 is its multiplicity at p. In
particular, C' is an immersed curve iff d* = 2(g + d — 1) (indeed, this is the case
iff the last sum in (4) vanishes). Furthermore, for an immersed curve C' one has
d*>2d+2>10 if ¢g>2, d&*=2d>6 ifg=1, andd*=2d—-2>2 ifg=0.

For reader’s convenience we recall here also the usual Plucker formulas:
g=1/2d=1)(d=2)—0—r=1/2(d" = 1)(d*=2)=b— f
d*=dd—-1)—20 -3k and d=d"(d"—1)—2b—-3f
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for a Pliicker curve C' with § nodes, k£ cusps, b bitangent lines and f flexes.

3.5. The n—th Abel-Jacobt map. Let M be a compact Riemann surface of genus g,
and let j : M — J(M) be a fixed Abel-Jacobi embedding of M into its Jacobian
variety J(M) = Pic® (M). The n—th symmetric power S®M may be identified with
the space of effective divisors of degree n on M. Let ¢, : S"M — J(M) be the n—th
Abel-Jacobi map D = py + ...+ p, —> @a(D) := 5(p1) + ...+ j(pn), so that j = ;.
We recall the following well known facts (see e.g. [GH, 2.2], [Zar, pp.352-353] or [Na,
(5.2), (5.3)] and references therein):

i) ¢, is holomorphic;

ii) (Abel’s Theorem) p=' (¢, (D)) = |D| = IPH°(M,O([D])) = PY™IPl is the com-
plete linear system of D, where D € S™M is an effective divisor of degree n on
M;
iii) the natural injection |D| — S™M is a holomorphic embedding, i.e. |D| =
0 (pn(D)) is a smooth subvariety in S™M;

iv) if n < g, then ¢, : S"M — J(M) is generically one-to—one; in particular, the
image ¢,_1(S9"'M) C J(M) is a translation of the theta divisor © on J(M);

v) (Jacobi Inversion) if n > ¢, then ¢, : S*M — J(M) is surjective. For n > 2g — 2
it is an algebraic projective bundle (see [Ma]); in particular, if ¢ = 1, then it is a

IP"'—bundle over J(M)= M.

3.6. The Zariski embedding. Let C C IP? be an irreducible curve of degree d > 2

and let v : (7, — C* be the normalization of the dual curve. Following Zariski

[Zar, p.307, p.326] and M. Green [Grl] (see also [DL]), as in (1.4) we consider the

mapping po : IP* — S"C7, . of IP? into the n-th symmetric power of C, . where

n = degC*. We put pc(z) = v*(l,) C S"CF,.,., where z € IP? and [, C IP** is

the dual line. Clearly, pc : IP? — S™C* _ is holomorphic. We still denote by D,

norm

the union of the diagonal divisors in (C},.,.)" and by R, = s,(D,,) the discriminant

divisor, i.e. the ramification locus of the branched covering s, : (C*, . " — S"C*

(cf. (1.4)).
It is clear that p¢ is a holomorphic embedding, which we call in the sequel the

Zariski embedding. More precisely, it is composed of two embeddings ¢, : IP? <
IPMC) and iy : IPM©) < S*C*  which are described below. Denote by H a divisor
of degree n on M := C% . which is the trace of a line cut of C* in IP**. The
two dimensional linear system g? of all such line cuts is naturally identified with the
original projective plane P? = (IP?*)*. Let h(C) := dim |H|; then iy : IP? = g2 —
P = |H| is defined to be the canonical linear embedding of ¢? into the complete

11



linear system |H|. (Let us mention that ¢ itself might be complete; for instance,
this is the case when C* is a nodal curve with § nodes, where § < w for n even
or § < @ for n odd; see [Na, p.115].) The Abel embedding iy : P = |H| —
SnCx = S™M identifies |H| with the fibre ¢ ' (p,(H)) of the n—th Abel-Jacobi
map @, : S"M — J(M) (see (3.5)).

What we really need in section 4 is that the restriction pc | (IP?\ C') is injective,
which can also be shown as follows.

We have to show that any projective line [ in IP?* which is not tangent to C*
meets C* in at least two distinct points, and so it is uniquely defined by its image
p(l) = 1N C*. Suppose that there exists a line [ C IP?* which has only one point
po in common with € and which is not tangent to C'* at this point. Let [; be the
tangent to a local analytic branch of C* at py. Then we have

i(l1,C"5po) > i(lo, C™3po) =m =1, - C™

which is impossible. In the same elementary way it can be shown that pc is a holo-
morphic injection.

3.7. Lemma. The preimage p;'(R,) C IP? is the union of C with its artifacts L.
In particular, pg' (R,) = C iff the dual curve C* is an immersed curve.

Proof. Note that a point z € IP?\ C' is contained in p;'(R,,) iff its dual line [, passes
through a cusp of C*. The lines in L¢ are just the dual lines to the cusps of C*. O

4 C-hyperbolicity of complements of plane curves
of genus ¢ > 1

In this section we keep all the notation from 3.6. The main result here is the following
theorem.

4.1. Theorem. Let C C IP? be an irreducible curve of genus g > 1 and L¢ be ils
artifacts. Then

a) IP*\ (C'U Lg) is C-hyperbolic.

b) If the dual curve C* C IP** is an immersed curve, then IP*\ C is C-hyperbolic,
Kobayashi complete hyperbolic and hyperbolically embedded into IP?.
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Proof. a) Consider first the case when g > 2. In this case S"C . \ R, is C-hyperbolic
(cf. (1.4)). Indeed, its covering (CX,.,.)" \ D, is a domain in (C* . )". Since the

norm norm

universal covering of (C},...)" is the polydisc A", it is C—-hyperbolic. Therefore,

norm

(Cr )\ Dy, and hence also S*C,..\ R, are C-hyperbolic, too. By Lemma 3.7
the image po(IP* \ (C' U L)) C S"C* .~ does not meet the discriminant variety R,
and by 3.6 pc | (IP*\(CUL¢)) : IP*\(CULc) — S™Cr,.,.\ R, is injective. Therefore,
by Lemma 2.5 IP*\ (C' U L¢) is C-hyperbolic.

Next we consider the case when (' is an elliptic curve. Denote F = C}_ . . Note
that both £\ D,, and S"E\ R,, are not C-hyperbolic or even hyperbolic, and so we
can not apply the same arguments as above.

Represent F as £ = J(F) = @'/A,, where A, is the lattice generated by 1 and
w € @y (here @4 := {z € @|Imz > 0}). By Abel’s Theorem we may assume this
identification of £ with its jacobian J(F) being chosen in such a way that the image

pc(IP?) is contained in the hypersurface s,(Hy) = ¢;'(0) = IP"~' C S™E, where
Hy = {Z: (217---7Zn) c En| ZZZ :0}
i=1

is an abelian subvariety in £" (see (3.5)). The universal covering Hy of Hy can be

identified with the hyperplane Zn: z;=0in@" = E".
i=1

Consider the countable families D;; of parallel affine hyperplanes in €' given by
the equations z; —x; € A, t,7=1,...,n, 1 < J.

~ n—1 .
Claim. The domain Ho\ U D; .1 is biholomorphic to (@' \ A,)"".
i=1

Indeed, put y; = (x) — Zpe1) | Ho, i = 1,...,n — 1. Tt is easily seen that
(Y1,-+-sYn_1) : Ho — @™ ' is a linear isomorphism whose restriction yields a bi-
holomorphism as in the claim.

The universal covering of (@' \ A,)""! is the polydisc A", and so (@' \ A,)""" is
~ ~ ~ ~ ~ n—1 .
C-hyperbolic. Put D,,:= J D;;. The open subset Hy \ D, of Hy\ U D;iy1 &
i=1

1,7=1,...,n
@\ A,)""! is also C-hyperbolic.
Denote by p the universal covering map @ — (@'/A,)". The restriction

p|Ho\ D, : Hy\ D, — Hy\ D, C E"\ D,
is also a covering mapping. Therefore, Hy \ D,, is C-hyperbolic, and so s, (Hy) \ R,

is C—hyperbolic, too. Since po | (IP*\ (C' U Lc)) : IP*\ (C U Lg) — s,(Hp) \ R, is
an injective holomorphic mapping, by Lemma 2.5 IP*\ (C'U L) is C-hyperbolic.
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b) Assume further that C* is an immersed curve. Then C can not be smooth.
Indeed, being smooth C' would have flexes at the points of intersection of C' with its
Hesse curve (see [Wa]), and hence C* would have cusps. Thus, reg C is hyperbolic,
and by that what has been proven above IP? \ C is C-hyperbolic. Therefore, by
Proposition 2.7 it is Kobayashi complete hyperbolic and hyperbolically embedded
into IP2. This completes the proof. O

4.2. Remark. The complement to a rational curve whose dual is an immersed curve
is not necessarily C-hyperbolic; it even may be not Brody or Kobayashi hyperbolic.
An example is a plane quartic C' with three cusps. Such a quartic C' is projectively
equivalent to the curve given by the equation

4a¥(zy — 270) (21 + 22) — (22072 — 21)* =0
see [Na, (2.2.5)]). Its dual curve C* is a nodal cubic with equation
(see [Na, q
:z:ofcf + "z::f — :L'O;vg =0 .

Thus, g(C) = 0 and C* is an immersed curve. The complement IP? \ C is not
Kobayashi hyperbolic, because its Kobayashi pseudo-distance vanishes on any of
three cuspidal tangent lines of ', on any of three lines passing through two cusps of
(' each one and on the only bitangent line of €. Indeed, each of these seven lines
meets C' in only two points; but kg« = 0, where @* = IP' \ {2points}. Therefore,
IP?\ C' is not C-hyperbolic. Note that m(IP*\ () is a finite group of order 12 [Zar,
p.145], and thus IP? \ C is super-Liouville (see (2.2)).

Note, furthermore, that by an analogous reason the complement of any quartic
curve C' C IP? is neither Kobayashi hyperbolic nor Brody hyperbolic [Gr2]. The
fundamental group m;(IP?\ C') for an irreducible quartic C' being almost abelian (see

(1.1)), by Lin’s Theorem IP*\ C' is super—Liouville.

Next we give some examples, or at least computations of numerical characters of
plane curves which satisfy the assumptions of Theorem 4.1. First we consider exam-
ples of curves of genus g > 2 with the dual an immersed curve.

4.3. Example. Let C' C IP? be an irreducible curve whose dual C* is a nodal curve of
degree n = d* > 3 with § nodes. Assume that the genus g(C) = ¢g(C*) = W—é.
is at least 2. Such a curve does exist for any given § with 0 < § < gn_—lgn_—Ql -2
(see [Se, §11, p.347]; [O, Proposition 6.7]). By the Class Formula (4) C' has degree
d = n(n—1)—24§, which can be any even integer from the interval [2(n+1),n(n—1)].
The least possible value of n resp. d is n = 4 resp. d = 10, which corresponds to the
case when C* is a nodal quartic with one node (6 = 1) (see e.g. [Na, p.130]). To be
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a Pliicker curve (see (3.1)) such C should be a curve of degree 10 with 16 nodes and
18 ordinary cusps (cf. [Zar, p.176]).

If C' is a curve of genus g > 2 whose dual is a nodal curve, then by Theorem
4.1 the complement IP?\ C' is C-hyperbolic, Kobayashi complete hyperbolic and hy-
perbolically embedded into /P2, This yields examples of such curves C' of any even
degree d > 10.

There are similar examples with elliptic curves.

4.4. Example. If the dual C* of C' is an immersed elliptic curve, then by the Class
Formula (4) d = degC' = 2n > 6, where n = deg C* > 3 (see 3.4). Thus, the least
possible value of the degree d of such a curve C is d = 6. Let C be a sextic in IP?
with 9 cusps. Then C' is an elliptic Plucker curve whose dual C* is a smooth cubic;
vice versa, the dual curve to a smooth cubic is a sextic with 9 ordinary cusps (see e.g.
[Wa]). By Theorem 4.1 the complement of such a curve is C-hyperbolic, Kobayashi
complete hyperbolic and hyperbolically embedded into IP%. The same is true if C' is
the dual curve to a nodal quartic C* with two nodes; here d = deg C' = 8 (see e.g.
[Na, p.133]). To be Pliicker such a curve C' must have 8 nodes and 12 ordinary cusps.

These examples lead to the following conclusion.

4.5. Proposition. For any even d > 6 there are irreducible plane curves of degree
d and of genus g > 1 whose duals are nodal curves, and so which satisfy the assump-

tions of Theorem 4.1, b).

Next we pass to examples to part a) of Theorem 4.1.

4.6. Examples. Let C* C IP** be an irreducible curve of genus g > 1 with classical
singularities. If C* has § nodes and & cusps, then the dual curve C' C IP* has &
ordinary flexes as the only flexes, and so L¢ is the union of inflexional tangents of C.
By the Class Formula (4) we have d = deg C' = 2(n+g¢g—1)— k. Since all « inflexional
tangents of (' are distinct, it follows that deg(C' U L¢) = 2(n +g — 1) > 2n > 6.
Assume that £ > 0 to exclude the case considered in Examples 4.3 and 4.4 above,
when C* was an immersed curve. Since g > 1, the case when C' is a singular cubic
has also been excluded. Thus, we have n > 4, and hence deg (C' U L¢) > 8.

The simplest example is a quartic ™ with an ordinary cusp and a node as the
only singularities; such a quartic does exist (see [Na, p.133]). The dual curve C is an
elliptic septic with the only inflexional tangent line [ = Ls. To be a Plicker curve,
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C' must have 4 nodes and 10 ordinary cusps.

Another example is a quartic C* with two ordinary cusps as the only singular
points; it also does exist [Na, p.133]. Here C is an elliptic sextic and L¢ is the union
of two inflexional tangents of C'. To be a Plicker curve, C' should have one node and
8 ordinary cusps.

In all these examples the assumptions of Theorem 4.1 are fulfilled.

4.7. Remark. Of course, it may happen that the complement of the artifacts IP?\ L¢
is itself C—hyperbolic. For instance, this is so if Lo contains an arrangement of five
lines with two triple points on one of them, which is projectively equivalent to those
(s of Example 1.3 in the Introduction. But this is not the case if Lg consists only
of few lines like in the examples 4.6, or if it consists of lines in general position (cf.
(1.2)). For instance, if C' = F; is the Fermat curve of degree n > 3 in IP?, then it is
easily checked that the inflexional tangents are in general position (note that here all
the flexes are hyperflexes of high order). We suppose that for a generic smooth plane
curve (' of degree d > 4 its inflexional tangents are in general position, and therefore
the complement IP?\ L¢ is super-Liouville.

Next we consider the problem of existence of an irreducible quintic with C-
hyperbolic complement.

4.8. We have already noted that there is no plane quartic C' with Kobayashi hyper-
bolic complement IP? \ C' [Gr2]. The obstructions are lines in IP? which intersect C
in at most two points; e.g. cuspidal tangents, inflexional tangents, bitangents, etc.
Recall that if C' C IP? is a nodal quintic, then IP?\ C' is super-Liouville (see (1.1) and
(2.2)). Although there are irreducible quintics whose complements are Kobayashi hy-
perbolic [Za3], there is no one with C—hyperbolic complement (cf. (1.3) and (6.1) for
examples of reducible quintics with C-hyperbolic complements). It is shown in the
next lemma that there is no one among the non-Plicker quintics; as for the Plicker
ones, see Proposition 4.10 below.

4.9. Lemma. Let C C IP? be an irreducible quinlic. Suppose that C' is not a Plicker
curve. Then IP?\ C is not Brody hyperbolic. Moreover, there exists a line ly C IP?
which intersects with C' in al most two points.

Proof. Assume that (' has a singular point py which is not a classical one. Let [y be
the tangent line to an irreducible local analytic branch of C' at po. If mult,, C' > 3,
then i(C, lo; po) > 4, and so the line [y has at most one more intersection point with
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C. If mult,, C' = 2, then either

1) C has two smooth branches at py with the same tangent Iy (e.g. po € C is a
tacnode),

or

2) C is locally irreducible in py and has the multiplicity sequence (2, 2, ...) at po (see
In both cases we still have i(C, lo; po) > 4, and the same conclusion as before holds.
It holds also in the case when [ is the inflexional tangent to C' at a point where C'
has a flex of order at least 2 (see (3.2)).

Therefore, from now on we may suppose that C' has only classical singularities
and ordinary flexes. Let gy be a singular point of C* which is not classical. It can
not be locally irreducible, since (' has only ordinary flexes. If one of the irreducible
local branches of C* at qq is singular, then the dual line /; of ¢ is a multiple tangent
line to €' which is an inflexional tangent at some flex of C'. Therefore, by the Bezout
Theorem [y is a bitangent line with intersection indices 2 and 3. The remaining case
to consider is the case when C* has only smooth local branches at ¢q. If two of them,
say, A and A7, are tangent to each other, then by duality the corresponding local
branches Ag and A; of C should have common center and moreover, they should be
tangent to each other, too. But this is impossible since (' is assumed to have only
classical singularities. Thus, we are left with the case that gy is a tidy singularity
consisting of at least three disinct irreducible local branches of C*. But then the dual
line [y of g is tangent in at least three different points of . Since C' is of degree five,
by Bezout’s Theorem this is also impossible. This completes the proof. O

From this lemma, Proposition 4.5 and the computations done by A. Degtjarjov
[Deg 1, 2] we obtain the following statement.

4.10. Proposition. The minimal degree of an irreducible plane curve with C-
hyperbolic complement is 6.

Proof. Indeed, it is shown in [Deg 1, 2] that two irreducible plane quintics with the
same type of singular points are isotopic in IP%, and there are only two types of
them such that the fundamental groups of the complement are not abelian. In both
cases these quintics have non-classical singularities. It follows that for an irreducible
Pliicker quintic C' C IP? the complement IP? \ C has cyclic fundamental group, and
therefore it is super-Liouville. O
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5 Rational plane curves and duality

Here we precise the construction of (3.6) in the case of a rational curve.

5.1. The Viela covering. The symmetric power S™IP' can be identified with IP™ in
such a way that the canonical projection s, : (IP')" — S™IP' becomes the Vieta
ramified covering, which is given by

((ug tv1)ye vy (Up i vy)) —

|—>(Hv2) (1:o1(urf/vr, .. unfon) + oot op(ur/vr, ..oy un /o))

i=1
where o;(z1,...,2,), ¢+ = 1,...,n, are elementary symmetric polynomials. This is
a Galois covering with the Galois group being the n-th symmetric group 5,. In the
case when z; 1= w;/v; € @, i = 1,...,n, we have s,(21,...,2,) = (ao : ... : @),
where the equation agz™ 4 ...+ a, = 0 has the roots zy,...,z, (see [Zar, p.252] or
[Na, (5.2.18)]). In general, z; € IP*, i = 1,...,n, are the roots of the binary form

> a;u" """ of degree n.
=0

5.2. Plane cuts of the discriminant hypersurface. If C' C IP? is a rational curve of
degree d > 1, then C*, = IP' and so the Zariski embedding is a morphism p¢ :

norm

P? — IP™ = S™ P!, where n = deg C*. The normalization map v : IP1 — C* C IP?
can be given as v = (go : ¢1 : ¢g2), where g;(z0,21) = Y. bgz)zg_jz{ , 1 =0,1,2, are
J=0

homogeneous polynomials of degree n without common factor.
If © = (zg : 1 : x9) € IP? and [, C IP** is the dual line, then po(z) = v*(l,) €

2
S™IP' = IP™ is defined by the equation 3 7;¢;(20 : 1) = 0. Thus, po(x) = (ag(z) :
1=0

2 .
ctap(x)), where a;(z) = 3 xibgl).
=0

Therefore, in the case of a plane rational curve C' the Zariski embedding pc :

IP?* — IP™ is the linear embedding given by the 3x (n+1)-matrix Bg := (bgz))i:071727j:07... )

In what follows we denote by IPZ the image pc(IP?), which is a plane in IP". By
Lemma 3.7 the curve (' is an irreducible component of the plane cut of the discrimi-
nant hypersurface R, C IP", which has degree 2n — 2, by the plane pc(IP?); the other
irreducible components come from the artifacts Lg of C. This yields Lemma 1.9 in
the Introduction:

P2NR,=CULc.

The embedding C* —s IP** composed with the normalization v : IP' — C* is
uniquely, up to projective equivalence, defined by the corresponding linear series ¢>
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on IP', and the embedding po is uniquely defined by €' up to a choice of normaliza-
tion of C*. Thus, IP2 is uniquely defined by g? up to the action on IP™ of the group
PGL(2, @) x IPGL(3, @) via its natural representation in IPGL(n + 1, '), where the

second factor leaves IP? invariant.

5.3. The rational normal curve. The dual map pc* : IP™ — IP*, given by the
transposed (n + 1) x 3-matrix ‘Be = (bgj))i:07...7n7j:07172, defines a linear projection

with the center N¢ := Ker "B C IP™ of dimension n — 3. The curve C* is the image

under this projection of the rational normal curve C* = (28 : 25 'z ... 2}) C IP™

(cf. [Ve, p.208]), i.e.

pe(Ch) =C" .
Furthermore, C'* is the image of IP' = C*,  under the embedding ¢ : P! — IP™
defined by the complete linear system |H| = |n(oco)| = IP". Therefore, v = pc* o :
P — C* C IP* is the normalization map.

5.4. The dualily piclure. It is easily seen that the rational normal curve C C P™
and the discriminant hypersurface R, C IP" are dual to each other. This yields the
following duality picture:

pc
(IP?, CULs) = (IP", Ry)

! . !
(PQ*, C*) - (Pn*, O*)

n

To describe this duality in more details, fix a point ¢ = (28 : 2§ 'z1 : ... 27) € C* C

IP™, and let
F,Cr={T)CrCcT/C;C...CT/'CrC IP™}
be the flag of the osculating subspaces to C* at ¢, where dim quC; =k, TqOC;: ={q}
and TCY = T,C? is the tangent line to C7 at ¢ (see [Na, p.110]). For instance, for
g=q=(1:0:...:0) € C} we have T/ Cr = {ap41 = ... = 2, =0} C IP™.
The dual curve C,, C IP" of C is in turn projectively equivalent to a rational
normal curve; namely,

n
Co={pcP"|p=(z]:—nzz}"":...: (—1)k( )zng_k e (=D)"20) )

Furthermore, the dual flag FqL = {/P" > H)"' D ... D H}}, where H;L_k =
(TF=1C7)*, is nothing else but the flag of the osculating subspaces F,C,, = {TF~'C, }i_,
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of the dual rational normal curve C,, C IP". An easy way to see this is to look at the
flags at the dual points gg = (1:0:...:0) € Cland pg=(0:...:0:1) € C,, where
all the flags consist of coordinate subspaces, and then to use the Aut /P'-homogeneity
(cf. 7.2 - 7.4 below).

The points of the osculating subspace H’C TkC correspond to the binary forms
of degree n for which (zo : z;) € IP' is a root of multiplicity at least n — k. In
particular, H;_Z = (T,C;)* consists of the binary forms which have (zo : 21) as
a multiple root. Therefore, the discriminant hypersurface R, is the union of these
linear subspaces H;_Q =~ P2 for all ¢ € C7, and thus it is the dual hypersurface of
the rational normal curve C7, i.e. each of its points corresponds to a hyperplane in
IP™ which contains a tangent line of C. At the same time, R, is the developable
hypersurface of the (n — 2)-osculating subspaces H;L_Q = Tp”_QC'n of the dual rational
normal curve C,, C R,,; here T;_QC’n NnC, ={p}

If zg # 0, then the subspace H?~? in IP" can be given as the image of the linear
embedding

P23 (co:oiCoa)—>(ag:ayag:...:a,) =

ch S ik ok Eck kel TR g2t eg2l) € (T,CF) C IP™

(and symmetrically for zo = 0).

Consider the decomposition D;; = d;; x (IP*)"~? of the diagonal hyperplane
D;; C D,, where d;; = IP' is the diagonal line in IP! x lpjl, as the trivial fibre
bundle D;; — IP* with the fibre (/P')"~?. The subspaces H}"? C R, are just the
images of the fibres under the Vieta map; moreover, the restriction of the Vieta
map s, : (IP')" — IP™ to a fibre yields the Vieta map s,_o : (IP')""? — "%
The dual rational normal curve C,, C IP" is the image s,(d,) of the diagonal line

5.5. Artifacts as linear sections and the hyperplanes dual to the cusps. By duality
we have No = Ker pc* = (Impe)*, i.e. No = (IP2)*. Therefore,

IPE=Ng = () Kera*={z € P"| <z,2°>=0forall " € No} .
z*eN¢c

A point g on the rational normal curve C} C IP™ corresponds to a cusp of
C™* under the projection pc* iff the center N¢ of the projection meets the tangent
developable T'C', which is a smooth ruled surface in IP™, in some point z,+ of the
tangent line T,C (see [Pi]). In this case it meets T;Cx at the only point z, because

*

otherwise N¢ would contain T},C and thus also the point ¢, which is impossible since

deg C* = deg C} = n.
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Let C* have a cusp B at the point go = pc*(q), which corresponds to a local
branch of C at the point ¢ € €7 under the normalizing projection pc* : C} — C*.
Define Lp 4, := Kerz; C IP" to be the dual hyperplane of the point z; € No NT,C7.
Since z; € N¢, this hyperplane Lp 4, contains the image P} = pc(IP?). This yields
a correspondence between the cusps of C* and certain hyperplanes in IP" containing
the plane IPZ. From the definition it follows that Lg,, contains also the dual linear
space H'™? = (T,Cr)* C R, of dimension n — 2. Since the plane IPZ is not con-
tained in R, we have Lpg 4 = span (IP2, H;_Q). It is easily seen that the intersection
IPZN H]~? coincides with the tangent line /,, C L¢ of €', which is dual to the cusp go
of C*. Thus, the artifacts Lo of C' are the sections of IP3 by those osculating linear
subspaces H;_Q C R, for which g is a cusp of C*; any other subspace H;_Z meets
the plane IP% in one point of C' only.

5.6. Lemma. Lel C C IP? be a rational curve whose dual curve C* C IP** has
degree n. Let B be a cusp of C* with cenler qo € C*, and let L, C IP™ be the
corresponding hyperplane which contains the plane P = pc(IP?) (see (5.5)). Then
under a suitable choice of a normalization of the dual curve C* we have Lg 4, = Ay,
where

Ay ={(ag:...:a,) € IP"|ay =0} .

{
The preimage Hy = s7' (A1) C (IPY)" is the closure of the linear hyperplane in @™

Proof. Up to a choice of coordinates in IP?*, which does not affect the statement,
we may assume that C* has a cusp B at the point go = (0 : 0 : 1). Let co = (1 :
0) € P!, and let v : IP* = Cr

2 . . . .
rm — O = IP* be composition of an isomorphism

IP' = (7, . with the normalization map. This isomorphism may be chosen in such a

way that the cusp B corresponds to the local branch of IP' at oc, and so v(00) = go.
Here as above v = (go : ¢1 : ¢2) is given by a triple of homogeneous polynomi-

als ¢;(z0,21) = bgi)zg_jz{ , 1 = 0,1,2, of degree n. Since v(occ) = ¢o we have

F

0

J

deg, go < n,deg, g1 < n,deg, go = n, ie. béo) = bgl) =0, 682) # 0. Performing
Tschirnhausen transformation

b\

6(2)

nOy

P'> (20 1 z1) — (20 — 211 z) € P!

) =o.

we may assume, furthermore, that by
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Claim 1. Under the above choice of parametrization the image P} = po(IP?) is con-
tained in the hyperplane Ay := {(ag:...: a,) € IP"*|a; = 0}.

Indeed, since C* has a cusp at go we have (go/g2)., = (91/92),, = 0 at the point
(1:0) € P, ie (go),, = (91),, = 0 when z; = 0. This means that deg, go <
n—1,deg, g <n-—1,ie. bgo) = bgl) = 0. And also 652) = 0, as it has been achieved
above by making use of Tschirnhausen transformation.

Since b(ll) = 0,1 = 0,1,2, we have a;(z) = 0. Therefore, po(z) € A, for any
x € IP?, which proves the claim. O

Claim 2. The dual space H;L_Q to T,C is contained in A;.

Indeed, since v(oc) = qo and v = p& o4 with i : P! — C* C IP™ we get
g=(1:0:..:0). Thus, by (5.4) the subspace H;iQ = (T,C)* is given by the

equations {ag = a; = 0}, and hence it is contained in A;. O

By (5.5) we have Lp 4 = span (IPZ, H;Z_z). Therefore, from these two claims we
get LB,qo = Al.

To conclude the proof of the lemma it is enough to note that if ag # 0 and a; = 0,
then the sum of the roots z; + ...+ z, of the equation agz" + a;2" "' 4+ ...+ a, =0

is identically zero. Thus,
HO = S;l(Al) = {( (ul . U1>,. . .,(un . 'Un)) € (P1>n | ZUZ/UZ = 0}’
=1

which is the closure of the linear hyperplane Hy C @' as in the lemma. O

5.7. Monomial and quasi-monomial rational plane curves. A rational curve C' C IP?,
which can be normalized (up to permutation) as follows: (zo(¢) : z1(1) : zo(t)) = (at* :
bt™ : g(t)), where a, b € @*, k, m € Z>o and g € @'[t], will be called a quasi-monomial
curve.

If here g(t) = ct', c €@, | € Z>q, then C is a monomial curve; in this case we
may assume that min{k, [, m} = m = 0 and ged(k,!) = 1,1 > k. Note that a
linear pencil of monomial curves C,, = {axl + B2\ ™2k = 0}, where p = /B € IP', is
self—dual, i.e. the dual curve of a monomial one is again monomial and belongs to the
same pencil. In contrast, the dual curve to a quasi-monomial one is not necessarily
projectively equivalent to a quasi-monomial curve (recall that two plane curves C, C’
are projectively equivalent if C' = a(C) for some a € IPGL(3; @) = Aut IP?). The
simplest example is the nodal cubic C' = {(zg : x4 : x2) = (¢ : t* : 1* — 1)}. Indeed,
its dual curve is a quartic with three cusps (cf. Remark 4.2); but a quasi-monomial
curve may have at most two cusps.
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The statement of the next lemma is easy to check, so the proof is omitted.

5.8. Lenrnma. A quasi-monomial curve C = (t* : 1™ : g(1)), where k < m and
g(t) = X bjt"7 is a polynomial of degree n > 3, has no cusp iff it is one of the
followin]g:iurves:
(t: "% g(1)), by #0
(t:t":g(t)), by #£0,b, #0
(1 B e :g(1)), bu_1 #0
(1:1¢":¢(t)), by #0 and b,_y #0 .

In particular, a monomial curve C = (1* : t' : 1), where k < | and gcd(k, [) = 1, has
no cusp iff il is a smooth conic C = (¢ : 1% : 1).

5.9. Parametrized rational plane curves. Note that, while the action of the projective
group PGL(3,d') on IP* does not affect the image IPZ = po(IP?) C IP* = S™IP*,
the choice of the normalization IP' — C*, defined up to the action of the group
PGL(2,@) = AutlP', usually does (cf. (5.2)). This is why in the next lemma we
have to fix the normalization of a rational plane curve C'. This automatically fixes a
normalization of its dual curve C*, and vice versa. Indeed, recall that if C' = (go :
g1 §2), where g; € @'[t], 1 = 0,1,2, is a parametrized rational plane curve, then
the dual curve C* has, up to cancelling of the common factors, the parametrization
C* = (Mg : Moy : My1), where M;; are the 2 x 2-minors of the matrix

( o g1 G2 )

9% 9 9

Furthermore, the equation of C' can be written as widRes (2092 — T2go, X192 — T2g1) = 0,
where d = deg C' and Res means resultant (see e.g? [Au, 3.2]).

We will use the following terminology. By a parametrized rational plane curve
we will mean a rational curve C' in IP? with a fixed normalization IP* — C of it.
A parametrized monomial resp. a parametrized quasi-monomial plane curve is a
parametrized rational plane curve such that all resp. two of its coordinate functions
are monomials.

Clearly, projective equivalence between parametrized curves is a stronger relation
than just projective equivalence between underlying projective curves themselves.

5.10. Lemma. A parametrized rational plane curve C* C IP?* of degree n is
projectively equivalent to a parametrized monomial resp. quasi-monomial curve iff
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P} C IP" is a coordinate plane resp. containes a coordinate aris. This axvis is unique
iff C* is projectively equivalent to a parametrized quasi—-monomial curve, but not to a
monomial one.

Proof. Let v : t — (at* : bt™ : g(t)), where a, b € @*, g € @'[t] and t = zy/2 € P,
define a parametrized quasi-monomial curve C* C IP** of degree n. Denote e, = (0 :
...:0:1,:0:...:0) € IP*. Then p¢ is given by the matrix Bg = (b(®, b(1), b(2)) =
(@€, ben_m, b?), and therefore P2 = pc(IP?) = span (b, (V) b(2)) contains the
coordinate axis l,,_g n—m, where [; ; := span (e;, €;) C IP™.

If C* is a paramatrized monomial curve, i.e. if g(t) = ¢t”, where ¢ € €', then
clearly IP2 is the coordinate plane IP,_¢ nm, n—r = span (€,_k, €nm, €n_r).

Since the projective equivalence of parametrized plane curves does not affect the
IP?, this yields the first statement of the lemma in one direction.

Vice versa, suppose that IP3 coincides with the coordinate plane IP,_k n—m. n_r-
Performing a suitable linear coordinate change in IP?* we may assume that b(®) =
€np, B =e,_,.. b3 = ¢, ie. that v(t) = (1% : t™ . ¢7). Therefore, in this case
the parametrized curve C* is projectively equivalent to a monomial curve.

Suppose now that IP3 contains the coordinate axis ly—k, n—m. Performing as above
a suitable linear coordinate change in IP?* we may assume that b = e,_;, b(1) =
€n—m, and so v(t) = (t* : ¢™ : g(t)). In this case C* is projectively equivalent to a
parametrized quasi-monomial curve. This proves the first assertion of the lemma.

Let C* = (at"™* : bt"~™ : ¢(t)) be a parametrized quasi-monomial curve which is
not projectively equivalent to a monomial one. Then as above IP3 D li. ., and this is
the only coordinate axis contained in IP3. Indeed, if [; ; C IPZ, where {i, j} # {k, m},
then IPZ would contain at least three distinct vertices e,, where a € {1, 4, k, m}, and
so IPZ would be a coordinate plane, what has been excluded by our assumption. The
opposite statement is evidently true. This concludes the proof. O

5.11. Remarks. a. Let C* = (at* : 1™ : ct"), where a, b, ¢ € @*, be a parametrized
monomial curve of degree n. To be a normalization, this parametrization should be
irreducible, i.e. up to permutation there should be 0 = & < m < r = n, where
ged (m, n) = 1. Thus, IP3 = Py, —m,» is a rather special coordinate plane.

b. Let C* be the parametrized quasi-monomial curve Cy,,, := (at* : bt™ : g(1)),
which is not equivalent to a monomial one. Then the only coordinate axis contained
in P2 is the axis l,_g n—m := span (€,_k, €n_m) = pc(la), where Iy := {xy = 0} C IP%
Furthermore, if C* is obtained from such a curve by a permutation of the coordinates,
then still the only coordinate axis contained in P2 is l,_k nm-

5.12. An equivariant meaning of the Vieta map. Consider the following *—actions

24



on (IP")" resp. on IP" = S™IP":
G T*x (P > (X, ((ug :v1), ooy (U 2 00))) — (D 2 v1)y. 0, Ay 2 v,)) € (IPY)”

resp.

G:@*xP"> (N (ag:ar:...:a,)) — (ag: Aay : Nag:...: Na,) € IP"

Note that the Vieta map s, : (IP')" — IP" (see (5.1)) is equivariant with respect to
these ™—actions and its branching divisors D, resp. R, are invariant under G resp.
G. Identifying @ with P\ {(1 : 0)}, we fix an embedding @™ — (IP')"; denote its
image by @7. Both this Zariski open part of (/P')" and its complementary divisor
are Gi—invariant. In turn, the hyperplane P}~ := {ag = 0} in IP", as well as any
other coordinate linear subspace of IP", and its complement @™ := IP™ \ IPy~" are
G—invariant.

The next lemma is a usefull supplement to Lemma 5.10.

5.13. Lemma. A parametrized rational plane curve C* C IP?* is projectively
equivalent to a parametrized quasi-monomial curve iff IPZ C IP™ contains a one-
dimensional G-orbit. This orbil is unique iff C* is projectively equivalent to a parametrized
quasi—-monomial curve, but not to a monomial one.

Proof. Let A — (ag : Aay : ... : XN'a,), where A € @', be a parametrization of the
G—orbit O, throuh the point p = (ag : ... : a,) € IP". Since the non-zero coordinates
here are linearly independent as functions of A, the orbit O, C IP" is contained in a
projective plane iff all but at most three of coordinates of p vanish. If p has exactly
three non—zero coordinates, then the only plane that containes O, is a coordinate
plane. If only two of the coordinates of p are not zero, then the closure O, is a
coordinate axis. Since we consider a one-dimensional orbit, the case of one non-zero
coordinate is excluded. Now the lemma easily follows from Lemma 5.10. O

6 C—hyperbolicity of complements of rational curves
in presence of artifacts

Before proving an analog of Theorem 4.1 for the case of a rational curve (see Theorem
6.5 below), let us consider simple examples which illustrate some ideas used in the
proof.
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In (1.3) we gave an example of a quintic C5 C IP? (union of five lines) whose
complement is C—hyperbolic. Here is another one.

6.1. Example. Let C' C IP? be a smooth conic and L = [; Ul, U l5 be the union of
three distinct tangents of C.

Figure 2

Claim. a) X, := IP*\ (C U ly) is super—Liouville and its Kobayashi pseudo—distance
kx

. 15 identically zero.

b) Put Xy, = IP*\ (C Ul Uly). Let (C,), a € IP', be the linear pencil of conics
generated by C and Iy + Iy, where C' = C1.qy and Iy + 13 = Cy.0). Then the image
of any entire curve @ — X, is contained in one of the conics C,, and kx,(p, ¢q) =0
iff p, g € Cy, for some a € IP'. Furthermore, X, is neither C-hyperbolic, nor super—

Liouville (see (2.2)).

c) X = X3 :=IP*\ (CUL) is C-hyperbolic, Kobayashi complete hyperbolic and hy-
perbolically embedded into IP?.

Proof. a) is easily checked by applying, for instance, Lemma 2.3. An alternative way
is to note that X; is isomorphic to the product @' x @™. O
b) Consider the affine chart @? = P?\ l; in IP>. We have X, = @\ T', where
the affine curve I' := (C' U ;) \ [; can be given in appropriate coordinates by the
equation y(z* — y) = 0. Let the double covering m : @'* — @'* branched over the
axis l; be given as (z,y) = =w(z,z) := (z,2%). It yields the non-ramified double
covering Y — X,, where Y := @%\ #7'(T"). Here 7~!(T) is union of three affine
lines mg = {z = 0}, my = {z = 2z}, m_; = {z = —=z}, which are level sets of the
rational function ¢(z, z) := z/x. It defines a holomorphic mapping ¢ |Y : Y —
IP*\ {0, 1, —1}. Therefore, for any entire curve f : @' — X, its covering curve
f : @ — Y has the image contained in an affine line [z, from the linear pencil
lg :={x = Bz}, B € @. Thus, the image f(T') is contained in the conic C,, from
the linear pencil C, = {z? = ay}, where a = 8% This proves the first assertion in
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b). The second one easily follows from the inequality ky > ¢*kp1\(3p0intsy and the
equality ky, = m.ky. Finally, since the tautological line bundle ¢ : @2\ {0} — IP'
is trivial over IP' \ {a point}, there is an isomorphism Y 2 @™ x (IP' \ {3 points}).
Therefore, the universal covering Uy = Uy, of Y resp. of X, is biholomorphic to
@' x A. Hence, X, is neither C-hyperbolic, nor super—Liouville. O
¢) We can treat the dual curve of C'U L as the dual conic C* C IP** with three dis-
tinguished points ¢1, g2, g3 on it, whose dual lines are, respectively, [y, [3, 3. Choose
an isomorphism C* = IP! in such a way that ¢, ¢z, g3 € C* correspond, respectively,
to the points (0: 1), (1:0), (1:1) € IP'. The Vieta map sz : (IP')? — IP? = S?IP*

is given by the formula
so 1 ((ug s o), (ug 1 vg)) — (v1vg @ —(ugvy + ugvy) : ugus) .

To the distinguished points (0 : 1), (1 :0), (1 : 1) € IP' there correspond six genera-
tors of the quadric P! x IP', three vertical ones and three horizontal ones. Their im-
ages under the Vieta map s, is the union Lg of three lines zo = 0, 29 = 0, xg+z1+25 =
0 in IP? = S%IP', which are tangent to the conic Cp := s9(Dy) = {2? — 4xozy = 0} C
IP?, where D, = DLQ is the diagonal of (IP')%. Thus, we have the commutative dia-
gram:

YV =Y > (IP')?

N /!

52 52

( **)2 \ D2 Y (@**)2

P*\ (CUL)= X < IP? P? = S2p!
N /
)

P*\ (Co U Lo

where s3 : Y — X is the induced covering, @** = IP' \ {3 points} and the horizontal
arrows are isomorphisms. It follows that Y = (@**)? \ Dy C (@**)? is C-hyperbolic,
and therefore, X is C-hyperbolic, too.

It is easily seen that reg (CUL) = (CUL)\sing (CUL) is hyperbolic. Therefore, by
Proposition 2.7 X = IP?\ (CUL) is Kobayashi complete hyperbolic and hyperbolically
embedded into IPZ. O

Here is one more example of a curve with properties as in Claim c) above.

6.2. Example. Let the things be as in the previous example. Performing the
Cremona transformation o of IP? with center at the points of intersections of the
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lines Iy, [3, [3, we obtain a 3-cuspidal quartic C" := o(C') together with three new lines
my,maz, ms, passing each one through a pair of cusps of C’ (they are images of the
exceptional curves of the blow-ups by ¢ at the above three points; see Fig. 3).

Figure 3

Put I/ = my UmyUmgz and X' = IP?\ (C"U L). Since 0| X : X — X' is an iso-
morphism and X is C-hyperbolic, we have that X’ is also C-hyperbolic. The same
reasoning as above ensures that X’ is Kobayashi complete hyperbolic and hyperboli-
cally embedded into IP2.

The next lemma will be used in the proof of Theorem 6.5. From now on ‘bar’ over
a letter will denote a projective object, in contrast with the affine ones.

6.3. Lemma. Let Hy be the hyperplane in IP*~' given by the equation Y. z; = 0, and
let Doy = U Dij be the union of the diagonal hyperplanes, where D;; C IP™!
1<i<j<n

is given by the equation x; — x; = 0. Then Hy \ Dn;l is C=hyperbolic, Kobayashi
complete hyperbolic and hyperbolically embedded into Hy = IP™~2.

Proof. Put y; = 2y — 241, 1 =1,...,n— 1. Then z; = y;/yp_y , 1 = 1,....n — 2,
are coordinates in the affine chart H, \ D1,n >~ @72, In these coordinates Dl,z‘+1 N Hy
resp. D11, N Hy is given by the equation z; = O resp. 2, = 1,4 =1,...,n— 2.
Thus, Ho\ D1 — (@*)"2, where @** := IP'\ {3 points}. By Lemma 2.5 it follows
that Hy \ D,_; is C-hyperbolic.

To prove Kobayashi complete hyperbolicity and hyperbolic embededdness we may
use the following criterion [Zal, Theorem 3.4] :
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The complement of a finite set of hyperplanes Ly, ..., Ly in IP™ is hyperbolically em-
bedded into IP™ iff (*) for any two distinct points p,q in IP" there is a hyperplane
Li, 1 €{l,...., N}, which does not contain any of them.

Note that the complement of a hypersurface is locally complete hyperbolic [KiKo,
Proposition 1], and therefore its hyperbolic embededdness implies the complete hy-
perbolicity (see [Ki] or [KiKo, Theorem 4]). Therefore, it is enough to check that the
union of hyperplanes Hy N D,_; in Hy = IP"! satisfies the above condition (*).

Supposing the contrary we would have that there exists a pair of points p,q €

Hy , p # q, such that each of the diagonal hyperplanes D;; contains at least one of
these points. Put p = (2} :...:2))and ¢ = (2 :...:2). Since (N D) N Hy =0,
27]

n

we may assume that up to permutation 2} = ... = 2} and 2z}, = ... = 2, where
2 < k < n—1, and moreover, that x; # 2! for each 1 < k < [ < n. The latter
means that p ¢ D;; for such i, [. Therefore, we must have ¢ € D;; for i < k < (. In

: N " " " " M
particular, ¢ € D;3q1 , i =1,...,k,and so z{ = ... =z} =z}, = ... =z, which

is impossible, since ¢ € Hy. O

6.4. Remark. If n = 4, so that Hy = IP?, it is easily seen that D3N Hy is a complete
quadruple in /P?, i.e. the union of six lines defined by four points in general position.

Now we are ready to extend Theorem 4.1, under certain additional restrictions,
to the case of a rational curve.

6.5. Theorem. Let C' C IP? be a rational curve whose dual curve C* has at least
one cusp, so thal C has the arlifacts L # (. Let X := IP*\ (C U Lg). Then tlhe
following statements hold.

a) If the dual curve C* is not projectively equivalent to a quasi-monomial one,
then X is almost C=hyperbolic.

b) X is still almost C=hyperbolic if C* is projectively equivalent to a quasi-monomial
curve Ci ., = {(t* : 1™ : g(t))} of degree n, but not to a monomial one, ex-
cepl the cases when, up to a choice of normalization, Cy, ., , ts one of the curves
{(L:t™:g(t)} or {(t:1":¢g(t))}, where g € T[t] and degg < n — 2. In the latter
cases X is almost C-hyperbolic modulo the line ly := {xy = 0} C IP* in the coordi-
nates where C* = Ch p, 4.

¢) Let C = C,, be a monomial curve * from the linear pencil C, = {azy +

?The case when C* is projectively equivalent to a monomial curve is easily deduced to this one.
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Bakzi™® = 0}, where p = (o : B) € IP'. Then kx(p, q) = 0 iff p, g € C,, for some
p € IPY\ {uo}. In particular, any entire curve @ — X is contained in one of the
curves of the linear pencil (C,).

Proof. The proof will be done in several steps. We will start with the main construc-
tion used in the proof.

Basic construction. Fix a cusp qo of C*, and let ¢i C IP? be the dual line of go. Clearly,
gs C Lo. Choosing an appropriate isomorphism P! = C*  and coordinates in IP?

as in the proof of Lemma 5.6, by this lemma we may assume that v(occ) = go = (0: 0 :
1) € P¥, g5 =l = {3 = 0} C IP? and IP2 = po(IP?) C A; C IP" = S™IP!, where
n=degC*and Ay = {(ap:...:a,) € P"|a; = 0}. Let @* C (IP,)" and (['(7;) C P
be as in (5.12). Then, as it is easily seen, po(X) C po(IP*\ly) C sn(a'(”z)) =qg, C
where s, : @'(}) — ', is the restriction of the Vieta map (see (5.1)).

By (5.12) this affine Vieta map yields the non—ramified covering s, : Ho \ D,, —

A1\ Ry, where as in Lemma 5.6 above Hy = {z = (z1,...,2,) € @™ Zn: 2z =0}, D,
i=1

is the union of the affine diagonal hyperplanes D;; = {z € €"|z; = z;} ,1 < i <
Jj<n, A :={a = (ar,...,a,) € G’&)Ml =0} =@ "and R, C G'(”a) is the affine
discriminant hypersurface.
The Zariski map gives the linear embedding po | X : X — A;\ R,. Let 3, : Y —
X be the non-ramified covering induced by the Vieta covering via this embedding.
Denote by m the canonical projection @7 \ {0} — P!, Put Hy := w(H,) =
P2 C P! and D;; := (D), Dy_q = m(D,)= U D;;. By Lemma 6.3 Hy \

_ 1<i<j<n
D,y is C-hyperbolic, Kobayashi complete hyperbolic and hyperbolically embedded
into Hy = P2,

Thus, we have the following commutative diagram:

T

pc _ _
Yy — Ho\Dn_>H0\Dn_1;>Pn_2

i l . l 6n (6)

P2\ (CUL:)=X —— A\R,

where p¢ is an injective holomorphic mapping. Note that here the Vieta map s, is
equivariant with respect to the @*—actions G on Hy \ D, and G on A; \ R, respec-
tively, and all the fibres of the projection 7 are one—dimensional G-orbits (see(5.12)).

Proof of a). Under the assumption of a) C* is not projectively equivalent to a quasi—
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monomial curve. Then we have the following assertion.
Claim. The mapping w0 pc @ Y — Hy\ D,_, has finite fibres.

Indeed, since the fibres of @ are G—orbits, it is enough to show that any G-orbit
in Hy C G'(”Z) has a finite intersection with pc(Y). Or, what is equivalent, that any
G-orbit in A; C G’@) has a finite intersection with pe(X) C IP:. We have shown in
Lemma 5.13 above that if the latter fails, i.e. if IP3 contains a one-dimensional G-
orbit, then C* (paramatrized as above) is projectively equivalent to a (paramatrized)
quasi-monomial curve, which is assumed not to be the case. This yields the claim.
Since Hy \ D,_; is C-hyperbolic, by Lemma 2.5 this implies that X is almost
C-hyperbolic. O

Proof of b). We still fix a parametrization of C* as in the basic construction above,
and so we fix the IPZ in IP". If IP? does not contain any coordinate line, we can
finish up the proof like in a) and conclude that X is almost C-hyperbolic. So, assume
further that /P2 does contain a coordinate line. By Lemma 5.10 this means that C"*
as a parametrized curve is projectively equivalent to a quasi-monomial curve. Since
by our assumption it is not equivalent to a monomial one, the plane IP2 is not a co-
ordinate one. After an appropriate change of coordinates in /P? which does not affect
P} we may assume that C* = C} , , := (f : g : k), where f, g, h € @[t] and two of
them are the monomials ¢t*, ™. We have that Lok nm C IP% is the only coordinate
axis contained in IP2 (see Lemma 5.10 and Remark 5.11, b)). By Lemma 5.13 it is
the closure of the only one-dimensional G-orbit O, contained in IP3. Now we have
to distinguish between two cases:

i) p (ln—k,n-m) C Lc and i) pG' (In-k.n-m) € Lc-

In case i) we have, as in the Claim above, that 7o pc : ¥V — H, \ D,._1 has finite
fibres, and therefore X is almost C—hyperbolic. In case ii) we have O, C pc(X);
the preimage 5.'(0,) is the union of n! distinct Gi—orbits, which are 7—fibres, and all
the others m—fibres in Y are finite. Thus, by Lemma 2.9 it follows that Y is almost
C-hyperbolic modulo 57'(0,), and hence X is almost C—hyperbolic modulo O,.

Next we show that ii) corresponds exactly to the two exceptional cases mentioned
in b), which proves b).

By the assumption of the theorem C* has a cusp, and we suppose as above this
cusp being at the point go = (0 : 0 : 1) and corresponding to the value t = oc.
This means that deg f < n — 2, degg < n — 2 and degh = n (see the proof of
Lemma 5.6). Thus, the dual line I, = ¢ C IP? belongs to Lo. If f = t* and
g = 1™ are monomials, then pal(ln_km_m) = [, and we have case i). Therefore, up
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to the transposition of f and ¢ we may suppose further that f = t* and & = ™ are
monomials, while ¢g(¢) is not. In that case ¥ < n —2,degg < n—2, m = n and
pe (lytn-m) =l := {z1 = 0} C IP?. The dual point ¢ = (0:1:0) = [} € IP* is
a cusp of C* iff & > 2. Hence, ii) occurs iff here & < 1, i.e. iff C* was projectively
equivalent to one of the curves (1 : t" : g(t)) or (¢ : t" : g(t)), where deg g < n—2. If C*
is one of these curves, then X = IP*\(CULc) is C-hyperbolic modulo [, = po! (ly—k,0)-

O

Proof of ¢). Let C' = C,, be a monomial curve from the linear pencil C, = {azjy +
Bakzi™® = 0}, where p = (o : 8) € IP'. The pencil (C,) is self-dual, i.e. Cr=Cp,
where p* depends on p (see 5.7, 5.9), and so without loss of generality we may assume
that C* = C = C(1.-1). Thus, C* has the parametrizations C* = (7F 1) =
(t"=% .1 : "), where 7 = t~1. Since C* has a cusp, we have n = degC* > 3 and
max (k,n — k) > 2. By permuting coordinates, if necessary, we may assume that
k > 2. In this case the second parametrization, which we denote by v, fits in with the
basic construction, i.e. v(oc) =¢qo = (0:0:1)is a cusp of C* and b(f) =0,:2=0,1, 2.

The parametrization v being fixed as above, the Zariski embedding po is given
by the matrix Be = (e, €,, €g). Therefore, pc : IP* = IP2 = Pogn C Ay C IP" is
coordinatewise (cf. Remark 5.11, a):

pe(xo:xi:ixy)=(ag:... a,)=(22:0:...0 29 :0:...:0:2)

The @*-action G on IP" induces the @*-action G’ on IP%, where
G (A (zo: 22 32)) — ()\ To: ATy i xg) = (wg/)\n_k cxy i xa/A")

It is easily seen that the closure of a one-dimensional GG'~orbit is an irreducible com-
ponent of a member of the linear pencil (C,,).

In what follows we identify X resp. Y with its image under pc resp. po. Let
f : @ — X be an entire curve and f : @ — Y be its covering curve. From Lemma
6.3 it follows that the map 7o p¢ o f is constant. This means that f((l’) is contained
in an orbit of &, and so f(@) is contained in a G-orbit, which in turn is contained in
one of the curves (), as it is stated in c).

Furthermore, Ho \ D, being Kobayashi hyperbolic, the ky—distance between
any two distinct G—-orbits in Y is positive. Over each G—orbit O in X there is n! G-
orbits in Y, and each of them is maped by 3, isomorphically onto O. Therefore, the
kx—distance between two different G—orbits in X, which is equal to the ky—distance
between their preimages in Y, is positive, too. This proves ¢). Now the proof of
Theorem 6.5 is complete. O

6.6. Remark. In general, b) is not true for a plane curve whose dual is a quasi-
monomial curve without cusps. Indeed, if C' is a three—cuspidal plane quartic, then
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C* 1s a nodal cubic, which is projectively equivalent to a quasi-monomial curve
t — (¢t : ¢ : t* — 1), where the node corresponds to ¢ = +1. The Kobayashi
pseudo—distance of IP?\ C' is degenerate on at least seven lines (see Remark 4.2), and
thus IP? \ C is not C-hyperbolic modulo a line.

The next examples illustrate Theorem 6.5.

6.7. Example. Let C' C IP? be the cuspidal cubic 4z — 27z{z, = 0. Its dual curve
C* C IP** is the cuspidal cubic with the equation yj+y?y, = 0. The cusp of C* at the
point go = (0 : 0 : 1) corresponds to the only flex of C' at the point po = (0 : 1 : 0), with
the inflexional tangent I, = {x, = 0} C IP%, so that Lo = [5. Consider the curve C'Ul,.
Its complement X := IP?\ (C Ul,) is neither C-hyperbolic nor Kobayashi hyperbolic.
Indeed, C is a member of the linear pencil of cubics C, = {azg — Bziz, = 0},
where = (a : 3) € IP' (here C = C,,, where uo = (4 : 27)). This pencil is
generated by its only non-reduced members C(1.0y = 3lp and C(o.1) = 2[; + [, where
l; ={z;=0},1=0,1,2. The Kobayashi pseudo-distance kyx is identically zero along
any of the cubics C,,, pp # po, because C, N X = C, \ (CUly) =7 and kg» = 0.

Nevertheless, by Theorem 6.5, c) any entire curve @ — X = IP*\ (C' U [ly) is
contained in one of the cubics C,, where u € IP*\ {p0}. Moreover, kx (p, q) = 0 iff
p, q € C, for some p € IP*\ {po}.

6.8. Example. Let C' C IP? be the nodal cubic 2z, = 23 + 22y, and let [, I, I3 be
the three inflexional tangents of C'. They correspond to the cusps of the dual curve
C* C IP*, which is the 3-cuspidal quartic (2y1y2 + y2)* = 4y3(yo — 2y2)(vo + y2)
(see Remark 4.2). Thus, Lc = [; Ul Uls. By Theorem 6.5, a) we have that X :=
IP*\ (C'U L¢) is almost C-hyperbolic. Hence, it is also Brody hyperbolic (see (2.6)).

By Bezout Theorem three cusps of C* are not at the same line in IP?*. Therefore,
their dual lines, which are inflexional tangents [y, 5, I3 of (', are not passing through
the same point. From this it easily follows that reg (C'Ul;UlyUl3) is hyperbolic. Thus,
by Proposition 2.7 X is Kobayashi complete hyperbolic and hyperbolically embedded
into IP%.

6.9. Example. Let C' C IP? be the rational quintic ¢ — (26> — % : —(41°> + 1) : 2t)
with a cusp at the only singular point (1 : 0 : 0). The dual curve C* C IP?* is the
quasi-monomial quartic ¢ — (1 : ¢ : t*+1) given by the equation (yoys—y3)* = yoyi-
It has the only singular point go = (0 : 0 : 1), which is a ramphoid cusp, i.e. it has the
multiplicity sequence (2, 2, 2, 1, ...) and § = p/2 = 3, where y is the Milnor number.
Any rational quartic with a ramphoid cusp is projectively equivalent to C* (see [Na,
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2.2.5(a)]). The artifacts Lo consist of the only cuspidal tangent line Iy = {z3 = 0} of
C. By Theorem 6.5, b) the complement IP?\ (C U ly) is almost C—hyperbolic. Note
that I := C'\ I, is a smooth rational affine curve in @'? = [P?\ [y, which is isomorphic

tod@* :=@ \ {0}. Thus, X :=@?\ T is almost C-hyperbolic.

6.10. Example. Let C’ C IP? be the rational quartic ¢ — (¢*(2¢ 4+ 1) : —¢(4¢ +3) :
—2). It has two singular points, a double cusp at the point (0 : 0 : 1) (i.e. a
cusp with the multiplicity sequence (2, 2, 1, ...) and § = 2) and another one, which
is an ordinary cusp. The dual curve C’* C IP** is the quasi-monomial quartic
t— (1 :¢*:t* +¢) given by the equation (yoy2 — yi)* = yoy;. It has the same
type of singularities as C’, namely a double cusp at the point go = (0:0: 1) and an
ordinary cusp at the point (1:0 :0). Therefore, Lei = lo U [z, where [y = {z¢ = 0}
and l; = {z3 = 0}. By Theorem 6.5, b) the complement X := IP?\ (C' U L¢/) is
almost C—hyperbolic.

7 C—hyperbolicity of complements of maximal cus-
pidal rational curves

In Corollary 7.10 below we show that the complement of a maximal cuspidal rational
curve of degree d > 8 in IP? is almost C-hyperbolic. In a sense, this completes the
study on C—hyperbolicity of IP*\ (C'U L¢). The deep reason of this fact, which actu-
ally does not appear in the proof, is that the Teichmiiller space Ty, of the Riemann
sphere with n punctures is a bounded domain in @™ (cf. [Kal]).

Let us start with necessary preliminaries.

7.1. Maximal cuspidal rational curves as generic plane sections of the discriminant.
Let C' C IP? be a rational curve of degree d > 1. By the Class Formula (4) its dual
curve C* C IP* is an immersed curve (or, equivalently, Le = 0) iff d = 2(n — 1),
where n = deg C* (cf. 3.4). If in addition C' is a Pliicker curve, then it has the
maximal possible number of ordinary cusps, which is equal to 3(n — 2), and besides
this it has also 2(n — 2)(n — 3) nodes. Such a curve C is called a mazimal cus-
pidal rational curve [Zar, p. 267]. Note that the dual C* of such a curve C is a
rational nodal curve of degree n in IP?*. In particular, a generic maximal cuspidal
rational curve C' naturally appears via the Zariski embedding pc : IP? — P32 — IP"
as a generic plane section of the discriminant hypersurface R, C IP™ (see 3.6-3.7, 5.4).

34



7.2. The moduli space of the n—punctured sphere as an orbit space. Note, first of all,
that the Vieta map s, : (IP')" — S™IP' = IP™ is equivariant with respect to the
natural actions of the group IPGL(2, @) = Aut IP' on (IP')" and on IP™, respectively.
The branching divisors D, (the union of the diagonals) resp. R, (the discriminant
divisor), as well as their complements are invariant under the corresponding actions.
It is easily seen that for n > 3 the orbit space of the IPGL(2, ')-action on IP"\ R,
is naturally isomorphic to the moduli space My , of the Riemann sphere with n
punctures. Denote by Mgm the quotient ((IPY)" \ D,)/IPGL(2,@). We have the
following commutative diagram of equivariant morphisms
Ty

(PP*)"\ D, > Mo,

i @

Pn\Rn — MO,n

7.3. Descriplion of Mo,n- The cross—ratios o;(z) = (z1, 22; 23, 2;), where z =
(21,-+,2n) € (IP")"* and 4 < i < n, define a morphism

o = (04, .oy o) 2 (PY'\ Dy — (@*)"°\ Dp_3

(here as before @** = IP*\ {0, 1, co}). By the invariance of cross-ratio ¢(®) is constant

along the orbits of the action of IPGL(2,d') on (IP')"\ D,. Therefore, it factorizes
through a mapping of the orbit space Mgm — (@**)"=3\ D,_3. On the other hand, for
each point z € (IP*)"\ D, its IPGL(2, @')-orbit O, contains the unique point 2’ of the
form 2/ = (0, 1, oo, 24, ..., 2). This defines a regular section Mo, — (IP')*\ D,,

and its image coincides with the image of the biregular embedding
@Y\ Dp_z D u= (ugy -, up) — (0, 1, 00, ug, ..., u,) € (IPHY*\ D, .

This shows that the above mapping Mo,n — (@**)"=®\ D,,_3 is an isomorphism.

7.4. IPGL(2,@')-orbits. Here as before we treat IP” as the projectivized space of the
binary forms of degree n in w and v. For instance, e, = (0:...:0:1,:0:...:0) €
IP™ corresponds to the forms cu™ *v*, where ¢ € @*. Denote by O, the IPGL(2, @)~
orbit of a point ¢ € IP*. Clearly, O., = O, _,, 1+ = 0,...,n; O is the only one-
dimensional orbit and, at the same time, the only closed orbit; O, 1 =1,...,[n/2],
are the only two-dimensional orbits, and any other orbit has dimension 3. Note that
0., = C, is the dual rational normal curve, and S := O., U O, is its developable
tangent surface (see 5.4).
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If O, is an orbit of dimension 3, then its closure O, is the union of the orbits
0,, 0., and those of the orbits O,z = 1,...,n — 1, for which the form ¢ has a root
of multiplicity ¢ [AlFa, Proposition 2.1]. Furthermore, for any point ¢ € IP"\ R, i.e.
for any binary form ¢ without multiple roots, its orbit O, is closed in IP*\ R,, and
0, =0,US, where S = O, N R,. Therefore, any Zariski closed subvariety Z of IP"
such that dim (O, N Z) > 0 must meet the surface S. These observations yield the
following lemma. *

7.5. Lemma. If a linear subspace L in IP" does nol meel the surface S = O,, C R,
then it has at most finite inlersection with any of the orbits O,, where ¢ € IP" \ R,,.
In particular, this is so for a generic linear subspace L in IP™ of codimension at least 3.

7.6. Remark. Fix k distinct points 2q,...,2; € IP', where 3 < k < n. Let go
be a binary form of degree k with the roots zy,...,z;. Consider the projectivized
linear subspace Ly C IP™ of codimension k consisting of the binary forms of degree n
divisible by go. It is easily seen that Lo NS = (). This gives a concrete example of
such a subspace.

The next tautological lemma is used below in the proof of Theorem 7.9.

7.7. Lemma. Let C C IP? be a rational curve. Put n = deg C*, and lel as before
P} = pc(IP?) — IP™ be the image under the Zariski embedding.

a) The plane IP2 meets the surface S = O,, iff there exists a local irreducible analytic
branch (A*,p*) of the dual curve C* such that o(TA*, A*; p*) >n — 1.

b) Furthermore, if C* has a cusp (A*, p*) of multiplicity n—1, then pc(l,+) C IPANS,
where L« C Lc C IP? is the dual line of the point p* € IP**.

¢) If the dual curve C* has only ordinary cusps and flexes and n = deg C* > 5, then
PZNS=0.

Proof. a) By the definition of the Zariski embedding ¢ € P2 N S iff, after passing
to the normalization v : IP' — C* and identifying IP? with its image IP3 under the

3We are gratefull to H. Kraft who pointed out to us an approach which is based on the notion of
the associated cone of an orbit [Kr] (here we have used a simplified version of it), and to M. Brion
for mentioning to us of the paper [AlFa].
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Zariski embedding p¢, the dual line [, C IP? cuts out on C* a divisor of the form
(n — 1)a + b, where a,b € IP'. Then p* := v(a) € C* is the center of a local branch
A* of C* which satisfies the condition in a). The converse is evidently true. O

b) For any point g € [« its dual line [, C IP** passes through p*, and hence by the
above consideration we have pc(q) € IPZ N S. O

c¢) By the condition we have that o(T«A*, A*; p*) <3 < n —1 for any local analytic
branch (A*, p*) of C*. Now the result follows from a). 0

7.8. Lemma. Let C* C IP?* be a ralional curve of degree n. Then the complement
X = IP*\ (CU L¢) is almost C-hyperbolic, whenever IPZ NS = ().

Proof. Consider the following commutative diagram of morphisms:

pc Tn
Yy —— (Pl)n \ Dn —_— (af**)n—S \ Dn—S s ( **)n—S

5, l N Sn l y l (8)

P’\(CULe)=X —s P"\R, —v My,

where §,, : Y — X is the induced covering (cf. (7) and 7.2-7.3 above).

From Lemma 7.5 it follows that the mapping m,0pc : X — My, ,, has finite fibres.
Hence, the same is valid for the mapping 7, 0pc : YV — (@**)"*\ D,_5. By Lemma
2.5 Y, and thus also X, are almost C—hyperbolic. O

From this lemma and Lemma 7.7 we have the following theorem, which is a useful
supplement to Theorem 6.5.

7.9. Theorem. Let C* C IP?* be a rational curve of degree n such that i(TyxA*, A*; p*) <
n — 2 for any local analytic branch (A*, p*) of C*. Let C = (C*)* C IP? be the dual
curve. Then the complement X = IP*\ (C'ULc) is almost C-hyperbolic. In particular,
this is so if n > 5 and C* has only ordinary cusps and flezes.

The next corollary is an addition to Theorem 4.1, b).

7.10. Corollary. Let C C IP? be a mavimal cuspidal rational curve of degree
d=2n—1)>8. Then X = IP*\ C is almost C-hyperbolic, Kobayashi complete
hyperbolic and hyperbolically embedded into IP?. In particular, this is the case if the
dual curve C* is a generic rational nodal curve of degree n >5 in IP?*.
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Proof. The first statement immediately follows from Theorem 7.9, while the second
one follows from Proposition 2.7. Indeed, under our assumptions we have n > 5, and
therefore the curve C' has at least 9 cusps. Hence reg (' is a hyperbolic curve. The
last statement is evident. O

The next example shows that our method is available not for all rational curves
whose dual curves are nodal.

7.11. Example. Let C* = (p(t) : q(¢) : 1) be a parametrized plane rational curve,
where p, ¢ € @'[t] are generic polynomials of degrees n and n — 1, respectively. Then
C™* is a nodal curve of degree n which is the projective closure of an affine plane
polynomial curve with one place at infinity, at the point (1 : 0 : 0), and this is a
smooth point of C*. Thus, the line [; = {z; = 0} is an inflexional tangent of order
n — 2 of C*, and so by Lemma 7.7, a) IPZ N S # (). Therefore, we can not apply in
this case the same approach as above.

At last, we can summarize the main results of the paper (cf. Theorems 4.1, 6.5

and 7.9).

7.12. Theorem. Let C C IP? be an irreducible curve of genus g. Pul n = deg C*
and X = IP*\ (C U L¢).

a) If g > 1, then X is C-hyperbolic. If g = 0, then X is almost C-hyperbolic if at
least one of the following conditions is fulfilled:

i) i(Ty» A", A% p*) < n —2 for any local analytic branch (A*, p*) of C*;

ii) C* has a cusp and it is not projectively equivalent to one of the curves (1 : g(t) :
"), (t:g(t):t"), where g €[t],degg <n —2.*

b) Let, furthermore, C* be an immersed curve. If g > 1, then IP*\ C is C-hyperbolic.
If g =0 and i) is fulfilled, then IP*\ C is almost C-hyperbolic; in particular, this is
so if C* is a generic ralional nodal curve of degree n > 5. In both cases IP*\ C is
Kobayashi complete hyperbolic and hyperbolically embedded into IP?.

“The monomial curves correspond here to g(t) = t*, k < n—2. Note that the curves (1 : ¢~ : ¢?)
and (1 :¢:t"), being considered as non—parametrized ones, are projectively equivalent, and therefore
all monomial curves have been excluded.

38



39



References

[AlFa] P. Aluffi, C. Faber. Linear orbits of d—tuples of points in IP', J. reine angew.
Math. 445 (1993), 205-220

[Au] A. B. Aure. Pliicker conditions on plane rational curves, Math. Scand. 55
(1984), 47-58, with Appendix by S. A. Str, ibid. 59-61

[CaGr] J. A. Carlson, M. Green. Holomorphic curves in the plane, Duke Math. J. 43
(1976), 1-9

[Col] J. L. Coolidge. A Treatise on Algebraic Plane Curves, N.Y.: Dover, 1959

[Deg 1] A. L. Degtjarjov. Isotopy classification of complex plane projective curves of
degree 5, Preprint LOMI P-3-87, Leningrad, 1987, 1-17

[Deg 2] A. 1. Degtjarjov. Topology of plane projective algebraic curves, PhD Thesis,
Leningrad State University, 1987 (in Russian)

[Del] P. Deligne. Le groupe fondamental du complement d’une courbe plane n’ayant
que des points doubles ordinaires est abélien, Sem. Bourbaki, 1979/1980, Lect. Notes
in Math. vol. 842, Springer-Verlag (1981), 1-25

[DSW1] G. Dethloff, G. Schumacher, P.-M. Wong. Hyperbolicity of the complements
of plane algebraic curves, preprint, Math. Gotting. 31 (1992), 38 p. (to appear in
Amer. J. Math.)

[DSW2] G. Dethloff, G. Schumacher, P.-M. Wong. On the hyperbolicity of the com-
plement of curves in algebraic surfaces: The three component case, preprint, FEssen

e.a., 1993, 25 p. (to appear in Duke Math. J.)

[DL] I. Dolgachev, A. Libgober. On the fundamenthal group of the complement to
a discriminant variety, In: Algebraic Geometry, Lecture Notes in Math. 862, 1-25,
N.Y. e.a.: Springer, 1981

[Fu] W. Fulton. On the fundamental group of the complement to a node curve, Ann.

of Math. (2) 111 (1980), 407-409

40



[GP] H. Grauert, U. Peternell. Hyperbolicity of the complement of plane curves,
Manuscr. Math. 50 (1985), 429-441

[Grl] M. Green. The complement of the dual of a plane curve and some new hy-
perbolic manifolds, in: "Value Distribution Theory‘, Kujala and Vitter, eds., N.Y.:
Marcel Dekker, 1974, 119-131

[Gr2] M. Green. Some examples and counterexamples in value distribution theory.

Compos. Math. 30 (1975), 317-322

[Gr3] M. Green. The hyperbolicity of the complement of 2n+1 hyperplanes in general
position in IP, and related results, Proc. Amer. Math. Soc. 66 (1977), 109-113

[GK] G. M. Greuel, U. Karras. Families of varieties with prescribed singularities,
Compositio Math. 69 (1989), 83-110

[GH] Ph. Griffiths, J. Harris. Principles of Algebraic Geometry. N.Y. e.a.: J. Wiley
and Sons Inc., 1978

[Kal] Sh. 1. Kaliman. The holomorphic universal covers of spaces of polynomials
without multiple roots, Selecta Mathem. form. Sovietica, 12 (1993) No. 4, 395-405

[Kan] J. Kaneko. On the fundamental group of the complement to a maximal cuspi-

dal plane curve, Mem. Fac. Sci. Kyushu Univ. Ser. A. 39 (1985), 133-146

[Ki] P. Kiernan. Hyperbolically imbedded spaces and the big Picard theorem, Math.
Ann. 204 (1973), 203—209

[KiKo] P. Kiernan, Sh. Kobayashi. Holomorphic mappings into projective space with
lacunary hyperplanes, Nagoya Math. J. 50 (1973), 199-216

[Kol] Sh. Kobayashi. Hyperbolic manifolds and holomorphic mappings. N.Y. a.e.:
Marcel Dekker, 1970

[Ko2] Sh. Kobayashi, Intrinsic distances, measures and geometric function theory,

Bull. Amer. Math. Soc 82 (1976), 357-416

[Kr] H. Kraft. Geometrische Methoden in der Invariantentheorie. Braunschweig/Wiesbaden:
Vieweg und Sohn, 1985

41



[Lib] A. Libgober. Fundamental groups of the complements to plane singular curves,

Proc. Sympos. in Pure Mathem. 46 (1987), 29-45

[Li] V. Ja. Lin. Liouville coverings of complex spaces, and amenable groups, Math.

USSR Sbornik, 60 (1988), 197-216

[LiZa] V. Ya. Lin, M.G. Zaidenberg, Finiteness theorems for holomorphic mappings,
Encyclopaedia of Math. Sci. 9 (1986), 127-194 (in Russian). English transl. in En-
cyclopaedia of Math. Sci. Vol.9. Several Complex Variables ITI. N.Y. e.a.: Springer
Verlag, 1989, 113-172

[Ma] A. Mattuck, Picard bundles, Illinois J. Math. 5 (1961), 550-564

[Na] M. Namba. Geometry of projective algebraic curves, N.Y. a.e.: Marcel Dekker,
1984

[Pi] R. Piene. Cuspidal projections of space curves, Math. Ann. 256 (1981), 95-119

[O] M. Oka. Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan,
44, No. 3 (1992), 375414

[Re] H. J. Reiffen. Die Carathéodorysche Distanz und ihre zugehérige Differential-
metrik, Math. Ann. 161 (1965), 315-324

[Ro] H. Royden. Automorphisms and isomelries of Teichmiiller space, In: Advances
in the Theory of Riemann Surfaces, 1969 Stony Brook Conf. Ann. of Math. St. 66,
Princeton, N.J.: Princeton Univ. Press, 1971, 369-383

[Se] F. Severi. Vorlesungen tiber algebraische Geometrie, Leipzig: Teubner, 1921

[SY] Y.-T. Siu, S.-K. Yeung. Hyperbolicity of the complement of a generic smooth
curve of high degree in the complex projective plane, preprint, 1994, 56 p.

[Ve] G. Veronese. Behandlung der projectivischen Verhéltnisse der Raume von ver-
schiedenen Dimensionen durch das Princip des Projicirens und Schneidens, Math.

Ann. 19 (1882), 193-234

[Wa] R. J. Walker. Algebraic curves. Princeton Meth. Series 13, Princeton, N.J.:
Princeton University Press, 1950

42



[Zal] M. Zaidenberg. On hyperbolic embedding of complements of divisors and the
limiting behavior of the Kobayashi-Royden metric, Math. USSR Sbornik 55 (1986),
55-70

[Za2] M. Zaidenberg. The complement of a generic hypersurface of degree 2n in @' IP"
is not hyperbolic. Siberian Math. J. 28 (1987), 425-432

[Za3] M. Zaidenberg. Stability of hyperbolic imbeddedness and construction of ex-
amples, Math. USSR Sbornik 63 (1989), 351-361

[Za4] M. Zaidenberg. Hyperbolicity in projective spaces, Proc. Conf. on Hyperbolic
and Diophantine Analysis, RIMS, Kyoto, Oct. 26-30, 1992. Tokyo, TIT, 1992, 136—
156

[Zar] O. Zariski. Collected Papers. Vol 111 : Topology of curves and surfaces, and
special topics in the theory of algebraic varieties. Cambridge, Massachusets e. a.:

The MIT Press, 1978

Gerd Dethloff

Mathematisches Institut der Universitat Gottingen
Bunsenstrasse 3-5

3400 Gottingen

Germany

e-mail: DETHLOFFQCFGAUSS.UNI-MATH.GWDG.DE

Mikhail Zaidenberg

Université Grenoble 1
Laboratoire de Mathématiques
associé au CNRS

BP 74

38402 St—Martin—d’Heres Cédex
France

e-mail: ZAIDENBEQFOURIER.GRENET.FR

43



