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Abstract

The Kontsevich-Kuperberg-Thurston invariant Z of rational homology 3-spheres was con-
structed by M. Kontsevich using configuration space integrals. G. Kuperberg and D. Thurston
have proved that it is a universal finite type invariant for integral homology spheres in the sense
of Ohtsuki, Goussarov and Habiro.

We discuss the behaviour of Z under rational homology handlebodies replacements. The ex-
plicit formulae that we present generalize a sum formula obtained by the author for the Casson-
Walker invariant in 1994. They allow us to identify the degree one term of Z with the Walker
invariant for rational homology spheres.
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1 Introduction

In 1995 in [O], Tomotada Ohtsuki introduced a notion of finite type invariants for homology 3-spheres
(that are compact oriented 3-manifolds with the same homology with integral coefficients as the
standard 3-sphere S3), following the model of the notion of Vassiliev invariants for links in the ambient
space R®. He defined a filtration of the real vector space freely generated by homology 3-spheres and
began the study of the associated graded space. In [Le], Thang Le finished identifying this graded
space to an algebra of Jacobi diagrams called A(()) whose definition is recalled in Subsection 2.1. To
do this, Le proved that the LMO invariant of 3-manifolds Z ;o that he constructed with the help of
J. Murakami and Ohtsuki in [LMO] induces an isomorphism from the Ohtsuki graded space to A(0).
In [KT], following Witten, Axelrod, Singer, Kontsevich, Bott and Cattaneo, Greg Kuperberg and
Dylan Thurston constructed another (possibly equal) invariant Z g g of rational homology 3-spheres
valued in A(0), and they proved that Zk k7 also induces the already mentioned Le isomorphism. All
real-valued finite type invariants in the Ohtsuki sense factor through Z = Zx g1 (or Zpa0). Therefore
Zrx kT and Zr o are called universal finite type invariants of homology 3-spheres. They play the same
role as the Kontsevich integral does play in the theory of Vassiliev link invariants.

In this article, we prove explicit formulae on the behaviour of Zg g7 under Lagrangian-preserving
rational homology handlebodies replacements. The precise statement is given in Theorem 2.4 after the
needed definitions. This behaviour had been observed in the case of Torelli replacements by Kuperberg
and Thurston in [KT], it is the key point in their proof of universality for their invariant.

The obtained formulae described below generalize the formulae obtained in [L1] for the Casson-
Walker invariant. They enlight the relationships between finite type invariants, Jacobi diagrams, in-
tersection forms and linking forms. They also allow us to identify the degree one part of Zx g with
the Walker invariant for any rational homology sphere in Theorem 2.6.

In the case of integral homology spheres, it is proved in [AL] that the splitting formulae obtained
in this article follow from the Kuperberg-Thurston formulae for Torelli replacements.

The detailed proofs of the formulae in the general case are given in Sections 3 to 5. Their sketch,
that is given in Section 3, is the now-standard sketch in this kind of proofs. But filling in the details
in the general case was surprisingly complicated to me. The detailed proofs are given here with full
generality, they substantially simplify in the case of Torelli replacements. Since the proofs heavily rely
on the Kuperberg-Thurston construction, this construction has been recalled in [L2, Section 1] and
all the precise statements that are needed in our proof are given and proved in [L2]. I hope that the
technical work contained here will help finding other properties for the invariant Zy xr.

I thank Dylan Thurston for very useful and pleasant conversations.

2 Statement of the main result

2.1 Jacobi diagrams

Here, a Jacobi diagram I is a trivalent graph I' without simple loop like 0. The set of vertices of
such a T" will be denoted by V(T'), its set of edges will be denoted by E(T'). A half-edge ¢ of T is an
element of

H(T) ={c= (v(e);e(e))|v(c) € V(T');e(ec) € E(T);v(c) € e(c)}.

An automorphism of T is a permutation b of H(I') such that for any ¢, ¢’ € H(T),

v(e) = v(c) = v(b(c)) = v(b(c")) and e(c) = e(c) = e(b(c)) = e(b(c)).



The number of automorphisms of I" will be denoted by fAut(I"). For example, ﬁAut(@) = 12. An
orientation of a vertex of such a diagram I' is a cyclic order of the three half-edges that meet at that
vertex. A Jacobi diagram T is oriented if all its vertices are oriented (equipped with an orientation).
The degree of such a diagram is half the number of its vertices.

Let A, (0) denote the real vector space generated by the degree n oriented Jacobi diagrams,
quotiented out by the following relations AS and THX:

- 3 &
AS:M +? =0, andIHX:\}\ +,U\ + A =0.

Each of these relations relate diagrams which can be represented by planar immersions that
are identical outside the part of them represented in the pictures. Here, the orientation of vertices is
induced by the counterclockwise order of the half-edges. For example, AS identifies the sum of two
diagrams which only differ by the orientation at one vertex to zero. Ag(0) is equal to R generated by
the empty diagram.

2.2 The Kontsevich-Kuperberg-Thurston universal finite type invariant 7

Let A be Z, Z/2Z or Q. A A-sphere is a compact oriented 3-manifold M such that H.(M;A) =
H.(S3;A). A Z-sphere is also called a homology sphere while a rational homology sphere is a Q-
sphere. Following Witten, Axelrod, Singer, Kontsevich, Bott and Cattaneo, Greg Kuperberg and
Dylan Thurston constructed invariants Z, = (Zkxr)n of oriented Q-spheres valued in A, (@) and
they proved that their invariants have the following property:

Theorem 2.1 (Kuperberg-Thurston [KT]) An invariant v of Z-spheres valued in a real vector
space X is of degree < n if and only if there exist linear maps

or (V) Ak (0) — X,

for any k <n, such that

n

v= Z(bk(y) o Zy.
k=0
A real finite type invariant of Z-spheres is a topological invariant of Z-spheres valued in a real
vector space X which is of degree less than some natural integer n. The Kontsevich-Kuperberg-
Thurston construction is recalled in [L2, Section 1]. In this article, Theorem 2.1 is used as a definition
of degree < n real-valued invariants of Z-spheres.
A degree < n invariant v is of degree n if ¢, (v) # 0. In this case, ¢, (v) is the weight system of
v and is denoted by W,,.

Remark 2.2 The above definition coincides with the Ohtsuki definition of real finite type invariants
[O]. The Ohtsuki degree (that is always a multiple of 3) is three times the above degree. We shall not
discuss the concept of finite-type invariants any further here. See [0, GGP, Ha, AL| and references
therein.

2.3 Generalized clovers

Unless otherwise mentioned, manifolds are compact and oriented. Boundaries are oriented with the
outward normal first convention. A genus g rational homology handlebody or Q-handlebody (resp. a



genus g integral homology handlebody or Z-handlebody) is an (oriented, compact) 3-manifold A with
the same homology with rational (resp. integral) coefficients as the standard (solid) handlebody H,
below.

g
Note that the boundary of such a Q-handlebody A is homeomorphic to the boundary (0H, = ;) of
H,. The intersection form on a surface X is denoted by (,)s. For a (compact, oriented) 3-manifold A
with boundary 0A, £ 4 denotes the kernel of the map induced by the inclusion:

H1(04;Q) — Hi(4;Q).

It is a Lagrangian of (H1(0A4;Q),{,)s4), we call it the Lagrangian of A.
A rational generalised clover is a 4-tuple

D= (M;k; (AYiz1, k5 (BYiz1,. k)
where

1. M is a rational homology sphere,

2. forany i = 1,2,...k, A’ and B’ are Q-handlebodies whose boundaries are identified by implicit
diffeomorphisms (we shall write 9B* = A?) so that Lpi = L4,

3. the disjoint union of the A* is embedded in M. We shall write

Lk AT C M.

The integral number k is called the degree of D. Such a rational generalised clover D is an integral
generalised clover if furthermore M is an integral homology sphere, and if By, Bs, ..., By are integral
homology handlebodies.

For such a rational generalised clover D, if J is a subset of {1, ..., k}, M (D) denotes the rational
homology sphere obtained by replacing A* by B’ for every element i of J.

MJ(D) = (M \ UieJInt(Ai)) U(Uie]@Ai) (Uie]Bi)

If I is a topological invariant of integral (resp. rational) homology spheres valued in an abelian
group, and if D is an integral (resp. rational) generalised clover, then we define I(D) as I(D) =

ZJQ{I,...J@}(_1)ﬁJI(MJ(D))'

Remark 2.3 The terminology generalised clover may not be a very happy one. I use it for the fol-
lowing reasons. The generalised clovers generalise the [GGP] clovers. In [Ha], Habiro independently
developed a clasper calculus that encloses the clover calculus and also allows for more general modifica-
tions. In the Habiro terminology, clovers are called allowable graph claspers. 1 feel that the terminology
generalised clasper cannot be used for something that does not generalise all the Habiro claspers, and
I do not feel like saying generalised allowable graph claspers.



2.4 Generalised clovers and Jacobi diagrams

Let T be an oriented degree n Jacobi diagram. Let V(T') and E(T') denote the set of vertices of ' and
the set of edges of T', respectively. The set of half-edges of T" is denoted by H(T') and its two natural
projections onto V(I') and E(T) are denoted by v and e, respectively.
Let D = (M;2n;(A%)i=1,... 2n; (B%)i=1,...2n) be a rational generalised clover. Let o : V(') —
{1,2,...,2n} be a bijection. Let us define the linking number £(D;T'; o) of D with respect to T and o.
The Mayer-Vietoris boundary map

51‘,]\/[1/ : Hg(Ai Ugai —Bi) — L i

that maps the homology class of an oriented surface to the oriented boundary of its intersection
with A’ is an isomorphism. This isomorphism carries the intersection form of the closed 3-manifold
(A"Up i —B%) on ®2Hy (A" Ugx: —B?) to a linear form Z(A?, BY) on ®?:1£i{2 which is antisymmetric
with respect to the permutation of two factors, where Li{? denote the jth copy of L 4i. The linear
form Z(A?, B") may be seen canonically as an element of ®§:1 (ij) )* where (Efj) )* denotes the
dual Hom(EfZ,?;Q) of EEZ?.

For each vertex w, number the three half-edges that contain w with a bijection

b(w) : v (w) — {1,2,3}

that induces the given cyclic order of these half-edges.
Let ¢ be a half-edge. Assign it the space

b(v(e))(e)) ™
X(c)= (Efqiw((c))))( )) :

The linear form Z(A*, B*) belongs to ®ceH(I)io(v(e))=iX (¢). The tensor product of all the I(AY BY,
fori=1,2,...,2n, belongs to

Rcerr)X ().
For {i,j} C {1,2,...,2n}, the linking number in M induces a bilinear form on Hi(A%; Q) x
H1(A7;Q), where Hy(A?) is canonically isomorphic to w. Furthermore, the intersection form

(,)p4i induces the map '
(0 H1(04%Q) — L

x — ()

that in turn induces an isomorphism from w to L7;.

Thus, for each edge f € E(I') made of two half-edges ¢ and d, (so that e~1(f) = {c,d}) the
linking number yields a contraction

s X(¢)® X(d) — Q.

Applying all these contractions to our big tensor maps this tensor to the linking number ¢(D;T';0) of
D with respect to ' and o.

Finally, we define the linking number £(D;I") of D with respect to I' as the sum running over all
the bijections ¢ from V(I') to {1,2,...,2n} of the ¢(D;T;0). Note that the product ¢(D;T')[I'] does
not depend on the vertex-orientation of I'.



2.5 Statement of the theorem
The main theorem of this article is the following one.

Theorem 2.4 Let n and k be two integers such that k > 2n > 0. Let D be a degree k rational

generalised clover.

Z.(D) = 0 ifk > 2n,
Zn(D) = zpﬁ%[r] if k= 2n,

where the sum runs over all degree n Jacobi diagrams T'.

The above theorem has the following immediate corollary.

Corollary 2.5 Let n and k be two integral numbers such that k > 2n. Let v be a degree n invariant

of homology spheres valued in a real vector space. Let D be a degree k integral generalised clover.

v(D) = 0 if k > 2n,
v(D) = ﬁ%wu(r) if k= 2n,

where the sum runs over all degree n Jacobi diagrams I'. The product £(D; T )W, (") does not depend

on the vertex-orientation.

Note that this corollary applies to (Z1,r0)n-
The following corollary of Theorem 2.4 is proved in Section 6.

Theorem 2.6 For any rational homology sphere M, if Ay denotes the Walker invariant normalized
as in [W], then

As another corollary, we could describe the generalised clovers in the setting of the Habiro-
Goussarov filtration of integral homology spheres, and give an algebraic version of the clover calculus
for integral homology 3-spheres over Q. This is done in [AL], where an algebraic version of the clover
calculus for integral homology 3-spheres over Z is also given.

Theorem 2.4 was observed by D. Thurston and G. Kuperberg when the rational homology han-
dlebodies B’ are obtained from the A? by composition of the identification of the boundaries by a
Torelli diffeomorphism that is a diffeomorphism that induces the identity in homology in [KT]. This
particular case is enough to conclude that Z is a universal finite type invariant of integral homology
spheres. Together with the fact that Z(S3) = 1, it implies Theorem 2.6 for integral homology spheres
that is also due to D. Thurston and G. Kuperberg.

The proof of Theorem 2.4 strongly relies on the Kuperberg-Thurston construction of Z that is
given in [L2] and not repeated here.



3 Sketch of the proof of Theorem 2.4

We refer to the construction of Z given in [L2, Section 1]. However we choose the homogeneous
volume form wg> on S? with total volume 1 once for all, and we only consider forms on Co(M) that
are antisymmetric (with respect to the exchange of two points). In particular, in this article, we say
that a 2-form wys on Cy(M) is fundamental with respect to a trivialisation 7a; of T'(M \ oo) that is
standard near oo if it is antisymmetric and fundamental with respect to 7); and wgz in the sense of
Definition 1.4 in [L2]. Similarly, here, a two-form wys on Co(M) or on dC2(M) is admissible if

o its restriction to dCe(M)\ST (Bar) is pa(Tar)* (wsz) for some trivialisation 7ps of T'(M\ o) standard
near oo, and,

e it is closed, and antisymmetric.

In particular, all fundamental or admissible forms coincide on 0C2 (M) \ ST (Bas).

Fix a rational generalised clover D = (M; 4N (Ai)i:17,,,,ﬁN; (BY)i=1....4N)-
For IC N ={1,2,...,tN}, set My = M;(D).

For any i € N = {1,...,§N}, fix disjoint simple closed curves (aé)j:17,,,7g,i and simple closed
curves (z;)jzlw,y. on 0A", such that

Lai = 69?;1[01;])
so that o
(a}, 2 )oai = Ok = { (1) i; i Z

Let Tps be a trivialisation of M \ oo that is standard near co. Define w(7ar) = pasr(7ar)*(wg2) on
OC,(M).

For j € N, define an antisymmetric closed 2-form w; on ST(B?) that coincides with w(ras) on
ST(B?)9ps, and define a trivialisation 7 of TB7 @ C that is the complexification of 7a; on dB7 as
follows.

When the restriction of 7as to 0B’ extends to B7 as a trivialisation 7, simply set w; =
P, (75)* (ws2), and TJC =7,0C.

When 771955 does not extend to B7, there exists a curve ¢ in 9B such that the twist T00Ty|oBs
across ¢ of Tyrppi (see Definition 4.2) extends to B7. The curve ¢ inherits a framing from dB7. Let
N(cj) = [a,b] x ¢; x [~1,1] denote a neighborhood of a curve ¢; parallel to ¢ inside B? such that
{b} x ¢j x [-1,1] € OB and ¢ = {b} x ¢; x {0}.

Then 7)pp; extends to the closure of (B7 \ N(c;)) as a trivialisation 7;, and 7, extends to
N(cj) so that

Tj over ON(¢;) \ ({a} x ¢; x [-1,1])
TMION (c;) = { 1 o1y over {a} x ¢; x [-1,1].

Then with the notation of Subsection 4.3, set w; = w(cj; 75, Tar|n(e;)) and TJ(»C = 7c(C53 Tj, TMIN(¢;))-

Remark 3.1 When A is a compact oriented 3-manifold bounded by a compact connected surface,
set
L% = Ker(Hy (0A; Z,/27) —> Hy(A; Z/27))
and set
L% = Ker(H,(0A;Z) — Hy(A;Z))

so that £4 = £4 ® Q. When A is a Z-handlebody, E%{QZ = L% ®7/)2Z. 1f E%zZ = EZB/J-QZ, then the
restriction of 7p; to OB7 extends to B’. This would always be the case, if only Z-handlebodies were
involved. This would also be the case if B/ were obtained from A7 by twisting the identification of 9 A’



by a Torelli homeomorphism of A7, that is a homeomorphism that induces the identity in homology.
However, in the general case, T)719p; may fail to extend to BJ. See Example 4.7.

Nevertheless, in a first approach to the proof, the reader can assume that 7,/9p; extends to Bi
and forget about Subsections 4.3 and 4.4 and the previous paragraph that are useless in the case when
Tym|ops extends to BI.

For I C N, equip 0C2(My) with the admissible 2-form w(M7) that coincides with w(7as) on
ST (Ba,) \ Ujer ST(B?) and that is equal to w; on ST(BY). Similarly, equip T(M; \ oo) ® C with
the trivialisation 7& that is the complexification of 73; over M \ (0o U (UjerB7)), and that equals
TJC over BJ. Define Z(w(My)) = (Zn(w(Mj))nen as in Proposition 2.14 in [L2]. Then according to
Proposition 4.8, (or to [L2, Theorem 1.9] when 7595 extends to B7),

2045) = 2oy exp(2 )

Furthermore, the p1(7F) are related by the following lemma.
Lemma 3.2 Let p(i) = p1(7(Myy)) — pi(7(M)). Then, for any subset I of N,

pi(rr) = pi(r(M)) + ) pli).
iel
PROOF: Fix j € N. Let Y be a rational homology handlebody with boundary —9A’ and with the
same lagrangian Ly as (M;\ A7) for any I C (N \ {j}). Embed the standard neighborhood (53 \ B?)
of co into Y. Let 7y be a trivialisation of T(Y \ co) ® C that coincides with TJC on OA’ and that is
standard near co. Let 7(7y, TJC) denote the trivialisation of T(B? UY \ 00) ® C that coincides with 1y
over Y \ co and with T}C over B7. Similarly define the trivialisation 7(7y, Tarjas;) of T(A7UY \ 00) @ C.
Then it is enough to prove that

p1(r(ry, 7)) — p1(T(Ty, Tara0))

is independent of the rational homology handlebody Y with boundary —9A47 and with lagrangian Ly,
and that it is independent of 7y .
As any 3-manifold, the manifold (—A7 U ([0, 1] x A7) U B7) bounds a 4-manifold W;. Then

Wj Upaixaas [0,1] x Y\ (5%\ B?)

is a cobordism between By, 4; and By p; whose signature is independent of the rational homology
handlebody Y with boundary —0A7 and with lagrangian £y and can be adjusted to zero for any
such after a connected sum with copies of CP? or CP? in the interior of W;. After this adjustment,
pl(T(Ty,TJC)) — p1(7(7y, Tarjas)) is just the obstruction to extend the trivialisation of TW; on W}
induced by the given trivialisations TJC and Tys|45- Therefore it is independent of ¥ and 7y.

o

Let [—4,4] x (]];cn 0A") be a tubular neighborhood of (]],.y @A) in M. This neighborhood
intersects A’ as [—4,0] x A" Let [—4, 0] x DA’ be a neighborhood of dB* = A" in B'. The manifold
My;; = M; is obtained from M by removing (A*\ (] —4,0] x dA")) and by gluing back B’ along
(] — 4,0] x DAY).

Let C; ¢ My, Cj =A'ifi ¢ I, Cj = B if i € I. Let 1_y,1) be a one-form with compact support

in ] —1,1] such that f[_l -1, = 1. Let (a% x [~1,1]) be a tubular neighborhood of a% in 9A”.



Let 7(a}) be a closed one-form on C} such that the support of n(a%) intersects [—4,0] x JA” inside
[—4,0] x (a} x [~1,1]), where n(a’) can be written

n(aﬁ») = 7T[*71,1] (M—1,11)-

Note that the forms 7(a}) on A* and B* induce closed one-forms still denoted by 7(a%) on (A*Ug 4: —B*)
that restrict to the previous ones.
The following innocent-looking proposition 3.3 is the key proposition. As of yet, I do not have
a simple proof for it. Fix a degree §N generalised clover D, and, for I C N = {1,2,...,4N}, set
M; = M;(D). Let
piz : Co(Mp) — (Mp)?

be the natural projection. For X C My, C2(X) denotes py (X?) C Co(Mj).

Proposition 3.3 There exist admissible 2-forms w(My) on Co(My), that extend the 2-forms w(Mr)
defined on 0Co(Mr) such that:

o Forany I,J C N, w(M;)=w(My) wherever it makes sense in Co(M),

that is on Cy ((M \ Useruy Int(A%) U Ujerns Bj).

e On O} X C}c,

w(Mr) = > Uzj, 2 )mes (0(a5)) A (nag))
17 ey Gi
1,.

j:
C=1,...,9k

where £(.,.) stands for the linking number.
Using these forms, we can easily prove the following lemma.

Lemma 3.4 Letn € N. Let I' be a degree n oriented Jacobi diagram:

ZlgN(_l)nllF(W(Ml)) =0 if AN > 2n,
— (D) ifiN = 2n.

PROOF: Let E be the set of edges of I'. We want to compute

A=) (=) Ip(w(M))).

ICN

Number the vertices of T so that V(T') = {1,2,...,2n} and
C’V(p)(MI) = (M \ 00)*™\ {all diagonals} = Int(Ca, (Mr)).
Fixie N ={1,2,...,§N}, the contributions to A of the integrals of A . pi(w(Mr)) over
Int(Con (M7)) N (Mg \ C})*"

are identical for I = K and I = K U {i} for any K C N \ {i}. Since they enter the sum with opposite
signs, they cancel each other. This argument allows us to get rid of all the contributions of the integrals
over

U (t(Can (M) N (M \ C})*™) .

ieN
Thus, we are left with the contributions of the integrals over the subsets Py of Int(Ca, (M[)) C (M)*"
such that:

10



For any i € N, any element of Py projects onto C% under at least one of the (2n) projections onto
M. These subsets Py are clearly empty if 4V > 2n, and the lemma is proved in this case. Otherwise,

Pr is equal to
2n

UUGEN H C}T(l)
=1

where X is the set of permutations of N. We get

A=Y A,

gEXN

A, = HH
- (- /% o210 N\ pilw(

IC ecE

with

N
It is enough to prove that A, = ¢(D;T; o). Recall that the vertices are numbered. For any i € N,
Di Int(an(MI)) — M[

denotes the projection onto the i factor. When e is an oriented edge from the vertex z(e) € V(T
to y(e) € V(I).
Pe(@WMD), e, oot =

Z g(zj(w(e)) a(y(e )))pr(e) (n(a;r(ac(e)))) /\p;(e)(n(az(“(e))))
)= ]_, e 790‘(:2(5))
f =1,.. "gU(y(e))

—_

Recall that when c¢ is a half-edge, v(c) denotes the label of the vertex contained in that half-edge,
and that H(T") denotes the set of half-edges. We shall also use the notation x(e) and y(e) for the
corresponding halves of an edge e. Let F' denote the set of maps f from H(I') to N such that for any

ce H(T'), f(c) €{1,2,...,9o(u(e) }-

o(2(e)) _o(u(e))
=) <H‘3 F(z(e)” f(u(e)))> I(f)

fEF \e€E

I(f) = N\ P @)
I1

7 (ACOU-BoW) fey

with

Recall that the set of half-edges has been ordered in two equivalent ways (up to an even permutation)
in the beginning of Subsection 1.4 in [L2]. The above exterior product must be computed with this
order. In particular, thinking of this order as being given by the order of the vertices, we get:

2n
o (i)
=11 M@ )-
i=1 /A"(“U(B”“)) ceHm/>—l(i) e

with the order of the three half-edges given by the vertex-orientation. Now,

[ N R MR - )
ArDU(=B®) ceHNv—1(3) ceEHNv—1(3)
where the sign & does not depend on 4. It is easy to conclude that A, = ¢(D;T;0). o

PROOF OF THEOREM 2.4: This lemma easily implies
Z[gN(_l)wZn(MI,w(MI)) =0 if gfN > 2n,

11



and it suffices to deal with the framing corrections by proving that if NV > 2n, then

YO Zo(Mr) =) () (Za (M, (M)

ICN ICN

By definition, we have that

Z (_l)ﬁIZn(MI) =

ICN

STV | Za(Mpw(M) + 3 25 (M, w(M) P (1)

ICN j<n
where P,_;(I) stands for an element of A,_;({) that is a combination of m[['| where the m are
monomials in p1 (7(M)) and in the p(i) of degree at most (n — j), for degree (n — j) Jacobi diagrams
I'. Furthermore, such an m[I'] appears in P,_;(I) if and only if m is a monomial in the variables
p1(7(M)) and p(i) for ¢ € I. Therefore, we can rewrite the sum of the annoying terms by factoring
out the m[[']. Let K C N be the subset of the 7 such that p(i) appears in m. (& < n — j). The factor
of m[I'] reads

> (DHZ(Mpw(M))).
KCICN

Therefore, the sum runs over the subsets of N \ K whose cardinality is at least N + j — n. Since
N >2n and j <n, N —n > n > j, hence N + j —n > 25 and the preceeding lemma ensures that
the above sum is zero. This concludes the reduction of the proof of Theorem 2.4 to the construction
of special admissible forms in Subsection 4.3, and to the proofs of Proposition 4.8 in Subsection 4.4
and Proposition 3.3 in Section 5. o
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4 Preliminaries to the simultaneous normalization of the forms

In this section, Subsection 4.1 is useful even in the case when 7,/ 5p; extends to B’ for any j, while
Subsections 4.3 and 4.4 are useless in that case.

4.1 Preliminaries

Let (e1,ez,e3) denote the standard basis ((1,0,0),(0,1,0),(0,0,1)) of R?, and let v; : R® — R
denote the z'th coordinate with respect to this basis. Let Ry = Ry, denote the rotation of R3 with
axis directed by e; and with angle 6. Let wg2 denote the homogeneous two-form on $? with total area

1. When « € S2, and when v and w are two tangent vectors of S? at a,

1
wgz(v Aw) = 4—det(a, v, W)
7T

where a A v A w = det(o, v, w)er Aeg Aes in \* R3.
Lemma 4.1 Let

T: RxS? — §2
0, ) —  Rio(a).

Then with the notation above,
* * k
T8 (ws2) = 75 (wsz) + EdQ A dvy

PROOF: Since Ry preserves the area, the restrictions of 7, (wg2) and 7 (wg2) coincide on /\2 Ti9,0)({0} %
52). Therefore, we are left with the computation of (7, (ws2) — 75" (ws2)) (uAv) when u € T(g,q4)(R x
{a}) and v € T(g,0)({0} x S?), where of course, 7g*(wg2)(u A v) = 0, and by definition,

1
77 (ws2)(uAv) = Edet(ng(a), DTy (u), DTy (v)).
Since D7}, (v) = Rye(v), and since Ryy preserves the volume in R3,
1
T8 (ws2)(uAv) = Edet(m R_1o (DT (u)),v).

Now, let a; stand for vi(a). DTy(u) = kdf(u)Rpgyr/2(c2ez + azez). Therefore, 7,7 (ws2)(u A v) =

kdﬁ") det(o, —azes + ages, v), and,

(65} 0 d’l}l
T (ws2)(uNn.) = kdﬁu) det | as —ag dvg
Qs (%) d?)g

= kdsz(ru) (1 — af)dvy — araadvy — ayasdus)
_ kdow) 5
A7 1.

Definition 4.2 Let S be an oriented surface, let T' be an R3-bundle over S, and let 7: T — S x R3
be a trivialisation of T. Let € > 0 be a small positive real number. Let 6 : [-1,1] — [0, 27] be a
smooth map that maps [—1, —14 €] to 0, that increases from 0 to 27 on [—1+¢,1 —¢], and such that
0(—x) + 6(x) = 2x for any = € [—1,1]. When ¢ x [—1,1] is an oriented neighborhood of an oriented

curve c¢ in S, let

O(c): S — %0;227;]
z ¢ ecx[—1,1] — 0
(v,u) €ex[-1,1] —  O(u).

13



A twist of T across an oriented curve ¢ with oriented neighborhood ¢ x [—1, 1] is the trivialisation

Toot: T — S xR3
7'_1(33,’()) = ('T7R9(c)(z)(v))

where Ry is defined in the beginning of Subsection 4.1.

Definition 4.3 Let S be a non-necessarily oriented compact surface with possible boundary, and let
v be a nonzero vector field of 7'S on the boundary 95 of S. Then the Euler number x(T'S;v|sg) of v
is the obstruction to extend the vector field v of T'S|55 to a nonzero section of T'S. More precisely, if
S is a disk then its unit tangent bundle S(T'S) is isomorphic to S* x S, and x(T'S;v}ss) is the degree
of the composite map

89S —Y— S(TS) = S x § 51, g1,

Note that the orientation of S does not matter for this definition (because changing it changes both
orientations of S and of the fiber S'). When S is connected, then the vector field vjps can be
extended as a nonzero section v outside the interior of a disk D in the interior of S, and x(7'S;v|ss) =
X(TD;vjpp). When S is not connected, then x(7'S;v}gs) is the sum of the numbers associated to the
different components of S.

Note that when the boundary of S is empty, x(7'S) is the Euler characteristic x(.5) of S. The following
lemma is left to the reader.

Lemma 4.4 Let S be an oriented surface and let v be a nonzero vector field of T'S on 0S. Use the two
orthogonal unit vector fields on S, ”outward normal to S” N(9S) and "tangent vector to S” T(9S)
to trivialise T'S|ps by mapping (N(8S),T(0S)) to the basis (e, e3) of R2. Using this trivialisation,

S(TS)ps = S(Rey © Rey) x 95 = St x 08.
Let d be the degree of the composite map
05 —2— S(TS) 95 = S* x 95 —2 51

Then
X(T'S;v195) = d + x(95).

Lemma 4.5 Let S x [—1,1] denote a collar of a connected oriented surface S with possible boundary.
Let T denote the restriction of the tangent bundle of S x[—1,1] to S = S x {0}. Let n denote a nonzero
vector field of T that is tangent to {x} x [—1,1] at (z,0), and let S(n) denote the corresponding section
of the spherical bundle S(T) over S. Let 7 : T — S x R3 be a trivialisation that maps n(x) to (x,e1)
for any x € 9S. Use 7 to identify S(T) to S x S?%, and let wg=(7) denote the associated projection
from S(T) to S?. Then

[ mselo) wse) = (TS T eas).
S(n)

PRrOOF: We first prove the result for a special trivialisation 7(5) of T

If the boundary of S is non-empty then 7'S is trivialisable, and we fix 7(.5) such that 7(S)(n(x)) =
(x,e1) for € S. Then both sides of the equality to be shown vanish.

If the boundary of S is empty, we trivially embed S x [—1, 1] in R? and we pull-back the standard
trivialisation of R? through this embedding. Then we compute the left-hand side as the degree of the
map ”direction of the positive normal” from S to S2. This degree is (1 — g(S) = x(S)/2). Therefore
it coincides with the right-hand side that is (x(7'S)/2 = x(5)/2).
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Of course, both sides of the equality are unchanged under a homotopy of 7 such that n = 71(e;)
on 9S. Now, up to this kind of homotopy, any such trivialisation is obtained from 7(S) by a twist
across a curve ¢ with possible boundary with a neighborhood ¢ x [—1, 1] properly embedded in S.
Thus, it is enough to prove that both sides vary in the same way under such a twist. It is clear that
the right-hand side varies like half the degree of the map 771(., e2) from 95 to the S* fiber of S(T'S) 95
equipped with an arbitrary fixed trivialisation. Therefore, the variation of the right-hand side is

{c,0S)

1
ideg (R,g(c)(.)(eg) 198 — St = S(Res & Reg)) = — 5

For the left-hand side, consider

7(S) (¢) x1d [0, 27]

o
S(n) — s(rs) 2L g« §? 2 s 4 s

sy (ms2(Te 0 7(9))7) (ws2) =[5y (ms2(7(9))") (ws2) =

[ 00 x 1) (77 (wse) - T (ws2)
S(n)
where according to Lemma 4.1,
(B(e) x T)* (T (ws2) — Ty (2)) = — 5w dB(c)).

Therefore, according to the Stokes theorem, the variation of the right-hand side is

1 (¢, 08)
As(n) —Evldﬂ(c) = —T,

and we are done. S

4.2 Extensions of trivialisations on 3-manifolds

This section is useless for the proofs. It only justifies why I could not avoid the following subsections,
and some of the difficulties they contain.
Let A be a compact oriented connected 3-manifold with boundary 9A. Consider the Z/27Z-
Lagrangian of A
L% = Ker(Hy (0A; Z)2Z) — Hy(A;Z/2Z))

This is a Lagrangian subspace of (H1(0A;Z/27); (., .)).

Let K be a framed knot in an oriented 3-manifold M, that is a knot equipped with a normal
nonzero vector field N, or equivalently with a parallel (up to homotopies). These data induce the
direct trivialisation 7 of T'M|x (up to homotopy) such that Tt (e1) = TK and Tt (e2) = N, where
TK is a tangent vector of K that is equipped with an arbitrary orientation. The homotopy class of
the trivialisation 7x is well-defined and does not depend on the orientation of K.

Assume that K bounds a possibly non-oriented compact surface ¥ that induces the given paral-
lelisation of K. Then if 7 is a trivialisation of the tangent space of M over 3, the restriction of 7 to K
is not homotopic to 7x. (This is clear when ¥ is a disk, and the trivialisation must be homotopic in the
other cases, since the tangent bundle of an oriented 3-manifold over a closed surface is trivialisable.
Recall that m1(SO(3)) = Z/2Z.)

If K is a framed knot in an oriented 3-manifold M and if 7 is a trivialisation of the restriction
of TM to K, we shall say that K is 7-bounding if 7 is not homotopic to 7x.
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Proposition 4.6 Let A be a connected oriented compact surface. Let T be a trivialisation of T(9A x

[—2,2]). Then there exists a unique map

Z
¢r : H1(OAZ/27) — 37
such that

1. when x is a connected curve of 0A = 0A x {0}, ¢-(x) = 0 if and only if x (equipped with its
parallelisation induced by OA) is T-bounding and,

¢r(z +y) = ¢ () + 97 (y) + (7,9).

Let ¢ be curve of 0A and let 7. denote the twist across c, then

PT.or(7) = Pr(2) + (2, €).

When A is a compact oriented connected 3-manifold with boundary 0A, T extends as a trivialisation
over A if and only if ¢T(£i/22) = {0}.

PROOF: Define ¢, for the embedded possibly non-connected curves z in 9A by ¢,(z) = 0 if and only
if « is 7-bounding, (that is such that 7 would extend to a possibly non-oriented connected surface
with framed boundary z).

With this definition that is consistent with the first part of the above definition, ¢, is additive
under disjoint union. This is easy to see if one of the considered embedded curve is 7-bounding, and
this additivity property is preserved by a trivialisation change.

Then this definition only depends on the class of x in Hy(0A; Z/2Z). Indeed let = be an embedded
(possibly non-connected) curve in A and let y be another such in A x {—1} that is homologous
to  mod 2. Then there exists a framed (possibly non-orientable) cobordism between x and y in
OA x [—1,1], and it is easy to see that x is 7-bounding if and only if y is 7-bounding.

Let us check that ¢, behaves as predicted under addition. Because we are dealing with elements
of Hi(0A;Z/2Z), we can consider representatives of x and y that are disjoint or that intersect once.
The first case has already been treated. Note that both sides of the equality to be proved vary in the
same way under trivialisation changes. When x and y intersect once, consider the punctured torus
neighborhood of x Uy, and a trivialisation 7 that restricts to the punctured torus as the direct sum of
a trivialisation of the torus and the normal vector to OA. Then ¢,(z +y) = ¢-(x) = ¢-(y) = 1. The
last two assertions are left to the reader. o

Example 4.7 For any Q-handlebody A, there exists a Lagrangian subspace £Z of (H1(0A;Z);(.,.)),
such that £4 = £% ® Q. However, as the following example shows, Ei/ *Z i3 not necessarily equal to
LEQZL)2Z.

The Q-handlebody A will be the exterior of a knot OM in S? x S' described below. Consider a
Moebius band M embedded in the interior of a solid torus D? x S! so that the core of the solid torus is
equal to the core of M. Embed D? x St into §% x S* = D2 x S1Ugp2yg1 (—D? x St) as the first copy.
Let m be the meridian of the knot M that is oriented so that M pierces twice S? x 1 positively,
and let ¢ be the parallel of M induced by M. Then A is a Q-handlebody such that £4 = Z[2m)],
L4 =Q[m], and £5*" = 7./22]0).
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4.3 Special admissible forms and their p;.

In this subsection, we fix
e a rational homology sphere M,

e an embedding of a neighborhood N(¢) = [a,b] x ¢ x [-1, 1] of a framed link ¢ in Bj; that respects
the framing of c,

e a trivialisation 7 of T'(M \ (co U N(c)) that is standard near oo, and

e a trivialisation 7, of T (N(c)) such that

i { T over d([a,b] x ¢ x [-1,1])\ ({a} x ¢ x [~1,1])
T lor over{a} xcx[-1,1].

With these data, we will associate:

e in Notation 4.9, an admissible 2-form w(c¢; 7, 1) on 9C5 (M) that reads pas(7)* (wgz) over ST (M \
(00 U N(¢)), and then

3n
(6T m) = za(w(e ) = Y In(M; \ pi(w(eT,m))T]
reé, =1

as in [L2, Theorem 1.9],
e in Notation 4.14, a trivialisation 7¢ (¢; 7, 1) of T'(M \ 00)®C that reads T®1¢ over M\ (coUN (¢)),
and its relative Pontryagin class p1(c¢; 7, 7) = p1(7c(c; 7, 7)) that is defined like in the real case.
Then in Subsection 4.4, we shall prove

Proposition 4.8 For any rational homology sphere M equipped with a framed link ¢ in Bys, with a

trivialisation T of T(M \ oo) that is standard near oo outside N(c), and with a trivialisation 7, of
T(N(c)) such that

Tb:{ T over I([a,b] x ¢ x [-1,1])\ ({a} x ¢ x [-1,1])
T Yot over{a} xcx[-1,1].

for any trivialisation Tpr of M\ oo that is standard near oo,

pl(TM) —pl(C; 7, Tb)5

2n (67, m) — 2n(Tr) = 1 n-

In particular, Z(M) = Z(M;w(c; T, Tp)) exp(wf).

The forms w(c; 7, 7) are called special admissible forms. We shall see that they satisfy Lemma 4.5
(see Lemma 4.12).

The two main ideas that make our constructions work are the following ones.

1. This neighborhood will be filled in by gadgets that factor through the projection p. : [a, b] X ¢ x
[-1,1] — [a,b] x [-1,1].

2. Over N(c¢), w(c;T,7) will be the average of two forms coming from genuine trivialisations.
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Notation 4.9 Let € > 0 be a small positive number and let F' be a smooth map such that
F: [a,b] x[-1,1] — SO(3)
Identity if ju|>1—¢
(t, u) — RG(u) ift<a+e
R,g(u) ift>b—¢

where 6 has been defined in Definition 4.2. The map F' extends to [a, b] x [—1, 1] because its restriction
to the boundary is trivial in m (SO(3)).
Let F(c, ) be defined on ST(N(c)) 2 [a,b] x ¢ x [~1,1] x S? as follows

F(e,m): [a,b] xex[-1,1] x §2 — §2
(t,0,u,v) —  F(t,u)(v).

Define the closed two-form w(c, 1) on ST ([a,b] x ¢ x [—1,1]) as

g2 (Te 0 mp)* (wg2) + F(e, )" (wg2)
5 )

w(e, ) = (4.10)

Set
] | pm(T)*(wg2) on ST(M \ (N(c) Uo0))
wle; T, 1) = { w(c, ) on ST(N(c)).
Extend w(c, ) on 0Co(M) \ ST (Bas) like in the case of fundamental forms.
Observe that w(c, 1) is the average of two forms corresponding to trivialisations. The definition

of w(c; 7, 7p) is consistent because using Lemma 4.1, we see that:

g2 (Tp = 7)* (ws2) on ST({b} x ¢ x [-1,1])

wle,m) =4 mg2(mp = 7)" (ws2) on ST ([a,b] x ¢ x {—1,1})
ws2(Teomp = 7)*(ws2) on ST({a} x ¢ x[-1,1])

Of course, w(c;T,7) depends on many choices. However, we shall see that z,(w(c; 7, 7)) only
depends on the isotopy class of the framed link ¢, and on the homotopy classes of 7 and 7.

Bundle isomorphisms ¢ from T'(M \ co) to itself over a diffeomorphism ¢ that is the identity on
(M \ (B Uo0)) induce isomorphisms of ST(M \ co) that trivially extend to 9C2(M). The pull-back
¢* (w(c; 7, 1)) of a special admissible form w(c; 7, 7) under such an isomorphism is a special admissible

form w(¢ ~(¢);T7 0@, 0 ).

Lemma 4.11 If ¢1 is a bundle isomorphism from T (M \ 0o) to itself that is the identity over (M \
(Bym U o0)) and that is isotopic to the identity among these, then zn(w(afl(c);T o¢1,Th 0 P1)) =
zn(w(e; T, 7p))-

Furthermore, z,(w(c; 7, 7)) is independent of the choices of F, ¢ inside its homotopy class, T, and T
in their homotopy classes.

PROOF: For the first assertion, consider the isotopy
¢:10,1] x ST(M) — ST(M).
Then Proposition 2.27 in [L2] tells that
z2n (T (w(e;7,1))) — zn(w(c; T, 7)) = 20([0, 1] X ST (Bur); ¢ (w(c; T, 7))).

The right-hand side vanishes thanks to Lemma 2.26 in [L2]. This proves that when 7 and 73, vary in
their homotopy classes so that they always satisfy

= { T over 9([a,b] x ¢ x [-1,1])\ ({a} x ¢ x [~1,1])
T 'or over {a} x cx [-1,1],
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zn(c; T, T) remains the same.
Similarly, the choice of the tubular neighborhood of ¢ in ¥ does not matter because it can be
realised by an isotopy of M that induces a bundle isomorphism isotopic to the identity on ST (Bys).
Now, since m2(SO(3)) is trivial, two maps F = G and G that satisfy the hypotheses of Nota-
tion 4.9 are homotopic by a homotopy

G :[0,1] x [a,b] x [-1,1] — SO(3).
Extend w(G) that satisfies
G1) on {1} x ST(Byu)
Go) on {0} x ST(By)
Tée (T)(wg2) on [0,1] x ST (B \ N(c)),
by using Formula 4.10 on [0,1] x [a,b] x ¢ x [~1,1] x S?. Then according to Proposition 2.27 in

[L2], 2, (w(G1)) — 2n(w(Go)) = 2,([0,1] x ST(Bu); w(G)), and since w(G) pulls-back under a bundle
morphism onto [0, 1] x [a,b] x [—1,1] x S? over [0, 1] x N(c), then

zn([0,1] x ST(By);w(G)) =0,

thanks to Lemma 2.26 in [L2]. o

Lemma 4.12 Let S be an oriented surface of M whose boundary does not meet N(c), then fS(n) w(e; T, 1)
only depends on the topology of S and on the restriction of T on 35, and if the positive normal n of
S is the first vector of the trivialisation T on 0S, then

1
/ (e ) = Sx(TS; 7 en)ios).
S(n) 2

PRrROOF: First isotope S so that it meets ¢ along meridian squares D(x;) = [a,b] x {z;} x [-1,1] of c.
Without changing the sides of the equality to be shown, perform a bundle isomorphism of ST (M \ co)
over 1)y that is isotopic to the identity and supported near D(x;) so that the normal n to the square
D(z;) becomes the first vector of 7 around 9D(z;). Let D; be a disk inside D(z;) with a smooth
boundary outside [a+e,b—¢] x {z;} x [-1+¢,1—¢] such that 7(n) = e on ID;. Set wyr = w(c; T, 7p).
Then we have the following sublemma.

Sublemma 4.13 fDi(n) wp = %X(TS;T_l(-,€2)|aDi)-

PRrOOF: Indeed, on D;, wyy is the average of two forms corresponding to the trivialisations 7. o 7, and
F(e, 1)o7y For both of these, n is the first vector of the trivialisation on dD;, and Lemma 4.5 tells us
that 2 |, D, (n) WM 1s the average of the obstructions to extend the second vector of these trivialisations
to D;. These obstructions vary like the degrees of the induced maps from OD; to the fiber S of
S(TD;jpp,) equipped with an arbitrary trivialisation. We conclude because the degree of the map
induced by 7 is the average of the degrees of the map induced by 7. o 7, and the map induced by
F(c,m) 0. o

Back to the proof of Lemma 4.12, use Lemma 4.5 and the additivity of both sides of the equality
under gluing to treat the case when the positive normal n of S is the first vector of the trivialisation
7 on 9S. For the other case, let [—1,0] x 35 be a collar of 95 = 95 x {0} inside S. After an arbitrary
isotopy of 7 around [—1, 0] x S supported away from 0.5, the positive normal n of S is the first vector
of the trivialisation 7 on 8S x {—1}. Then, since fs(n) Wy = f(S\]fl,O]XOS)(n) W +f([7170]><85')(n) WM,
according to the first case, |, S(n) WM only depends on our arbitrary isotopy, on the topology of S and
on the restriction of 7 on 95. o
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Notation 4.14 Let Fiy be a smooth map such that

Fy: la,b] x[-1,1] — SU(3)
Identity if ju|>1—¢
(t,u) — RG(u) ift<a+e
Identity ift > b—e.

Fy extends to [a, b] x [—1, 1] because 71 (SU(3)) is trivial. Define the trivialisation 7¢ = 7¢(¢; 7, 75) of
T(M \ c0) @ C as follows.

e OnT(M\ (c0c UN(c))), 7c =7 R ¢,
e Over [a,b] x ¢ x [-1,1], 7c(t, 7, u;v) = Fu(t,u)(m ® 1c) (¢, v, u; v).

(Here, as often 7, that is valued in N(c) x R3 is identified with 7gs o 73, and 7¢c is identified with
mes o T¢.) Since mo(SU(3)) is trivial, the homotopy class of 7¢ is well-defined. Since 7¢ = i ® 1¢
outside Bjy, the definition of p; for trivialisations that are standard near oo extends to this kind of
trivialisations, hence 7¢ has a well-defined integral p; defined as in Subsection 1.5 in [L2]. Set

pi(e; T, 1) = p1(rele; 7, m)).

4.4 Proof of Proposition 4.8.

Of course it is enough to prove this proposition for some trivialisation 7p; of M \ oo that is standard
near oo, thanks to Propositions 1.8 and 2.11 in [L2]. The last sentence of the proposition follows from
the previous one by the arguments given at the end of Subsection 2.3 in [L2].

Fizing the main notation for the proof.

Let A be a rational homology handlebody that meets N(c) along {a} x ¢ x [—1,1]. (A can be the
genuine handlebody obtained by first thickening N(c) to an embedding of [a — 5,b] X ¢ X [—2,2] and
then construct A as a regular neighborhood of a connected graph whose loops are the connected
components of {a — 2} x ¢ x {0}.) Let [a,b] x A be a collar of A in the closure of By \ A such that
the notation [a, b] X ¢ x [—1,1] is consistent.

Let D be a disk of A that does not meet the tubular neighborhood of ¢. Let D3 be a topological
ball of M that contains M \ Bjs, that intersects [a, b] x A as [a,b] x D, and A along {a} x D. Choose
a trivialisation 7p; of M \ oo that is standard near co so that 7 and 75 coincide on the complement
of {oc} in the ball D3. Set BY, = M \ Int(D3), ¥ = 9A \ Int(D), and

B = BY\ (AU ([a,b[xX))

Then BY} is the union of three rational homology handlebodies A, B and [a, b] x .
There exists a curve cg of X that is transverse to ¢, such that the restriction of 7 to {b} x ¥ is
homotopic to 7., o Tas|{py 5. Homotope 7y so that

e 7=T., 01y onlab x (X\cx[-1,1]), and
e 7, =T, orpy on [a,b] x ¢ x [-1,1].

Let c4 be the curve obtained from c U cp by replacing the neighborhoods X of the double
points by ) according to the orientation. Then c4 represents (¢ +cg) in Hy(X), and the restriction
of T4 = 74 to {a} x ¥ is homotopic to 7c, © Tar|{a}xs-

Set wy = w(e; T, 7p)-
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Sketch of the proof of Proposition 4.8.
Consider the part
By = 0([0,1] x BY) U ([0,1] x {a,b} x %)

of the base [0,1] x B} of the S(R?)-bundle E = [0,1] x ST(BL}). We shall fix a closed two-form w

over By such that
R on {0} x ST(BY)
T | w(tm) on {1} x ST(BL)

and such that any extension w of w to E will satisfy
2n(Ta) — zn(wnr) = zn (B w).

Simultaneously, we shall fix a related trivialisation 7 of T'([0, 1] x BY)®C over By, that coincides with
the trivialisation associated to wys and 737 on {0,1} x BE. Now, for each closure C of a connected
component of ([0, 1] x BY)\ By, that is for C = [0,1] x 4, [0,1] x B or [0, 1] x [a, b] x ¥, we are going
to prove that:

w extends as a closed form w over C, and z,(Ejc;w) = —de for each C. Of course, once

these goals are achieved (in Lemmas 4.17, 4.19 and 4.20), the proof will be finished.

Definition of w over By.
Define the bundle isomorphisms over the Identity of [0,1] x {d} x &

Q: ST([0,1] x {d} x %) — [0,1] x ST(M){ayxs
T((t,d) x 1g)(v € ToX) —  (ET({d} x 15)(v))
%(t—i—u,d, 0)u=0 — (L ai(d—&—u,a)u:o).

u

Define wo(cp, 7ar) on [0,1] x ST(M)|(yxs and wo(ca, 7ar) on [0,1] X ST(M)|{a}xx by:

_ (@) (wlen, ma 0 Q) on [0,1] X ST(M)|(bysxepx(-1.1]
woles, ) { w(Tar) on [0, 1] x ST(M)|{p}x (2\en x[~1,1])>
= (Qil)* (w(cAvTM S Q)) on [07 1] X ST(M)\{a}chx[—l,l]
wolea ) { w(Tar) on [0, 1] X ST(M)|{a}x (S\cax[=1,1])5
using the notation of Equation 4.10. Set
W on {0} x ST (M \ o)
w(Tar) on {1} x ST (M \ o)

wol(ep, ) on [0,1] x ST (M) |5} xx
wo(ea, ) on [0,1] x ST (M) a3 xs-
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w(TB = T|B) [0,1] x ST(B) w(Tar)
wo(cp, ™M)

w(e,mp =Tey 0TM) [0,1] x ST([a,b] x X) w(Tar)
wo(ca, Tm)

w(TA :T|A) [0,1] X ST(A) w(TM)

Here, @(c, 1) is the following slight modification of w(c; 7, 7,) (allowed by Lemma 4.11).

= { w(e T, ) on ST ([a+¢/2,b] x )
| me2(Ho7., ota)*(wgz) on ST ([a,a+¢/2] x X)

where
H:[a,a+¢/2] x ¥ — SO(2) C SO(3)

is a homotopy supported near the intersection points of ¢ and c¢p, valued in the subgroup SO(2) of
SO(3) that fixes ey, such that H({a} x ¥) = {Identity}, and Ho4./907Tc, = T Tcp.

Definition of the trivialisation 1o of T([0,1] x BL)) @ C over By.

Wherever w is associated to a trivialisation 7 of T(BL)), 79 is its natural stabilisation S(7) obtained
by mapping the unit tangent vector to T'([0,1] x {z}) to the first basis vector E; of C*, and the ;th
basis vector of R? to the (i + 1)t basis vector of C%. On the remaining parts of By that are of the
form ¢ x D%, with a trivialisation 7, of T(Bys) over ¢ x D? involved (possibly via Q),

70(7 € ¢,d € D* ) = Fy(d)(S(n)(v, d; v))
where Fyr is a fixed map from D? to the stabilizer SU(3) of F; in SU(4).

Lemma 4.15 The form w extends as a closed two-form on [0,1] x ST(A), on [0,1] x ST(B) and on
[0,1] x ST([a,b] x %).

PROOF: Let us first treat the case of [0,1] x ST(A). We know w on 9([0,1] x A) x S2, and it is
sufficient to prove that the integral of w vanishes on the kernel of the map induced by the inclusion
H3(9(]0,1] x A) x $?) — H3([0,1] x A x S?). This kernel is generated by the 9([0, 1] x S(a;)(n)), for
1=1,...,9(%), where the a; are simple curves that generate L4, S(a;) is a surface whose boundary
is made of k; copies of a; and S(a;)(n) is the section of ST'(A)|g(4,) given by its positive normal that
belongs to T'({z} x OA) on a neighborhood [a — 1,a + 1] x JA of JA.

/ w 2/ w(Tar) —/ w.
0([0,1]x S(a;)(n)) S(ai)(n) 0xS(a;)(n)u[0,1]x8S(a;)(n)

Lemma 4.12 tells that the first integral is a well-determined function of the restriction of 7p; to
05(a;)(n) and of the topology of S(a;)(n).
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Now, A = ({0} x A) Uaa ([0, 1] x QA) is equipped with a smooth structure in a standard way so
that the S2-bundle over it ST ({z} x M) is identified with its unit tangent bundle with the help of
the bundle isomorphism Q over [0,1] x OA. The smoothing makes

S(a;)(n) =0 x S(a;)(n) U[0,1] x 8S(a;)(n)

smooth and leaves the normal to the surface unchanged. On A, the form w is a special admissible
form with respect to a trivialisation 7 of T(A \ N(ca)) and a trivialisation 7, of T(N(c4)). Now,
(A, S(a;)(n),7,7) is isomorphic to some (A4, S(a;)(n), 7, 74) such that the restrictions of 7/ and 7
to 05(a;)(n) coincide. Therefore, Lemma 4.12 applies to identify fs’(ai)(n) w to fS(ai)(n) w(Tar). Thus,
w extends as a closed 2-form on [0, 1] x ST(A).

Similarly, for any surface S(b;) of B whose boundary is in {b} x X, Lemma 4.12 applies to
identify f{O}xS(bi)(n) w to ff[O,l]x@S(bi)(n)U{l}xS(bi)(n) w, and allows us to prove that w extends as a
closed 2-form on [0, 1] x ST(B).

Now, for any curve 7 of 3, Lemma 4.12 also applies to prove

J o=, g
{0} x[a,b] xyU[0,1]x {b} x~ [0,1]x {a} xyU{1} X[a,b] X~y

and we easily deduce from this fact that w extends as a closed 2-form on [0,1] X ST([a,b] x X). ¢

Lemma 4.16 Let K be a rational homology handlebody, and let T be a trivialisation of TK over
9([0,1] x K). Let w denote the associated two-form on 9([0,1] x ST(K)) and let Tc be the associated
trivialisation of T([0,1] x K) ® C. Then w extends to [0,1] x ST(K) and for any closed extension of
w to [0,1] x ST(K),

1
zn([0,1] X ST(K);w) = —Zpl([oa 1] x K;7c10(0,1)x K))On-

PROOF: The existence of w is shown as in the above proof of Lemma 4.15. By Lemma 2.25 in [L2],
since the restriction injects H?([0, 1] x K x S2) into H2(9([0, 1] x K) x S?) and maps H([0,1] x K x 5?)
onto H1(9([0,1] x K) x 5?), 2,([0,1] x ST(K);w) only depends on the values of w on the boundary
of [0,1] x ST(K).

Use the restriction 71 of 7 to {1} x K to identify ST(K) to K x S%. Then 7 = Go; for some map
G :0(]0,1] x K) — SO(3) that maps {1} x K to 1. Then both sides only depend on the homotopy
class of G among these maps. In particular, we may assume that G maps [0,1] x 0K to 1. But in
this case, it is enough to embed K into a rational homology sphere M where 7 extends and to apply
Propositions 1.8, 2.11, and 2.27 in [L2]. o

Lemma 4.17 1
2p([0,1] x ST(A);w) = _Zpl([oa 1] x A; 7_0|8[0,1]><A)6n-

PROOF: There exists a bundle isomorphism v : ST'(A) — ST(A) over the identity map of A such

that 74 = Tp7 0 9.
. ~[-1,0] x ST(A) — [0,1] x ST(A)
Let ) still denote 9 : (t,v) — (4 1,0()).
Extend w on [~1,1] x ST(A) by ¢*(w|[0,1]xs7(4)) on [~1,0] x ST(A). Then according to Lemma 2.26
in [L2],

zn([—1,0] x ST(A);w) = z,([0,1] x ST(A);w) = %zn([—L 1] x ST(A);w).
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Again, z,([—1,1] x ST(A);w) only depends on the values of w on the boundary of [—1, 1] x ST(A)
that are
w(Tar o Y?) on {—1} x ST(A)
w(Tam) on {1} x ST(A)
walea,me)  on[0,1] x ST(A)jpa 2 ST([0,1] x DA)
wo(ca, T 0vp) on[—=1,0] x ST(A)pa £ ST([-1,0] x 9A).

Furthermore, with the data on 9([—1,1] x A), we again naturally associate a trivialisation 7o of
T([-1,1] x A) ® C over 9([—1,1] x A) such that

p1([—1,1] x A;7o10(1-1,11x 4)) = 2p1([0, 1] X A;T910(0,1]x 4))-
Therefore, we are left with the proof of the following equality.
~p([=11] X Asmoj0(-1,1)x4))
4
There exists a smooth map G for a small positive number € > 0 such that
G: [-1,1]x[-1,1] — S80(3)
Identity if|u|>1—¢

(t,u) — Rop(u) ift<—-14¢
Identity ift>1—e.

2n([~1,1] x ST(A);w) = 5. (4.18)

Define G as the Identity map over [—1,1] x (DA \ cax] —1,1[) x R? and by
G((t,0,u;0) € [-1,1] x eax] — 1, 1[xR?) = (t,0,u; G(t, u)(v)).

Thanks to Lemma 4.16, in order to prove Equality 4.18, it is enough to prove that changing the
value of w on [~1,1] x ST(JA) into w(G o 7ar) does not change the left-hand side of the equality and
that changing the trivialisation 7o of T([~1,1] x A) ® C into G o 7ps ® 1¢ over [—1,1] x A does not
change its right-hand side.

To do this, first assume without loss that over a collar [—1, 1] X [a — 1, a] x A everything behaves
as a product by [a — 1, a], and use this to extend both w as 7T[*—1,1]xanS2 (w) on this collar, and the
trivialisation 7o. In particular, w and 79 are associated to the trivialisation 7a; over [—1,1] x [a —1,a] X
(0A\ (ca x [=1,1])), and over {1} x A. Over [-1,1] x [a—1,a] X caX [=1,1], 7"} 11, 54 52 (w) factors
through [—1,1] x [—1,1] x S2. We are going to modify w on | — 1,1[x[a — 1,a] x ca x [—1,1] x S?
by a form that still factors through the bundle projection onto | — 1,1[x[a — 1,a] x [-1,1] x S?, and
therefore without changing z, ([—1, 1] x A; w) (thanks to Lemma 2.26 in [L2]) so that w = w(GoTys) over
[—1,1]x{a}xdA. Then the associated trivialisation will read ¢ (K )o7as on 9([—1, 1] x[a—1,a]x[-1,1])
for some fixed

K :9([-1,1] x [a—1,a] x [-1,1]) — SO(3)

Since m3(SU(4)) = 0, K will extend to SU(4), and such an operation will not change p;([—1,1] x
A;10(w)a(-1,1]x 4)) either. i

Change w over [—1,1] x {a} (xca) x [~1,1] into w(G o 7). In order to achieve our goal, it is
enough to see that w that is defined on the boundary of [~1,1] x [a — 1,a] x [~1,1] x S? extends to a
closed form on the whole space. To do that, it is enough to prove that

/ w=0
A([-1,1]x[a—1,a] x[~1,1]) xv

for some v € S2. This integral equals

/ w.
a([—1,1]x[a—1,a])x[~1,1] xv
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It depends neither on ¢4 nor on 7as. Assume that there exists a closed curve d that intersects c4 x[—1, 1]
along {o} x [—1,1]. Then

/ w= [ v,
d([—1,1]x[a—1,a]) x[-1,1]xv 9([—1,1]x[a—1,a]) xdxv

and this integral vanishes as in the proof of Lemma 4.15.
Therefore, Lemma 4.16 (together with Lemma 2.26 in [L2]) applies to conclude the proof. ¢

Similarly, we get the following lemma.
Lemma 4.19 1
zn([0,1] x ST(B);w) = _Zpl([oa 1] x B;7o19(0,1)x B)0n

PROOF: We can also deduce this lemma from the previous one by gluing a rational homology han-
dlebody A’ along {b} x X to B so that both 75 and 7., o 75 extend to A’, and A’ U B is rational
homology ball. o

Unfortunately, the same methods do not apply to prove the following similar lemma over [0, 1] x
[a,b] x X.

Lemma 4.20 Let ¥ be an oriented compact surface with one boundary component. Let Tpr be a
trivialisation of ST ([a,b] x X), let ¢, ca, cp be three non-necessarily connected curves of X, let

&(e,Tep o) on {0} x ST([a,b] x %)

w— w(Tar) on {1} x ST ([a,b] x X)
wol(es, Tvm) on [0,1] x ST([a,b] X X) s} xx
wol(ca, Tar) on [0,1] x ST([a,b] X X) a3 xx-

1
zn ([0, 1] x ST([a,b] x ¥);w) = —Zpl([O, 1] x [a, b] X 33 701a((0,1] x[a,b] x5) )On-

Remark 4.21 Here, we have three genuine trivialisations, namely 7as, 7., o Tar and 7., o Tas, and it
may be possible that the three of them cannot simultaneously extend to a rational homology handle-
body whose boundary contains ¥. (Indeed, according to Proposition 4.6, if these three trivialisations
extend to a Q-handlebody K, ¢-,, (ﬁ%{/ZZ) = 7, ormt (E?QZ) = {0}, this implies that (c4,.) vanishes
on E?QZ and hence that c4 belongs to E%{/ZZ. Similarly ¢p must be in E?QZ. Thus, if the intersection
of ¢4 and cp mod 2 does not vanish, such a K cannot exist.) Therefore, we have to give further

arguments to prove Lemma 4.20 that will conclude the proof of Proposition 4.8.

PROOF OF LEMMA 4.20: Fix an arbitrary trivialisation 7as of T'([a,b] x ¥). Any other trivialisation
is obtained from 1) by a bundle isomorphism. By Lemma 2.26 in [L2], the left-hand side does not
depend on 7p;. The right-hand side does not depend on 7); either for the same reason. Hence, if
Lemma 4.20 is true for 7z, it is true for any other trivialisation of T'([a, b] x ).

Then for simplicity, we shall assume that TM(B%((u, o) € [a,b] X X)) = e7 and that 7py o T'(X —
{c} x ¥) is independent of c¢. In particular, 7); makes unambiguous sense on all [a, §] x X.

Lemma 4.22 Under the hypotheses above and the assumptions of Lemma 4.20, equip [0,1]x([2,4]xX)
with the trivialisation Ty of [2,4] x X. Let wy be a closed form on [0,1] x ST([2,4] x 3) such that

w(Tamr) on [0,1] x ST([2,4] x ¥)|1a3xx
w(,Z'CA o TM) on [0, 1] x ST([274] X E)|{2}><E
w(Tam) on {1} x ST([3,4] x X)

YT G, T, o) on {0} x ST([2,3] x )
w(es, Tm) on {0} x ST([3,4] x X)
w(ca, ™) on {1} x ST(]2,3] x X).
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Then zp([0,1] x ST([2,4] X X);w1) = 2,([0,1] x ST([a,b] X X);w). Let W =[0,1] x [2,4] x X. Let
be the trivialisation of TW & C over OW corresponding to the given trivialisations. Then

p1(Wiraw) = p1([0, 1] X [a, b] X X; 70ja(]0,1] x[a,b] x5) )On -

0,4 210 (1,4
wales, ) (cB 1) w(rar)
5(e, Toy omar)| [0,1] % [a,0] X £ x S2 |w(rar) - P
w(e, Tepy 0 TM) w(ca, ar)
wolca, )
0,2) (1,2)

w(,TCA o TM)

PROOF: Let us first treat the p; case, there is a map Gy from OW to SU(3) such that 71 is the
stabilisation of Gy o 7y over OW,

on [0,1] X {2} x ca x [-1,1]
on {0} x {3} x cp x [-1,1]
on {0} x [2,3] x (cg x [— 1 J1\ e x [-1,1])

@

1 on [0,1] x {4} x &

1 on [0,1] x {2} x (E\CA x [-1,1])

1 on {1} x [3,4] x

1 on {1} x [2,4] x (E\CA x [—1,1])
Gyp=1 on {0} x [3,4] x (X \ ¢ x [-1,1])

1 on {0} x [2,4] x (X \ (cUcp x [-1,1]))

Tex

7.

7.

o

Furthermore, on {1} x [2, 3] xca x [—1, 1], Gy factors through the natural projection onto [2, 3] x [—1, 1],
on {0} x [3,4] x ¢p x [-1,1], Gy factors through the natural projection onto [3,4] x [—1,1], and on
{0} x [2,3] x (¢ x [-1,1] \ ep x [-1,1]), Gy factors through the natural projection onto [2, 3] x [—1, 1].

p1(W; 71w ) only depends on the homotopy class of Gy with respect to {(1,4)} x X. Since
p1([0,1] x [a, b] X ¥;7oja(j0,1]x[a,5]xx)) 15 defined by a homotopic map. The two p; coincide.

The coincidence of the integrals can be seen on the picture where the projection of ST'([0, 1] x
[a,b] x B) 2 [0,1] x [a,b] x ¥ x 5% on [0,1] x [a,b] is represented on the left-handside, and the
projection of ST([0,1] x [2,4] x ) 2 [0,1] x [2,4] x ¥ x S2 onto [0, 1] x [2,4] is represented on the
right-hand side. Next w; can be defined on the (products by X x S? of the) two hatched triangles
by pulling-back w(cp, 7ar) and w(ca, Tar) using the pictured horizontal projections. On the remaining
part, wi can be filled in by the pull-back of w under the obvious diffeomorphism from this remaining
part to [0, 1] x [a, b] x X x S2. Now, the z, corresponding to the hatched triangles will vanish while the
zp, corresponding to the remaining part equals 2, ([0, 1] x ST ([a, b] X ¥); w) thanks to Lemma 2.26 in
[L2]. o

Lemma 4.23 Let ¢4 be a curve with the same class as ca in Hi(3;Z/2Z). Let

H:[0,1] x {2} x & — SO(3)
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satisfy
H([0,1] x {2} x 0%) = {1}
H=17., on {(0,2)} x X,
H="T, on {(1,2)} x .

Let w3 be a closed form on ST([0,1] x [2,3] x X) such that

w(Tar) on [0,1] x ST([2,3] x X)|13yx5
e w(H o7yr) on0,1] x ST([2,3] X X)j123x5
3 w(ca, )  on {0} x ST([2,3] x X)
w(dy, ) on{l} x ST(]2,3] x X).
Let 73 be the trivialisation of T([0,1] X [2,3] x ) ® C corresponding to the trivialisations used to define
ws3. Then
0,1] x [2,3] x X;
zn([O, 1] % ST([2,3] % E);wg) _ _Pl([ ] [ ] . 7—3|8([0,1]><[2,3]><E))5n.

PROOF: By an obvious modification of Lemma 4.22 above, we would not change either side of the

equality to be shown by setting rather

| % X)|3yxx=

wolca,mar) on0,1] x ST([2,3] x

2,3] X X)|{21xx
| x %)
] x %).

wo(cy, Tar) on0,1] x ST(]2,
w(HoTy) on{0}xST(2,3
w(Tar) on {1} x ST([2,3] x

w3 =
b

Now, both w3 and 73 trivially extend over [0, 1] X [2, 3] x OA and can be glued along [0, 1] x {2} with
the implicit picture of Lemma 4.17 with ¢/, instead of c4, and therefore w’ instead of w and 7, instead
of 19. Then Lemma 4.17 applied to A Ugya [2,3] x A instead of A tells us that

Azn(ws) + 420 ([0, 1] x A;w") = =pa([0,1] x [2,3] x 0A; 73)0n — p1((0, 1] X A;79)dn,

and that
42,([0,1] x A;w") = —p1([0,1] x A;74)dn.

&

This lemma has the following corollary whose proof is similar and therefore left to the reader.

Lemma 4.24 If there exist curves ¢/, ¢y and ¢z that are homologous modulo 2 to ¢, ca and cg,
respectively such that Lemma 4.20 is true when replacing (c,ca,cp) by (¢, 4, cg), then Lemma 4.20

is true for (c,ca,cp).
Lemma 4.25 Lemma 4.20 is true when ¢ and cg do not intersect.

PROOF: According to Lemma 4.22, it is enough to prove that in this case,

1
277«([07 1] X ST([2a4] X Z);wl) = _Zpl(W;Tl\BW)(sn-
We may assume that
cax [-1,1]=ex [-1,1]]]es x [-

Use an isotopy of {0} x [2,4] x ¥ supported away from {0} x [2,4] x ¢ x [—1,1] to lower lower
[B+e,d4—¢] xecp x[—1,1] to [2+¢€,3 —¢] X cp x [—1, 1] without changing either side of the equality.
After this isotopy, the trivialisation and the form over {0} x [2,4] x ¥ coincide with the trivialisation
and the form over {1} x [2,4] x X. Therefore both sides of the equality to be shown vanish. o

As a direct corollary of these two lemmas, we get the following lemma.
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Lemma 4.26 Lemma 4.20 is true when the algebraic intersection {(c,cg) of ¢ and cp in X is even.

<

Lemma 4.27 There exists an integer p* and an element I,, € An(0) such that if, under the assump-
tions of Lemma 4.20, ¢ and cp are transverse and the sign of all their intersection points is positive,
then

zn([0,1] x ST ([a,b] X ¥);w) = (¢, ep)I, and

p1([0,1] x [a, b] X X;Toja((0,1]x[a,b] x %)) = (G cB)PT.

Once this lemma is proved, using Lemma 4.26 for two curves ¢ and c¢p as in Lemma 4.27 such
that (c,cp) = 2 shows that I,, = —%571. Therefore, Lemma 4.20 is true for any two curves that only
intersect positively. Now, since it is easy to change cp without changing its class in Hq(3;Z/2Z) so
that ¢ and cp only intersect positively, Lemma 4.20 will be proved right after Lemma 4.27 is proved.
PROOF OF LEMMA 4.27: First isolate the intersection points of ¢ and ¢p inside boxes [—2, 2] x [-2, 2]
that ¢ x [—1,1] intersects as [—2,2] x [-1,1] and ¢p x [-1,1] as —[—1,1] x [—2,2]. Then lower [3 +
g,4—¢|xcpx[—1,1]to [2+¢,3—¢] xcpx [1,1] in {0} x [2,4] x ¥ except on the cubes [2,4] x [-2, 2]?
by an isotopy of the framed link ¢ U cp supported away from [2,4] x [—1,1]2. This does not change
either side of the equality and after this isotopy, we may assume that

w1 = Wﬁ}xsT([zA]xg) (w1|{1}xsT([2,4]xz))

except over the cubes [0,1] x [2,4] x [—2,2]%. But on the boundaries of the products by S? of these
cubes, the value of w is always the same and since H?(9([0,1] x [2,4] x [-2,2]? x $?)) = H?([0,1] x
[2,4] x [-2,2]* x S?), w extends as a closed form there, and we may choose the same extension for all
the cubes that are the only ones to produce nonzero integrals according to Lemma 2.26 in [L2] and
that all produce the same integral I,,. Similarly, p* is the obstruction to extend the trivialisation

associated to wi on the boundary of such a cube. o
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5 Simultaneous normalization of the fundamental forms

This section is devoted to the proof of Proposition 3.3. We use real coefficients for homology and
cohomology.

5.1 Sketch

First note that the closed 2-forms w(My) on C2(M;) defined in the beginning of Section 3 (after
Remark 3.1) are antisymmetric and extend as closed antisymmetric 2-forms on Cy (M) because of
Lemma 2.4 in [L2].

Now, we wish to arrange the forms wy;, = w(M;) as in Proposition 3.3. To do that, we shall first
show how to make wy, explicit in some part of Cy(M).

Recall that [—4,4] x DA? denotes a regular neighborhood of A* embedded in M, that intersects
A as [—4,0] x 9A". All the neighborhoods [—4,4] x A" are disjoint from each other. Throughout this
paragraph, we shall use the corresponding coordinates on the image of this implicit embedding.

For ¢ € [—4,4], set ‘ ‘
A :{ A'U([0,¢] x0A") if t>0

t A\ (Jt,0] x 904*) it t <0
DAL = {t} x 0A".

Choose curves (b)j=1,... g, and (y);j=1, .4, of DA such that

.....

e the homology classes of the (b%);=1,.. g, form a basis of L(M \ Int(A")),
e and (y!, [b}])9.a: = djx (thus, the homology classes of the (y}) form a basis of Hy(M \ A?)).

Choose a basepoint p’ in A’ outside the neighborhoods a x[—1, 1] of the a’, and outside neighborhoods
b} x [=1,1] the b}. Fix a path [p*, (0,0,1)] from p* to (0,0,1) in

Bar(1)\ (Int(A?) Up i AF)

that is extended into a path [p®, co(v)] by the vertical line (0,0) x [1, co[U{oo(v)}, where co(v) is the
intersection with 0C4 (M) of the closure in Cy (M) of the vertical half-line (0,0) x [1, co[. Fix a closed
two-form w(p?) on (M \ Int(A?)) such that

e the integral of w(p') along a closed surface of (M \ Int(A?)) is its algebraic intersection with
[p*, 00(v)],

e the support of w(p?) intersects (B \Int(A?)) inside a tubular neighborhood of [p?, oo(v)] disjoint
from

(Ui AT) U ([=4, 4] > (U (0§ x [=1,1]) U (b5 x [-1,1])))) -
e w(p’) restricts as the usual volume form on C; (M) = S2.

Here, a two-chain is a linear rational combination of smooth compact oriented surfaces with
boundaries. The integral of a 2-form along such a chain is the corresponding linear rational combination
of its integral along the surfaces. The support of such a 2-chain is the union of the involved surfaces.
A 2-cycle is a two-chain with empty (or null) boundary.

For any i € N, and for any j € {1,2,...,g;}, extend 5(a’) on [—4, 4] x A" into a closed one-form
n(a’) supported on [—4,4] x a} x [~1,1] where n(a}) is again given by the formula.

77(@;) = 77[*—1,1] (77[—171])-
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Let S(a}) be a 2-chain in A} with boundary 4 x a’; x 0 that intersects [—4, 4] x A" along [—4, 4] x a} x 0.

Let i € N,and let j € {1,2,...,g;}. Choose a 2-chain S(b’) in (Bas \Int(A*)) that is bounded by
b; whose support is disjoint from all the supports of the w(p*), and that intersects A% as a combination
of S(a}) for all k € N such that k # i. Define a closed one-form 7(b%) on (M \ Int(A%)) such that

e the integral of 7)(b}) along a closed curve of (M \ Int(A")) is its algebraic intersection with S(b%),

e the support of n(bé) is in a neighborhood of S(b;) disjoint from the support of the w(p*), for all
k #1i.
e for all k # i, the restriction of n(bi) to Af, k # i is a rational combination of the n(a}),

¢=1,..., gk (the coefficients are linking numbers determined by the first condition).

In Subsection 5.2, we shall prove that these forms can be used as follows to make wj; explicit in
some parts of Cy(M).

Proposition 5.1 With the above notations, we can choose wy; so that:

1. for every i € N, the restriction of wps to
A x (CL(M) \ A3) € Co(M)

equals
Do Uz @ xyi)pi(n(ag) Aps(n(by) +p5(w (')
(4,k)E{1,....9:}2

where p1 and ps denote the first and the second projection of Co(M) onto C1(M), respectively;

2. for every i, for any j € {1,2,...,9:},

/ wym = 0;
S(a;)xpi

3. wps is fundamental with respect to Tas.

Assume that Proposition 5.1 is proved. This is the goal of Subsection 5.2. When changing some
A into some B’ with the same Lagrangian, it is easy to change the restrictions of wj; inside the parts
mentioned in the first paragraph of the statement of Proposition 5.1 (and inside their symmetric parts
under ¢ that are also determined by the statement). Indeed, all the forms n(a}), 7(b%) and w(p’) can
be defined on the parts of the M; where they are needed so that these forms coincide with each other
whenever it makes sense, and so that they have the properties that were required for M. (Recall that
the n(aé) are defined both in A" and B® and that they are identical near JA® and dB® while w(p*)
is supported in (M \ (UgenInt(Ag))) and while the n(bé) restrict to the A as a (fixed by the clover
data) combination of n(a¥). Define wo(M;) on
D(wo(M;)) =

(Co(M7) \ (Vierpis ((BLy x B3) U (Bj x BLy)))) Upi, (diag(M \ {o0}))
so that

1. wo(M;) =wp on Co (M \ (Uier BLy)),
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wo(Mr) = ) = (4 xy))pi(n(a))) Aps(n(bi)) + pa(w(’))
GRET, g1}

on pry (B x (M \ BE)) when i € I,
3. wo(Mr) = —t*(wo(M7)) on pry (M \ B}) x BY) when i € I,
4. wo(M;) =w(My) on OCo(Mjy). (See the definition after Remark 3.1.)

Note that this definition is consistent.

Lemma 5.2 With the above notation, for any i € N, wo(M; = M;y) vanishes on the kernel of the
map induced by the inclusion
Hy (D(wo(M;)) — Hz(C2(M;)).

This lemma is surprisingly difficult to prove for me. It will be proved in Subsection 5.3. Assume
it for the moment. Then (the cohomology class of) wo(M;) is in the image of the natural map

H?(Co(M;)) — H?(D(wo(M))).

Therefore wo(M;) extends to a closed form wq(M;), and

wi(M;) — " (w1 (M;))
2

is an admissible form for M; .
Now, for any I C N, we may define

_ [ wo(My)  on Ca(M)\ (Uierpry ((BLy x Bj) U (Bj x BL,)
W(MI) _{ w(EMi)I gn 02(321[) fOI'(’L GI]]? ( o : ))

since the Cy(BY) do not intersect. These forms w(M;) satisfy the conclusions of Proposition 3.3 that
will be proved once Proposition 5.1 and Lemma 5.2 are proved. Their proofs will occupy the next two
subsections.

5.2 Proof of Proposition 5.1

The homology classes of the (z; X (4 X Yi)) (j.k)ell,...g12 and (p* x dC1(M)) form a basis of

Hy (A" x (CL(M)\ A3)) = (H1(A") @ Hi(M \ A")) & Hy(C1(M) \ A").

The evaluation of Ly, (defined after Lemma 2.1 in [L2]) along these classes is £(z}, (4 x y},)) for the
first ones and 1 for the last one. In particular the form of the statement integrates correctly on this
basis.

Let us first prove Proposition 5.1 when N = {1}. Set A! = A, and forget about the superfluous
superscripts 1. Let wg be a 2-form fundamental with respect to 7as given by Lemma 2.4 in [L2], and let
w be the closed 2-form defined on (A; x (C1(M) \ Int(Az))) by the statement (naturally extended).
Since this form w integrates correctly on Hs (A1 x (C1(M) \ Int(As3))), there exists a one-form 7 on
(A1 x (C1(M) \ Int(Az))) such that w = wg + dn.

This form 7 is closed on A; x dC;(M). Since H! (A1 x (C1(M) \ Int(A3))) maps surjectively to
H(A; x 0C1(M)), we may extend 7 to a closed one-form 7j on (A; x (C1(M) \ Int(Az))). Changing
7 into (n — 77), turns 7 into a primitive of (w — wp) that vanishes on A; x 9Cy(M).
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Let x be a smooth function on Co (M) supported in (A; x (C1(M) \ Int(Az))), and constant with
the value 1 on (A x C1 (M) \ As).
Set
we = wo + dxn.

Then w, is a closed form that has the required form on (A x (C1(M) \ As)). Furthermore,
the restrictions of w, and wy agree on C5(M) since dxn vanishes there (because 7 vanishes on
A1 x 0C1(M)).

Adding to n a combination 7. of the closed forms p3(n(b;)) that vanish on A; x 9C1(M) does

not change the above properties, but adds

/ d(xne) = / Ne
px([2,3]xa;) px(3xajy)

to fpxs(aj) wq. Therefore since the p5(n(b;)) generate the dual of L4, we may choose 7. so that all
the [

pxS(ay) Wa vanish. After this step, w, is a closed form that takes the prescribed values on
J

PSa = 0C5(M) U (A x (C1(M) \ Az))

and such that all the fpxs(aj) w, vanish. In order to make w, antisymmetric with respect to ¢*, we
apply similar modifications to w, on the symmetric part (Cy(M) \ Int(Az2)) x A;. The support of
these modifications is disjoint from the support of the previous ones. Thus, they do not interfer and
transform w, into a closed form w; with the additional properties:

e w;, has the prescribed form on (Cy (M) \ As) x A, (It is prescribed there because of the prescribed
form on (A x (C1(M) \ As)) and because of the prescribed antisymmetry with respect to +*.)

* fS(aj)xpwb =0,forall j=1,...41.

Now, the form wy; = %@b) has all the required properties, and the proposition is proved for
N ={1}.

We now proceed by induction on §N = i. We start with a 2-form wy that satisfies all the
hypotheses on {1,...,i — 1} instead of N = {1,...,4}, and by the first step, we also assume that we
have a 2-form w that satisfies all the hypotheses on {i} instead of N = {1,...,i}, with A} replacing
Al

Now, we proceed similarly. There exists a one-form 7 on C2(M) such that w = wy + dn. The
exact sequence

0= H'(Cy(M)) — H (0Cy(M)) — H?*(Ca(M),dC(M)) = Hy(Co(M)) =0

shows that H'(0C>(M)) is trivial. Therefore, 1 is exact on dC2(M), we can assume that 1 vanishes
on 0C3 (M), and we do assume so.

Let x be a smooth function on Co(M) supported in (A% x (C1(M) \ Int(A3))), and constant with the
value 1 on (A% x (C1(M) \ A%)). Again, we are going to modify 7 by some closed forms so that

Wa = wo + dxn
has the prescribed value on

PS, = 0Co(M) U (Uken (A% x (C1(M) \ 45))) U (Uken gy ((C1 (M) \ A5) x AF)).

32



Our form w, is as required anywhere except possibly in
(A7 x (C1(M) \ Int(A3))) \ (A" x (CL(M) \ A5))

and in particular in the intersection of this domain with the domains where it was previously normal-

ized, that are included in

(A} x (0C1(M) U (U}, 4%))).

Recall that 7 vanishes on A} x AC;(M). Our assumptions also imply that 7 is closed on A% x A*.
Let us prove that they imply that 7 is exact on A% x AF for any k < i. To do that it suffices to check
that:

1. Forany j=1,...,¢;, fbi_xp,cnzo.
2. Forany j=1,...,9s, fpixb?nzo.

Let us prove the first assertion. Since fbi.xoo(v) n =20,
J

/, n=/ | 77:/. (w = wo).
pxpt Jowixipteew))  Jbixipteo(w)

where fb?x[pk so(v)) @ = 0 because the supports of the n(b%) do not intersect [p*, oo(v)]. Now,
2 x [Pk,

/ wo = —/ wo = / wo-
b} X [p*,00(v)] 5(b3)x0[p*,00(v)] S(0%)x{p*}

j j
The latter integral vanishes because
1. S(b§) intersects A} as copies of S(ay),
2. fS(ak)xpk wo = 0 (that is the second condition of Proposition 5.1), and,
2

3. the integral of wq also vanishes on the remaining part of S (b;) x p* because wy is determined on
((C1 (M) \ A%) x AF) and because the support of w(p*) is disjoint from S(0%).

Let us prove the second assertion. Again, since n vanishes on 0C5(M), foo(v)xbk n = 0 and
J

/ n= —/ (w—wo).
pixb? [p'ﬁoo(v)]xb;?

f[pi so(v)] xpt w0 = 0 because of the form of wo on (Cr(M)\ AF) x AF.
, f

/ W= / o= / w.
[t .00 (v)] x5 olpt 00 ()] X S(bF) (PP} xS ()

Again, we know that this integral is zero along the intersection of {p’} x S(bé’?) with A x (C1(M)\ A%)
because S(b;?) does not meet the support of w(p), and we conclude because f{pi}xs(ai)w =0 and
4

therefore

because S(b;?) intersects A’ along copies of S(a}).

Since 7 is exact on the annoying parts, we can assume that it identically vanishes there.

Thus, w, takes the prescribed values on A x (Cy (M) \ AY}), w, coincides with wy where wy was
prescribed and w, integrates correctly along the S(af) x p* and their symmetric with respect to ¢,
for k # i. Let us now modify 7 by adding a linear combination of p3(n(b)) that vanishes on the
At x A¥ for k < i, and thus without changing the above properties so that the integrals of w, along
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the {p'} x S(a}) vanish, for £ =1,...,g;, too. Let f : Hy (M \Int(A")) — R be the linear map defined

by
f(a@:—/, e
{p?}xS(a})

There exists a combination 7. of p3(n(b})) such that for any = € La, f(z) = fpim Ne-
Observe that

/ Wq = / Wq — / Wq = O.
{p'}xS(b)) {oo(v)}xS(b%) [p?,00(v)] x b}

This implies that f(Im(H;(A*) — H;(M \Int(A?%)))) = 0. Thus, 7, vanishes on A} x Aj. Changing 7
into (n+n.) does not change w, on the prescribed set but adds f{pi}x(4mg) ne = f(a}) to f{pi}xs(a@ Wa
that becomes 0.

After this step, w, is a closed form that takes the prescribed values on PS, such that the integrals
of w, along the ({p'} x S(a})) vanish, for £ =1,...,g;. In order to make w, antisymmetric with respect
to t*, we apply similar modifications to w, on the symmetric part (Cy (M) \ Int(A%)) x AY. Again, the
support of these modifications is disjoint from the support of the previous ones. Thus, they do not
interfer and transform w, into a closed form w; with the additional properties:

e wy, has the prescribed form on (C1(M)\ A%) x A?,
. fs(a;l)xp'i wp=0,forall j=1,...¢g;.

Now, the form wy; = %@”’) has all the required properties, and Proposition 5.1 is proved.
o

5.3 Proof of Lemma 5.2

We need some more notation before stating the key proposition that will lead to the proof of Lemma 5.2.

We assume that our trivialisation 1), (fixed since the beginning of Section 3) maps the unit
tangent vector of ({s} x z x [0,1]) at (s,z,t) to the first basis vector e; € R? for any (s,z,t) €
[—4,0] x a} x [0,1]. When X is a unit vector field on the image of some chain F(P) of M \ oo, then
diag(X)(F(P)) denotes the chain of the blow-up of the diagonal that is the image of P under the map
(b — (F(p), X(F(0)))).

Fix a basepoint p(a’) on every curve a}.

We shall construct several 2-chains. When chains are presented as products, the orientation is the
product orientation with respect to the order of the factors from left to right. Similarly, when chains
are described with coordinates varying inside oriented manifolds, they are oriented as the image of
the product of the oriented manifolds ordered by the order used to write the coordinates. The field R
is given its standard orientation. A minus sign reverses the orientation.

Let a denote a curve a’ = 0xa’ <0 that lives inside the fixed neighborhood ([—4, 4] x (ax[-1,1] C
0A")) in M. Fix I C N. We are about to explicitly construct a 2-dimensional cycle F'(a) in Co(My)
of the form

F(a) = C(a) U e(So(@))(Sag = ST (ay)

— (So(a) x (4 x p(a))) U = ((4 x p(a)) x So(a)) U diag(n)(So(a))

for a rational two-chain Sp(a) in C% (= A® or B*) whose boundary is (0 x a x 0), equipped with a vector
field n and with a rational number e(Sp(a)), and for a two-chain C(a) in Co([0,4] x OA?) described
below.
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Let us first describe Sp(a), n and e(Sp(a)).
There exists a minimal positive nonzero integer k such that ka = 0 in H;(C%;Z). Then there
exists a connected surface Sz _4 embedded in C’}ﬁ 4 whose boundary is

2 4 2k —2
—1"2k—1""""2k—-1

852,_4 = ({—4} X a X {O, ok })

and whose normal is ’7']\7[1(., e1) on 052, _4. It can be easily extended to an immersed connected surface
So with boundary k& copies of {0} x a x {0} such that Sy N ([-2,0] x A) is made of k copies of
[—2,0] x a x {0}, and such that S is obtained from Sz _4 by gluing k¥ embedded annuli transverse
to the vector field 7;,'(.,e1). Then Sp(a) = £S5, n is the normal vector to Ss, (that is homotopic to
TA}l(., e1) on S \ S2,_4,) and

e(So(a)) = 22LEZL 2 x5

Let us now describe the wanted two-chain C(a) in Ca([0, 4] x A?) with boundary
9C(a) = ({0} x a x {0} x (4 x p(a)))

U((4 x p(a)) x {0} x a x {0})) U —diag(e1)({0} x a x {0}).

For two given based parametrized closed curves {z(v);v € [0,1]/(0 ~ 1)} and {y(v);v €
[0,1]/(0 ~ 1)} with respective basepoints z(0) and y(0), we fix a cobordism T'(z,y) in the torus
x X y between the diagonal {(x(v),y(v));v € [0,1]} and (z(1) x y) U (z x y(0)). (The notation
(x(1) x y) stands for ({z(1)} x y) for lightness). The fixed cobordism T'(x,y) is the image of the
triangle {(v,w) € (0,1)%;v > w} by the map ((v,w) — (z(v),y(w)) in the torus z x y.

v

Let ¢t and u be such that 0 <t < u < 1. Let s € [—4,4]. Define

A(t,uss) = {((s,2,8), (5,2, + Mu — £)); A €]0, 1],z € a} C Co(M)
= {((5,2.1), (5,2, £+ Mu—1))); A €]0, 1], 2 € a} Udiag(e1)(s x a x t).
Let C/(a) denote the sum of the following 2-chains in Cy(M):
1. T((0 % a x 0),(0x ax1))
2. A(0,1;0)
3. (0 x ax 0)x [—([0,4] x p(a) x 1)U (4 x p(a) x [0, 1])]
4. (4 % p(a) x 0) x (0 x a x [0,1])) U (([0,4] x p(a) x 0) x (0 x a x 1))

Now, F(a) is completely defined as a 2-dimensional cycle in Co(Mjy), for all I C N.
We postpone the proof of the most difficult lemma to the end of this subsection.

Lemma 5.3 With the above definition, F(a) = F(a}) is null-homologous in Cy(M).
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Assuming this lemma, the proof of Lemma 5.2 goes as follows.
We first prove:

Lemma 5.4 For any i € N, the homology classes of the F(aé-) for 5 =1,...9; generate the kernel of
Hy(D(wo(M;)) — Hz(Co(M;)).

PROOF: Since the inclusion from D(wo(M;) to (Co(M;)\Cs(BL,))UST(B?) is a homotopy equivalence,
it is the same to prove that the F (aé) generate the kernel of

H((C2(M;) \ Co(BL,)) U ST(B')) — Ha(Ca(My)).
It is also the same to prove that the F(a}) generate the kernel of
Hy((Ca(M)\ C2(AL})) U ST(A")) — Ha(C2(M)).
Set C = C1(M) and A = A’. Then Cy(M) \ C2(A) has the homotopy type of
%, % f .
Ca(C)\ Co(A) T (02 47) \ diag(C'\ 4).

Let us compute the real homology of Cyo(M) \ Cy(A) in degrees 1 and 2. Recall that C' has the
homology of a point, that Ho(C'\ A) = R[OC], and that H;(C'\ A) is isomorphic to £4. Therefore, in
the Mayer-Vietoris sequence

Hi((C\ A)*)—"H(C x (C\ A)) & Hi((C\ A) x C)

L H ((C % (O A) Uy (C\A) x ©)) 2,y (0 4)2),

the map «; is onto for 4 > 1, and the map 0; is an injection into the kernel of «;_; that is an injection,
when ¢ = 1 and 2. This shows that

H; (C*\ A% = (C x (C\ A)U((C\A) xC))={0} forie{1,2}.
Let us now compute the effect of removing diag(C \ A), by using the long exact sequence:
— Hi1(C?\ A%,C2(C) \ Ca(A)) — Hi(Co(C)\ Ca(A)) — Hi(C*\ A%) — .
By excision, H1(C?\ A2,Cy(C) \ C2(A)) is isomorphic to
Hiir ((C A) x B2, (C\ A) x R\ {0})) = H,_5(C\ A) @ Hy(S5?).

This shows that H(Cy(M)\ Ca(A)) = Hi(Co(C) \ Ca(A)) is trivial, and that Hy(Co(M)\ Ca(A)) is
generated by the homology class of a fiber of the unit tangent bundle of (C'\ A). Since this fiber is
not null homologous in Cy(M), we conclude that Ho(Co (M) \ C2(A)) = R[Séiag]'

We end the computation of Ha((C2(M) \ Co(A)) U ST(A)) by gluing (ST(C) = C x S?) to
(Co(M)\ Ca(A)) along (ST(C'\ A) = (C\ A) x §?), and by using the Mayer-Vietoris sequence that

yields the exact sequence
0 — R[SF;,,] — Ha((C2(M) \ C2(A-1)) U ST(A))

OV (N A x $2) s Hy (C x S?),

The kernel of +; is freely generated by the curves diag(e1)(a;) for j =1, ..., g;, and the assumptions
on the F(a}) ensure that dyry maps F(a}) to £diag(er)(a;). Therefore,

H((C2(M)\ C3(A-1)) U ST(A)) = &9, [F(a})] & R[SG,0]
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and Lemma 5.3 ensure that the kernel of
H(Co(M) \ C2(A—1) U ST(A)) — H2(C2(M))
is generated by the [F(a})]. o

Thus, in order to prove Lemma 5.2, it is enough to prove that, for any 7 =1,..., g;,

/ WQ(Mi) =0.
F(a;)

Set a = aj. Since C(a) only depends on L4: and since C(a) lives inside the part Cy ([0,4] x A") of
Co(M) or Co(M;) where wys and wo(M;) coincide,

/ Wy = / wo(Mi).
C(a) C(a)

The normalizations also imply that the integrals of the forms vanish on

— (So(a) x (4 x p(a))) U = ((4 x p(a)) x So(a)).

Now, since F'(a) is null-homologous in Cy (M fF wpy = 0, and we are left with the proof that
/ | ot + e(So(a)) = / | wo(M:) + e(S0.4(a)).
diag(n)(So(a)) diag(n)(So,i(a))
1
Wy = Wp = (TSQ,’T ( 62) oS )
//diag(n)<so<a>> k) diag(n)(s2) 2™ Mo
according to Lemma 4.5. Then Lemma 4.4 implies that
/ kd + x(S2)
wy = ———————=
diag(n) (S0 (a)) 2k
where d is the degree of the map 73, (., e2) from a to S(RN (a) ® RT(a)). Thus,

d+1
/. g + e(Sofa)) = L.
diag(n)(So(a))
Since similar equalities hold when (M;, wo(M;), So.i(a)) replaces (M, war, So(a)) according to Lemma 4.12,

d+1

wo(Mi) + e(So,i(a)) = ——,

/diag(n)(so,i(a))
and this concludes the proof of Lemma 5.2 up to Lemma 5.3. o
PROOF OF LEMMA 5.3 We shall first replace F(a) by an integral cycle.

Let S = S2,_4 U ([—4,0] x a x {0, Qk T 2k4 T 32:? ) be the connected surface embedded in

A whose boundary is

2 4 2k —2
k—1"2k—1"""""2k—1

<9Sz{0}><a><{0,2 h

such that

2 4 2k — 2}
k—12k—1"""2k—1""

Choose a tubular nelghborhood S X [—5%, 50=] of S such that, when v = (¢, (z, 22(£:11))) belongs to

the part ([—4,0] x a x {0, Qk T 2k4 Ty 32_? ) of S, the element (v,u) of this neighborhood reads

¢
(t,(E, 22(k 11) —|—U) [_470] ( [_171])
We use S to find an integral cycle that is homologous to kF'(a).

SN ([—4,0] x 0A) = [-4,0] x a x {07

Define two basepoints on (a x [0,1] C 9A C M), one left one and one right one:

pe = (0,p(a),0) and p, = (0,p(a), 1)
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Sublemma 5.5 kF(a) is homologous to the integral cycle G(a), where G(a) is the sum of the seven
following 2-chains.

1UE_ T((0 % a x {2E0Y) x (0 x a x {221)))

2. ADS) = Uf_ A(R=1, 211 0)

3. Ap(0) = — Ub_, (0 x p(a) x [0, 22107) x (0 x a x {2=1))

4o Ag(0) = — UF_, (0 x a x {22101 % (0 x pla) x [2=L,1))

5. =S8 X p,
6. —pe x (S x {Wlfl})

7. diag(n)(S) + (9(S) +k — 1)Szliag

PROOF: The cycle (kdiag(n)So(a) - (diag(n)(S) Uk_, diag(e1)(a x [0, 2%:?]))) is homologous to

ding(en) (52820 = (Uima(-4.00 < ax =) vax 0. 510

and is therefore null-homologous because Ha(A4; Q) = 0.
Therefore, in the definition of kF'(a), we may change kdiag(n)(So(a)) into

diag(n)(S) U Uj_, diag(e1) <a x [0, 22(2: 11)]>

and stay in the same homology class.
We may also change
—k (So(a) x (4 x p(a))) U

UE(0 x a x 0) x (—=([0,4] x p(a) x 1) U (4 x p(a) x [0,1]))
into
- <s ULy (a %[O, %1)) % py.

Indeed these chains have the same boundary and they live inside
(A\ (0 x @ x 1)) x ((~[0,4] x p(a) x 1) U (4 x p(a) x [0, 1]))

that has the homotopy type of A, and that therefore has a trivial Hs.
Similarly, we may change

—k ((4 x p(a)) x Sp(a))U
Uk ((4 x p(a) x 0) x (0 x ax[0,1])) Uk (([0,4] x p(a) x 0) x (0 X a x 1))

into

1

e (8 % ) U0 % —ax (U (5= 10))

inside
(([0,4] x p(a) x [0,1]) x A) \ (diag(0 x p(a) x [0,1]))
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that has the homotopy type of A.
Afterwards, it is enough to check that, for any £ =1,.. .k,

T((0xax0)x(0xax1))UA0,1;0)

may be replaced by the chain C(a)( Qg(f;j) , 22=1) with boundary

pex (0xax1)U(0xax0)xp,U—diag(er)(0 x a x 0)
where, for any (¢,u) € [0, 1]? such that 0 <t < u < 1, C(a)(t,u) is the sum of the following chains:
L T((0x ax {t}),(0x ax {u}))
2. A(t,u;0)
3. —(0 x pla) x [0,1]) x (0 x a x {u})
4. —(0x ax {t}) x (0 x p(a) x [u,1])
5. —diag(ey) (a x [0,%])
6. (ax[0,t) x p,
7. —pe x (0 x a x [u, 1]).

Since C'(a)(0, 1) is homologous to T'((0 x a x 0) x (0 x a x 1)) U A(0, 1;0) and since the C(a)(t, u)
form a continuous family of chains with the same boundary indexed by a connected set, we are done.
o

Then to prove Lemma 5.3, it is sufficient (and necessary) to prove that G(a) represents 0 in
(H2(C2(M);R) = R[S?

3ag))- To do that, we shall describe some homotopies explicitly, and we need
some more notation. All our homotopies will take place inside Cy ((S’ x [0, 52=]) U ({0} x a x [0, 1}))
We shall use the implicit coordinates there.

Let g(S) be the genus of S. We define a Morse function hg from S to [-6 — 3¢g(S5),0] that is
the height function of S with respect to an embedding such as in the following picture of S, and
such that hg coincides with the projection on [—4,0] on S N ([—4,0] x 9A). In particular, hg is
maximal and constant on the boundary of S, hs has a unique minimum at the height (—6 — 3¢(.9)),
hs has (2¢g(S) + (k — 1)) index one critical points, and hg has no other critical points. Furthermore,
hg'(—6—37) is a circle for j = 0,...,g(S) — 1 and there are two critical points between hg'(—6 — 35)
and hg'(—6 —3(j + 1)) for j =0,...,g(S) — 1.

We construct a connected (compact) graph I’ on S that intersects every connected component of
every height level of S exactly once, and that intersects SN([—4, 0] x D A) as U] ([—4, 0] x p(a) x {375 )
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We also extract two connected subgraphs I'y and I',. of " that intersect every height level of S
exactly once, and such that:

o I Nhg'([~6 —3¢(S), —6]) = I N hg' ([-6 — 3¢(S), —6]),
e I'yN([—4,0] x A) = [-4,0] x p(a) x {0}, and,

o I N([—4,0] x 0A) = [-4,0] x p(a) x {Z=2}.

{0} x p(a) x [0, 2k=2

0, 23
0
0

Then, define three associated projections p, p; and p, from S to I' such that for any element s

of S,
e p(s) is the intersection point of I' and the connected component of s in hg'(hs(s)),
o {pe(s)} =Tenhg'(hs(s)),
o {pr(9)} =T Nhg' (hs(s).

The maps py and p, factor through hg, and the quotient maps will still be denoted by p, and p,..

Our Morse function hg is such that I'y contains all the critical points of hg, and such that the
shortest path in I" from p¢(—6) to 0 x p(a) x {

21
2k—1

o is pg[—6,0],if i =0,
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e isp.[-6,0],ifi=Fk—1,
e contains exactly k — ¢ critical points for 0 < ¢ < k.

For any p € I \ I'y, define the path [p, pe(hs(p))] as the injective path from p to ps(hs(p)) in
2k —2

o 1)

that is in T’y on its way down (that is when hg is decreasing). Define [p, p¢(hs(p))] as the constant

path for p € I'y.

(TN kgt ([hs(p), 0D) U ({0} x pa) x [0

For any p € '\ T, define the path [p,p.(hs(p))] as the injective path from p to p.(hs(p)) in

- 2k —2
(01 A5 (hs(p), ) U ({0} % pla) [0, 20—
whose image intersects ({0} x p(a) x [0, 2=2]) as little as possible, and define [p, p,(hs(p))] as the
constant path for p € T',..

[p57pr(p5)]

[p4, Dr (p4)]

For ¢t € [-6 — 3¢(5), 0], set

Se = hg'([-6 — 3¢(S),t]) C 5.
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);!E S St},

Su(t) = {(2,0,p(a), 5

1
Ag(t) = —U, component of 95, ¢ X [p(c), pr(t)] x {Qk _ 1}’

and define the cycle

Cult) = — <st « {pe(D)} % {ﬁ}) U Se(t) U Ag(t).

In a symmelric way, Se€
t x),U,x I 1 ;L N

A40(8) = Uy component of a5, () pe(t)] X ¢ X {5},
and define the cycle
Cr(t) =— (pg(t) X Sy x {%1—_1}> U S, (t) U Ap(2).
Let n denote the unit normal positive vector field of S. Set

C(0) = —S,(0) U —S,(0) U diag(n)(S) U A(9S)

U Ue component of o5 T(C7 c X

1
2k—1 )
Note that the homology class of G(a) that has been defined in Sublemma 5.5 is

[G(a)] = [C(0)] + (9(S) + k — 1)[S3

diag

]+ [Ce(0)] + [ (0)]-
Therefore, the proof of Lemma 5.3 reduces to the proof of the two following lemmas.
Lemma 5.6 [C(0)] =0 in Hao(Cao(M)).

Lemma 5.7 [Cy(0)] + [C;(0)] = —(g(S) + k — 1)[SZ,,].

PROOF OF LEMMA 5.6: Set

. 1 1
dlag(zk — 1)(575) - {(1'70,5E, 2%k — 1)7!E S St}
and
E(t) = U, component of GStT(C7 cx 2% — 1)'
Then C(0) is homologous to C/(0) with
. 1 .
C(t) = =Se(t) U =5:(t) U diag( 57— ) (5¢) U B(2).

We shall now replace E(t) by a chain E(t) such that

1. OE(t) = 0E(t) = 9S,(t) U S,.(t) U —0diag( 57 )(St)

2. (E(0) — E(0)) is null-homologous in Cy (M),
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3. E(t) is defined continuously enough so that if

1
D(t) = —=Se(t) U =Sr(t) U diag(m)(&) UE({),
then Uic[—6_34,00D(t) may be considered as a cobordism from D(0) to 0, and used to show that
D(0) is null-homologous.

Since the first two conditions imply that D(0) is homologous to C(0), this will be enough to finish
proving the lemma.

In order to define E(t), we use our graph I" on S. This graph equips each component ¢ of 95
with the basepoint p(c). We furthermore equip the set of connected components of 9S; with the total
order from left to right in the picture.

Then we set

1
-1

E(t) = E(t)U U c><{0}><c’><{2k }

{(¢,¢");c,¢’ components of 8S;;¢'<c}

Since the linking number of a and a curve parallel to a on A is zero, the homology classes of
the tori a x {525} x a x {31} are null in Co(M). Therefore, (E(0) — E(0)) is null-homologous in
Cy(M). Tt is also clear that adding tori has not changed the boundary of E(t).

Since D(—6 — 3g) is supported in a point, it is null-homologous. To conclude, we prove that for
any subinterval [h1, ha] of [-6 — 3¢, 0], D(h1) is homologous to D(hsg). This is clear when [h1, he] does
not contain any critical value of hg. Let us prove that this is still true when [hq, ho] contains exactly
one critical value h. in its interior.

There are two cases. Either the number of components of hgl (Jhe, ha]) is greater than the number
of components of hgl([hl, hel), or it is smaller. In the first case, the corresponding index one critical
point will be called a positive saddle point, in the second case, the critical point will be called a negative
saddle point. Let us treat the case of a positive saddle point.

Let r be the number of components of D(hs), we are going to use a continuous map

f U2 (26,20 + 1] x [hy, hg] — S,
to parametrise hg'([h1, ha]). Our parametrisation f has the following properties:

1. hgo f(z,t) =t on L [2i,2i + 1] x [hy, ha),

2. f(.,t) provides a homeomorphism from % to the (i + l)th component from left to right of

98y, for any (i,t) € {0,1,...,7 — 1} x]he, ha,

3. f(2i,t) = f(2i + 1,¢) € T for any (i,t) € {2,3,...,7 — 1} x [h1,ho], and for any (i,t) €
{O,l,...,r—l}x [hc,hg],

4. f(0,t) = f(3,t) € T and f(1,t) = f(2,¢) for any ¢ € [h1, hd,

. . . 0,1111[2,3
5. f(.,t) provides a homeomorphism from the circle %%[NQ] to the first component of 95; for

any t € [hy, he[, f(.,t) provides a homeomorphism from [22;221:;11]

to right of 9S; for any t € [hy, ke, for any i € {2,3,...,r —1}.

to the 4th component from left

Let T} be the following part of R2:

T, = {(v,w) € (WZg[2i,2i + 1))} 0 > w}.
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Then Uiep, n,) E(t) is the image of the continuous map

F: T.xh1,ha — SX{O}XSX{Tl_l}
(v, w, 1) = (f(0,1),0, f(w, 1), 55=7)
that may be extended to provide a cobordism between D(hi) and D(hs). The case of a negative saddle

point is symmetric. o

PROOF OF LEMMA 5.7: The graph I' is as in the figure. We observe that Uic__34(s),0)Ce(t) may
not be considered as a cobordism between Cy(0) and Cy(—6 — 3¢g(S)) (that is a point) because the
chains Ay(t) are not continuously defined with respect to t. More precisely, the jumps occur exactly at
the heights of the positive saddle points, because the paths [p(c), p,(t)] are not continuously defined
near a positive saddle point. Let hy, ho, ..., hgyrr—1 be the heights of the critical values ordered from
top to bottom (in decreasing order) corresponding to the positive saddle points pe(h1), pe(he), ...,
pe(hg+i—1). The figure 8 horizontal curve cg(h;) that contains pg(h;) is the union of two topological
circles ¢ (h;) and ca(h;). Let ¢1(h;) be the part of cg(h;) where [p(c), p-(t)] changes. When approaching
c1(h;) from above h;, this path approaches some path [p*(c1(h;)), pr(h;)] homotopic to the path
composition of a loop y(h;) based at ps(h;) and the path [ps(h;), pr(hi)]. The loops ¢;(h;) and ~y(h;)
are shown in the following picture.

Define C; (h;) from Cy(h;) by replacing cs(h;) % [p(cs(hi)), pr(hi)] X {57—} by the union

(€0 B e () 1)) {5 ) 0

U <02(hi) x [p(es(hq)), pr(hi)] % {2k1— 1})

Set hg =0, then for any i =1,...,g+k — 1, Czr(hi) is homologous to Cy(h;—1). Furthermore,

07 ) = ()}~ eath) ¢ (2(h0) % () )
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This shows that

g(S)+k—1

co)=— 3 [c1<hi>x(w<m>x

=1

o))

Similarly, define ¢, (h;) as the part of cs(h;) where [p(c), ps(t)] changes. This part ¢, (h;) is the
right-hand side of ¢g(h;) in the figure, it coincides with ¢1(h;) when ¢ > k. Define v,.(h;) as the loop
based at pe(h;) that is the limit of [p(c), p¢(t)] when ¢ approaches ¢, from above. Again, v, (h;) = y(h;)
when ¢ > k. Then, as above, we get that

g+k—1

O] = D brelhe) x o) x )]
i=1
Thus, in Cy(M), we have
(CLO)] +[C1(0)] =
g+k—1 1
> (£nthidcr ) x () — er ) ) x {5 D)) 182,
i=1
When i > k,

£ (), ey (i) s }) = s (). () % {5)

= L(yr(ha)s er(hi) X {%1_ 1) = U (ha), e (i) {—%})

—(¥r(hi), er(hi)ys = —1.

When i < k,
1

2k—1})

é(%(hi)vcr(hi) X {
= L(cr(hi),vr(hi) % {—— )

where c,.(h;) is homologous to a x {527} inside a subsurface of S that does not intersect (v,(h;) x
{—5=1). Therefore, this expression equals

(1 x a,yp(hi) X {——})

= (1 % 05,7, (h) x {5-))

<SU ([07 1] X 65)7’%(}11’) X {_ﬁbM

wlh‘

1

<8S ¥r(hi) % {__ )oA AT T
since v, (h;) x {—5;} meets S only along its boundary.

When ¢ < k, ¢1(h;) is homologous to uz;éa X {%} inside a subsurface of S that does not

intersect (v(h;) x {375 }). Therefore,

1
2k—1})

1
{Zk—l )

£(c1(hi), v (hi) x {

= Zg(l X a,*y(hz) X
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LS U([0,1] % 98),(he) x {5

i 1 {

E<357’7(hi) X {m}bx‘l =

DM

Sl

Therefore,
k-1 1
<é(%(h»),c (hs) > {gp—o}) = tlea(ha), v(hi) x {5 1}))
=1
k—1 i
:_21:1E:1—k.
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6 Comparison with the Walker invariant

This section is devoted to proving Theorem 2.6 as an application of the splitting formula for Z;. Recall
that Kevin Walker has extended the Casson invariant to rational homology spheres in [W]. Let Ay
denote his invariant normalized as in [W]. Here, we use the normalisation A = 2 so that A coincides
with the Casson invariant normalised as in [AM, GM] for integral homology spheres. Thus, this section

is devoted to proving that for any rational homology sphere M,

6.1 Sketch of the proof of Theorem 2.6
Since [0 = e] freely generates A;(0), there exists a rational invariant v of rational homology spheres

such that Z; = Z[0].
Recall from Proposition 1.10 in [L2] and Theorem 2.4 that v satisfies:

e For any rational homology sphere, v(—M) = —v(M).

e For any rational generalised 2-clover, v(D) = Z(L(;G).

Then Theorem 2.6 is the direct consequence of the two following propositions.

Proposition 6.1 e For any rational homology sphere, A\(—M) = —\(M).
e For any rational generalised 2-clover, \(D) = Z(Lﬁfe).
Proposition 6.2 Let xk be a rational-valued invariant of rational homology spheres that satisfies the

two following properties:
e For any rational homology sphere, k(—M) = —k(M).
e For any rational generalised 2-clover, k(D) = 0.

Then k vanishes identically.

Remark 6.3 For integral homology spheres, Proposition 6.2 is a consequence of the computation
of the Goussarov-Habiro filtration of the space of integral homology spheres, that implies that the
only rational invariants of integral homology spheres that vanish on integral generalised degree 2
clovers are constant, and therefore vanish provided that they vanish at the sphere S2. For rational
homology spheres, the invariant Log(|H;|) is a non-constant invariant that vanishes at S3 and on
rational generalised degree two clovers, and we need the assumption on the behaviour under orientation

reversing, and a proof that is given in Subsection 6.4.

PROOF OF PROPOSITION 6.1. The first property of A is well-known [W, Lemma 3.1]. Let D =
(M;2; (A, By); (A', B}))) be a generalised clover. Let B = M \ Int(A). Let B’ be obtained from B by
replacing By by Bj. Let ([0,1] x 9A) denote a collar of A, disjoint from By, in B. Let By = B\
(0A x [0,1]) and By = B’ \ (0A x [0,1]). Then Dy = (M;2; (A, By); (4’, B})) is a rational generalised
clover such that

A(D) = AAUB) — N(A'UB) — A(AUB) + A(A' U B') = A\(Dy)

is computed in [L1, Theorem 1.3].
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Similarly, v(D;) = v(D), and therefore £(Dy;60) = £(D;6). Thus, it is enough to prove that
A(D) = £(D1;0)/6. Let us compute £(D1;0). Let (av1,...,a4) and (B, ...,03,) be two bases for £4
and Lp, respectively, such that < oy, 3; >pa is equal to the Kronecker symbol §;; for any 7, in
{1,...,9}. Then Z(A, A") reads

> I(A, A apay Aoy Aags)Ba) ® Ba) ® B
f:{1,2,3}—>{1,2,...,g}

where 5}‘(1,) =< .,0fu) >a4, and I(By, B}) = Z(B, B') reads

> Z(B, B')(Bn1) A Bn(2) A Bi(s) @) © Qha) @ )
h:{1,2,3}—{1,2,...,9}

where O‘Z(i) =< ., ap(3) >0B, =< Qp(),- >o4- Let 0 : V(0) — {A, B1} be a bijection.

3 1
a*(A)mo—l(Bl)
\/

Then ¢(Dq;0;0) is the contraction of the tensor Z(A, A’) ® Z(B, B’) with respect to the linking
number and the edge data. This contraction maps

<, By 04 ®@ < ., apu—i) >oB, 0 L(Byiy, ana—iy) X {1}) = S¢(i)ha—i)-

Therefore, ¢ = ¢(D1;0;0) equals

> T(A, A')(apy A agay A ags) (B, B) (Brs) A Breay A Bray)
f:{1,2,3}—>{1,2,...,g}

=6 > T(A, A" (i A A aw)Z(B, B))(Bi A By A Br).
{i,5,k}C{1,2,...,9}

Since ¢(Dq;0) = 2¢(Dq;6;0), £(D1;0)/6 is equal to the right-hand side of the formula for A\(D) in [L1,
Theorem 1.3]. o

6.2 Partial review of clover theory
In order to prove Proposition 6.2, we need to recall a few facts about clovers.

Consider the planar unoriented surface N(Y') of Figure 1 that is a two-dimensional neighborhood
of the bold Y-graph whose leaves are the three bold circles.

Figure 1: The planar unoriented surface N(Y)
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A degree k cloveris an embedding ¢ of a disjoint union of k copies N (Y)@ of N(Y),i € {1,...,k}
in a rational homology sphere M. With such a data we associate the integral generalised clover

D = (M;k; (A%, x> (BYieqt,... k})

where A’ is a regular neighborhood of ¢(N(Y)®) and B’ is obtained from A’ by surgery on the
six-component framed link in Figure 2 that inherits its framing from the embedding of N(Y'). The

Figure 2: Surgery link associated to a framed Y-graph

surgery on D consists in replacing every A* by the corresponding B?. This surgery does not depend
on the orientations of the N (Y)®,

An orientation of the surface N(Y) induces an orientation of the leaves and a cyclic order on
them. When the pictured N(Y') is given the orientation induced by the standard orientation of the
plane, the induced orientation and order are the counterclockwise ones. Changing the orientation of
N(Y) changes both the orientation of the leaves and their cyclic order. A Y-graph equipped with such
an orientation is said to be ortented.

A framed knot Jf, K is a band sum of two framed oriented knots J and K if there exists an
embedding of a 2-hole disk that factors the three knot embeddings J, K and Jf, K by the embeddings
of the three curves pictured in Figure 3 into the 2-hole disk, and that induces the three framings.

Figure 3: Band sum of two framed knots

We shall use the following lemma that allows one to cut a leaf of a clover.

Lemma 6.4 ([GGP, Theorem 3.1],[AL, Lemma 4.15]) Let K1, Ko, K3 be three framed knots
in an oriented 3-manifold M that are the leaves of an oriented framed Y -graph G in M. Assume that
K is a band sum of two framed knots K? and K3. For j =2 and 3, let KJ2 and Kf be two parallels of
K equipped with the framing (K, K;) of K;, and such that E(sz, K;’) = {(K;,K;). Then there exist
two oriented disjoint framed Y -graphs G* and G3 in M whose framed leaves are K%, K3, K2 and K3,

K3, K3, respectively such that the surgery along G is equivalent to the surgery along G* U G3.

Note that under the above assumptions, we have:

e for i =2 or 3, and for j,k € {2,3}, (K}, K},) = {(K}, Ky),
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o for j € {2,3}, (K1, K;) = (KT, K7) + (K7, K}),

o UK ,Kq) = é(K%,K%) —|—€(K13,K13) + ZK(K%,K{’).

6.3 Variation of x under surgery along a Y-graph

In this subsection, we prove the following proposition.

Proposition 6.5 A real-valued invariant  of rational homology spheres that vanishes at rational

generalised degree 2 clovers does not vary under a surgery along a Y -graph.

Since k(D) = 0 for any rational generalised 2-clover, the variation " of x under surgery on an
oriented framed Y-graph with leaves K1, K5, K3 only depends on the lagrangian of the exterior of
the Y-graph that is determined by the linking matrix [£(K;, Kj)]i7j€{l72,3} of the framed leaves K7,
K5 and K3 of the framed Y-graph.

We are going to prove the following lemma:

Lemma 6.6 Any symmetric matriz [ajl; jeq1,....ny with rational coefficients is the linking matriz of

some framed link in some rational homology sphere.

In particular, any rational symmetric matrix [a;;]; je{1,2,3} is the linking matrix of some oriented
Y-graph, and the variation of k by surgery on that framed graph is denoted by x'([a;;]). We are going
to study the properties of k£’ to prove that it identically vanishes.

First note that by symmetry, for any cyclic permutation o of {1,2,3}, £'([ai;]) = &' ([@x (i) (j)])-

As a consequence of Lemmas 6.4 and 6.6, for any rational numbers a., and £23 involved below,

we have
afy +aty +20%  afy +ay  afy +af;
K aly + ai, as ass =
a%g + a?B az3 ass
, a;l a%z a%g . a’zl a:fz a??)
K ajg Q22 Q23 + K aj, Q22 @323
a%3 a23 a33 a?g a3 @33

Applying this when a$; = a3, = a3, = ¢?*> = 0 shows that, if a;; = a12 = a1z = 0, then
x'([ai;]) = 0. Applying this property again when a3, = a3, = a3; = a?; + 2¢?* = 0 shows that &’ does
not depend on a1;. By symmetry, it does not depend on the other diagonal terms either. Therefore,

' ([aij]) = K'(a = a12,b = a13, ¢ = as3)

where
k'(a,b,c) = K'(c,a,b),

x'(0,0,¢) = 0,

and
K(a+a, b+t c)=r(a,b,c)+r(a,b,c).

In particular,
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This ends the proof of Proposition 6.5 assuming Lemma 6.6. o

PROOF OF LEMMA 6.6: Let p > 0 and ¢ denote coprime integers. Recall that the H; of the lens
space L(p, —q) is isomorphic to Z/pZ, and that one of its generators [y, 4] satisfies

4([717711]’ [7p,q]) = % mod Z,

and therefore when 7, , is a knot equipped with a suitable framing that represents [y, 4],

q
é(’Y, afy,):_'
Pp:q> IP,q D

Now, for d > 0, consider the following connected sum

and three curves «, 3, 7, one in each factor, such that
1
é(OZ?O[) = _K(ﬂa ﬂ) = é(’)/aq/) = E mod Z.

Then, for any integer k£ we may choose curves d(d, k), e(d) € M(d) that are homologous to (ka + kf3)
and to (v — (), respectively, such that

0(0(d, k),d(d, k) = £(e(d),e(d)) =0

and k
Now, write the a;; as irreducible fractions with positive denominators a;; = ¢;/p; and a;; =
li/le Set
M = ui{l,Q,...,n}L(pia —Qi)ﬂﬂi,je{1,2,...,n},i<jM(dij)-

Choose knots K; that are homologous to

Vpiai T > 6(dij, kij) + > e(dji)-

JE{1.2,em},i<] JE{12,n},j<i
Then the linking matrix of (K7i,...,K,) is the wanted one modulo Z. Next crossing changes and
framing changes adjust it to the wanted one. o

6.4 Proof of Proposition 6.2

Recall the following lemma.

Lemma 6.7 Let N be a compact oriented 3-manifold with boundary. Then Ho(N,ON;Z) is isomor-
phic to Hom(H1(N;Z);Z) by the isomorphism that maps the homology class [F| of a surface F with
boundary in ON to the algebraic intersection with F.

PROOF: Use the Poincaré duality to identify Ha(N,ON;Z) to H'(N;Z) and the universal coefficients
theorem to identify H'(N;Z) to Hom(H;(N;Z); Z). o

Lemma 6.7 yields the following characterisation of integral homology handlebodies.

Lemma 6.8 Let H be a connected compact oriented 3-manifold with connected boundary. If the map
from H1(0H;Z) to Hy(H;Z) induced by the inclusion is a surjection, then H is an integral homology
handlebody.
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PRrOOF: The long exact sequence associated to (H,0H) yields the exact sequence with integral coef-
ficients:

and shows that Hy(H,0H;Z) = 0. Then its dual H'(H,0H;Z) = Hz(H) is also trivial, and Ho(H,0H) =
Hom(H:(H;Z);Z) is a free Z-module whose rank is the genus of 9H.

We are now left with the proof that H;(H;Z) has no torsion. If Hy(H;Z) had torsion, there
would exist a primitive element x of Hy(0H;Z), and a k > 0 minimal such that kz = 0 in H1(H),
and k > 1. Under these assumptions, kz would be in the image of the boundary map

Ho(H,0H) — H;(0H)

and its preimage [X(kx)] would be primitive. Therefore Lemma 6.7 implies that there would exist y
in Hy(H) such that ((X(kz)],y)s = 1. Now, this y could be thought of as an element of H1(0H;Z),
and ([X(k2)],v)m = (kx,y)om = k{z,y)or = 1. Then k could not be larger than 1. o

Recall that the linking form fg,z(M) of a rational homology sphere M is the bilinear form

Q
lo/z(M) : Hy(M)* — =
that maps a pair of homology classes to the linking number of two of their representatives.
The form Loz (M) is non-degenerate in the following sense. For any element x of H; (M) of order
k > 1, there exists y such that {g/z(x,y) = %. This can be seen by applying Lemma 6.7 to the exterior
of a knot which represents x.

Proposition 6.9 (Massuyeau [Mas]) A real-valued invariant £ of rational homology spheres that
does not vary under surgery along Y -graphs only depends on (Hi(.); {g/z(.))-

PRrROOF: Let M and M’ be two rational homology spheres. Assume that there exists an isomorphism
¢: H(M') — H;(M) such that

éQ/Z(M/) = éQ/Z(M) o QSQ,

Then L' = (K7,...,K/) be a family of framed knots in M’ whose homology classes generate
H;(M'). Then there exists a framed link L = (K7, ..., K;) in M such that the K; are homologous to
the ¢([K]) with the same linking matrix as L’. (The hypothesis implies that it is true in Q/Z, perform
crossing changes and framing changes so that it is true in Q.) Glue a tree T to L along its endpoints
so that each component of L has exactly one point identified to an endpoint of 7. Then L is part
of a connected graph T"U L whose H; is freely generated by the classes of the K;. Then the regular
neighborhood N(T'U L) of L in M is a handlebody whose complement is a homology handlebody H,
thanks to Lemma 6.8, because the map induced by the inclusion maps Hy(0H) onto Hy(H).

There is a similar diffeomorphic handlebody N (7" U L’) whose complement is again a homology
handlebody H’. Using the diffeomorphism mentioned above, we may write M = N(T' U L) U H and
M'=N((TUL)UH’ where H and H' are two handlebodies with the same lagrangian determined by
the linking matrices of L and L’. Recall the following lemma from [AL, Lemma 4.11].

Lemma 6.10 For any two integral homology handlebodies A and B whose boundaries are identified
so that their lagrangians coincide, there exists a degree k clover in A such that B is obtained from A
by surgery on D.
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According to this lemma, H and H' can be obtained from one another by surgeries on Y-graphs.
Therefore M’ can be obtained from M by surgeries on Y-graphs. Then (M) = k(M'). o

Now, we furthermore assume that x(—M) = —x(M). This implies that x(S3) = 0. Then since &
vanishes at rational generalised 2-clover of genus 0, x is additive under connected sum.
In order to conclude the proof of Proposition 6.2 and hence of Theorem 2.6, we are left with the

proof of the following proposition.

Proposition 6.11 A real-valued invariant k of rational homology spheres
e that only depends on (Hy(.); Lg,z(.))
e that is additive under connected sum, and
e whose sign changes under orientation reversing,

vanishes identically.

Since we now consider x as an invariant of (Hy (M ); £g/z(M)), s is additive under orthogonal sum.
Since £g/7 maps a pair of elements with coprime order to zero, (Hy(M);{gz(M)) is the orthogonal
sum of its p-components for prime integers p (made of elements v such that there exists k € N\ {0}
such that pFy = 0).

The classification of linking forms of rational homology spheres has been started by Wall [Wa,
Theorem 4] and completed by Kawauchi and Kojima [KK]. Part of the results in [Wa] recalled below,
together with the behaviour of k under orientation reversing and connected sum, imply that x vanishes.

Details are given below.

Lemma 6.12 ([Wa, Theorem 4]) Let p be a prime integer greater than 2. Assume that the order
of any element of Hy(M) is a power of p. Let n(p) be the smallest integer in {2,...,p—1} that is not
a square mod p. Then (Hy(M); Ly z(M)) is an orthogonal sum of modules of the forms

", s =n(p) or 1] = (Z/p"Zlx]; bz (z, x) = ]%).

Furthermore the orthogonal sum of two copies of [p*,n(p)] is isomorphic to the orthogonal sum of two
copies of [p*,1].

PROOF: Let k be the largest integer such that p¥ is the order of an element of H;(M). Then there
exists x such that p*lg,7(M)(z, ) € Z/p*Z is coprime with p. (Otherwise, if the order of z is p*, let y
be such that plg,7(M)(z,y) = 1 mod p*, then p*lg,7(M)(z 4+ y,z +y) = 2 mod p.) Now, the square

A\ 2
from (Z/ ka)* to itself is a group morphism. Its image ((Z/ ka) ) has index two and is made of

the squares. It does not contain n(p). Thus

() () o ((2))

Therefore, there exists « € Hy(M) such that p*lgz(M)(z,z) equals 1 or n(p). This allows for a
proof that Hy (M) decomposes as in the statement by induction on the order of Hy(M), because the
orthogonal of the subspace generated by x is equipped with a non-degenerate linking form.

Now, since (n(p) — 1) = a? in Z/p*Z, in the orthogonal sum (Z/p*Z)e & (Z/p*Z) f of two copies
of [p*,1], p*lg,z(ae + f,ae + f) = n(p). This orthogonal sum is isomorphic to the orthogonal sum
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of the module [p*,n(p)] generated by (ae + f) and of its orthogonal that must be isomorphic to
[p*,s = 1 or n(p)]. Now, because of the effect of a change of generating system, sn(p) must be a
square, and therefore s = n(p). o

Note that conversely, all the modules above are realised as the H; of connected sums of lens
spaces. In particular 2x([p*, 1]) = 2k([p*, n(p)]). Then & is the same for all rational homology spheres
M with Hy(M) = Z/p*Z. In particular, for such a manifold, k(M) = k(—M) = —x(M) = 0. Then,
using the behaviour of x under orthogonal sum, x vanishes at all the rational homology spheres without
2-torsion in their H;.

Lemma 6.13 ([Wa, Theorem 4]) For n € {—3,—1,1,3}, and for k > 1, let A¥(n) denote the cyclic
group Z./2FZ[x) equipped with the pairing ¢ where {(z,x) = n/2¥ Assume that the order of any element
of Hi (M) is a power of 2.

e Then the orthogonal sum of Hi(M) and of a finite number of copies of modules of the form
Ak(1), k > 1, is an orthogonal sum of modules of the form AF(n).

e For any k > 1, the orthogonal sum of 2 copies of A*(1) is isomorphic to the orthogonal sum of
2 copies of A*(-3).

e For any k > 1, the orthogonal sum of 4 copies of A¥(1) is isomorphic to the orthogonal sum of
AK(3) and three other modules of the form A*(n).

PRrROOF: When k > 3, the square from (Z/2kZ)* to itself is a group morphism whose kernel has the
2
four elements, 1, —1, 1 +2¥~1 and —1 4+ 2*~!. Therefore its image ((Z/2kZ)*) has index 4, since all

2
its elements must be congruent to 1 mod 8, it is easy to see that and ((Z/ 2kZ)*) is exactly made

of the numbers that are congruent to 1 mod 8. In particular, any element of (Z/ 2kZ)* belongs to
((Z/zkz)*)2 {-3,-1,1,3}.

Again, we try to diagonalise the linking form by induction on the order of Hi(M). Let k be
the largest integer such that 2% is the order of an element of H;(M). If there exists x such that
2K0g,7(M)(z, x) is odd, then Z/2*Z[z] is of the form A¥(n), and its orthogonal of is a module of lower
order that satisfies the hypotheses. Otherwise, for any z of order 2%, 2¥(g 7 (M)(z,x) € Z/2ZF is
even. However, for such an z, there exists y such that 2¥¢g,7(M)(z,y) = 1. Consider the orthogonal
sum of Hy (M) with A*(1) = Z/2*Z[z] where 2%(q,7(M)(z,z) = 1. Then Hy (M) @ A*(1) splits as the
orthogonal sum of the module generated by the two orthogonal elements (x + z) and (y — 2), that is
an orthogonal sum of modules of the form A*(n), and of its orthogonal whose order is lower than the
order of Hy(M). The first assertion follows by induction on the order of Hy(M).

The orthogonal sum

L e Ly
o+7 %Y 9k7,

where the mentioned generators have self-linking 2%, is isomorphic to the orthogonal sum 2%—Z(a +
2b) ® 525 (b — 2a) of two modules isomorphic to A*(—3).

The orthogonal sum

Lo lyg L,
2%z Y 2 Y ok

where the mentioned generators have self-linking 2% splits as the direct orthogonal sum of A*(3) that
is generated by (a + b + ¢) and its orthogonal that is %x <) %y equipped with a non-degenerate

linking form where 2¥(g (M )(z, z) is even. As above, the orthogonal sum of A¥(1) = Z/2*Z[z] and
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(%(a +b+ c))L is the orthogonal sum of the orthogonal sum of two modules of the form A*(n) and
its orthogonal that is necessarily cyclic and equipped with a non degenerate linking form, and that is
therefore of the form A*(n). o

By the behaviour of & under orientation reversing we deduce that x(A*(1)) = —x(A*(—1)) and
that x(A*(3)) = —k(A*(=3)). By the second point of the above lemma, 2k(A*(1)) = 2x(A*(-3)).

R(AM(1)) = K(A"(=3)) = —K(A"(=1)) = —K(A"(3)).

Then by the third point of the above lemma, 4x(A%(1)) = rx(A*(1)), where r is an integral number
less or equal than 2. Therefore k(A%(1)) = 0 and x(A¥(n)) = 0, for all n in {—3,—1,1,3}. The first
point of the lemma together with the additivity of x under orthogonal sum allows us to conclude
that x vanishes at the manifolds M such that the order of H;(M) is a power of two, and next that
k(M) = 0 for any rational homology sphere M.

This ends the proof of Proposition 6.11 and hence the proof of Theorem 2.6.

6.5 Alternative definitions of the Casson-Walker invariant

I thank Misha Polyak and Oleg Viro for encouraging me to write this last subsection.
As a corollary to Theorem 2.6, we get

Corollary 6.14 For any rational homology sphere M, and for any trivialisation Tpr of T(M \ 00)
that is standard near oo,
Je,on @)’ _ pilrm)

6 24
PROOF: According to Theorem 2.6, Z; = /\/2[8] Then by definition of Z; [L2, Theorem 1.9], and
by the proof of Proposition 2.45 in [L2],

A(M) =

According to Proposition 2.45 in [L2], 12&; = —[8] o

The integral | Ca (M) w(7pr)? can be rewritten in various different ways as follows. Recall that a
trivialisation 75; of T'(M \ co) that is standard near co induces a map ps(7ar) from dC>(M) to S2.
See [L2, Subsection 1.2].

Lemma 6.15 Let M be a rational homology sphere. Let Ty be a trivialisation of T(M \ oo) that
is standard near co. Let w,(S?), wy(S?) and w.(S?) be 3 two-forms on S? whose integrals over S*
equal 1. Let wy, wy and we be 3 closed two-forms on Ca(M) that coincide with par(Tar)* (wa(S?)),
v (Tar)*(wu(S2)) and par(Tar)* (we(S?)) on OCo(M), respectively. Then

/ w(ty)?® = / Wa A\ wp A we.
C2 (M) C2 (M)

PRrROOF: The arguments are already in [L2]. However, since only antisymmetric forms were considered
in [L2], and since the proof is far quicker in this case, we give it. It is enough to prove that the right-
hand side does not depend on the choices of w,, w, and w,.. By symmetry, it is enough to prove that it
is independent of w,. By Lemma 2.15 in [L2], it is enough to prove that f02 (M) Wa A wp A w, does not
change when d7 is added to w,, for some one-form 7 on Co(M) that reads pas(Tar)* (ngz) on 0C2 (M)
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for some one-form ng> on S*. By the Stokes theorem, the variation of [, (v) Wa AWy A we under the
addition of dn reads

/ nAwpAwe = / par(Tan)* (ns2 Awp(S%) Awe(S?))
8Ca (M) 902 (M)

and vanishes since 5-forms vanish on S2. o

Let d be a point in S2. Consider the codimension 2 submanifold pas(7as) 1 (d) of OCy(M). Since
H3(C2(M);Q) = 0, par(tar) "1 (d) is the boundary of a rational 4-chain X4. If M is a Z-sphere, we
may even assume that ¥4 is a codimension 2 submanifold of Cy(M).

Lemma 6.16 Let M be a rational homology sphere. Let Ty be a trivialisation of T (M \ oo) that is
standard near co. Let a, b and c be three distinct points in S%. Let ¥4, ¥y and X, be three rational
4-chains in Co(M) with respective boundaries par(Tar) ™ (a), par(Tar)~1(b) and par(tar)~t(c). Then
fCQ(M) w(Tar)? is the algebraic intersection of Xa, ¥y and X, in Co(M).

PROOF: First note that the algebraic intersection of ¥,, ¥, and X, is well-defined and independent
of the involved choices because the boundaries are three disjoint fixed submanifolds of the boundary
of Co(M) and because Hy(C2(M); Q) = 0. Thus, we must now compare two topological invariants of
(M; 7).

Without loss assume that ¥,, ¥ and X, are in general position so that they intersect in a finite
number of points that have a neighborhood of the form RZ x R? x R? (for three copies R2, RZ R? of
[R?) that is intersected by the support of 3, along 0 x R x R2, by the support of ¥j, along RZ x 0 x R,
and by the support of ¥ along R2 x R? x 0.

Now, use the preceding lemma with three forms w,(52), wy(S?) and w.(S?) with disjoint supports
concentrated near a, b and c respectively, and with three forms wq, for d € {a,b, c}, such that:

e wy is supported in a small neighborhood N(X,) of g4,

e for any oriented dimension 2-manifold F' whose boundary is disjoint from N(Xg), [ @ wa is the
algebraic intersection of F' and X4, and

e in an affine neighborhood of an intersection point as above, wg vanishes along any two-dimensional

plane that is not transverse to the affine 4-dimensional support of X .
o

Let M be a rational homology sphere. Let p1 (M) denote the image of the map p; from the set of
trivialisations of T'(M \ co) that are standard near oo to Z. If j € pi (M), let 7;(M) be a trivialisation
of T(M \ oo) that is standard near oo such that pi(7;(M)) = j.

If 0 € p1 (M), (according to Proposition 1.8 in [L2], this is always the case when M is a Z-sphere),

then
fc2(M) w(ro(M))?
6
and the previous lemma allows us to express 6A(M) as the algebraic intersection of three rational

A(M) =

4-chains in Co(M), (or even of three codimension 2 submanifolds if M is a Z-sphere).
Otherwise, Proposition 1.8 in [L2] ensures that p; (M) contains a subset of the form {i — 4,}.
Then ) )
A = [ wman®+ S0 [ ey
Ca(M) Ca(M)

In this case, the previous lemma allows us to express 24A\(M) as the sum of two rational algebraic

intersection numbers in Cy(M).
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clover, 48, 49
Euler number, 14

finite type invariant, 4
form
admissible, 8
fundamental, 8

half-edge, 3
homology sphere, 4

integral generalised clover, 5

integral homology handlebody, 5

Jacobi diagram, 3
automorphism of, 3
orientation of, 4

Lagrangian, 5

Q-handlebody, 4
Q-sphere, 4

rational generalised clover, 5
degree of, 5

rational homology handlebody, 4

rational homology sphere, 4
special admissible forms, 17

Torelli homeomorphism, 9
twist of a trivialisation, 14

weight system, 4

Y-graph, 48
leaf of, 48

Z-handlebody, 5
Z-sphere, 4

Terminology
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AS, 4
A(t,u;s), 35
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BP. 20

C(a), 34, 35
CA, 20

CB, 20

x(5), 14
X(TS;.), 14, 19
i, 9

Ca(X), 10

I(A, B), 6
THX, 4
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4, 10

La, 5

A, 47
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¢D;T), 6,7, 10
¢D;T0), 6,11
éQ/Z(M), 52

Notation

My, 8
MJ(D)a 5

w(e, 1), 18

w(e; T, 1), 17-19
Wy, 8

W, 30

w(Mj), 9, 10, 29, 31

w(M;), 31
w(p?), 29
wolca, ), 21
wolep, i), 21
wg2, 8, 13

w(TM), 8

p(i), 9

p(a}), 34
[pi,oo(v)], 29
p1(c;7,m), 17
pl(T}C)v 9

0, 21
Ry, 13

S(b1), 30
3,20
S(n), 14
SQ, 35
Sa, 4, 35
S()(CL), 35

7, 20
Ty, 17, 20

Tc(e; 7, 1), 17, 20

Tj, 8

TJC 8

TM™ , 8, 20
T, 13

7., 14

6, 13

0(c), 13
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V(T), 3,6
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Z (M), 9
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