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Abstract

Squier! has proved that the third homology Z-module of a monoid presented by a finite noetherian
confluent rewriting system is finitely generated. Kobayashi? has given a more precise result about
the homology of such a monoid, by proving that it is (F'P)x.

Burroni® has dealt with the word problem for 2-monoids and has pointed out the word problem
for monoids has a natural generalization to categories.

Our aim is precisely to deal with this question by generalizing Kobayashi’s result to categories.
More precisely, after briefly recalling how one can interpret a functional programming language
as a category?, we are going to prove that a category presented by a finite noetherian confluent
rewriting system is (F'P),. We can then provide such a category with finitely generated homology
modules. The homology we will calculate is the singular homology of the classifying space of the
category.

We end by giving a counter-example illustrating how important the hypothesis finite, confluent and
noethertan are and a concrete example dealing with matrices showing the limits of our homological
criterion.

I would like to thank Alain Prouté for all the precious suggestions he made to me and Peter
Greenberg® for the entrancing conversations we had together. I am indebted to Gerard Vinel for
all the remarks he made about this paper and his friendly help.

'See [7].

2See [7].

#See [?].

*It then gives the opportunity to deal with programme rewriting.
5(1956-1993)
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1 Recalls about Monoids and homology.

Formally one can define the homology of a monoid M as the homology of the complex obtained
by trivializing® and truncating the standard resolution over Z :

o — L™(Z) — L N2Z) — ... — LY 2Z) — L°(Z) — Z — 0,

where L denotes the endofunctor of the cotriple associated to the adjunction, Set 7= ZM-Mod.

1.1 The Lafont-Prouté approach.

Lafont and Prouté” have associated to any monoid M presented by a finite noetherian confluent
rewriting system, (X, R), a partial free resolution over Z :

ZM[P] 2 ZM[R] 22 ZM[S] 25 Z2M —5 7 — 0,

where P denotes the set of critical pairs associated to the presentation. Roughly speaking, a critical
pair consists in a pair of nondisjoint elementary reductions of the same word®. Therefore, they have
found again the following results.

THEOREM 1 — If M is a finitely generated® monoid then Hy(M) is finitely generated.
THEOREM 2 — If M is finitely related'® then Ho(M) is finitely generated.

THEOREM 3 (Squier) — If M is presented by a finite confluent noetherian rewriting system then
Hs3(M) is finitely generated.

Lafont and Prouté have given a geometrical interpretation of the partial free resolution smartly
constructed. This allows to visualize the space the homology of which is calculated.

1.2 The Kobayashi approach.

Let us consider a unitary monoid M having a noetherian confluent presentation, (X,R). Let us

suppose moreover that M has a right rewriting system, i>, generated by a finite set of rules §,
prefix-free, reduced, confluent and noetherian over R. Recall that in a right rewriting system, the

reductions on 3* have the following form : z N Yy, where z = uxy,y=vryandu —v € S. Sis
prefiz-free if uy is not a prefix of any wus, for all vy — vy € S and ug — v9 € S. § is R-reduced if
for any S-reduction w — v, u and v are R-irreducible. Finally, § is confluent and noetherian over

R, if the rewriting system obtained by union of R, and =5 is confluent and noetherian.
Let NV be the monoid defined (up to isomorphism) as the quotient of 3* by the congruence generated
by the rewriting system obtained by the union of Ry and 2. k being any unitary commutative

5By applying the coefficient functor trivializing the action of the monoid ring ZM.
"See [?].
8 For more precisions, one can have a look at [?].

t
%i.e. M is presented by a rewriting system ( ) such that ¥ is finite.
(

R
10 e. M is presented by a rewriting system (3, R) such that R is finite.



4 1 RECALLS ABOUT MONOIDS AND HOMOLOGY.

ring, kN will denote the monoid ring associated to N'. Let . be the right action of kM on kN,
defined for any 7 € A and any ¥ € M by 7.y = 7y.

In [?], Kobayashi calls V' the set of reddex of S, irrt(R) = irr(R)\ {1}, E = {(u,v) € irrt(R) X
irrt(R)|uv is a right minimal R-word }'* and for all n > 1, V(" = {(v!,...,0")|v! € V,v' €
irrt(R),Vi and (v',v*t1) € E,Vi < n — 1}. He then proves the following result.

THEOREM 4 (Kobayashi) — If a monoid M has a noetherian confluent presentation, (X, R),

together with a right rewriting system S, which is reduced prefiz-free confluent and noetherian
over R then one has a free resolution'? :

L VM s [VODTEM s s [VIEM 2 EM S BN — 0.
COROLLARY 1 (Kobayashi) — If RUS if finite then M is (FP)q.

We take an interest in the case of resolutions over Z by ZM-modules, since by this way we can find
again the Squier’s results. Kobayashilooks at this particular case in §5 of [?]. He considers a monoid
M presented by a finite noetherian confluent system, (3, R) and defines § by § = {a — 1]a € X}.
He claims that the right rewriting system generated by this S is confluent and noetherian over R
and then applies theorem 4 and finds again the Squier theorem 3. Take care ! this is true only
if the presentation does not admit any rule whose left term is a letter. Indeed, we can only apply
theorem 4, if the right rewriting system generated by & is prefix-free’* and R-reduced too, what is
not the case, in general, of the set S suggested by Kobayashi. To illustrate this remark, it suffices
to consider the following example. Let M be the monoid, presented by :

Y ={a,b,c},R={a — bc}.

This presentation is clearly noetherian confluent and finite, but if we write S = {a¢ — 1,0 —
1,¢ — 1}, as suggested by Kobayashi, the right rewriting system generated by S is not R-reduced
because a is a common reddex to R and §. To avoid this kind of problem, we can write in the
general case :

S={a— lacXnirrt(R)}.

1.3 Comparison between Kobayashi and Lafont-Prouté resolutions.

We are going to compare the resolutions!® constructed in [?] and [?] and see that under one
additional hypothesis (which we can always boil down to) those resolutions are not only homotopic!'®
but even isomorphic.

Recall that a rewriting system, (3, R) is minimal if for any rule r A, s, the reddex r is not

contained in any other reddex of R.

PROPOSITION 1 — If we assume that (X, R) is a minimal rewriting system without any reddex
in X then the resolutions constructed by Kobayashi and Lafont-Prouté are isomorphic.

114 e. uv is R-reducible but every proper prefix of uv is R-irreducible.

12Precisions about this resolution will be given in the next paragraph.

Y¥indeed in this case A is reduced to a single element monoid {1} and we get a resolution over Z.
M1t is the case of the set of rules S proposed by Kobayashi.

!5When they are comparable : in the case of resolutions over Z.

16 What is always true for free resolutions.



1.4 Functional programming languages. 5

PROPOSITION 2 — Any finite noetherian confluent rewriting system can always be turned into
an equivalent one'” verifying the assumptions of proposition 1.

The proof of both previous propositions is left to the reader.

Thanks to those propositions and to [?], we get a geometrical interpretation of [?]. This is helpful
to understand Kobayashi’s resolution and to imagine the generalization we are looking for.

New definitions will be necessary to extend Kobayashi’s work to categories ; for example we will
generalize the notion of module over a ring to module over a preadditive category. In that case,
words will be replaced by arrows and multiplication by composition ; it will then be generally
impossible to erase arrows'® without changing the source or target types.

1.4 Functional programming languages.

In this section, we are going to recall how to define a category corresponding to a functional

programming language on which we have added a few innocuous hypothesis.!®

Roughly speaking, a functional programming language consists of a language made of a set whose
objects are called primitive data types, constants of each type, operations®® and constructors. The
constructors can be applied to data types and operations and then produce derived data types and
operations of the language.

A programme consists in applying constructors to types, constants and functions.

A functional programming language £ does not own variables nor assignment statements as is the
case with lambda calculus.

The functional programming languages, £, we are interested with verify the following assumptions

1) there exists a type, 1, such that for each type T', there is a unique operation 7" — 1. Each
constant ¢ of type T is interpreted as an operation 1 — 7.

2) There is a do-nothing operation for each primitive and constructed type.

3) £ has a composition constructor, i.e. doing an operation one after the other?! is a derived
operation whose input (resp. output) type is the input (resp. output) type of the first (resp. last)
operation.

Under those assumptions, £ has a category structure, i.e. corresponds to the category ¢(£) defined
by :
- the objects of ¢(L) are the types of L,

- The arrows of €(£) are the primitive and derived operations of £. The source and target of
an arrow are respectively the input and output types of the corresponding operation.

The composition is determined by the composition constructor, the existence of which is assumed.
The identity ¢dp corresponds to the do-nothing operation for the type T.

17 e. presenting the same monoid.

81t is precisely what S does with letters in the case of monoids in [7].
9 As for example the one consisting in assuming that the considered languages have a composition constructor.
204 e. functions between types.

21'Which is possible if the input type of the second operation is equal to the output type of the first one.



6 2 PRESENTATIONS AND REDUCTIONS.

We are going to generalize theorem 4 to categories. More precisely, we are going to prove the
following result : if a category can be presented by a finite confluent noetherian rewriting system
then it is (F'P)oo-

The word problem for monoids has a natural extension to categories which can be interpreted as
the functional programming languages we described. An immediate consequence of the announced
result is the possibility of defining an homology for those functional programming languages and
a necessary homological condition for the existence of a confluent noetherian rewriting system for
programimes.

2 Presentations and reductions.

2.1 Presentations of categories.

e Grph and Cat will respectively denote the categories of small graphs and small categories.

e Let & be a graph, the objects of & will be called its types. Its set of types (resp. of arrows) will
be denoted by &q (resp. &1), and we will write 0 : &; — &g and 3 : &; — & for the source and
largel maps.

We are going to use the same notations for categories.
e Two arrows are said to be parallel if they have same source and same target.

] (Xi" will denote the set of non-identity arrows of a category €.

REMARK 1 — There exists a forgetful functor U— : Cat — Grph (see [?] p.49), to any small
category €, il associales the graph UC having the same objects and arrows, but in which we forget
Jfor each arrow whether il is a composition or an identity. This functor has a left adjoint, C'— :
Grph — Cat, (see [?] p.50 & p.85). Up from now &* will denote C'&.

e let & be a graph, we call free category over &, a category which is isomorphic to &*.

e A congruence on a calegory € is an equivalence relation f = g, on pairs of parallel arrows of ¢

which is compatible with the composition : if f = g then ho fok = h o g ok for all arrows such
fg

thataiﬂ)jciﬂi.

e Let € be a category, we call congruence associated with a subset R of ¢ x &, which is made of
couples of parallel arrows, the smallest congruence?? on @, containing R. Let =g be this congruence.

e Let = be a congruence on a category €, we call the quotient of € by =, the category ¢/ = whose
objects are those of € and whose arrows are the classes of the arrows of € modulo =. If f and g
are classes of composable arrows modulo =, the composition is defined by go f = go f.

22For the order defined by the inclusion of subsets.



-~

2.2 Reduction relation.

o A rewriting system is a pair (&, R) made of a graph & and a subset R of Qﬁ’l‘+ X &7, constituted
of couples of parallel arrows.

o Let (8,R) be a rewriting system. The set &, is called a set of generators and the elements of
&* are the words written by means of the set ;. The length of a word written by means if &y, is
the number of (non-identity) arrows it is made of.

e A presentation of a category € is a rewriting system (&, R) such that the category */ =g is
isomorphic to €. It is said finite if both & and R are finite.

2.2 Reduction relation.

o Let (8, R) be a rewriting system, up from now, pairs (f, g) € R will be written f — ¢ and will
be called the rules. In the case of monoids, some authors call them atomic reductions, so will we
do in the case of categories.

e Let f — g be an atomic reduction, we have ho fok — hogok for all arrows such that
frg

a5 b —c Py d o ho fok — hogok isthen called an elementary reduction associated with

the rewriting system.
e The left term of an elementary reduction will be called a reddex.

e The reduction relation generated by R, denoted —5, is the transitive reflexive closure relation of
R on &*, which is made compatible with composition.

e A reduction path from f; to f,41 is a sequence of elementary reductions f; — ... — fh1+1
which can be written fi —» fo41. fi is the origin and f,4, the extremily of this reduction path.
n is the length of the previous reduction path. n may equal zero the reduction path is then f — f
(reflexivity of —3).

Note that the symmetric closure of the reduction relation generated by R is =x.

e The reduction relation generated by R is said to be noetherian, if there is no infinite reduction
path fi — fo — ... — [, — ...

e The reduction relation generated by R is confluent®® if for any pair of elementary reductions of

the same word, f — ¢ and f — h, there are two reduction paths, (called residual paths), ¢ Sk
and h —5 k :

g/f\h
\f/

k

28 We should rather say locally confluent but thanks to the Knuth-Bendix theorem, confluence and local confluence
are equivalent under the assumption the reduction relation is noetherian.
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e An arrow [ is reducible by the reduction relation generated by R if there exists a reduction path
starting from f whose length is strictly positive. Otherwise [ is said to be irreducible.

o Let Irr(R) denote the subset of ] made of the irreducible arrows for the reduction relation
generated by R.

REMARK 2 — Let (6,R) be a presentation whose corresponding reduction relation is confluent
and noetherian. By the Knuth-Bendiz theorem, we know that to any arrow f € & there corresponds
a unique element of Irr(R), written f and called the canonical form of f.

e A rewriting system (&, R) of a category is said to be noetherian confluentif the reduction relation
generated by R is confluent and noetherian.

2.3 Finitely presented categories.

e We will say that a graph & = (&g, &) generates a category € if &y = ¢y and if there exists a full
functor from &* to €. &; is then called a set of generators for €.

PROPOSITION 3 — The existence of a finile presentalion for a category does not depend on the
choice of the set of generators, provided it is finite. More precisely, if (&g, 1) is a graph which
generates a category €, such that &y and &, are finite, we can construct a finite set Rg (the
elements of which are pairs of parallel arrows of &), such that (6, Rg) is a finite presentation of
¢.

PROOF : Let (X, R) be a finite presentation for €, ¥; = {F;,7 € I} and R = {(u;(X),v;(X)),7 €
J}, ¥ between parenthesis specifies that u;(X) and v;(X) are written by means of the set of
generators 3. There exists a full functor 7y : X* — €. Let f; be the image by 7y of F;. The

arrows of ¢ are then generated by ¢ = {f;,i € I}. Thanks to the adjunction Grphz Cat, 7y

is the functor generated by the morphism of graphs which maps each F; on f;. We then have
u;j(0) = v;(0) ; 0 between parenthesis specifies that u;(o) and v;(o) are written by means of the
set o.

Let & = (&, &) be a finite graph generating ¢ and 7 : * — € is a full functor (there exists
such a functor since & generates ¢). If we denote g the image of G by 7g, 7 is the functor
extending the morphism of graphs which maps each Gy on gx. The set g = {gx, k € K} generates
¢,

Let = be the congruence defined on &* by 7, we then have a functorial isomorphism (&*/ =) ~ €.

Since 7y, is full, for all £ € K there exists an arrow ¢4 (X) € X* such that 7y (¢ (X)) = gx. Since
T is full, for all ¢ € I there exists an arrow ¢;(&) € &* such that 7g(¢;(8)) = fi (i.e. ¢i(g) = fi).
If we set (&) = {¢;(8),1 € I}, we then have 7g(u;(¢(8))) = 7s(v;j(4(®))) (1).

Indeed, since 7 is a functor, if u;(X) = F;, 0.0 F; , then me(u;(¢(®))) = Te(di, (8)) 0 ... 0
(0i,,) (8))) = (¢, (8)) 0 ... 0 T (0, (5) (6)) = (T (6(8))) and 76 (u;(¢(8))) = u;j(7s((8))) =
uj(0) = vj(0) = v;(7e(6(8))) = T (v;($(8)))-

In the same way, o (¥4(6(8))) = b1 (Ta(6(8)) = b4(0) = g1 = 7e(Gi) (i)

Let = be the congruence generated on &* by the finite set of parallel arrows :
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Re = {(u;((6(8)),vi((¢(8))), 5 € T} U{(Gr ¥r(4(8))), k € K}.
Thanks to (i) and (ii), the graph of the congruence ~ is contained in the graph of =, we then have
a canonical morphism ¥ : (6*/ =) — €.

Let & be the unique functor ¥* — &* such that ®(F;) = ¢;(&). For all pair of parallel arrows
(uj(X),v;(X)) we have @(u;(X)) = u;j(¢(8)) and ®(v;(X)) = v;(4(8)) so we can consider the

functor ® making the following diagram commute :

P

D &*
P

where 7} denotes the canonical projection.

It remains to prove (on generators) the two following identities W o ® = ide and ® o ¥ = id

On one hand, ¥ o &(f;) = U(7k(B(F))) = 7(®(F})) = 7s(¢(G)) = fi.

e* /"

On the other hand, we notice that W(my(Gy)) = W(re(¥r(0(8))) = me(¢r(4(6))) (g) ”
m(0u(E) 50 we can write B(H(TL(Gr) = Blrs(vu(3) = 7o (B(E)) = 0 (6(0))
7T/QS k)s O

2.4 A concrete example of finitely presented category.

Let M, (Z/pZ) be the graph whose objects are the integers less than or equal to r and whose arrows
are all matrices

where n,m < r, are respectively its source and target ; a;; € Z/pZ, p prime number?* for all
1<i<mand 1<j5<n.

Let ("M, (Z/pZ), R) be the rewriting system such that :

- M, (Z/pZ) denotes the previous graph. It generates a free category M, (Z/pZ)* whose arrows
are juxtaposed matrices ; the juxtaposition of two matrices being allowed if the target of the right

one? is equal to the source of the left one?%.

- R is the subset of M, (Z/pZ)* x M, (Z/pZ)*, made of two sets of rules P and &.

The elements of P are the rules My My — M; x My, where My, My € M, (Z/pZ) and * denotes
the usual product?” of matrices?®. Note that since Z/pZis finite so P is.

#Thus Z/pZis a finite field.

2%¢.e. its number of rows.

26} e. its number of columns.
2TWhen it makes sense.
281t seems that matrices appeared in a Chinese book of the first century A.D. but their product was defined last

century by Hamilton and Cayley.
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The elements of & are the rules M — M', where M, M’ € M, (Z/pZ) and M’ is obtained from M
by “Gaussian?® elimination”. Note that Z/pZ being finite & is finite too and so R is.

The reduction relation generated by R is noetherian. Indeed, this clearly comes from the following
assertions :

1) the number of juxtaposed matrices strictly decreases when we make a product.
2) by Gaussian elimination, the number of nonzero coefficients in a matrix strictly decreases.

The rewriting system (9M,.(Z/pZ), R) previously defined is confluent if and only if r = 1. Indeed, if
r =1, (M(Z/pZ)) contains only p (1x1)-matrices and R = P, i.e. there is no Gaussian elimination
rule since p is a prime number. Confluence, in this case, exactly means that the product of matrices
is associative. If r € N*\ {1}, we have the following critical pair :

where the reduction “drawn on the left” consists in applying Gaussian elimination to the second row
coeflicient of the right matrix ; the reduction “drawn on the right” is the product of the matrices.

(2) is irreducible and the only possible reduction for ( 11 ) ( l ) is to make the product :

(1 T)(g)_mi).

so (1) being irreducible and distinct from (2), this critical pair is not confluent.

3 Homology of a category.

Let X be any object of a category € provided with a cotriple &, Barr and Beck have associated
a homology theory denoted H,.(X, K)s, where K : ¢ — Ab denotes a functor®® into an abelian
category Ab. To get more details one can have a look at [?].

In this section, we apply this definition to the cotriple associated to the adjunction of Lemma 1.

e To any category ¢, we can associate Z¢, the free preadditive category 3! generated by €.
3.1 Modules over a preadditive category.

o A right (resp. left) module over a preadditive category A, i.e. a right (resp. left) A-module is an
additive functor®? :
A% =5 7-Mod (resp. A — Z-Mod).

291t seems that this theory was in the Chinese book mentioned above and later on rediscovered by GauB.
30 Called coefficient functor.
#1To get more precisions, one can have a look at [?], p.281.

32The A-action



3.2 Free A-bimodules. 11

In other words, a right A-module corresponds to a family D = (M), ., (resp. M = (;M)) of
Z-modules, on which A acts. A°P-Mod and A-Mod will respectively denote the categories of right
and left A-modules.

e Let A and B be preadditive categories, we can consider the category A ® B°P whose objects are
the couples of objects (a,b), a € Ag, b € By and whose arrows are the tensor products of those
of A by those of B?. A ® B° is provided with the Z-bilinear extension of the product of the
compositions of A and B°?. A ® B is then a preadditive category.

o An A-bimodule is an A ® A°P-module. In other words, it is a family .M. = (,M)ape4, of Z-
modules, one for each pair of types, provided with left and right A-actions, which are compatible.
A-Bimod will denote the category of A-bimodules.

A being a preadditive category, we are going to consider two examples of A-bimodules that will be
useful further.

e let .0, be the A-bimodule defined by the following functor :

A ® A% s Z-Mod
(a,z) — 0
f®g*r] 10
(b,y) — 0

where 0 denotes the trivial Z-module {0}. 7 is additive.

e Let . A, be the A-bimodule defined by :
- the family (4.Az)q,ze4,, Where A, denote Hom 4(z, a),

- the functor

A® AP = Z-Mod
(a, ) — oAz
h@gor ) b a(h @ g%)
(b, y) — b.Ay

defined by a(h ® ¢°?)(f) = ho fo g is additive.

e Let .M, and .S, be two A-bimodules, .S, is said to be a sub-A-bimodule of M, if for all
(a,7) € A3, .S, is a sub-Z-module of ;M, and if (,S, < aimﬂf)(a,z)eAg is an A-bimodule morphism.

REMARK 3 — If n, LN M, is an A-bilinear morphism then the sub-A-bimodules .(im ¢). and
«(ker ). of M, and M. are respectively the kerneP? and image®* in the categorical sense®

3.2 Free A-bimodules.

o Let us consider the category functor (in the usual sense) SetA3, where the set A3 is identified with
the small discrete category whose objects are the elements of A2 and there are no arrows except the

#¥Gee [?], p.187.
#Gee [?], p.196.
3*We may show that .A-Mod is abelian and that .0, is its null object.
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obligatory identity arrows. Any object S of SetA% will be identified with the bigraded set ,S., where
for each pair (a,b) € A2, .S, = S(a,b). Note there exists a forgetful functor A-Bimod 25 Sets,

LEMMA 1 — O has a left-adjoint.

PROOF : We are going to construct a left-adjoint ,.A[—]A, : Set*s — A-Bimod for O, i.e. we
must have natural isomorphisms :

d

A-Bimod(, A[E]A,, 0, Set (L E,, O(,9,))

v
For any , B, € Set*?, let , A[E]A. be the family of Z-modules (e A[E)Az) (4 0)ca2 such that for each
(a,2) € A, 2A[E] Az = @y, Homaor (a,b) QZ[,E,] @ Hom4(x,y). We will write g[e] f the element
g @ [e]® f of JA[F]A;. We provide the previous family of Z-modules with an A ® A°P-action :

A® AP 2 Z-Mod

(a,z) — JA[E] A,
h®koP | L A(h @ k°P)

by JAIEA,

by setting A(h ® k°P)(g[e]f) = (h o g)[e](f o k) ; this functor is additive.
For any arrow L A[E]A. —= .M., define ®(¢) by ®(p)(e) = p(id,[elid,), for all e € ,F, .

For each ., — O (M) define ¥(v) by V() (glelf) = g.(¥(e)).f°P, for all gle]f € L A[E]A; ; the
points denote respectively the left and right A-actions on ,M,.

Note that W(%) is A-bilinear and that & and ¥ are natural reciprocal isomorphisms. Indeed :
U(2(p))(glelf) = g.(2(p)(e)).fF = g.ip(ida[elid). f7 = p(g[e][)

(W) (€) = W(Y) (idalelidy) = idy(€).idy = (e). 0

3.3 Projective A-bimodules.

e An A-bimodule . p, is projective, if given any morphism ¢ : ,p. — .M. and any epi e : ML —
M., there exists a morphism ¢ : cp, — M., such that the following diagram commute :

s §0%
/ é\
M —— o,
€

This is the classical definition of projectivity. We will not use it but rather an equivalent one we
will give in section 9.

Note that a free A-bimodule is projective.

3.4 Finitely generated A-bimodules.

e An A-bimodule M, is finitely generated i.e. of finite type if there exists . F, € SetA% such that
(Ia.zea, « Fz) *° made of elements of the various Z-modules M, (a,z € Ao) is finite and such that

%€ The set of generators for M.
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each element of any module is a Z-linear combination of g.e.f, g, f € Ay, e denoting a generator
and the points denoting the left and right .4-actions.

3.5 (FP), and (F'P), categories.

0 0 On—
o A complex of A-bimodules is an infinite sequence ... ot K K 7%, .. where for

each integer n, d, : K? — K771 is an A-bilinear morphism such that 8,_;38, = 0.

8n—l—l an 1 8n—l .7/1-}—1 m 0,2 m—1 '7/1—1
o Let .. K2 Ky —— . and ... —— K —— K — ... be two com-
plexes. A morphism of complexes is a sequence (f, : KT — .K'}), € Z of A-bilinear morphisms
such that f,_10, = 0, f,, for all n, i.e. the following diagram commutes :

8n an—l
*ICZ: _— *Icf_l _—

fn\ fn_1J

m m—1
a7 *IC * a/ *IC * Y
n+1 n n—1

8n—l—1
—_—

e Two morphisms of complexes f and g are said homotopic if there exists a sequence of A-bilinear
morphisms, (h; : KL — *IC”*H)Z-ZO such that f, — g, = ) 1hn + hp_10, for all n.

an-l-l *]Cf an *ICZZ_I 871—1
h Rt Ry
fn gn fn—l In-1
X 7/2_|_1 *IC/Z: 6/ *IC/Z—I p 7/1—1

e A complex is said positive if K7 = .0, for all n < 0, we write it

an-}- 1 an

Kr ICn_l 877‘_1 82

e A complex is exact if the A-bimodule image of each morphism is the kernel of the previous one
i.e. tm 041 = ker 0; for all ¢

€
e A complex over an A-bimodule .M, is a morphism of complexes K, — M, where K, is a
... ) .. dy=0 01=0 =0 0-1=0 .
positive complex and M, is the trivial complex ... «0x « M «0x ... Since
«04 is the null object in the category A-Bimod, for all i # 0, £; is a zero arrow, we can then rewrite

n an—l (?1

the previous complex over , M, as the following complex ... — *ICQ_I _ . — *ICS

=5 . Mm, — ,0,.

o A free (resp. projective) resolution of an A-bimodule .9, is an exact complexes over M,
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REMARK 4 — There always exists a free resolution of .M, by A-bimodules. Indeed, it is always
37 .

possible to consider the standard resolution
o (A[-JA 0 0)" (M) — ... — (A[-]A0O) (M) — M. — .0,

where A[—]A. and O denote the functors of lemma 1.

e Let n be an integer, a category € is (F'P),, if there exists a partial free resolution :
R R 5 R R — 7z, — L0,

where the ,R%, for all 0 < i < n are finitely generated projective Z¢-bimodules.

o If for any integer n, € is (F'P),, it is said (FP).

e A morphism of resolutions over an A-bimodule M, is a morphism of complexes over ,IM,.

. . € e’ . .
e Two morphisms of resolutions f and g from K, —— .M, to K, —— .M, are said homotopic

if f:.Ke — K. and g :.K, — K. are homotopic morphisms of positive complexes.

LEMMA 2 — There is always a morphism between two projective resolutions and two such mor-
phisms are homotopic.

The proof is a straightforward generalization of the proof made in the case of modules over a ring.

3.6 Contracting homotopies.

Let A be a preadditive category and let

Han-l-l *%: an *%3_1 871—1 82 81

&

be a complex of A-bimodules. In order to prove this complex is a resolution, we can exhibit a
contracting homotopy t.e. a sequence of Z-linear morphisms

Sn , Sn—1 et o2 S1 ; S0 o

satisfying the following properties : ey = id, 0150+ 1 = td and 0415, + 5,10, = id for all n > 1.
Indeed, if such a sequence of Z-linear morphisms exists we directly get that each n-cycle®® is an
n-boundary®?.

REMARK 5 — We only need the s, to be Z-linear. We will explain in the next paragraph why we
do not require the s, to be A-bilinear.

%TTo get more precisions, one can lock at [?], page 285.
384.¢. an element of ker &,,.

394.e. an element of im Ont1
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3.7 Homology.

We are going to define a functor?® which trivializes the left and right A-actions.

Let K : A-Bimod — Z-Mod be the morphism of graphs defined on any object .M. of A-Bimod,
as the Z-module :

K M) =( P o)/,

a,bEAg

where T is the congruence generated by the identifications z = f.z.¢°?. We will denote Z, the class
of # modulo . K associates to any A-bilinear morphism ¢ : .M, — . N,, the Z-linear morphism

K(¢), given by : K(¢)(T) = ¢(z).
K (¢) is well defined since ¢ is A-bilinear. Indeed, ¢(f.z.g°7) = f.¢(z).¢°" and so ¢(z) = ¢(f.x.g°P).
K is a functor. Indeed, K (id,om,) = idg(,m

)and:

*

K(po)(@) = (¢0¢)(z) = ¢(¢¥(2)) = K(9)(¢(x)) = K($)(K(¥) (7)) = (K(¢) 0 K(¢)) (7).

e We call homology of a category with coefficient K, the homology of the complex obtained by
trivializing and truncating the standard resolution :

o — K (A[-]A0 O)M(ZQ), — ... — K, (A[-]A00)}(2e), — K,Z&, — ,0,,

where L A[-]A. and O denote the functors of lemma 1.

REMARK 6 — We are now in position to explain why we do not ask the maps of a contracting ho-
motopy to be A-bilinear but only Z-linear. Indeed, trivialization being functorial, such a contracting
homotopy would induce a contracting homotopy on the trivialized complex and the homology would
be trivial.

4 A free resolution.

Thanks to lemma 2, the homology of a category € can be calculated by means of any projective
resolution over ,Z€,. Let (&, R) be a finite noetherian confluent presentation of a category €, we
can generalize [?] by constructing a free resolution of ,Z¢, by finitely generated Z¢-bimodules. For
this construction, we will need a noetherian relation >.

In section 6, we will give a geometrical interpretation of the resolution we are going to construct.
More precisely, we will exhibit a space whose homology is the constructed one. We shall partic-
ularly see how chains, boundary morphisms and the noetherian relation > can be geometrically
interpreted.

4.1 A noetherian relation.

e An arrow f' € &7 is a prefiz (resp. a suffiz) of f € &7, if there exists f” € &} such that f = f'o f”
(resp. f = f"of'). f'is a proper prefix (resp. a proper suffir) if moreover f" # id, (s (resp.

e An arrow f € &7 is right R-minimalif f is reducible but every proper prefix of f is R-irreducible.

“®Which will be the coefficient functor in the definition of homology, see [?].
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e Let us denote :
~irrt(R) = irr(R) \ {id;, @ € €},
- A=A{(f,9) € irrt(R) x irrt(R)/f o g is right R-minimal},

- 1 the subset of &; made of R-irreducible arrows.

Note that ¢ C irrt(R), otherwise (&, R) would not be noetherian confluent.

o Let us set 9" = {(vy, va, ..., v) € (irrT(R))" /vy € 9, (vi,vi11) € A, for all i = 1,...,n — 1}.
Note that #(1) = 9. We will agree about ,Ze¥V]ze, = ,Z¢[¢)Z¢, and ﬁﬁ(m)[vl|...|vn]ﬁg(%) will
be preferred to ﬁﬁ(vl)[(vl, ceey vn)]ﬁg(vn).

Let X = glu|ug|...|un]f and Y = E[vi|vy]...|v,] be elements of ,Ze[9(™)]ze, and ,ze[9]zZe,
with w; : #; — @;_1, v; 1 yj — y;—1 and such that f:a — 2, §: 20 — b, h : @ — y,, and

k: Yo — b are Z-generators :

e We write X > VY if there exists p : yg — xg such that uq o...0u,, of -5 POVLO...0U, O h. If
To = Yo, we may have p = udy,.

e With the previous notations, we write

p F idy,
X>Y if X>Y and or
U1 0...0 Uy 0 f —3 povy 0...0v, o h is of nonzero length.
Note that if X > Y and Y > Z, then X > Z. Similarly, if X > Y and Y > Z, then X > Z.
e Let U/ and W be elements of ,Ze¥\"™)]Z¢, and ,Ze[9M]Z¢,, we write U > W if for any nonzero

element pY of W, p € Z, Y = k[vi|vy|...|v,)R there is a nonzero element p’X in U, p' € Z,
X = gluq|usg]...|um] f such that X > Y.

LEMMA 3 — The relation > is noetherian on | J°2 .Ze&[9("]zZg,.

> and > are compatible with the left Z&-action and under some conditions, compatible with the
right Z¢-action. More precisely :

Let X = glug|ug|...|u,]f and Y = Evy|vg]...|v.]e be elements of ,Ze[9(™)]Z¢, and ,ze[9(M]ze,,

LEMMA 4 — if X > Y (resp. X > Y ) then for any arrow | of Z¢, we have :
1.X>LY (resp. .X >1Y).
LEMMA 5 — If X > Y (resp. X >Y ) then for any arrow | of Z€ such that foi ts R-irreductble

X.I>Y.I (resp. X.I>Y.l).
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The proofs of lemma 3, lemma 4 and lemma 5 are straightforward and left to the reader.

e For any arrow f € 9, we write [f] the corresponding generator in Z€[J]Z€,. We are going to
extend this notation to any arrow f € irr(R). If f = id, let us set [f] = 0. Otherwise f is a unique
composition of non-identity arrows f; € &1, f = fio...0 f,. Since f € irr(R)T, we have f; € 9.

Weset [fl=>1 fio...o fii[fi]fiz1 0 ... 0 fn.

4.2 Construction of the resolution.

Let us construct a resolution together with a contacting homotopy :

8n_|_1 (?n 82 81 €
79\ ze, — 7e[d)Ze, 78] e, & —s 0,
Sn Sn—1 51 S50 Y

Now on, any Z-generator g[3(g)]f of +Z&[¢]Z¢, will simply be written g ® f.
o Oy = ¢ : ZQ[C0)Z¢E, — LZE&, is the Z¢ bilinear morphism so that, £(a) = id, for all a € &.

o s = n:.2C — JZE)ZE, is the left Z¢-linear morphism defined by n(f) = f @i (f)» for
all f e ze.

o 0y : . ZeI|Z¢, — ZEC)ZE, is the Z¢-bilinear morphism so that, 9y ([f]) = idﬁ(f)®f—7®idg(f),
for all generator [f].

o S0 LZUEH|ZE — ZAV]ZE, is the left Z&linear morphism defined by sg (ﬁﬁ(?

for all f € Z¢ and where [f] is defined by extension of the bracket notation.
Note that en(f) = e(f @ id,5)) = [.

®
=
I
-5,
=
=l
=~

We are going to construct 4! Zg¢-bilinear morphisms d, : ,ze[¥"]ze, — ,zed~D]ze, and Z-
linear morphisms*? s,_; :,ze[@#"~V]ze, — .Zed™]Ze,, in such a way that the sequence of free
Z¢-bimodules

On 0y 01 €
29 M ze, — ze[d)Ze, LZEC)ZE, TE — L0,
Sp—1 S1 S0 n

satisfies the following properties :

n— lan—o

an

bn Sp— Zan 1+a Sp— l—leQ:[ﬁn 1]ZQ:7

) 0

)

) On(glor].w-on] F) < Gloal..|vn] f and s, (gl [ona]f) < Gloal-|vn-i]F,

d,)if vnof is R-reducible then s,,_10,(g [01| Jvalf) < glvil...|va] f, otherwise vnof is R-irreducible
and then s,_10,(g[v1]...|va]f) = glvr]-..|val f-

Cn

(
(
(
(

REMARK 7 — Note that the s; are left Z¢&-linear bul in general they are not right Z¢&-linear
otherwise the homology would be trivial.

“1By induction on n.
42They will even be left Z ¢ linear.
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REMARK 8 — The left Z¢-linearity of the s; and 0; together with lemma 4 show that conditions
(c,,) and (d,)) would be equivalent to those we would obtain if § was replaced by Eﬁ(ul)-

Let us start the induction :

LEMMA 6 — The sequence of free Z&-bimodules

(91 g
ZE[Co]ZE,
S0 n

«ZC — 0.

7a[d]7e.

verifies (a1), (b1), (1) and (dy).

PROOF : (al) : 801([f]) = €(ﬁﬁ(f) ® 7) - 5(7@ Ecr(f)) = 7 - 7 = 0.
(b1) : (rs0-+ne) (idy7 ®7) = 01 (id (—)[f])+n(7) =idyp®f—f@id, 7 +f®zd @ = idy 7@ 7
) = o
govo f < g[v]f. Moreover, v # id (smce v E D) then gov®f < gv]fand ﬁnally 01 (glv ]7) < g[vlf.
(d1) : 500 (g[]]) = so(@@ v o f) = so(gov@ ) =gl(vo fY] - goul/].
. If vo f is R-reducible then assuming (v o f) and f are written : (vo f) = upo...oug and

f Jio...of., we have, foreach 1 <7 <k and 1 <j <r, reduction paths : v of —5 (vof) and
vof -5 vofl 0...0 fy. Since vo f # (vo f) this allows us to write, for each 1 < i <k :

GOUL 0.0 U—1|ui|Uiz1 0.0 U < glv]f and since for each 1 < j < r, vo fio..o fi_y # id :
govo fio..o fi_i[filfj+10 .0 fr < g[v]f which implies so8; (g[v]f) < g[ 7.

. If vo f is R-irreducible then g[(vo f)] = g[v]f + goo[f] thus sud (g[v]f) = g[v]7. O

Let us suppose there exists Z&bilinear morphisms 9; and left Z&linear morphisms s;_1, 1 < i < n,
such that the sequence of free Z&bimodules

On 02 01 €
29 M) ze, T/ ze[d)Ze, LZEC)ZE, TE — L0,
Sp—1 S1 S50 n

verify (a;), (b;), (¢;) and (d;), for all 1 <7 < n.

Let us construct a Zbilinear morphism 8,41 : ,Ze0W"V]|ze, — ,ze0™]ze¢, and a left Z¢
linear morphism s, : .Ze#M]ze, — ,Ze[P*t]Z¢, such that properties (a,41), (bpt1), (Crg1)
and (d,41) hold.

(a,) and (b,,) allow us to write :

O Sn10p = 0. (1)

e Set

8n+1(ﬁﬁ(vl)[Ull"'|vn+l]ﬁa(vn+1)) =
idﬁ(vl)['v1|...|vn]vn+1 - sn_l(?n(idﬁ(ul)[vﬂ...|'vn]'vn_|_1). (2)

We get 0,11 on ,Zegd"t1]Ze, by Ze-bilinear extension.
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e Let us define s, by noetherian induction with respect to >, as follows :
- Ifv, 0 f is R-irreducible, set

sn(1dg(uy)[v1]--[0a] J) = 0.

- Ifv, o0 f is R-reducible then v, o f = VU 0 Upy1 0g, With v,41 € &1, g € &7 and v, o v,4 is
right R-minimal.
Since v, 0 v,41 is R-reducible, (d,) implies sn_lan(ﬁﬁ(vl)[v1|...|vn]vn+1) < ﬁﬁ(vl)[vl|...|vn]vn+1,
since v,41 0 g is R-irreducible, lemma 5 gives :

Sp—10n (wﬁ(ul)[/Ul|---|vn]vn+1)-§ < mﬁ(vl)[vll'“|vn]77 (3)
where . denotes the right Z¢-action.
By hypothesis s,,(s,-10, (Eﬁ(vl)[’vl|...|vn]m) .g) is already defined, hence we may set

Sn (wﬁ(vl)[v”'”lvn]?) = wﬁ(vl)[v1|"'|vn+l]g+ Sn (Sn—lan (mﬁ(ul)[vl|"'|vn]vn+1)'§) (4)

which defines s, on ,Ze[9(M]Z¢g, by left Z¢-linear extension.

LEMMA 7 — If there exist Z&-bilinear morphisms 0; and left Z&-linear morphisms s;_1, 1 <i<n
such that the sequence of free Z&-bimodules
On 02 1 €
L Ze[V]Ze, L ZC[Co)Z e,
Sp—1 S1 S0 n
verifies (a;), (b;), (¢;) and (d;) then for all 1 <i < n, 0,41 and s,, defined respectively by (2) and
(4) are such that the sequence of free Z¢-bimodules
Ont1 02 o1 €
Ze9 )] ze, e[V Ze. Ze[¢]Ze,
Sn 51 So n
verifies (ant1), (brt1), (€ny1) and (dpy1).

Ze[9Mze, TE — L0,

« 28 — 404

PROOF : (a,41) : (1) implies 0,0,41 = 0. Indeed, for any wﬁ(vl)['Ull"-|vn+1]ﬁ0un+l generating
the Ze-bimodule ,Ze[9"+V)]ze,, O (id () [01].-|0n]TrgT) = On($n—10n (1dgyy)[01]...|0x]Tr3T)) = 0
thanks to (1) i.e. (?n(?n_H(ﬁﬁ(vl)[v1|...|vn+1]ﬁavn+l) =0.

(brt1) @ Let ﬁﬁ(vl)[vl|...|vn]7 be any element of ,Ze[d(]zg,.

- Ifv, o0 f is R-reducible then v, o f is written v, o f = U, 0 Up41 0 g With v,41 € &1, g € &7
and v, 0 v,y right R-minimal. By (4) :

an—l—lsn (ﬁﬁ(ul)[vlllvn]f) = (5)
Ont1 (1) [V1]- [Vn41]T) + Ong1 80 (80105 (idg(0,)[V1]...[V0]0nT)) - G) -
By (3) and the induction hypothesis, let us rewrite the last term (since in particular (b,4;) is

satisfied for s,_10, (ﬁﬁ(vl)[v1|...|vn]m) g):

On415n(Sn—10, (Eﬁ(vl) [v1]...|vn]Tn71) ) = Spn—10n (ﬁﬁ(ul) [v1]...]vn]Tns1) T
—Sp—1 an (Sn—la’n (ﬁﬁ(vl) [Ul | "'|v’ﬂ]v’ﬂ+1) g) (6)
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Since d, is right Z¢-linear, the last term of (6) may be written :

Sn—1 an (Sn—l an(
Sn—1 871 (Sn—lan(

(Ul)[v1|...|vn]m).§) = sn_l((?ns_n_l@n(ﬁﬁ(ul)[v1|...|vn]m).§) thanks to (1) :
(Ul)[vl|...|vn]vn+1).§) = sn_l(8n(idﬁ(ul)[vl|...|vn]vn+1).§) and then

idg
idg
Sn—1 dn (Sn—l dn (ﬁﬁ(vl) [Ul | ...|‘Un]‘Un+1) g) = Sp—1 (dn (Hﬁ(vl) [‘Ul | |Un]7) (7)

Moreover, thanks to (2) :

8n_|_1(ﬁﬁ(vl)[’vl|...|vn+1]§) = idﬁ(vl)[vl|...|vn]7 - sn_lan(ﬁﬁ(vl)[vl|...|vn]vn+1).§ (8)
From (5), (6), (7) and (8), we get :

8n_|_18n (ﬁﬁ(vl)[vl||vn]7) + Sn_lan (ﬁﬁ(vl)[01||vn]7) = ﬁﬁ(vl)[vlllvn]f (9)

- Ifv, 0 f is R-irreducible then s, (ﬁﬁ(vl)[v1|...|vn]f) =0 and (d,) gives :
Sp—10p, (ﬁﬁ(vl)[m|...|vn]f) = ﬁﬁ(vl)[v1|...|vn]7 and in every cases (9) is verified.

(¢p41) @ On one hand, we have ﬁﬁ(vl)[vl|...|vn]m < ﬁﬁ(ul)[vl|...|vn+1]ﬁg( . On the other

hand, since v, 0 v,41 is R-reducible, (d,,) and the previous inequality imply :

'Un-l-l)

Sn—lan(ﬁﬁ(vl)[vl|"'|vn]vn+1) < ﬁﬁ(m)[v”"‘|vn+1]ﬁa(1}n+1) and so :

8n+1(ﬁﬁ(ul)['Ul|...|'vn+1]ﬁg(un+l)) < ﬁﬁ(ul)['Ul|---|’Un+1]ﬁa(un+1) . Moreover, using the notations from

the definition of s,,, we have : idg(,[v1]...|vn41]7 < ﬁﬁ(vl)[vﬂ...wn]f.

By induction hypothesis and (3), we may write :

sn(sn_lan(ﬁﬁ(vl)[’vl|...|vn]m) .g) < 8,10, (ﬁﬁ(vl)[vl|...|vn]m) g< ﬁﬁ(vl)[vl|...|vn]7.

therefore s, (ﬁﬁ(ul)[v1|...|vn]7) < Eﬁ(ul)[v1|...|vn]7.

(dyt1) @ Let ﬁﬁ(vl)[v1|...|vn+1]7 be an element of ,Ze[9(*+V]Ze, such that v,41 o f is R-reducible.
By (2) :

8n_|_1 (’Ldﬁ(ul)[U1||vn—|—l]f) = idﬁ(vl)[v1|...|vn]vn+1 O f — Sn—lan(Zdﬁ(ul)[Ull|vn]M)f

and since v, o v,41 is R-reducible, by (d,) we can write :

Sn_lan (ﬁﬁ(vl)[vﬂh}n]m) < Eﬁ(ul)[vﬂl’l)n]m S wﬁ(vl)[’l)ll...|’l)n+1]ﬁg(1}n+l),

and so, by lemma 5 s,_10, (ﬁﬁ(ul)[m...wn]m) J< Eﬁ(vl)[vﬂ...tvn“]f. Moreover, since Un-l-lAO]E
is R-reducible, we have a reduction path wv;o..ov,0wv,410 f —% v10...0v,0 (Vny1 0 f),
the length of which is nonzero, so ﬁﬁ(vl)[v1|...|vn]clvn+1 of < ﬁﬁ(vl)[v1|...|vn+1]7. We then get
8n_|_1 (’Ldﬁ(ul)[U1||vn+l]f) < idﬁ(vl)[vll“'lvn-}-l]f'

Applying s, to the previous term and using (c,41), we have :

$20n41 (idg(uy) (V1] [0n41] ) < O (1o [01]-[0n11]])) < iy [v]--|vna] T

Now, let ﬁﬁ(vl)[v1|...|vn+1]f be in ,ze[9(*+V)Z¢, with v,,q o f R-irreducible. By (2) :
80041 (1dg(u)[V1]--[0n11]]) = $n(idg(uy) [v1]---[0a]vn 41 0 ])

— 8n (50100 (idg(uy) (V1] [0n]TgT) )
and thanks to (4) we get 5n3n+1(ﬁﬁ(vl)[v1|...|vn+1]7) = ﬁﬁ(vl)[v1|...|vn+1]7.
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We have proved the following result :

THEOREM 5 — If a category has a finite noetherian confluent presentation, it is (FP)s

5 The particular case of monoids.

In the particular case of monoids, we are going to show that the constructed homology is the
one defined in [?] and [?]. Note first that a monoid can be viewed as a one-object category, the
composition of which is the product of the monoid. The notion of free preadditive category (over a
category) generalizes the notion of monoid ring ; in other words, if € is a one-object category then
7€ corresponds to the monoid ring associated with the “monoid” ¢

We note that the coefficient functor K (previously defined) may be seen as the composition K4 o
K, (K4 and K, functors), where K, : A-Bimod — A°-Mod and Ky : A°’-Mod — Z-Mod,
respectively denote the functors which trivialize the left and right A-actions.

We set

K,(M) = ( P 9)/T, and Kg(M.) = (P Ma)/Ta,
a,b€Aq a€Ag

where T, and T; are the congruences generated respectively by the identifications z = f.z and
z = x.g°?. We will respectively denote 9Z and 7%, the classes of 2 modulo T, and Tg.

K, assigns to each A-bilinear morphism ¢ 1 M. — N, the right A-linear morphism K (¢),
deﬁned by : K,(¢)(9%) = 9¢(z). K,(¢) is well defined since ¢ is A-bilinear.

K assigns to each right A-linear morphism ¢ : M, — N, the Z-linear morphism Ky(¢) defined
by Kq(0) (%) = qﬁ(m)d. K4(¢) is well defined since ¢ is right A-linear.

If (3,R) is a finite noetherian confluent rewriting system which presents a monoid M, (&,R),
where & is the graph such that &y = {*} and &; = X, is a finite noetherian confluent presentation
of M interpreted as a category.

Theorem 4, gives a free resolution of ZM-bimodules (in the usual sense) :

O

an—l 82

ZM[9"~VzM ZM[9)ZM ZM[E]ZM -5 ZM — 0.

then, applying K, : ZM-Bimod — ZM°P-Mod, the contacting homotopy being left ZM-linear,
we get a resolution isomorphic to the following free resolution of right ZM-modules :

= [00)zM — [0 VZM — . — [9]ZM — ZM — Z — 0

which is the resolution constructed in the particular case of §.5 in [?].

6 Geometrical interpretation, classifying space.

Let € be a category of finite noetherian confluent presentation. We assume that ¢ owns such
a presentation which is moreover minimal and without any reddex of length 1. Those two last
assumptions are innocuous because any finite noetherian confluent rewriting system can always be
modified in such a way it verifies those hypothesis*3.

4*There is a straightforward generalization of proposition 2 to rewriting systems for categories.
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From a geometric viewpoint, we can assign to the resolution constructed in Theorem 5, a space &,
on which the arrows of € act bilaterally. This space will admit a path component for each arrow of
¢.

In the first dimensions, let us construct £ the following way : first, we consider the 0-cells, id, @ id,,
one for each type a of €. Because of the bilateral action of the arrows, the 0-cells of £ are tensors,
f ®79, such that 8(g) = o(f). Thus & admits a path component for each arrow of ¢. For each
f € &; (thanks to the hypothesis made on the presentation) we connect f® Eg(f) to Eﬁ(f) ® f by

F@idypy  idgp)flido(s idg(py® f .
an edge, namely the 1-cell : . ! ! V) (e) . The element go f ® h,
S gof®h glflh gofoh
[ € &4, is then connected to g ® foh by the 1-cell : e * .

The boundaries of those 1-cells are the formal differences of their vertices 9y (idg(s)[flidy(s)) =
f® idg(f) — idﬁ(f) ® f and 01@@) [f]h) =g® foh—go f®h.

We then get a geometrical interpretation of the Z&-bimodules Z€[€]Z¢, and .ZE[I]ZE, together
with the boundary @;. The augmentation ¢ maps each f @ g on the composition f o3 ; this allows
to determine the path component of f ®g. In the next dimensions, the Zg-bimodules *ZQ['ﬁ(”)]ZQZ*
are interpreted as m-cells of the space.

For example, in dimension 2, we are going to visualize the noetherian relation > used in the
construction of the free resolution and defined in paragraph 4.1 :

let € be a category with a finite noetherian confluent presentation which is moreover minimal and
without any reddex of length 1. To make this example as simple as possible, let us assume that
fiz—t,g:y—z,h:z—y l:z— 2 k:y—tandi:az — t arein &; and that the
following rules : fog —k,goh — 1, koh — 1 and fol — 7 are in R.

We then get a 3-cell, ﬁﬁ(f)[f|g|h]ﬁg(h) corresponding to the previous critical pair, represented by
the “full tetrahedron”, whose vertice is idgs) @ fogoh = idg(s) ® ¢ and whose base is the 2-cell
[lglhlidy (1) (corresponding to the reduction fogoh — fol):

The 3-cells represented by the sides of the tetrahedron, 7[g|h]ﬁg(h), ﬁﬁ(f)[ﬂg]ﬁ, ﬁﬁ(k) [k|h]ﬁg(h)

and ﬁﬁ(f)[ﬂl]ﬁa(l) correspond to the four reductions appearing in the confluence diagram drawn
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above.

Those are examples of ordered cells :

etc.

Note that > is not only ordering cells belonging to the same path component. Nevertheless, we
only need this order between cells belonging to the same path component. Indeed, we only use >
to build d; and s; and the path components are “invariant subspaces” of 0; and s;.

After trivializing both right and left Z¢-actions, we get the space whose homology has been calcu-
lated, it is called the classifying space of the category €.

Note that in the particular case of a one-object category, the initial space (i.e. before trivialization)
is not the one constructed in [?], but after trivializing the left action (this action is superfluous in the
case of a one-object category), we recover precisely the contactible space of [?]*%. The trivialization
(of the left action) allowed the identification of the O-cells f ® id, with id., for each f of M.

7 A counter-example.

In this section, we give a counter-example of a category € having two presentations : a finite one
and another one which is noetherian confluent and we are going to show that ¢ does not own any
presentation which is both finite and noetherian confluent. To prove this, we need only show the
third homology module of € is not finitely generated.

Let € be the category presented by :

f g h k I
&y = {z,y}, & = {z Y,y Y,y Yy, z,x z}

A B
and Rf:{hof—()»f,fok—»gof,folL»gof}.

This presentation is clearly finite but not confluent. Indeed, the two critical pics :
/ No Ag C o;(/ \Q Ag
fohoy fohoyg

are not confluent.

Let us consider another presentation of € given by :

*“Except the fact that the remaining action is a right one when in [?] it is a left one ; nevertheless this is only a
detail relative to the decision concerning the side on which we want to apply the action of the monoid.
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f g h k I
& = {z,y}, 61 = {z Y,y Y,y Yy, z,x z}

A, B C
and Ro={hog"of——=g"ofine N} U{fok——go [ fol——>go [}
This presentation is infinite noetherian and generates an infinite number of critical pairs (of 2
forms), which are confluent :

hog'o fok hog'o fol

hog" ol?/ \4\0]@ hog" oc/ \4\0[

og*tlof g"o fok ogtlo f g"o fol

N N
n+lof n—I—lof

For the second presentation, we have 9 = {f,g,h, k, 1}, 9 = {(h,g" o f),n e NYU{(S, k), (f,1)}
and 9) = {(h, g7 o f, k), n € N} U{(h, g7 f, 1), € A'}.

ker 93 = 0,. Indeed 03([k|g™ o f|k]) = [h|g" o f]k — s102([h]g" o f]_E) with  d;([h[g" o k) =
[Alg™ o f ok — sodr([h lg" o f).k and 9;([h]g"o f) = idy, @ hogio f—h®g"o [ =id, @ g"o f —
h®@gro f

SO

s001([hlg7 o ).k = idy[g" o flk —h[g" o fIk
= iy lglg" To fok+ ..+ g 1 [g]fok+g L[]k
—h[glg"~to fok —...— hog"[f]k.
Then :
0x([hlg™ o fIk) = [hlg"*To f —idylglg"o [ —...— g" '[glgo ]

—9"[f]k + hlglg™o [ + ... + ko g"[ fIk.
So, we have :

s102([hlg" o fIk) = [Alg""" o f14 s1(s00: ([hlg™ o f)) — gL/ |K)id, -
+s1(s001 (GLS1k)) + o g[f|k]ids + s1(s001 (R o g[f]k)).

but sy (sed1([hlg™ o f)) = s1(s001(g[f]k = s1(s001(h o g[f]k)) = 0, which implies :
0s([hlg™ o f|K]) = [hlg™ o fIk = [hlg™*" o f] +glS|k]id: — o g[fI|k]ids
Replacing k by [, we get :
ds([hlg" o fII]) = [hlg" o [ — [hlg"*" o f1+g[f|)ids — T o g[f|1)id.
those elements are Z¢-linearly independent and so we have the free resolution :

0

LZeW¥ze, AARAY 7.e¢[9)Z¢. LZe[eg 7, L0,
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Applying K, we get a free complex. We can calculate :

K0s([hlg"of|k]) = [hlg"o f]=[hlg"* o f1+[f|k]~[f|k] = [hlg"of]~[hlg"* o f] and Kd5([hlg"of|I]) =
[hlg™ o f] = [hlg"*t o J]

which proves ker K03 is generated by the infinite family : {[h|g" o f|k] — [h|g" o f|],n € N} in
which none generator can be suppressed and so Hs(€) is not finitely generated.

8 The homological criterion is not sufficient.

We can see Theorem 5 as a necessary homological criterion for the existence of finite noetherian
confluent presentations of categories. We already know that this criterion is not sufficient* ; which
means there exists categories whose third homology module is finitely generated but nevertheless
those categories do not admit any finite noetherian confluent presentation.

We are going to show, in the particular case of the example of paragraph 2.4, that our homolog-
ical criterion cannot help us to decide whether 9M,(Z/pZ)* admits a finite noetherian confluent
presentation.

Let us try our homological criterion and so let us have a look at the homology of the category*®
presented by (M,.(Z/pZ),R). As we do not know precisely if 9 has a finite noetherian confluent
presentation, we cannot use Theorem 5. Nevertheless, we can use the standard resolution associated
to M (see remark 4). As Z/pZ is finite, the standard resolution is made of finitely generated free
zZM-modules and so the homology modules of 9 are finitely generated. In this case, the homological
criterion fails : after its use we are not able to tell if 9 can or cannot admit a finite noetherian
confluent presentation.

9 An equivalent definition of projective modules.

To be able to give an equivalent definition of projective A-modules*”, we will need to previously

define :

e O denoting the forgetful functor, A-Bimod — SetAg, an A-bilateral morphism s is said to be
surjective, if O(s) is a family of surjective maps.

LEMMA 8 — The forgetful functor O : A-Bimod — Set# is Jaithful,

PROOF : Thanks to theorem 1 p.88 in [?], it is sufficient to show that every component of the

€ w M

counit of the adjunction A[M]A, —— id,m, is epi. Recall that for every .M., the component
of the counit is defined by ¢ ,,, = W(ido(,an,)) and so for any Z-generator g[m]f in ,A[M]A,
a,z € Ao, we have ¢_, (g[m]f) = g.ido(m,([m]).f = g.m.f. € ,, has a right inverse 5,
defined by n,,,, (m) = idg()[mlid, (). €,4, is then epi. O

LEMMA 9 — In A-Bimod, epi arrows and A-bilateral surjective morphisms coincide.

%1t is not already sufficient in the particular case of monoids. In [?], Squier gives examples of monoids, so single-
object categories, verifying those properties.

**Denoted M up from now.

7 A being a preadditive category.
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e
PROOF : We begin with showing an epi arrow is surjective. Let 9, —— .9, be epi, we then
considers the following diagram :

m, 0
€

where :

vy
C M, —— M Je(LM,) denotes the canonical projection of the elements of .9, on their
class modulo the sub-A-bimodule e(. M),

- 0 is the zero arrow.

If we assume e is not surjective, then there existes m’ € , M., a,z € Ag, m' # 0 such that 7 (m’) # 0
and 7 is not the zero arrow. But, since roe = 0 = Qoe and e is epi, then 7 = 0, which is impossible.

Conversely, assume that M, —— 9 is a surjective arrow and let us show it is epi. Let

%) M» D be A-bilateral morphisms such that ¢ oe = ¢ oe. Applying the forgetful functor

O, we get O(¢)0O(e) = O(¢) oO(e). But, since O(e) is surjective, O(¢) = O(?). O being faithful,
we can conclude thanks to (i), that ¢ = 2. O

Here comes the following equivalent definition of A-projective modules :

e An A-bimodule ,p. is projective, if given any morphism ¢ : ,p. — M. and any surjective
arrow e : M, — .M., there exists a morphism ¢ : ., — M., such that the following diagram

commute :
0%

7
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