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Abstract

The Kontsevich-Kuperberg-Thurston invariant Z of rational homology 3-spheres was con-
structed by M. Kontsevich using configuration space integrals. G. Kuperberg and D. Thurston
have proved that it is a universal finite type invariant for integral homology spheres in the sense
of Ohtsuki, Habiro and Goussarov.

We review the Kontsevich-Kuperberg-Thurston construction and we provide detailed and el-
ementary proofs for the invariance of Z. This article is the preliminary part of a work that aims
to prove splitting formulae for this powerful invariant of rational homology spheres. The splitting
formulae and their proof will appear in the second part.
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1 The statements

We review the construction of the Kontsevich-Kuperberg-Thurston invariant Z of rational homology
spheres in [KT, Ko]. (See [AS1, AS2, BC1, BC2, C] for another construction.) This invariant is
constructed by means of configuration space integrals, it is valued in the algebra A(()) of Jacobi
diagrams. Its main property, that was proved by Greg Kuperberg and Dylan Thurston, is that it is a
universal real finite type invariant for homology spheres in the sense of [GGP, Ha, O]. A generalisation
of this property is proved in [L]. Here, we provide detailed and elementary proofs for the invariance
of Z, and for the properties of Z that are needed in [L].

All the main ideas here are due to Witten, Axelrod, Singer, Kontsevich, Bott, Taubes, Cattaneo,
G. Kuperberg and D. Thurston among others. I thank Dylan Thurston for explaining them to me.

The invariant Z is a powerful generalization of the Casson invariant for integral homology 3-
spheres. In this setting, the Casson invariant normalized as in [AM, M] may be described as

1
AM) = = 3
(01) G/CQ(M)wM

for any 2-form wj; that satisfies the hypotheses stated in Subsections 1.2, 1.4 and 1.5 on the config-
uration space Co(M) defined in Subsection 1.1.

1.1 The configuration space Cy(M)

When A is a subset of B, (B\ A) denotes its complement in B, when = € B, (B\ {z}) is also denoted
by (B\ z).

Let X = X be a smooth d-dimensional (real) manifold, and let Y'* be a smooth k-dimensional
submanifold of X. If TY denotes (the total space of) the tangent bundle of Y, then TX/TY is the
normal bundle of Y. When V is a real vector space, the group ]0, co[ acts on V' by multiplication, and
we set

SV =5(V)=(V\0)/]0, 0]

The unit normal bundle SNxY of Y in X is the bundle over Y whose fiber over y is S(T, X/T,Y).
In this article, to blow-up a submanifold Y* in X% amounts to replace Y by its unit normal bundle.

For example, if Y x R%"* is a tubular neighborhood of ¥ = Y x {0} in X, the blow-up is
equivalent to the sequence of operations:

Y x R7F — [(V x RT7F)\ Y] = Y x]0,00[xS4*1 — ¥V x [0, 00[x S¥F1.

In general, this provides a local definition. See Definition 3.3 for the general definition. The blown-up
manifold inherits a smooth structure of a manifold with corners from the smooth structure of X. See
Proposition 3.4. Note that the blown-up manifold has the homotopy type of (X \ Y).

Let M be a closed oriented 3-manifold. Fix co € M.

Let C1(M) denote the manifold obtained from M by blowing-up co. The boundary of Cy (M) is
STo(M). It is homeomorphic to S2. Let M? (00, c0) denote the manifold obtained from M? by blowing
up (00, 00) that becomes S(T{co,00)M?) = S°. In M?(c0,00), the closures of the three submanifolds
of M2\ (00,0), co x (M \ 00), (M \ o0) x oo and diag((M \ 0o0)?) are three disjoint submanifolds
of M? (00, 00) which intersect S(T{so,00)M?) along S(0 x To M), S(Too M x 0) and S(diag((Tes M)?)),
respectively. The three of them are canonically diffeomorphic to Cy(M). They will be denoted by
oo x O1(M), C1(M) x oo and diag(Cy(M)?), respectively.



The normal bundle of diag((M \ 00)?) in (M \ 00)? is identified with the tangent bundle of
(M \ 00) through
(u,v) € (T, M)?/diag((T, M)?) — (v — u) € T, M.

The configuration space Ca(M) is the compactification of
Cy(M) = (M \ 00)? \ diagonal

obtained from M? (00, 00) by blowing-up oo x C1(M), C1(M) x oo and diag(Cy(M)?).

1.2 Fundamental forms on Cy(M)

For S = R? U 0o, we have a homotopy equivalence pgs that makes the following square commute:

Co(s?)  Ps 52

= t projection w

~

(R%)?\ diag ——  R3x]0,00[xS?
(z,y) = (@ lly—z =)

The following lemma is proved at the end of Subsection 3.2. The natural projection onto the

X-factor of a product is denoted by mx.

Lemma 1.1 The map pgs smoothly extends to C2(S?), and its extension pgs satisfies:
—mg2  on STs(S3) x ( \ 00) =82 x (53 \ 0)
Pss = Ts2 on (8%\ 00) x STse(S?) = (8 \ 00) x 52
Tg2 on ST(R3)=R3 x S

Let B3(r) be the ball of R? centered at 0 with radius 7. Let ¢ be an orientation-preserving
embedding of (S3 \ Int(B3(1))) into M. Then

M = (R* Uoco \ Int(B*(1))) Uj1 352 B,

where
By = M\ ¢ (5% \ Int(B*(3))) ,

and (]1,3] x S% = ¢(]1,3] x S?)) is a collar of By, in By. Fix (0o € M) = ¢(oc0). This identifies
ST M to (ST (S3) = S(R?) = 52).

Definition 1.2 A trivialisation of T(M \ 00) that is standard near oo is a trivialization
T(M \ 00) — (M \ 00) x R?

of the tangent bundle T'(M \ co) of (M \ co) that agrees with the standard trivialization 7gs of R?
outside Bys(1) = By \ (]1, 3] x S?).

Let 7ps be such a trivialisation (that exists by Lemma 1.7). Note that 7, identifies S(T(M \ 00)) to
(M \ o) x S2.



Remark 1.3 In the sequel, we define an invariant under orientation-preserving diffeomorphisms for
pairs (M, ¢) where M is an oriented Q-sphere, and ¢ is an orientation-preserving embedding of (S3\
Int(B3(1))) into M. Since all such embeddings ¢ are isotopic in M, the choice of ¢ will not matter.
This allows us to fix our decomposition

M = (R®Uoo \ Int(B*(1))) Uj1,3)xs2 Bu,
once for all. This will not be discussed anymore.

Let
P:Co(M) — M?

be the natural projection map. The identification of M and S? in a neighborhood of oo provides
identifications of neighborhoods of P~!(c0, 00) in dC2(S?) and in dCo(M).

Define pps(7ar) : Co(M) — S? by carrying the definition of pgs in the neighborhood above
and by mimicking the definition of pgs elsewhere on OC3(M). Recall that ST, (M) = S?

—Tg2 on ST (M) x (M \ o0) = 82 x (M \ 00)
pu(Tar) = { T2 on (M \ 00) x STo(M) = (M \ o) x S?
mg2(Tar)  on ST(M \ 00) & (M \ o0) x S?

Let ¢ be the involution of Cy(M) that extends ((z,y) — (y,z)) and let T be the antipode of S2.
Let wg2 be a volume form on 52 such that [, wg2 = 1. We say that wg2 is antisymmetric if T*(wg2) =
—Wg2.

Let 7 be a trivialisation of T (M \ co) that is standard near oco.

Definition 1.4 A two-form wy; on Co(M) is fundamental with respect to Tar and wge if:
e its restriction to dCy (M) is pas(Tar)*(wg2), and,
e it is closed.

Such a two-form is antisymmetric if " (wp) = —wpr.

It will be easily shown (Lemma 2.4) that such forms exist for any trivialization 7p; when M is a

Q-sphere.

1.3 Jacobi diagrams

Here, a Jacobi diagram T is a trivalent graph I' without simple loop like ). The set of vertices of
such a I" will be denoted by V(I'), its set of edges will be denoted by E(I'). A half-edge ¢ of ' is an
element of

H(T) = A{c = (v(c)se(c)v(c) € V(I)se(c) € E(I);v(c) € e(c)}.

An automorphism of T' is a permutation b of H(T") such that for any ¢,¢’ € H(T'),
v(e) = v(c) = v(b(c)) = v(b(¢")) and e(c) = e(c’) = e(b(c)) = e(b(c)).

The number of automorphisms of I" will be denoted by fAut(I"). For example, ﬁAut(@) = 12. An
orientation of a vertex of such a diagram I' is a cyclic order of the three half-edges that meet at that
vertex. A Jacobi diagram T is oriented if all its vertices are oriented (equipped with an orientation).
The degree of such a diagram is half the number of its vertices.

Let A, (0) denote the real vector space generated by the degree n oriented Jacobi diagrams,
quotiented out by the following relations AS and THX:



- - O
As;}Tj +? =0, andIHX:\)\ +,\& + A =0.

Each of these relations relate diagrams which can be represented by planar immersions that
are identical outside the part of them represented in the pictures. Here, the orientation of vertices is
induced by the counterclockwise order of the half-edges. For example, AS identifies the sum of two
diagrams which only differ by the orientation at one vertex to zero. A (f) is equal to R generated by
the empty diagram.

1.4 The Kontsevich-Kuperberg-Thurston invariants 7,

Definition 1.5 Let V be a finite set. An orientation of V is a bijection from V to {1,2,...,§V} (or
a total order on V') up to an even permutation.

When M is an odd-dimensional oriented manifold, an orientation of V' provides an ordering of the
factors of MV (up to an even permutation), and therefore induces an orientation of M. Thus, the
datum of an orientation of V is equivalent to the datum of an orientation of MV .

Let I" be a Jacobi diagram. Let H(I") be its set of half-edges. When the edges of I' are oriented,
the orientations of the edges induce an orientation of H(I') that is called the edge-orientation of H(T")
and that is represented by a total order of H(I") of the following form. Fix an arbitrary order on the
set of edges, then take the two halves of the first edge ordered from origin to the end, next the two
halves of the second edge, and so on.

When the set V/(T") of vertices of ' is oriented and when the vertices of I" are oriented (as the sets
of their three half-edges), these data induce an orientation of H(T") that is called the vertex-orientation
of H(T') and that is defined as follows. Number the vertices of T' from 1 to §V(I") by a bijection that
induces the given orientation of V(T'). The wanted order of H(T') is given by taking first the half-edges
of the first vertex with an order that agrees with the vertex-orientation, then the half-edges that
contain the second vertex, and so on.

Let M be a QQ-sphere. Set

éV(F)(M) = (M \ o0)” ™\ {all diagonals}.

The set C’V(p)(M) is the set of injective maps from V(I') to (M \ o). It is an open submanifold of
(M \ 00)V (™) that is oriented as soon as V/(T) is oriented.

An edge e of I' defines a pair P(e) of elements of V(I'). Then the restriction of maps induces a
canonical map from C’V(p)(M) to C’p(e)(M). An orientation of e orders the pair P(e) and produces a
canonical identification of ép(e) (M) with é{l,g}(M) C C3(M). (The origin of e is mapped to 1.) For
any oriented edge e of I', the composition of these maps will be denoted by

pe : Cvry(M) — Co(M).

Let wps be an antisymmetric two-form that is fundamental with respect to 7p; and wg2.
Let T be an oriented Jacobi diagram. Orient the edges of T', and orient V(I') so that the edge-
orientation of H(T') coincides with the vertex-orientation of H(T). Set

I (war) = / A pi(wn).

Cvry (M) cep(r)



This integral is convergent thanks to Proposition 2.5 below. It is easy to see that its sign only depends
on the vertex-orientation of ' up to an even number of changes. In particular, the product It (was)[I']
only depends on the (unoriented) Jacobi diagram T'.

Proposition 1.6 ([KT]) Let M be a Q-sphere. Let wpyr be an antisymmetric two-form that is funda-
mental with respect to a trivialization Ty standard near oo and to a form wg2 such that fs2 wg2 = 1.
Then with the notation above

Ip(wM)
Zn (M, = IeA,
(M:720) o T € A0
r Jacobi diagram with 2n vertices
only depends on the oriented diffeomorphism type of M and on the homotopy class of Tps. (Here the

sum runs over Jacobi diagrams without vertex-orientations.)

In the next subsection, we shall see that any Z-sphere M has a preferred homotopy class [79,] of
trivialisations that are standard near oo, and this will allow us to define the invariants of Z-spheres
by

Zn(M) = Z,(M; 7).

In general, we shall need a correction term, called the framing correction that is described in Subsec-
tion 1.6.

1.5 Homotopy classes of trivialisations of Q-spheres.

Recall that GLT (R?) is homotopy equivalent to the pathwise connected group SO(3), that w1 (SO(3)) &
Z)2Z, 2(SO(3)) = 0 and 73(SO(3)) = Z[p] where the generator [p] of m3(SO(3)) is represented by
the following covering map

p:S3— SO(3).

See S3 as the unit sphere of the quaternionic field (H = R @ Ri & Rj @ Rk). Then, for any element
v of S3, p(7) is the restriction of the conjugacy (z — yay~!) to the euclidean space R3 of the pure
quaternions.

Boundaries of oriented manifolds are oriented with the outward normal first convention. Unit
spheres of oriented euclidean vector spaces are oriented as the boundaries of unit balls. In particular,
the sphere S is the oriented boundary of the unit ball of H. The group SO(3) is locally oriented as
S? x S (oriented rotation axis in S?, rotation angle with respect to the previous axis) (outside its
center). With these orientations, deg(p) = 2.

Lemma 1.7 The trivialisation T defined on ]1,3] x S? extends to Byy.

PRrOOF: Choose a cell decomposition of By with respect to its boundary. Since GL™ (R3?) is pathwise
connected, we may extend the trivialisation to the one-skeleton of Bj;. If there were an obstruction
in

H?*(Bu, 0By = S%,2/27) = H*(Ba; 7)27)

to extend 7p; on the two-skeleton of Bj;, there would exist a surface ¥ immersed in M such that the
pull-back of T'M under this immersion is not trivialisable on . But this pull-back is isomorphic to
the sum of the tangent space TY of 3, and the unique one-dimensional fibered bundle 7 over X that
makes T'Y @ n orientable. Therefore, the pull-back of T'M under this immersion is isomorphic to the



pull-back of TR3 under any immersion of ¥ into R? and is trivialisable on . Thus, T3; extends to the
two-skeleton of ¥. Since m2(GLT(R3)) = 0, 75 also extends to the three-skeleton. o

The above proof also shows that any oriented 3-manifold is parallelisable.

Recall that the signature of a 4-manifold is the signature of the intersection form on its Hy. Also
recall that any closed oriented three-manifold bounds a compact oriented 4-dimensional manifold
whose signature may be arbitrarily changed by connected sums with copies of CP? or —CP?2. Let
W = W* be a signature 0 cobordism between B?(3) and By, that is a compact oriented 4-dimensional

manifold with corners such that

OW = By U (—]0,1] x S*)U —B3(3)

where 0By, = 0B3(3) = S%.

{0} x B3(3) = B3(3) Py {1} x By = Bu

— — $

—

0,1] x §2 N
Let 7as be a trivialisation of (M \ co) that is standard near co. Define the Pontryagin number of

T™
pl(TM) cZ

as follows.
Consider the complex 4-bundle TW ® C over W. Near W, W may be identified to an open

subspace of one of the products [0, 1] x B3(3) or [0, 1] x Bys. Let N be the tangent vector to [0, 1] x {pt}
(under these identifications), and let 7(7ps) denote the trivialization of TW @ C over OW that is
obtained by stabilizing either 7gs or 7); into N&rmyor N@ Tg3s. Then the obstruction to extend this

trivialization to W is the relative first Pontryagin class

p1(W;(1ar)) = p1(mar)[W, 0W] € H*(W,0W; Z) = Z[W, OW]

of the trivialisation.
Now, we specify our sign conventions for this Pontryagin class. They are the same as in [MS].

In particular, p; is the opposite of the second Chern class co of the complexified tangent bundle. See
[MS, p. 174]. More precisely, equip M with a riemannian metric that coincides with the standard
metric of R3 outside B3(1), and equip W with a riemannian metric that coincides with the orthogonal
product metric of one of the products [0,1] x B3(3) or [0,1] x By near W. Equip TW @ C with
the associated hermitian structure. The determinant bundle of TW is trivial because W is oriented
and det(TW @ C) is also trivial. We only consider the trivialisations that are unitary with respect to
the hermitian structure of TW ® C and the standard hermitian form of C*, and that are special with
respect to the trivialisation of det(TW ® C). Since m;(SU(4)) = {0} when ¢ < 3, the trivialisation
7(Tar) extends to a special unitary trivialisation 7 outside the interior of a 4-ball B* and defines

7 (TW @ C)jgs — S° x C*

over the boundary S® = dB* of this 4-ball B. Over this 4-ball B*, the bundle is trivial and admits

a trivialisation
B : (TW@C)|B4 — - B*x (C4.



Then 7 o 77 (v € S%,w € C*) = (v, ¢(v)(w)) where ¢p(v) € SU(4). Let i%(m%) be the following map

i?(m&): (S cC?) — SU@4)

1 0 0 0

01 0 0
(Z1 ’ 22) H 0 0 2z —%9

0 0 zZ9 21

When (e1, ez, e3,e4) is the standard basis of C%, the columns of the matrix contain the coordinates
of the images of the e; with respect to (ey,es,e3,e4). Then the homotopy class [i2(mS)] of i2(m?)

generates 73 (SU(4)) = Z[i%(m%)] and the homotopy class of ¢ : S% — SU(4) satisfies

[6] = —p1(7ar)[i2(my)] € m3(SU(4)).

Proposition 1.8 The first Pontryagin number p1(tar) is well-defined by the above conditions. (It is
independent of the choices that were made.) It only depends on the homotopy class of the trivialisation
Ty among the trivialisations that are standard near co.
For any closed 3-manifold M, for any trivialisation Tpr of T(M \ 00) that is standard near co,
and for any
g: (BMa]la'?’] X 52) - (50(3)7 l)v

let deg(g) denote the degree of g and let

’Q/J(g) .B]\/[X]R3 — _B]\/[X}R3
(z,y) = (2, 9(x)(y))

then
p1(¥(g) o Tar) — p1(Tar) = —2deg(g).

If M is a given Z-sphere, then py defines a bijection from the set of homotopy classes of trivialisations
of M that are standard near oo to 47Z.

This proposition will be proved in Subsection 2.8. Of course, for a given Z-sphere, our preferred
class of trivialisations will be p;*(0). By definition, the standard trivialisation of R? is in this class
when M = S3.

1.6 The framing correction

Let X be a 3-dimensional vector space. Let V be a finite set. Then Sy (X)) denotes the set of injective
maps from V to X up to translations and dilations. It is an open subset of the smooth manifold
S(XY /diag(X")). Set Su(X) = S1,.. ) (X).

When V and X are oriented, XV and (diag(X"") = X) are oriented, then the quotient XV /diag(X")
is oriented so that X" has the (fiber diag(X"") @ quotient XV /diag(X"")) orientation. When W is a
vector space, S(W) is oriented as the boundary of a unit ball of W equipped with an arbitrary norm,
that is so that the multiplication from ]0,00[x.S(W) to W preserves the orientation. This orients
S(XV /diag(X")) and hence Sy (X).

For an R? vector bundle, p : E — B, Sy (E) denotes the fibered space over B where the fiber
over (g € B) is Sy (p~'(g)). When B is an oriented manifold, Sy (E) is next oriented with the (base
B & fiber) orientation.

Let p: E; — S* be the R? vector bundle over S* = B* Ugs (—B*) whose total space is

By = B* x R® Ugs s (—B*) x R3



where the two parts are glued by identifying (g,x) € S® x R? of the first factor to

(9. p(9)(@)) € (~=B*) x R?).

The vector bundle F; is equipped with the involutive bundle isomorphism ¢ over Idgs that is the
multiplication by (—1) over each fiber.

In particular, S3(F);) is a (compact) S2-bundle that is denoted by S»(Ey). Let wp be a closed
2-form on S2(F7) that represents the Thom class of this S2-bundle such that 7*(wr) = —wr. ([wr)]
is dual to a 4-dimensional manifold that intersects the ”left-hand side part” B* x S? of Sy(E}) as
(B* x {point}).)

Let T be an oriented Jacobi diagram. Each edge e of I" again defines a pair P(e) C V(I') that
induces a projection

Sv ) (Br) — Sp(e)(E1)

by restriction on the fibers. An orientation of the edge e induces an order on P(e) that identifies
Sp(e)(E1) to S2(E1), and this again defines

Pe §V(F)(E1) — Sa(Er).

Orient the vertices, the edges of I', and orient V(I') so that the edge-orientation of H(I') coincides
with the vertex-orientation of H(I"). Set

wr)) = [ A P
Svay(Bv) edge of T
and define I (wr)
rlwr
n — I n-.
¢ 2  awm A
I' connected Jacobi diagram with 2n vertices

Define

A0) = ] An(0)

neN

as the topological product of the vector spaces A, (0). Set
Z(M;7a) = (Zn(M;7M))nen € A(0)
where Zo(M;1ar) = 1[0]. Similarly, with § = 0,

= (fn)neN'

Equip A(0) with the continuous product that maps two (classes of) graphs to (the class of) their
disjoint union. This product turns A((}) into a commutative algebra.

Theorem 1.9 ([KT]) The obtained &, does not depend on the closed form wr that represents the
Thom class of Sa(E1) such that *(wr) = —wr. For any Q-sphere M, set
T
20) = Z(Msmar) exp(P 0 )
Then Z is a topological invariant of M.

Note that Theorem 1.9 obviously implies Proposition 1.6. Thus, we are left with the proof of
Theorem 1.9.

Equip A(0) with the involution that maps (z,, € A,(0))nen t0 (n)nen = ((—1)"Zy)nen. Then,
we have the following proposition.

10



Proposition 1.10 For any integer k, o, = 0.
For any Q-sphere M, let (—M) denotes the manifold obtained from M by reversing its orientation,
then

Z(-M)=Z(M).

ProOF: The involution ¢ still makes sense on Sa,(E1), it reverses the orientation and it commutes

with the projections p.. Therefore,

@I == f5, o & (Ae edge of ppi(wr) ) IT]

=" I§V<F)(E1) Ne edge ofrpz(_wT)) L]
= ()PP I (wr)[T).

Since 3tV (I") = 24 E(I") = 12k, when the degree of I" is 2k, we conclude that &2 = 0.

Consider a trivialisation 7y : T(M \ 00) — (M \ 00) x R3 of M that is standard near co. Its
composition 7_ps by (Idp\oe X (—1)Idgs) is a trivialisation of T'(—M \ oo) that is standard near
oo, with respect to the composition of the previous embedding of (S3 \ B3(1)) into (M \ B (1))
by the multiplication by (—1). On 0C2(M), p—m(7—m) = T o pam(Tar). Therefore if w(rar) is an
antisymmetric form that is fundamental with respect to 7, t*(w(7ar)) = —w(7ar) is an antisymmetric
form that is fundamental with respect to 7_ ;. Since changing the orientation of M, does not change the
orientation of Cy, (M), we see as before that Z,(—M;7_y) = Z,(—M; —w(tnm)) = (1) Zp (M 7a1).-
Therefore, we are left with the proof that pi(7_p) = —pi1(7ar). In order to prove it, note that
changing the orientation of the cobordism W between B3 and Bj; tranforms it into a cobordism
between —B? = B3 and (B_jp; = —B)y). Furthermore, changing the trivialisation by preserving
its first vector and reversing the other ones equips B® with its standard trivialisation. The latter
trivialisation extends to the complement of a 4-ball B* as the composition of the previous one by the
above symmetry. Therefore the induced change of basis on dB* is conjugate through this symmetry
of the connected group U(4), and hence homotopic. Since the orientation of 9B* is the opposite to

the one used in the computation of p1(7ar), p1(7—m) = —p1(Tamr). o

We shall also prove that & = —1—12[8] in Proposition 2.45.

Dylan Thurston and Greg Kuperberg also proved that Z is a universal finite type invariant of
integral homology 3-spheres, that Z is multiplicative under the connected sum of 3-manifolds, and
that

for any integral homology sphere M where A denotes the Casson invariant normalized as in [AM, M].

The article [L] contains splitting formulae for Z that generalize the formulae used in the Thurston
and Kuperberg proof of Z’s universality. It also contains a proof that Z,(M) = AWT(M)[G] for
any rational homology sphere M where Ay denotes the Walker extension of the Casson invariant
normalized as in [W]. Since the current article has been written in order to provide the detailed
background for [L], the Thurston and Kuperberg proof of Z’s universality will not be discussed here.
The multiplicativity of Z under connected sum that is not needed in [L] is not proved here either. This
article is only a partial detailed presentation of the properties of Z that were discovered by Dylan

Thurston and Greg Kuperberg in [KT], or by Maxim Kontsevich.
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2 Proof of Theorem 1.9

2.1 More on the topology of Cy(M).

Since the map pgs : C2(S3) — S? is a homotopy equivalence, C2(S?) has the homotopy type of S2.
In general, C3(M) has the homotopy type of [(M \ 00)? \ diagonal|. Indeed, it has the homotopy
type of
M?(00,00) \ ((c0 x C1(M)) U (C1(M) x o0) U diag(Cy(M)))

that has the homotopy type of [(M \ c0)? \ diagonal]. Therefore, we have the following lemma.
Lemma 2.1 Let A=7 or Q. If M is a A-sphere, then
H.(Cy(M); A) = H.(S% ).

and if [S(TM)] denotes the homology class of a fiber of (ST (M\oo) C Co(M)), then Ha(Co(M); A) =
A[S(T,M)).

PROOF: In this proof, the homology coefficients are in A. Since (M \ co) has the homology of a point,
the Kiinneth Formula implies that (M \ 0o0)? has the homology of a point. Now, by excision,

H, (M \ 00)?, (M \ 00)* \ diag) = H.((M \ 00) x R?, (M \ 00) x (R*\ 0))

A if x = 3,

o~ 3 Q2) v
= H,(R%,5%) = { 0 otherwise.

Of course, (M \ oo) x R3 denotes a tubular neighborhood of the diagonal in (M \ o0)?. Note that
such a neighborhood can be easily obtained by integrating the vector fields given by a trivialisation
of T(M \ oo) standard near co. With (m, A(v € S?2)), associate (m,yx(m,v)) where vo(m,v) = m
and 2 (y:(m,v))(to) = T3/ (7, (m, v),v)). When ¢ is a small enough positive number, this defines an
embedding of (M \ 00) x ({z € R3%;|| z ||< e} = R3).

Using the long exact sequence associated to the pair ((M \ c0)?, (M \ o0)? \ diag), we get that

H.(C2(M)) = H.(S?)

and that Ha(Co(M); A) = A[S(T,M)). S

Therefore, there is a preferred generator Lj; of H?(Co(M);Q) such that when B is a 3-ball
embedded in M equipped with the orientation of M and when x is a point in the interior of B, the
evaluation of Ljs on the homology class of ({z} x 9B) C C3(M) is one.

If (K1 UK3) C M\ o is a two-component link of M, then the evaluation of Lj; on the homology
class of the torus (K7 x Ko C Co(M)) is the linking number of K1 and Ko in M that is denoted by
(K4, K3). Here, it will be our definition for the linking number.

Let us now prove the existence of fundamental forms.

For this, we first recall the following standard consequence of the definition of the De Rham
cohomology.

Lemma 2.2 Let A be a compact submanifold of a compact manifold B, let wa be a closed n-form on
A, and let i : A — B denote the inclusion. Then the three following assertions are equivalent:

1. The form wy extends to B as a closed n-form.

2. The cohomology class of wa belongs to i*(H™(B;R)).

12



3. The integral of wa vanishes on Ker(i, : Hy(A;R) — H,(B;R)).
Lemma 2.3 The restriction map
H?(Co(M)) — H?*(9C5(M)
is an isomorphism.
PrOOF: Write the exact sequence (with real coefficients)
H?(Cy(M),0C5(M)) = Hy(Co(M)) = 0 —

— H*(Co(M)) — H*(0C2(M)) —
— H3(Cy(M),dCo(M)) = H3(Co(M)) = 0.

Lemma 2.4 Any closed two-form wyr on 0Co(M) extends on Co(M) as a closed two-form. If wyr is
antisymmetric with respect to the involution ¢ on Co(M), then we can demand that the extension is

antisymmetric, too.

PROOF: The first assertion is a direct consequence of the two previous lemmas. When wj; is antisym-

metric, let w denote one of its closed extensions, then the average

w— " (w

%)
2

is an extension of wp, that is closed and antisymmetric. o

In particular fundamental forms exist. Note that the cohomology class of a fundamental form is
Ly, since its integral along the generator S(T, M) of Hy(Co(M)) is one.

2.2 Needed statements about configuration spaces

Compactifications of év(]j) (M) are useful to study the behaviour of our integrals

o) = [ A pilon)

Cviy(M) oep(1)

near oo, and their dependence on the choice of wys. Indeed, in order to prove the convergence, it
is sufficient to find a smooth compactification (that will have corners) where the form A pf(war)
smoothly extends. The variation of this integral when adding an exact form dn, will be the integral of
7 on the codimension one faces of the boundary that needs to be precisely identified. Therefore, the
proof of Theorem 1.9 will require a deeper knowledge of configuration spaces. We give all the needed
statements in this subsection. All of them will be proved in Section 3.

Recall that a map from [0, co[?xR"~? to R¥ is C*° or smooth at 0 if it can be extended to a C>
map in a neighborhood of 0 in R™. A smooth manifold with corners is a manifold where every point
has a neighborhood that is diffeomorphic to a neighborhood of 0 in [0, co[*xR"~4. The codimension
d faces of a smooth manifold C' with corners are the connected components of the set of points that
are mapped to 0 under a diffeomorphism from one of their neighborhoods to a neighborhood of 0 in
[0, 00[¢xR"~<. The union of the codimension 0 faces of such a C is called the interior of C.

13



Let V denote a finite set, let M be a closed oriented three-manifold and let X be a 3-dimensional
vector space.
We shall study the open submanifold

Cy(M) = (M\ o0)” \ all diagonals

of (M \ 00)V. It will be seen as the space of injective maps from V to (M \ co).

We shall also study the open submanifold Sy (X) of the smooth manifold S(XV /diag(X")) made
of injective maps from V to X up to translations and dilations.

These manifolds are our configuration spaces. S‘H(X) = 5‘{1,27.“),1}()() and C’n(M) = CU'{LQ)M,L} (M).
Note that S5(X) may be seen as the set of maps from {2} to X \ 0 (when choosing to map {1} to 0).
This provides a diffeomorphism from Sy(X) to S(X) that is diffeomorphic to S2.

For any subset B of V, the restriction of maps provides well-defined projections pp from C’V(M )
to Cp(M), and from Sy (X) to Sp(X). A total order on B identifies B to {1,...,,#B} and therefore
identifies C3(M) to Cyp(M) and Sp(X) to S’ﬁB(X). In particular, by composition, any ordered pair
e of V induces canonical maps

pe : Cy (M) — Co(M)

and
pe : Sy (X) — Sa(X).

We are going to define suitable compactifications for these spaces. Namely, we shall prove the
following propositions.

Proposition 2.5 There exists a well-defined smooth compact manifold with corners Cy (M) whose
interior is canonically diffeomorphic to C’V(M ) such that

o C1y(M) and Cyy 23 (M) coincide with the compactifications C1(M) and Cy(M) defined in Sec-
tion 1.1.

e For any ordered pair e of V', the projection
pe : Cy (M) — Co(M)
smoothly extends to Cy (M).

Proposition 2.6 There exists a well-defined smooth compact manifold with corners Sy (X) whose
interior is canonically diffeomorphic to Sy (X)) such that, for any ordered pair e of V', the projection

pe : Sv(X) — Sy(X)
smoothly extends to Sy (X).

For our purposes, it will be important to know the codimension one faces of these compactifica-
tions. For Cy (M), they will be the configuration spaces F'(co; B) and F(B) defined below, for some
subsets B of V, where F(oco; B) will contain limit configurations that map B to oo, and F(B) will
contain limit configurations that map B to a point of (M \ oo).

Let B be a non-empty subset of V. Let S;(Ts M) denote the set of injective maps from B to
(T M \ 0) up to dilation. Note that S;(Ts MP) is an open submanifold of S((TsM)?). Define

F(00; B) = Cpyn\ gy (M) x Si(To MP)

where C’@(M ) has one element. Any ordered pair e of V' defines a canonical map p. from F(oo; B) to
C3(M) in the following way.
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e If e C V' \ B, then p. is the composition of the natural projections

F(o0; B) — é(V\B)(M) — Ce(M) = Co(M).

e If e C B, then p, is the composition of the natural maps

F(00; B) — Si(TsoMPB) — S;(Tou M) — Co(M) = Co(M).

e If en B = {b'}, then p, is the composition of the natural maps
F(00; B) — Claypury) (M) x Si(To M) —
— (M \ 00) D 5 §(T o MUY s O (M) = Co(M).

Let B be a subset of V' of cardinality (> 2). Let b € B. Let F'(B) denote the total space of the
fibration over (Cv’{b}u(v\B)(M)) where the fiber over an element ¢ is Sg (To»yM). Again, any ordered
pair e of V defines a canonical map p, from F(B) to Co(M).

o If e C (V' \ B)U{b}, then p. is the composition of the natural projections

F(B) — Cpyuonmy (M) — Ce(M) = Co(M).

e If e C B, then p. is the composition of the natural projections

F(B) — Sp(TomyM) — Se(TopyM) — Ce(M) = Ca(M).

e If en B = {b'}, let € be obtained from e by replacing b’ by b, then p. = pz.

Set
7 (Cv(M)) = {F(oc0; B); BC V; B # 0},

Ot (Cy(M)) ={F(B); BC V;{B > 2},

and
01(Cv (M) = 87°(Cv (M) U8 (Cy (M)).

The following proposition is proved in Subsection 3.4.

Proposition 2.7 Any F € 0;(Cy(M)) embeds canonically into Cy (M), and its image is a codi-
mension one face of Cv(M). Therefore, any such F will be identified to its image. Then 01(Cy (M))
is the set of codimension one faces of Cy(M). Furthermore, for any ordered pair e of V', for any
F € 01(Cyv(M)), the restriction to F of the canonical map pe defined from Cy (M) to Co(M) is the
map pe defined above.

Let B be a strict subset of V' of cardinality (> 2). Let b € B. Let X be a 3-dimensional vector
space. Let

F(B)(X) = Sp(X) x Spyuens)(X)

be a space of limit configurations where B collapses.
Any ordered pair e of B provides the following canonical projection p. from f(B)(X) to S2(X)
as follows.
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o If e C (V' \ B)U{b}, then p. is the composition of the natural projections
F(B)(X) — Spyuvs) (X) — Se(X) = Sa(X).
e If e C B, then p. is the composition of the natural projections

f(B)(X) — Sp(X) — S(X) = So(X).

e If enN B = {b'}, let € be obtained from e by replacing b’ by b, then p. = ps.
In this article, the sign C stands for ”C and #”. Set
O1(Sv (X)) = {f(B)(X); B C V5B > 2}.
The following proposition is proved in Subsection 3.4.

Proposition 2.8 Any F' € 0:(Sy (X)) embeds canonically into Sy (X), and its image is a codi-
mension one face of Sy (X). Therefore, any such F will be identified to its image. Then 01(Sv (X))
is the set of codimension one faces of Sy (X). Furthermore, for any ordered pair e of V', for any
F € 01(Sv(X)), the restriction to F of the canonical map p. defined from Sy (X) to Se(X) is the
map pe defined above.

2.3 Sketch of the proof of Theorem 1.9

We shall first see that the wanted invariant Z is the exponential of a simpler series in A((}), that we
are going to present in another way by means of labelled diagrams that will make the proofs clearer.

A degree n labelled Jacobi diagram is a Jacobi diagram whose vertices are numbered from 1 to
2n, and whose edges are numbered from 1 to 3n.

Let T be a labelled Jacobi diagram with underlying Jacobi diagram I'. The automorphisms of
I" act on the labelling of I'. In particular, there are exactly fAut(I') labellings of I' that give rise to
a labelled Jacobi diagram isomorphic to I' as a labelled Jacobi diagram, and the number of labelled
Jacobi diagrams with underlying Jacobi diagram T is —QA’%ﬂ

A Jacobi diagram is edge-oriented when its edges are or1ented. Any labelled Jacobi diagram has
237 such edge-orientations.

A labelled edge-oriented Jacobi diagram inherits a canonical vertex-orientation (up to an even
number of changes), namely the vertex-orientation that together with the orientation of V' (I') induced
by the vertex labels provides a vertex-orientation of H (I') equivalent to its edge-orientation. Therefore,
an edge-oriented labelled graph T' has a well-determined class [['] in A(()). Furthermore, an edge-
oriented labelled graph I' defines a map

P(T) : Con(M) — Coy(M)3™

whose projection p; o P(T') = P;(T') onto the i’ factor of C2(M)3" is p(;) where e(i) denotes the edge
labelled by .

Let Tps be a trivialisation of T'(M \ co) standard near co. For any ¢ € {1,. 3n} let wj(\? be a
two-form that is fundamental with respect to 7p; and to a form w(l such that f g2 w52 = 1. Define the

6n-form on Cy(M)3"

0= /\pl wM
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Proposition 2.5 allows us to define

M) = ~/C‘2n(M) PO @) = /cgn (M) ;_ /\ AT

Let &, denote the set of all connected edge-oriented labelled Jacobi diagrams with 2n vertices. We are
going to prove the following propositions.

Proposition 2.9 Under the above assumptions,

= Z Ip(M;Q)[1]

reé,

only depends on M and on 1.

Proposition 2.10 Let wr be a closed two-form that represents the Thom class of So(F1). Then

377,

=3 | ()" )

reg,  San(E) = 1

does not depend on the choice of wr.

Proposition 2.11 Under the above assumptions, z,(Tar) only depends on M and on the homotopy
class of Tpr among the trivialisations that are standard near co.
For any closed 3-manifold M, for any trivialisation tpr of T(M \ 0o) that is standard near oo,
and for any
g: (M\ oo, M\ By(1)) — (SO(3),1),
define
Blg): (M\oo) xRS —» (M) 00) x R?
(z,y) = (z,9(@)(y)
then )
n((9) 0 Tar) = 2n(rar) = 5 deg(9)on-

Note that Propositions 2.5 and 2.6 ensure that all the mentioned integrals are well-defined and
that all the previous ones are convergent.

Let us now show that Propositions 2.9, 2.10, 2.11, 1.8 prove Theorem 1.9.

First note that for an antisymmetric wy; that is fundamental with respect to 7j; and to a two-
form wg» such that [g, wge =1, f02 (M) /\3" P;(T)*(was)[T] is independent of the labelling and is
equal to Ir(was)[l]. Therefore,

R

I connected Jacobi diagrams with 2n vertices

ST (———

only depends on 7,7, according to Proposition 2.9.

and

Lemma 2.12 Z(M;7a) = Z(7a1).
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These are two series of combinations of diagrams and it suffices to compare the coefficients of [I'], for
a diagram I'" which is a disjoint union of k; copies of I'y, kg copies of ', ..., k. copies of I',., where
I'y, I'y and T, are non-isomorphic connected Jacobi diagrams. The coefficient of [I'] = []\_, [[;]*
. It (w T ) T )

in Z(M;7ar) s R where In(war) = Ty v, (wa)™, and gAut(T) = T, [(2Aut (T3)* (k:)!)-
Therefore, the coefﬁment in Z(M;Tp) is

ki

In wM
H PRt (0 (R

Let k = Y."_, k;. The coefficient of [['] in Z(7a) is its coefficient in the product

E <<mw>)n)k

r ki k! : : : L Ar(@an®
where [[;_,[I]" occurs TGt times with the coefficient  [];_, NS Thus, the two coeffi-
cients coincide. o

Of course, Proposition 2.10 implies that
1
fn -

S
237(3n)!(2n)!
is independent on the used wy. Now, Propositions 2.11 and 1.8 clearly imply that (Wzn(ﬁw)—i—

%@1) is independent of 75, and this in turn implies Theorem 1.9.
Propositions 2.9, 2.10 and 2.11 and 1.8 will be proved in Subsections 2.4, 2.5, 2.7 and 2.8,
respectively.

2.4 Proof of Proposition 2.9, the dependence on the forms.

In this subsection, we prove Proposition 2.9.

Of course, the only choice in the expression of z,(7as) is the choice of the wj(\z, and it is enough

to prove that changing an wg\/j) into an @ (1) that is fundamental with respect to 7)s and to a form wég
such that sz cf;é@ =1 does not change z, = 2,(Tap) = 2,(£2).
For later use in [L], we shall rather study how z, varies when wg&) varies within a class of forms

that is more general than the fundamental forms.

Definition 2.13 A two-form wys on Cy(M) or on 9C2(M) is admissible if:

e its restriction to 0Cy (M )\ ST (Bar) is par(Tar)* (ws2) for some trivialisation 7as of T'(M\ 0o) standard
near oo and for some two-form wgz on S? with total volume one, and,

e it is closed.

Such a two-form is antisymmetric if o*(wpr) = —wpy.

According to Lemma 2.4, an admissible two-form on dC3(M) extends as an admissible two-
form on Cy(M), and an admissible antisymmetric two-form on dC3(M) extends as an admissible
antisymmetric two-form on Cy(M). We are going to prove the following proposition.

Proposition 2.14 Let wps be an antisymmetric admissible two-form on Co(M), then with the no-

tation before Proposition 1.6

Zoleons) = > i)

r Jacobi diagram with 2n vertices

only depends on M and on the restriction of wyr to ST(Byy).
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In what follows, all the two forms wg\f}), for j € {1,2,...,2n}, and wM are admissible with
respect to two-forms on S? denoted by wgz), for j € {1,2,.. 2n} and “’527 respectively. Note that
the restriction of wj(\j} on ST(B)ys) determines wgz), and hence determines wj(\j} on JC5(M). We fix a

trivialisation 73 of T (M \ co0) standard near oo.

Lemma 2.15 There exists a one-form ng> on S? such that dng: = djé@ — wf;;?, and a one-form 1 on

Co(M) such that
1. dn:@(l) Wg\?)

2. the restriction of n on 0Co(M) \ ST(Bys) is pa(Tar)*(ns2),

3. zfdjg\? and w](\? are fundamental with respect to Tar, then the restriction of n on the whole 0Co (M)

is py(Tar)* (ns2),
4. if (;JJ(\Z) and Wg\? coincide on ST (Byr), then the restriction of n on 0Co(M) is zero.

PROOF: Since A](\? and w(i) are cohomologous there exibts n such that dn = cbj(\? - wg\? on Cy(M).
- (9)

Similarly, there exists ngz such that dng: = wg, — ) I w A(l and w](\? coincide on ST'(Byy), then
wg@ = w(sg, and we choose ngz = 0. Now, d(n — pM(TM) (7752)) =0 on 0Cy(M) \ ST(B), and on
0Cy(M) if w]\? and w%[) are fundamental with respect to 75/, or if (IJ](\Z) and w%[) coincide on ST (Byy).

Thanks to the exact sequence
= H'(C2(M)) — H'(9C2(M)) — H?*(C2(M),9C:(M)) = Hy(C2(M)) = 0,

H(0C2(M)) = 0. It is easy to see that H(0Cy(M) \ ST(By)) = 0, too. Therefore, there exists a
function f from 0C3(M) to R such that

df =n—pam(tar)*(ns2)

on 9C, (M) \ ST (Byy), and on dCs(M) if &\ and w(?) are fundamental with respect to my or if &7

and wg\? coincide on ST (Bjy). Extend f to a C* map on Cy(M) and change 7 into (n — df). o
Set
3n
w3 [ AREY DD
reg, Y Con(M) j—1
Set &) = wl) for j # i, and let 2, = Sree feo o Aiy Pi(D)* (@3)[T]-
Set .
S0 _ [ W) it
n ifj=1

and define the (6n—1)-form € = A?", (@) on Co(M)*". Then d2 = AT, pi(@5)) — AT, 5 (W5).

For an element F' of the set 91(Ca,(M)) of codimension 1 faces of Cs, (M) described before

Proposition 2.7, set
3n
= [ POY@ = [ ARG
F Fi
where F is oriented as a part of the boundary of the oriented manifold Cy, (M),

Iro = Z It F.

Féal(CQTL(M))
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Then according to the Stokes theorem,
—Zn = Z IF 8
ree,

We are going to prove that several terms cancel in this sum. More precisely, we shall prove
Proposition 2.16 that obviously implies Proposition 2.9, and Proposition 2.14 since

Z(wnr) = exp ((W%WW))

o) = 3 /C (T (wan)IT:

reg, /Can M)z 1

with

Proposition 2.16 With the notation above,

n— Zn = ZIFFV)

reé&,

where Ir povy =0 for any ' € &, if @g\j} and wg\? are fundamental with respect to Tpr, or if (fu](é[) and
w](&) coincide on ST(Byy).

When B is a subset of V', and when a graph I' is given, Ep denotes the set of edges of I' that
contain two elements of B, and I'p is the subgraph of I' made of the vertices of B and the edges of
Eg.

Lemma 2.17 For any non-empty subset B of V, for any I' € &y, It p(oo;8) = 0.

PRrROOF: Set A = V' \ B. Let E¢ be the set of the edges of I' that contain an element of A and
an element of B. Let py denote the projection of F(oo; B) onto S;(TeMPB). For e € EP U EC,
P, : (S?)E"VUE __, §2 g the projection onto the factor indexed by e. We show that there exists a
smooth map
g: Sz(TooMB) _ (SQ)EBUEC
such that
/\ pe(w](\/j(e))) (g Opg)* ( /\ P*( (i (8)))>

e€ EBUEC e€ EBUEC

where i(e) € {1,2,...,3n} is the label of the edge e, and

C:}(1'2(6)) _ wége)) ifi(e) 7&
o Ng2 ifi(e) =

Indeed, if e € EP U E, p.(F(c0; B)) C 0C2(M),

P @3 ”) = (e (rar) 0 pe)* (@),

and par(Tar) o pe factors through S;(To M P) (and therefore reads ((Pe. o g) o p2)). Indeed, if e € E©,
par(Tar) © pe only depends on the projection on S(Tw, M) of the vertex at co (of B), while, if e € EZ,
pum (Tar) © pe factors through S;(Too M€).

Therefore if the degree of the form (/\eeEBUEC p: (wéQ( )))) is bigger than the dimension (34B—1)
of S;(TsoM?P), this form vanishes on F(oco; B). The degree of the form is (24EZ 4 28E°) or (24E? +
2%EC — 1), while

(3B — 1) = 24EB + 4E° —
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Therefore, the integral vanishes unless EC is empty. In this case, since I' is connected, B = V,
F(oo; V) = Si(TsoMV), all the par(7ar) o pe locally factor through the conjugates under the inversion
(x +— x/ || # ||?) of the translations that make sense, and the form vanishes, too. o

As soon as there exists a smooth map from F(B) to a manifold of strictly smaller dimension
that factorizes P(I'), then Ip p(gy = 0. We shall use this principle to get rid of some faces.

Lemma 2.18 Let I € &,. For any subset B of V' such that T'g is not connected, Ir rB)y = 0.

PROOF: Indeed, in the fiber S B(T,)M) we may translate one connected component of I'p whose set
of vertices is C' independently. This amounts to factorize the p. through O{b}u(V\ By (M) if §B =2, or
through the fibered space over Cv’{b}u(v\ B)(M) whose fiber is an open subspace of

s Tey M7
diag(Tuy MP) @ (05\C x diag(Top MO))

In both cases, all the p, factor through a space with smaller dimension. o

Lemma 2.19 Let " € &,. Let B be a subset of V' such that §B > 3. If some element of B belongs to
exactly one edge of I'p, then Ir p(gy = 0.

PROOF: Let b be the mentioned element, and let e be its edge in I'p, let d € B be the other element
of e. The group ]0,00[ acts on the map ¢ from B to T, M by moving ¢(b) on the half-line from
t(d) through ¢(b). ((t(b) — t(d)) is multiplied by a scalar). When §B > 3, this action is non trivial on
Sp(T, M), P(T') factors through the quotient of F'(B) by this action that has one less dimension. ¢

Lemma 2.20 Let I' € &,. Let B be a subset of V' such that at least one element of B belongs to
exactly two edges of T'g. Let E(T') denote the set of labelled edge-oriented graph that are isomorphic to
T' by an isomorphism that preserves the labels of the vertices, but that may change the labels and the

Z IFFB) =0.

O;reg(r)

orientations of the edges. Then

PROOF: Let v, be the vertex of B with smallest label m € {1,2,...,2n} that belongs to exactly
two edges of I'g. We first describe an orientation-reversing diffeomorphism of the complement of
a codimension 3 submanifold of F'(B). Let v; and v denote the (possibly equal) two other ver-
tices of the two edges of I'p that contain v,,. Consider the linear transformation S of the space
S(TewyM B /diag(T, b)M )) of non-constant maps f from B to Tc) M up to translations and dila-
tions, that maps f to S(f) where
S(f(ve)) = f(ve) if vy # vy, and,
S(f(vm)) = f(vg) + fvk) = fvm).
This is an orientation-reversing involution of S(T, M? /diag(T.;M?)). The set of elements of
Sp(T, vy M) whose image under S is not in Sp(T, (b)M) is a codimension 3 submanifold of Sp( TowyM).
The fibered product of S by the identity of the base C{b}u(V\ B)(M) is an orientation-reversing smooth
involution outside a codimension 3 submanifold Fg of F(B). It is still denoted by S.

Now, let o(B;T)(T') be obtained from (I € £(T)) by reversing the orientations of the edges of
I'p that contain v, and by exchanging their labels. Then, as the following picture shows,

P(T)o S = P(o(B;T)(T)).
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oB)(a) W)
Therefore,

IﬁF(B) = fF(B)\FS PI)(
= fF(B)\FS S (P )
== [r@pms(PT) oS
=~ Jrm)\Fs I
= ~Lomry(©),F(B)

while [['] = [o0(B;T)(I)]. Now, o(B;T) defines an involution of £(I), and it is easy to conclude:

Z If,F(B)[f]: Z Ia(B;F)(f),F(B)[G(B;P)(f)]
;Teg) [;Teg)

The symmetry used in the above proof was observed by Kontsevich in [Ko].

The three previous lemmas allow us to get rid of the pairs (B;I") with §B > 3 such that at least
one element of B does not belong to three edges. Therefore, since the I' are connected, we are left
with the pairs (B;I") with B = V, that are treated by Lemma 2.22 below, and with the pairs (B;T")
where B # V, B = 2, and at least one element belongs to exactly one edge of I'g. The following
lemma allows us to get rid of this latter case where I' g must be an edge.

Lemma 2.21 Let T € &,. Let B be a subset of V' such that T'p is made of an edge e(£) with label ¢
oriented from a vertex v; to a vertex vi. Let I'/T' g be the labelled edge-oriented graph obtained from T
by collapsing T'p down to one point. (The labels of the edges of T/T g belong to {1,2,...,3n}\{¢}, the
labels of the vertices of T'/T'g belong to {1,2,...,2n}\{k}, I'/T'g has one four-valent vertex (v; = vy)
and its other vertices are trivalent.) Let E(I'; B) be the subset of £, that contains the graphs T whose
edge with label £ goes from vj to vy, and such that T'/T' g is equal to f‘/f‘B, Then

Z If,F(B)[f] =0.

;Te&(T;B)

PROOF: F(B) is fibered over Cv’v\{vk} (M) with fiber ST¢(,,)M that contains the direction of the vector
from ¢(v;) to ¢(vg). The oriented face F'(B) and the map

P(T) : (F(B) C Con(M)) — Co(M)>"

are the same for all the elements I of £(T'; B). Therefore I+ p(p) is the same for all the elements T of
E(I'; B), the sum of the statement is

Z If7F(B)[f]:IF7F(B) Z [f],

;T e&(T;B) ;P e&(T;B)
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and we are left with the study of the set £(I'; B). Let T’ € £(I'; B). Let a, b, ¢, d be the four half-edges
of I'/T'p that contain (v; = vg). Let eq be the first half-edge of e(¢) that contains v;, and let ez be
the other half-edge of e(¢). Then in T, v; belongs to e; and to two half-edges of {a,b,c,d}, and the
corresponding unordered pair determines I as an edge-oriented labelled graph. Thus, there are 6 graphs
in £(T'; B) labelled by the pairs of elements of {a,b,c,d}. Equip I' = 'y, with a vertex-orientation
that reads (a,b,e1) at v; and (c,d,e2) at vy and that is consistent with its given edge-orientation
(i.e. such that the edge-orientation of H(I') is equivalent to its vertex-orientation). A representative
of the orientation of H(I") reads (..., a,b,e1,...,¢c,d,eq,...) and is equivalent to the edge-orientation
of H(T") that is the same for all the elements of £(T'; B).

Thus, cyclically permuting the letters b, ¢, d gives rise to two other graphs in £(I'; B) equipped
with a suitable vertex-orientation, that respectively reads
(a,c,e1) at v; and (d, b, e2) at vy, or
(a,d,e1) at v; and (b, c,e2) at vy,
The three other elements of £(I'; B) with their suitable vertex-orientation are obtained from the three
previous ones by exchanging the ordered pair before e; with the ordered pair before es. This amounts
to exchanging the vertices v; and vy, in the picture, and does not change the unlabelled vertex-oriented
graph. The first three graphs can be represented by three graphb identical outside the pictured disk:

% WKL

Then the sum ) 7. Tes(r; B) [ is zero thanks to THX. o

Lemma 2.22 For any I € &, Iy pvy =0 if (fu](é[) and wg\? are fundamental with respect to Tar, or if
c&](\? and wg\j[) coincide on ST(Bar).

In the first case, the face F(V) is identified via 73/ to Sy (R3) x (M \0c), and the form Q to be integrated
can be pulled-back through the projection onto the fiber. In the second case, for any j € {1,2,...,3n},
pj maps F(V) into dCy(M), and therefore P(I')*(Q) = 0 on F(V) thanks to Lemma 2.15. o

This ends the proof of Proposition 2.16, and hence the proofs of Proposition 2.9 and 2.14.
Since for any admissible form wys on Co(M), z,(war) only depends on the restriction of wys to
ST (B ), zn(wnr) will also be denoted by 2y, (wars7(Bay))-

Proposition 2.23 For any admissible form w on Co(M) and for any one-form n on Co(M) that
reads prr(Ta)* (nsz) on OCo(M)\ ST (Byy), for some one-form ngz on S? and for some trivialisation
Ty that is standard near oo,

zn(w +dn) — zn (W)

3n

Z/F > l/\lp /\ P;(T)*(w +dn) | [T.

reé, ) i=1 j=1 Jj=i+1

PROOF: Indeed, according to Proposition 2.16,

i—1 3n 1 3n
AP ANPrw+dy) |)—z(| NPfw)n )\ Pjlw+dn) |)=
Jj=1 J=i J=1 J=i+1

-y OF @) APTY A A PO dn) | 1]

ree, ' FV) \ j= 1 j=it1
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and the above statement is nothing but the sum over the ¢ in {1,...,3n} of these equalities. o

2.5 Forms over S%-bundles

PROOF OF PROPOSITION 2.10: According to Proposition 2.8, the codimension one faces of Sy (E7) are
the fibered spaces over S* with fibers f(B)(p~1(z)), for all the strict subsets B of V with cardinality
at least 2. Then the independence of wyr is proved as in the previous subsection, using lemmas similar
to Lemmas 2.18, 2.19, 2.20, 2.21 that treat all the possible faces, and Proposition 2.10 is proved. <

Note that the proofs of these lemmas in fact show that the image of Sz, (£1) under » .. P(I')[I']
is a cycle whose homology class is in Hg,(S2(E1)%"; A(0)) even if A(() is defined with integral coeffi-
cients. (Its boundary

> [P(T)(F)][T]

(T, F);T€EL, FED (Sv (E1))

vanishes algebraically. ) Then 237 (2n)!(3n)!¢,, is just the evaluation of /\l 1 pilwr] at the class of this
cycle.
More generally, we have the following proposition:

Proposition 2.24 Let E be an R3-bundle over a base W that is an oriented four-dimensional man-
ifold. Let n denote a one-form on S2(E) and let w denote a closed two-form on So(E). Let

-y I ().

ree, VS (E) = 1

Then zp(E;w + dn) — zn(F;w) = 6, (E;w,n) with 6,(E;w,n) =

n i—1 3n
S [ Y AR @AREImA A BE) @ | T
ree, 7 Sam(Elaw) =1 \ j=1 j=it1

PROOF: The contributions of the faces coming from the boundary of SQ,L(R?’) cancel as in the above
case and we are left with the contributions coming from the boundary of W. o

Lemma 2.25 Let W be a connected oriented compact four-dimensional manifold, let E be the trivial
R3-bundle E = W x R3, and let w denote a closed two-form on So(E). If the inclusion induces an
injection from H*(W) to H2(OW) and a surjection from H*(W) to HY(OW), then z,(E;w) only
depends on the restriction of w to OW x S2.

PROOF: Indeed, a closed form w’ that coincides with w on W x S2 would read (w + dn) for some
one-form 7 whose restriction to the boundary OW x S? is closed and may be extended to W x S? as
a closed form 7. Thus, w’ = w + d(n — 1) and since (7 — n’) vanishes on OW x S?, Proposition 2.24
guarantees that z,(E;w) = z,(E;w’). o

Here, a bundle morphism 1 from an R3-bundle E to another one E’ will always restrict to an
isomorphism from a fiber of F to a fiber of E’. Such a bundle morphism induces bundle morphisms
that are still denoted by v from S,,(E) to S, (E’) for every n. Note that such a bundle morphism of
R3-bundles is determined by 1 : So(E) — S2(E’) up to a multiplication by a function from the base
of E to R, that preserves all the maps ¢ : S,,(E) — Sp(E’).
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Lemma 2.26 Let E be an R3-bundle over a base W that is an oriented four-dimensional manifold and
let w denote a closed two-form on So(E). Assume that there exist a bundle morphism ¢ from E to an
R3-bundle E(X) over a base X, and a closed two-form w(X) on Sa(E(X)) such that w = ¥*(w(X)).
If X is a manifold of dimension < 4, then z,(E;w) = 0, and if ¥ is an orientation-preserving
diffeomorphism, then zp(E;w) = zp(E(X); w(X)).

PROOF: Indeed, since the maps ¢ commute with the P;(T"),

3 3n
P,(D)Y*(Y*(w(X))) = * P(D)* (w(X .
/ﬁznw)/\ (0)" (™ (w(X))) /§2n<E)¢ </_\1 ()" (w( )))

i=
Therefore, if X is of dimension < 4, the dimension of Sa,(E(X)) is less than the dimension of
ggn(E) and the integral vanishes. If 1 is an orientation-preserving diffeomorphism, then it induces an
orientation-preserving diffeomorphism from S, (E) to San (E(X)). o

2.6 The dependence on the trivializations

The closure of the face F(V) in Cy (M) is diffeomorphic via 7as to C1 (M) x Sy (R?). When (Sy =
Sy (R?)) is oriented as in Subsection 1.6, the involved diffeomorphism preserves the orientation. Since
any ordered pair P included into V = {1,2,...,2n} gives rise to a restriction map from Sy, = Sy to
Sp = Sy = 52, any edge-oriented labelled graph I' again induces a smooth map

P(T) : S5, (R3?) — (S?)%"

whose " projection P;(T') is the map associated to the edge labelled by i.
The key-proposition to study how z,(was) depends on the restriction of was to ST(Bys) is the
following one.

Proposition 2.27 Let wy and wy be two admissible two-forms on Co(M) that coincide on 0Cy (M) \
ST(Byr). Let Tas be a trivialisation of (M \ 0o) that is standard near oo. Identify ST (Bas) to By x S?
with respect to Tpr. Then there exists a closed two-form w on [0,1] x By x S?% such that

o w coincides with 7 gow1 on ({1} x By U [0,1] x dByr) x S* and,
e w coincides with wo on {0} x By x S?,
and, for any such two-form w,
Zn(w1) = 2n(wo) = 2n([0,1] x By x R3;w)

where
3n

20 ([0,1] X By x R%;w) Z/O /\P

Fef 1><BM><SV

PROOF: First, the two-form w exists because the restriction induces an isomorphism from H?([0, 1] x
By x S%R) to H2(9([0,1] x Bar x S%);R). See Lemma 2.2.
Next, 2,([0,1] x By x R3;w) is independent of the chosen closed extension w by Lemma 2.25.
Now, (zn(wo) + 2n([0,1] x Bas x R%;w)) is independent of wy because [0, 1] x By x Sy (R?) can
be glued to Cy (M) along the closure of F(V)g,, that is identified to {0} x Bas x Sy (R?) via 7p;.
The details of this argument can be written as follows. Let g be another admissible form on 9Cs(M)
that coincides with w; outside ST(Byy), and let © = w + dn be a closed two-form on [0, 1] x By x S?
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that coincides

with @y on {0} x By x S?, and

with Th,, xg2W1 Ol ({1} x Bar U[0,1] x dByy) x S2.

We assume that 7 vanishes on ({1} x By U [0,1] x dBys) x S? without loss because the H! of this
space is trivial. In particular, according to Proposition 2.24,

2,([0,1] x Basr x R%,@) — 2,([0,1] x B x R3;w) =

377, i—1 3n
_Fgf; /OXBMXSV R?) /\P 0) A Bi()* (1 )/\j:/i\rlpj(r)*@o) (.

Similarly, &y and wg extend to Co(M) as @y and wyy, respectively, and there exists a one-form 1’ on
C2 (M) such that @y = wpy + dn’ where 1’ vanishes on 9Cy (M) \ ST (B ), and coincides with n on
ST (Bpr). Then according to Proposition 2.23,

20(@nar) — 2zn(war) = —(2n([0,1] x Bar x R®:@) — 2,([0,1] x Bar x R*;w)).
In particular, when @y = w1, we can choose the extension @ = 7T*BM g2 (w1) where
Ty xs? ¢ [0,1] x By x R® — {1} x By x R?
is the natural bundle morphism and we have
Zn(wo) + 2,([0,1] x By x R3;w) =

= zn(w1) + 2 ([0,1] x Bar x R 705 g2 (w1))

where, according to Lemma 2.26,

2n([0,1] x Bap x R¥% 75 g2 (w1)) = 0.

Lemma 2.28 If 7y is a trivialization homotopic to Tar, then z,(Tar) = 2n(Ta).

PROOF: When 7y is homotopic to 7as, there exists g : [0,1] x By — GL*(R3) such that g maps a
neighborhood of ([0,1] x (B \ Bas(1)) U {1} x Byy) to 1, and, if 7as(v € T, M) = (m,u € R3?), then
T € T M) = (m, g(0,m)(u)). The map g induces the bundle-morphism

d(g): [0,1] x By xR® — R3
t;m,v) = gltm)().

such that ¢(g)* (wg2) satisfies the hypotheses of Proposition 2.27, and
2 (Tar) = 20 (Tar) = 2 ([0, 1] x Bar x 5% 6(9)" (ws2))-

Then thanks to Lemma 2.26, the right-hand side vanishes. o

This lemma concludes the proof of the first part of Proposition 2.11.

Lemma 2.29 Let G : M\ oo — GLT(R3) map (M \ 00)\ By (1) to 1. Then 2, (¢(G)oTar) — 2n(Tar)
is independent of Ty .
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PROOF: Let 7y be another trivialisation. Then, there exists g : (M \ co) — GLT(R?) such that
Tm = ¥(g) o Tar- The map ¢ induces automorphisms 1(g) on all (M \ o) x Sy ). Furthermore on

By % 8%, pu(Tv) = psz, pm(Ta) = psz 09(9), pu(P(G) o Tar) = pg2 0 Y(G), and pu (Y(G) 0 Far) =
psz © ¥(G) o ¥(g). Thus, when w is suitable to compute (z,(7ar) — 2n(¢¥(G) o Tar)), according to
Proposition 2.27, 1(g)*(w) is suitable to compute (z,,(7as) — 2, (¥ (G) o Tar)), and since this amounts
to pull-back /\321 P;(T")*(w) by the orientation-preserving diffeomorphism 1 (g) acting on I x Bys X Sy,

it does not change the integrals. Therefore,

Zn(Tar) — 20 (W(G) o Tar) = 20 (Far) — 20 (Y(G) 0 Tar)
and we are done. S

The above lemma allows us to define
Zflz(G) = Zn(w(G) o TM) - Zn(TM)
for any G : M \ oo — GLT(R3) that maps (M \ c0) \ Ba(1) to 1.

Lemma 2.30 If G maps the complement of a ball B? to the identity, and if G is homotopic to p on
the quotient of this 3-ball by its boundary, then

20 (G) = 0.

PROOF: Indeed, in this case, there exists a two-form w on [0, 1] x By x 52 that coincides with p¥, (wg2)
near {1} x By x S% and [0,1] x (B \ B?) x S? and that coincides with (pgz o 1(p)~1)*(wg2) near
{0} x B3 x S§% where j denotes the restriction of G to B3 that is homotopic to p. Then

3n
() — 2n(W(G) L omy) = P, (w)[l
(rw) = 20 ((G) ™ o 71) 2;/[]35()/_\ (C)* )]

since the forms vanish on [0, 1] x (B \ B3) x Sy. Now, view the bundle E; of Subsection 1.6 as
FE = B* x R3 U(8B4:S3:B3U327B3)><5’2 —B* x R?

where (z,y) of the first copy dB* x R? is identified with (x, ) of the second copy if « is in (—B?), and
with ¥(p)(z,y) otherwise. Then w can be extended by p%. (wg2) outside [0,1] x (B?) x §* € —B* x 52
on S2(E1). The integrals over Sy (E1 \ p~* (([0,1] x B®) C —B*)) are zero. Therefore,

3n

() = 2@ Fomn) = X [ AR @IL] =6

ree, Y Sv(E1) j=1

Now, w represents the Thom class of £, and we conclude with the help of Lemma 2.29. o

2.7 DMore on trivialisations of 3-manifolds

Let us now recall some more standard facts about homotopy classes of orientation-respecting triviali-
sations of 3-manifolds.

Fix a trivialisation 7y of T'(M\00) that is standard near co. Any other such will read 1)(G)oTys for
aunique G : ((M\o0o), M\ (coUB(1))) — (GLT(R?),1), with the notation of Proposition 1.8. Then
(G — ¢¥(G) o1pr) induces a (non-canonical) bijection between the homotopy classes of trivialisations
of T(M \ oo) that are standard near oo, and the homotopy classes of maps from (M, M \ Bj(1)) to
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(GL*(R3),1). This latter set is denoted by [(M, M \ Bp(1)), (GLT(R3),1)]. It canonically coincides
with [(M, M \ By (1)), (SO(3),1)].
Let ' be a topological group, and let X be a topological space. Define the product of two maps

fand g from X to I as
fg: X — T

r = f(z)g(x).
This product induces a group structure on the set [X,T'] of homotopy classes of maps from X to T.
When X = M, this product induces a group structure on [(M, M \ Bys(1)), (GLT(R?),1)]. Recall the

easy lemma.

Lemma 2.31 The usual product of 7,(T') coincides with the product induced by the multiplication in
T (defined above with X = S™).

<

Let Gp(p) : M — SO(3) be a map that sends the complement of a ball B3> C By,(1) to the
identity, and that is homotopic to p on the quotient of this 3-ball by its boundary. Note that all such
maps induce the same element [G s (p)] in [(M, M \ Ba(1)), (GLT(R?),1)].

The elements of [(M, M\ Bas(1)), (SO(3),1)] have a well-defined degree that is the degree of one
of their representative from M to SO(3).

Lemma 2.32 Let M be a closed oriented 3-manifold.
1. Any map G from (M, M \ B (1)) to (SO(3),1), such that
m(G) i m (M) — m(SO(3)) 2 Z/2Z

is trivial, belongs to the subgroup < [Gp(p)] > of [(M,M \ Bpn(1)),(SO(3),1)] generated by
[Gar(p)]-

2. For any [G] € [(M, M \ Bp(1)),(SO(3),1)],

[G? €< [Gu(p)] >

3. The group [(M,M \ B (1)), (SO(3),1)] is abelian.
4. The degree is a group homomorphism from [(M, M \ B (1)), (SO(3),1)] to Z.

5. The morphism

deg .1, M\ By (1)), (SO(3),1)] ©2Q —  QIGar(p)]
@1 499G (o)

is an isomorphism.

PROOF: Assume that 71 (G) is trivial. Choose a cell decomposition of Bjs with respect to its boundary
with no zero-cell, only one three-cell, one-cells and two-cells. Then after a homotopy, we may assume
that G maps the one-skeleton of Bys to 1. Next, since m2(SO(3)) = 0, we may assume that G maps the
two-skeleton of By to 1, and therefore that G maps the exterior of some 3-ball to 1. Now G becomes
a map from B3/0B3 = $3 to SO(3), and its homotopy class is k[p] in 73(SO(3)) = Z[p], where (2k)
is the degree of the map G from S® to SO(3). Therefore G is homotopic to G (p)¥, and this proves
the first assertion.
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Since m1(G?) = 2m1(G) is trivial, the second assertion follows.

For the third assertion, first note that [Gas(p)] belongs to the center of [(M, M\ B (1)), (SO(3),1)]
because it can be supported in a small ball disjoint from the support (preimage of SO(3) \ {1}) of a
representative of any other element. Therefore, according to the second assertion any square will be
in the center. Furthermore, since any commutator induces the trivial map on 71 (M), any commutator
isin < [Gp(p)] >. In particular, if f and g are elements of [(M, M \ B (1)), (SO(3),1)],

9f)’=f9)? =" L2@NH (g fg)

where the first factor equals f2¢? = ¢2f2. Exchanging f and ¢ yields f~'¢~'fg = g~ ' f'gf. Then
the commutator that is a power of [Gs(p)] has a vanishing square, and thus a vanishing degree. Then
it must be trivial.

For the fourth assertion, it is easy to see that deg(fg) = deg(f) + deg(g) when f or g is a power

of [Ga(p)], and that deg(f*) = kdeg(f) for any f. In general, deg(fg) = 3deg((fg)?) = 3deg(f?9%) =
% (deg(fg) + deg(g2))7 and the fourth assertion is proved.
In particular,

A8 . (M, M\ By (1)), (SO(3),1)] ©2Q — QIGur(p)]
g @1 B Gl )

is an isomorphism, and the last assertion follows, too. o

Lemma 2.33 The map z,, from [(M, M \ By (1)), (SO(3),1)] to An(B) is a group homomorphism.

PROOF: According to Lemma 2.29, 2}, (fg) = 2, (¥ (f)V(9)ar) — 20 (¥(9)Tar) + 20 (V(9)Tas) — 20 (T0s) =

z(f) + 2.(9)- o
This lemma, together with Lemma 2.30 that asserts that z,,(Gum(p)) = d,, and Lemma 2.32,
concludes the proof of Proposition 2.11. o

2.8 Proof of Proposition 1.8

Recall that the first Pontryagin class pi(WW) of a closed oriented 4-manifold W is the obstruction
to trivialise the complexification of its tangent bundle. It is defined like in Subsection 1.5. See also
[MS]. According to [MS, Example 15.6], p1 (CP?) = 3. We shall use the following Rohlin theorem that
compares the two cobordism invariants of closed 4-manifolds.

Theorem 2.34 (Rohlin) When W is a closed oriented 4-manifold,
p1(W) = 3signature(W).

Lemma 2.35 Let M be a Q-sphere. Let Ty be a trivialisation of T (M \ 00) that is trivial near co.
Let W and W’ be two cobordisms between B*(3) and Bys. Then

pr(W;t(1ar)) — 1 (W' 7(1ar)) = 3 (signature(W) — signature(W'")) .

PROOF: Let N(OW) be a regular neighborhood of OW in W, or in W'. Let 7 be a trivialisation of
TW ® C defined in N(OW). Set W = W \ Int(N (8W)), and W’ = W’ \ Int(N(W)). Then

p1(W;7) —pr(W's 1) = pr(Wi7) — pr(W's7)
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does not depend on the trivialisation 7 and equals p; (W U a1 —W"). According to Rohlins’s theorem,
this is 3 signature(W U,y — W), where W U,y —W is homeomorphic to W Ugw (—W') and W is
homeomorphic to M.

Since M is a Q-sphere, the Mayer-Vietoris sequence makes clear that

Ho(W Upr (=W');R) = Hy(W;R) @ Ho(W';R),
and it is easy to see that
signature(W Ups (—W')) = signature(W) — signature(W"),

and to conclude. o

In particular, the definition of p; does not depend on the chosen 4-cobordism W with signature
0. It is clear that py(7as) only depends on the homotopy class of 75;. Proposition 1.8 is now the direct
consequence of Lemmas 2.38, 2.39 and 2.40 below.

Let K =R or C. Let n € N. The stabilisation maps induced by the inclusions

i: GL(K") — GLEKa&K")
g = (i(g) : (2,y) — (z.9(y))

will be denoted by i. The K (euclidean or hermitian) oriented vector space with the direct orthonormal
basis (v1, ..., v,) will be denoted by K < vy, ..., v, >. The inclusions SO(n) C SU(n) will be denoted
by c. The projection from SO(R* = R < 1,4,5,k >) to S that maps g to g(1) is denoted by p. In
particular, the long exact sequence associated to the fibration SO(3) — SO(4)——S3 gives rise to
the exact sequence

75(SO(3)) = Zlp|— sy (SO(4))—Lors(5%) = Z[1d] — {0}

Let m, denote the map from S® = S(H) to SO(R* = H) be induced by the right-multiplication. When
v € S? and z € H, m,(v)(z) = z.v. Define a section o of p., by setting

o([ld]) = [m.].

In particular, 73(SO(4)) is generated by i.([p]) and [m,].
Let m& denote the homeomorphism from S% = S(H) to SU(C% = C < 1,j >= H) be induced
by the right-multiplication. When v € S% and z € H, mS(v)(z) = z.v.
z1 —52 :|

m3(SU(2)) = Z[mc]

Finally recall that i : m3(SU(2)) — m3(SU(n + 2)) is an isomorphism for any natural number n,
and in particular, that
m3(SU(4)) = Z[i*(m{)].

T

The following lemma determines the map
cs :m3(S0(4)) — w3 (SU(4)).

Lemma 2.36

2[i%(mS)].

T

c*([mr])
cu(in([p])) = —4[i*(m)].

m3(SO(4)) = Z[m.] & Zix([p])-
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PROOF: Let my denote the map from S® = S(H) to SO(R* = H) induced by the left-multiplication.
When v € S? and x € H, my(v)(x) = v.z. Let m,, = m, . When v € S and = € H, m,(v)(z) = x.7.
Then in 75(S0O(4)),

i+ ([p]) = [mel + [mr] = [ma] = [mo],

thanks to Lemma 2.31. Now, using the conjugacy of quaternions, m¢(v)(z) = v.z = 7.0 = m,(v)(T).
Therefore my is conjugated to 7, via the conjugacy of quaternions that acts on R* as a hyperplan
symmetry.

Now, observe that since U(4) is connected, the conjugacy by an element of U(4) induces the
identity on m3(SU(4)). Thus,

c(me]) = e.([my]) = —c.([my]),

and
¢ (i ([p])) = —2c.([m]).

Therefore, we are left with the proof of the following sublemma that implies that i, : m3(SO(3)) —
m3(S0O(4)) is injective and thus, that

73(SO(4)) = Zlm, | & Zi. ().

Sublemma 2.37
cu([mr]) = 2[i%(m7)].

PROOF: Let H + IH denote the complexification of R* = H = R < 1,4, 4,k >. Here, C = R @ IR.
When z € H and v € S3, ¢(m,.)(v)(Ix) = Iz.v, and I? = —1. Let € = &1, define

C?(e)=C< \/75(1 + eIi), g(j +elk) > .

Consider the quotient C*/C?(¢). In this quotient, Ii = —¢1, Ik = —¢j, and since I? = —1, Il = i and
17 = €k. Therefore this quotient is isomorphic to H as a real vector space with its complex structure
I = ¢i. Then it is easy to see that ¢(m,.) maps C2(g) to 0 in this quotient. Thus c(m,.)(C2(¢)) = C2(¢).
Now, observe that H+IH is the orthogonal sum of C2(1) and C?(—1). In particular, C?(¢) is isomorphic
to the quotient C*/C2%(—¢) that is isomorphic to (H;I = —ei) and c¢(m,) acts on it by the right
multiplication. Therefore, with respect to the orthonormal basis @(1 —li,j — Ik, 1+ Ii,j + Ik),

¢(m,.) reads

21 —Z2 0 0
. zo Z 0 0
c(my)(z1 + 227) = 02 01 Z1 =21 — Iy —22
0 0 Zo z1=x1 + Iy

Therefore, the homotopy class of ¢(m,.) (invariant under conjugacy by an element of U(4)) is the sum
of the homotopy classes of

C

. mC 0 , 10
(zﬁ'z”w[ 0 1} and (zﬁzwm{o m?m}

where ((21 + 227) = Z1 + Z27. Since the first map is conjugate by a fixed element of SU(4) to i2(m¢),
c

T
to i2(mS), too. o

it is homotopic to i2(m%), and since ¢ induces the identity on m3(S3), the second map is homotopic
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Lemma 2.38 Consider g : (Bar,]1,3] x §%) — (SO(3),1) and

¢(g) .B]\/[X]R3 — _B]\/[X}R3
(z,9) = (2,9(2)(y))

then (p1(¥(g) o Tar) — p1(Tar)) is independent of Tas .

ProOF: Indeed, (p1(¥(g) o 7ar) — p1(7ar)) can be defined as the obstruction to extend the following
trivialisation of the tangent bundle of [0,1] x Bjs restricted to the boundary. This trivialisation is
T10,1]@®7ar on ({0} x Bar)U([0,1] x OBps) and T'[0, 1)@ (g) orar on {1} x Bpy. But this obstruction is
the obstruction to extend the map g from 9([0, 1] x Bas) to SO(4) that maps ({0} x Bar)U([0, 1] x 0Byr)
to 1 and that coincides with i(g) on {1} x By, viewed as a map from 9(]0,1] x Bys) to SU(4), on
([0,1] x Bps). This obstruction that lies in 73(SU(4)) since m;(SU(4)) = 0, for i < 3, is independent

of TM - <
Define p} : [(M, M \ Bp(1)),(SO(3),1)] — Z by
Pi(g) = p1(¥(g) © Tar) — pr(Tar).

Lemma 2.39
Pi(9) = p1(¥(g) o Tnr) — pi(7ar) = —2deg(g).

PROOF: Lemma 2.38 guarantees that p} is a group homomorphism. According to Lemma 2.32, p}
must read p} (G M(p))%. Thus, we are left with the proof that

Py (Gt (p)) = —4.

Let g = G (p), we can extend § (defined in the proof of Lemma 2.38) by the constant map with value
1 outside [¢,1] x B = B* and, in 73(SU(4))

[€(Gop:)] = —(P1((9) © Tar) = pr(7ar)) [ (m)].
Since g“alm is homotopic to i(p) ™!, Lemma 2.36 allows us to conclude. o
Lemma 2.40 o If M is a given Z-sphere, then p1 defines a bijection from the set of homotopy
classes of trivialisations of M that are standard near oo to 4Z.
o For any Z-sphere M, for any trivialisation Tar of M that is standard near oo,
(p1(7ar) — dimension(Hq,(M;Z/27))) € 27Z.

PROOF: Any closed oriented 3-manifold M bounds a 4-dimensional manifold W obtained from B* =
[0,e] x B3 by attaching ba(W) two-handles with even self-intersection [Kap]. We are going to prove
the following sublemma.

Sublemma 2.41 There exists a trivialisation Tp; of T(M \ 0o) that is standard near oo such that
p1(W;7(Tar)) = 2b2(W) mod 4.

PROOF: For our W, there exists a Morse function that coincides with the projection onto [0, 1] near
the boundary where W looks like [0, 1] x B3 or [0, 1] x By and whose only critical points are index two
critical points that correspond to the by(W) two-handles. Let X be the gradient field of this function
that is defined outside the critical points. Let B* be a 4-ball of W that intersects W along a 3-ball
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B? C M and that contains all the critical points. W\ B# is homotopy equivalent to W and is obtained
from a regular neighborhood of ({0} x B3) U (—[0,1] x S?) by attaching two-handles. The obstruction
to extend the trivialisation X @72 of TW defined near ({0} x B3)U(—[0,1] x S?) to these handles is in
m(SO(4)) = i.(m(SO(3))) = Z/2Z, it is the self-intersection of the handles mod 2, and it vanishes.
Therefore, the trivialisation X @73 of TW defined near ({0} x B3)U(—[0, 1] x 52) extends to (W \ B*)
as a trivialisation of the form X @ 7. In particular, 7 provides a trivialisation 75, on By \ B? that is
standard near oo, and that can be extended to B? since m3(SO(3)) = {0}. Now, X @ 7 is a frame on
OB* that is viewed as a map from dB* to SO(4), and, in 73(SU(4))

(X & 7)] = =p1(W37(rar) [ (m)].

Note that p(X &7) = X and that [X] = by(W)[Id] in 73(S?) = H3(S?). Indeed, X defines a map from
the complement C in B* of small balls centered at the critical points to S2. In C, 9B* is homologous
to the sum of the boundaries of these small balls. Therefore, when X, denotes the map from H3(C)
to H3(S®) induced by X, [X] = X.[0B*] is the sum of the degrees of X on the boundaries of the
small balls. Since X is obtained from the outward normal field by a multiplication by a matrix with
two negative eigenvalues on the boundaries of these small balls, the degree is one for all these critical
points, and we have proved that [X] = by(WW)[Id]. Therefore,

(X &7) € (bo(W)m, & 1.(m3(SO(3)))) C m3(SO(4)),
and, according to Lemma 2.36,
[co(X @ 7)] € 2b5(W)Z[i*(mE)] + 4Z[i* ()],
This concludes the proof of the sublemma. o
Now, it follows from Lemma 2.35 that

p1(tam) =p1(Wir(7a)) — 3signature(W)
= 2by (W) — 3 signature(W) mod 4.

Since M is a Q-sphere, (signature(W) — bo(W)) € 2Z, and therefore
p1(Tar) = signature(W) mod 4.

When M is a Z-sphere the intersection form of W is unimodular, therefore since the form is even the
signature of W is divisible by 8 (see [Se, Chap. V]), and p1(7ar) € 4Z. Thus, by Lemmas 2.32 and
2.39, p; maps the homotopy classes of trivialisations of M that are standard near co onto 47Z. These
lemmas also show that p; is bijective from the set of homotopy classes of trivialisations of M that are
standard near oo to 4Z.

Lemma 2.39 implies that for any pair (7a, 73,) of trivialisations of M that are standard near oo,
(p1(mar) — p1(7yy)) is even. Now, since the intersection matrix of W mod 2 is a presentation matrix

for H1(M;7Z/27Z) and since it can be written as the orthogonal sum of matrices [ (1) (1) ] and a null
matrix of dimension rank(H;(M;Z/27Z)),

signature(W') = rank(H1(M;Z/27Z)) mod 2

and we are done. This concludes the proof of Lemma 2.40 and the proof of Proposition 1.8. o
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2.9 Computation of ¢

We use notation introduced in Subsection 1.6.
Proposition 2.42 The projective space CP? is homeomorphic to —Sa(Ey).
Lemma 2.43 The projective space CP3 is an S?-bundle over S*.

PRrROOF: Let H = C @ Cj be the quaternionic field, and let HP® be the quotient of H? \ 0 by the left
multiplication by (H* = H\ {0}).

HP' = 8* = {(hy : 1);hy € H} Ug- {(1: ho); hy € H}.

where (hy : 1) = (1 : hy') when h; # 0. The complex projective space CP? is the quotient of
(C*\ {0} = H?\ 0) by the left multiplication by C* C H*. The projection from H?\ {0} to S* factors

through CP3 that becomes a bundle over S* with fiber ¢« \ (H \ {0}) = CP! = S2. o
0 0 1
Lemma 2.44 Let Pis=| 0 1 0 | € SO(3). Let
-1 0 0
gz: S — SO(3)
hi —  Pisp(hy)"'P5
CP3=B*x S?u os (—B* x §?)

oB4x 52" 9~ Bayx 52

PROOF: Let hy € H*. The fiber of C*\ {0} over (h; : 1) is {(kh1,k); k € H*}. The fiber of C*\ {0}
over (1:hy')is {(¢,¢hy"); ¢ € H*} with ¢ = khy. Therefore,

CP? = B* x CP!' Uy, (—B* x CP")

where ¢(y3)((hi; [k]) € OB* x CP') = (h1;43(h1)([k])) and y3(ha)([k]) = [k.21] in ¢+ \ H* = CP,
with [k = 21 + 224] = (21 : 22). To express the action g3(h1) of y3(h1) on

S%?={(z € C;h € R);|2|> + h? =1},

we will use the inverse diffeomorphisms

& Ccp! — 52

. 221 % Y e
g1 (5221 ) ((cljé‘fi'iﬂ“h = EP =R
N —_—
) (rlem) ithgol

(1—h:z) ifh#1

and write
g3(h1) = Eoryg(hy) o &
Let (z;h) € S?2, h # —1. Let hy = 23 + 245 € S C H.

(z+ (L+h)j) (25 + 245) = 21 + 23]
with 2] = zz3 — (1 + h)Z4, 25 = zz4 + (1 + h)Z3, and

1217 + |25]* = |2[* + (1 + h)* =2 + 2h.
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Then
93(23 + 22j)(2:h) = £(73(23 + 22) (2 : L+ h)) = &((21 = 23)) = (25 ).

|25]% = |2|?|24]* + (1 4+ h)?|23]* + (1 + h) (22324 + ZZ372).

P 2
12| =14 h(|z3]* = |24|?) + (22324 + Z2322).

_ 20 = (=1 + 125?) _ 125

"= |21]2 + [25]? T 14+h 1= h(|zs]* = |za]?) + (22324 + Z2372).

2% = |21223%4 — (1 + h)?23Z4 + (1 + h)z32 — (1 + h)Z3Z

2217} 217z,
7= A = 2 = hagzy + 252 — 747
21|12 + |25 1+h

In particular, the map g3(23 + 247) from S? to S? extends as an element of GL(R?) still denoted by
93(z3 + z4j) with the matrix

Re(22 — 22) Im(23 —23) —2Re(z3%4)
g3(zs + 247) = Im(2% +27) Re(22 +27) —2Im(23%4)
2Re(z324)  —2Im(z324) |23]% — |24?

Let us now compute the matrix of the conjugacy
p(z3 + 247) 1 v = (23 + 245)v(Z3 — 247).

(23 + 247)i(Z3 — 24§) = i(|zs|” — |2a]?) — 22324k

(23 + 247)7 (23 — zaj) = (25 + 23)j + 2374 — 2473

(23 + 24))k(Z3 — 247) = i(24Z3 + 23Z4) — sz + zgk

|23|2 — |Z4|2 21m(2'324) 2Re(2324)
p(z3 + 247) = 2Im(z324) Re(22 +27) Im(z7 — 22)
—2Re(2324) Im(23 + 27) Re(23 — 23)
Therefore, g3(z3 + 2z47) = Pi3p(23 + 245) "' P13, and we are done. o

It is now easy to conclude the proof of Proposition 2.42. Since SO(3) is connected, the gluing
map of Lemma 2.44 is homotopic to (v — p~1(v)). Now, to conclude define the orientation-reversing

diffeomorphism S from

3~ 4 2 _ p4 2
CpP°=B*x S Uc’)B4><S2¢(£1)8(734)><S2( B* x 5%)
to
_ n4 2 4 2
Sa(Er) = BT x § Yopixs2 @ o(— piyxs2 (=B x 5%
by
S((x,v) € B* x 8 C CP?) = (z,v) € —B* x 52 C Sa2(Ey)
and

S((z,v) € —B* x §% C CP?) = (x,v) € B* x §% C Sy(Ey).
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Proposition 2.45

§1=—§[9]-

PRrOOF: The only degree one Jacobi diagram is

C
aA

Orient its edges from 1 to 2, and orient V(0) = {1, 2} with its natural order. Then the edge-orientation
of 0 is given by the order (a, A,b, B, ¢, C') that is equivalent to the order (a,b, ¢, B, A, C) of the vertex-
orientation where the vertices of 6 are oriented by the picture. Therefore,

1
& = —/ w[d).
' 12 S2(E1) T[]

Recall that H?(S3(E))) = H?(CP?) = Z[wcps] where weps is Poincaré dual to CP? and [, weps =
1. Since the orientation-reversing diffeomorphism S from CP? to So(E;) restricts to an orientation-
preserving diffeomorphism from a fiber CP! of CP? to a fiber S? of Sy(FE;),

/ (S (weps) = 1 = / wr,
S(CP1) S(CP)

Since H?(S2(E1)) =2 Z, this shows that wr = (S71)*(weps). Then

= D (weps )] = — weps[0] = —1[0].
126 = [ (7 or) 0= [ kel = 10

36



3 Compactifications of configuration spaces

In this section, we give a detailed description of the compactifications of the configuration spaces
mentioned in Subsection 2.2 and we prove all the statements of this subsection that is the introduction
to this section. These compactifications are similar to the Fulton and MacPherson compactifications
[FMcP] first used by Bott and Taubes in [BT]. Here, we use the Poirier approach [Po] to present them.
The used definitions and the used properties of blow-ups will be given in Subsection 3.2.

3.1 Topological definition of the compactifications
For any subset A of V', recall the restriction map
pa: Cv (M) — Ca(M).

Let M“4(co?) be the manifold obtained from M4 by blowing-up co? = (00, 00, ...,00). When
$A = 1, set C(A; M) = MA(0c0). When 44 > 1, define C(A; M) from M*(c0?) by blowing-up the
closure of the strict diagonal of (M \0o)” made of the constant maps from A to (M\oc). Proposition 3.5
asserts that C(A; M) inherits a canonical differentiable structure from the differentiable structure of
MA. Let T4 : C(A; M) — M* be the canonical projection.

Consider the embedding

v="J[ pa:CvM)— ] c4Mm)
ACV,A#£) ACV,A#)

and identify CV’V(M ) with its image under . Define Cy (M) as a topological space as the closure of
(Cy (M)) in the compact space [Tacv, a9 C(A; M). Note that when gV = 1, Cy (M) is homeomorphic
to C1(M). We have the following lemma.

Lemma 3.1 Any c = (ca)acv,azp € Cv(M), satisfies the following property (C1): The restriction
of Iy (cv) to A is equal to T4 (ca).

PROOF: Indeed, the set made of the configurations that satisfy (C1) for a given A is closed since it
is the preimage of the diagonal of (M A)2 under a continuous map. Furthermore, this set contains
Cy(M). Therefore, it contains Cy (M). S

Since we shall use the differentiable structure of the C'(A4; M) to define the structure of Cy (M).
We first study the former one in detail.

3.2 Differentiable structure on a blow-up

Definition 3.2 A dilation is a homothety with ratio in |0, col.

In general, when V is a vector space SV = S(V) = ‘]/O\igﬁ denotes the quotient of (V' \ {0}) by

the action of |0, o[ that always operates by scalar multiplication. Recall that the unit normal bundle
SNx(Z) of a submanifold Z in a smooth manifold X is a bundle over Z whose fiber over (z € Z) is

S(77)-

Definition 3.3 As a set, the blow-up of X along Z is
X(Z)=(X\Z)USNx(2).

It is equipped with a canonical projection from X (Z) to X that is the identity outside SNx(Z) and
that is the bundle projection from SNx(Z) to Z on SNx(Z). The following proposition defines the
canonical smooth structure of a blow-up.
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Proposition 3.4 Let Z be a C*° submanifold of a C*° manifold X that is transverse to the possible
boundary 0X of X. The blow-up X (Z) has a unique smooth structure of a manifold with corners such
that

1. the canonical projection from X (Z) to X is smooth and restricts to a diffeomorphism from X\ Z

to its image in X,

2. any smooth diffeomorphism ¢ : [0, co[*xR"™ — X from [0, co[*xR"™ to an open subset ¢([0, co[*xR™)
in X whose image intersects Z exactly along #([0,00[*xRI~¢ x 0), for natural integers c,d,k

with ¢ < d, provides a smooth embedding

(0, co e xRI—¢) x [0, c0[x §™+e-d-1 . x(z)
(x, A €]0,00[,v) — o(x, \v)
(,0,v) — D¢(x,0)(v) € SNx(Z)

with open image in X (Z).

ProOF: We use local diffeomorphisms of the form ¢ and charts on X \ Z to build an atlas for X (Z).
These charts are obviously compatible over X \ Z, and we need to check compatibility for charts QNS

and @[NJ induced by embeddings ¢ and 1 as in the statement. For these, transition maps read:
(2, 2, u) = (2,4, 4)
where
T =pro¢ og(z, )
A=l pzod™ o dlz, hu) |
p20Y” tog(z,Au) ifA#£0

S X
U= D(p209~tog(x,0)) (u)dt
1D (p20¢~tog(x,0))(w)dt]

In order to check that this is smooth, write

itA=0

1
prot o gz, u) = /\/ D (p2 o™ o ¢(x, tAhu)) (u)dt
0

where the integral does not vanish when A is small enough.

More precisely, assuming ¢ = 0 for simplicity in the notation, since the restriction to S~ 4~1 of
D (pg oyp~lo ¢(x70)) is an injection, for any uy € S"~97! there exists a neighborhood of (0,u) in
[0, 00[x.S" =9~ such that for any (), u) in this neighborhood, we have the following condition about

the scalar product

(D (p2op™" o ¢(, Mu)) (u), D (p2 oy~ 0 ¢(x,0)) (u)) > 0.
Therefore, there exists ¢ > 0 such that for any A € [0,¢[, and for any u € S"~91
(D (p2op~" 0 ¢(x, Mu)) (u), D (p2 0~ 0 ¢(x,0)) (u)) > 0.
Then
~ 1
A=) /0 D (pg oy to ¢(x7t)\u)) (u)dt ||
is a smooth function (defined even when A < 0) and
fol D (pg ot og(x, t)\u)) (u)dt
| Jo D (p2owt o gla, thw)) (w)d |

is smooth, too. o

fa:
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Proposition 3.5 LetY be a C*° submanifold of a C'°° manifold X without boundary, and let Z be a
C* submanifold of Y.

1.

2.

The boundary 0X (Z) of X(Z) is canonically diffeomorphic to SNx(Z).

The closure Y of (Y \ Z) in X(Z) is a submanifold of X (Z) that intersects 0X (Z) as the unit
normal bundle SNy (Z) of Z in Y .

The blow-up X(Z)(Y) of X(Z) along Y has a canonical differential structure of a manifold with
corners, and the preimage of Y C X(Z) in X(Z)(Y) under the canonical projection

X(2)Y) — X(2)

is a fibered space over Y with fiber the spherical normal bundle of Y in X pulled back by (Y —
Y).

PROOF:

1.

2.

The first assertion is easy to observe from the charts in Proposition 3.4.

Now, it is always possible to choose a chart ¢ as above such that furthermore the image of ¢
intersects Y exactly along ¢(RF x 0), k > d. Then, let us look at the induced chart 6 of X(Z)
near a point of 90X (Z).

The intersection of (Y \ Z) with the image of ¢ is ¢Z(Rd><]07oo[><(5k’d71 C S"==1)). Thus,
the closure of (Y \ Z) intersects the image of ¢ as

¢ (R x [0, 00[x(S*¥747 c gn=971)).

Together with the above mentioned charts of Y, the smooth injective map
Sk—d—l X Rn—k . Sn—d—l

(u, y)
O Ty T
identifies R" % with the fibers of the normal bundle of Y in X (Z). The blow-up process will
therefore replace Y by the quotient of the corresponding (R"~*\ {0})-bundle by ]0, o[ which is
of course the pull-back under the natural projection (Y — Y') of the spherical normal bundle
of Y in X.

&

PROOF OF LEMMA 1.1: According to Proposition 3.4, near the diagonal of R, we have a chart of
Co(S?)

¥ R? x [0, 00[xS? — C5(S?)

that maps (z € R3, X\ €]0,00[,y € S?) to (z,z+ \y) € (R?)2. Here, pgs extends as the projection onto
the S? factor.
Consider the embedding

oot R3 — 53
9 ee] if o= 0
pwx € S?) { 1z otherwise.
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This chart identifies S(TxS?) to S(R?). When u # 0,

py —x
Pss(boo (), y € R?) = Ty -z

Then pgs can be smoothly extended on S(T5%) x R? by
pss(Dooo () € S(TooS?),y € R?) = —u.

Similarly, set
pss(z € R3, Do (y € S(R?)) € S(TweS?)) = y.

Now, when

(2,1) € <S<<R3>2> \ S(diag(®)2) "E 50572\ s<diag<<Too83>2>>> ,

and when = and y are not equal to zero,

Pss ), Yy)) = = .
(A, e [y Y P P

Therefore, pgs smoothly extends on M?(oco,c0) outside the boundaries of oo x C1(M), C1(M) x oo
and diag(C1(M)) as
[z IPy—llyl*=
pss((Dom)((@:9) € 5%) = .
Mz l?y= Nyl
Let us check that pgs smoothly extends over the boundary of the diagonal of Cq(M). There is a chart
of C3(M) near the preimage of this boundary in Co (M)

o+ [0,00[x [0, 00[x 5% x S — C(S?)
that maps (A €]0, 00, €]0,00[,z € S2,y € 52) t0 (Poo (ML), oo (A(z + py))) where pgs reads

y — 2z, y)x — pa
|y —2(x,y)x — pa ||’

(N, z,y) —

and therefore smoothly extends when p = 0. We similarly check that pgs smoothly extends over the
boundaries of (co x C1(M)) and (C1 (M) x c0). o

3.3 The differentiable structure of C(A;M)

Recall that M4 (co?) is the manifold obtained from M4 by blowing-up co? = (00,00, ...,00). As a
set, M (co?) is the union of M“\ co? with the spherical tangent bundle S ((TsoM)?) of M4 at co?.
Let diag((M \ 00)4) denote the closure in M4 (co?) of the strict diagonal of (M \ co)* made of the
constant maps. The boundary of diag((M \ oo)4) is the strict diagonal of (Tso M \ 0)* up to dilation.
This allows us to see all the elements of diag((M \ c0)4) as constant maps from A to Cy(M), and
provides a canonical diffeomorphism p; : diag((M \ 0o)4) — C1(M).

Now, C(A; M) is obtained from M4 (co?) by blowing-up diag((M \ 0o)#). Thus, as a set, C'(A; M)
is the union of

e the set of non constant maps from A to M,

(Too M) \diag((Too M)*)
10,00]

e the space , and,
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e the bundle over diag((M \ c0)4) = C; (M) whose fiber at a constant map with value x € Cy (M)

1S
S THI (‘T)MA
diag((Tt, (o) M)4)

\ 0) may be identified with (T, () M)A\ \ 0) for any b € A through

Tty (o M

Note that (—diag((Tnl(z)M)A)

[(va)aca] = (vo — Ub)ae(A\b)-

Recall that for A € V, 4 : C(A; M) — M# denotes the canonical projection. When V is a euclidean
vector space, S(V) is simply the unit sphere of V.

Example 3.6 Charts near IT,'(diag((M \ co)?)).
Let
¢ :R>— M\ oo
be a smooth embedding that is a chart of M near ¢(0) = x. Let A be a finite set of cardinality A4 > 2.
Let b € A. Let us construct an explicit chart 1(4; ¢; b) of C(A; M) near a point of I, (z) where 24

denotes the constant map of M4 with value z.
We have the chart

(A dib): R3x (RHAD ., g4
o(y) ife=0b
e esan) <CF%{ B+ v0) i (ccA\D) )

of submanifold for the strict diagonal, and this induces the chart

RY x [0, 0o[xS(®)AW) LG oy

o(y) ife=0
(4, A €10, 00, (ye)ee(arn) = <C - { oy +Mye) if (c€ A\b) A)
(4,0, (Ye)ee(arp) - (D) (ye)ee(avp) € 3 (dia(gT(“Eéﬁif?m)

for C(A; M) in TI,* (¢(R?)4).

dlag(T(M\)A)

. A
(M\uﬁmS(ﬁﬁ%ﬁﬁ)La

Let S (M) denote the total space of the fibration over (M \ co) whose fiber over z €

1 T(M\ 00)*
Iy : 11 (diag(M \ 00)?
2 10 ing(01 o)) — 5 (TR,
denote the canonical projection. An element in the target of II;(I1,'(z4)) will be seen as a non-
constant map from A to T, M up to translation and up to dilation.

Lemma 3.7 Any ¢ = (ca)acv,axp € Cv(M), satisfies the following property (C2): For any two
subsets A and B of V such that the cardinality of A is greater than 1 and A C B, if cp € 5" (diag(M\
00)B), then the restriction to A of g(cp) is a (possibly null) positive multiple of T4(ca).

ProoOF: Choose a basepoint b € A for A and B. Consider the projection Ilap of [[ocy oy C(C5 M)
onto C(A; M) x C(B; M) in a neighborhood of some ¢ such that 28 = Tlg(cp) and 24 = M4 (ca),
with € M \ co. Then

((A;050) 7" x (B ¢30) 1) o Ilap
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map the elements of C’V(M) to elements of the form (y,Aa,ua,y, A\p,up) where y € R3, X4, \p €
0, +00[, ua € (RN, up € (R®)PV, || ua ||=[| up |= 1 and,

App(uB) = Aaua

where p is the natural projection (or restriction) from (R?)Z\? to (R3)4\b. In particular, p(up) and u4
are colinear in (R?)4\?| and their scalar product is > 0. These two conditions define a closed subset, of
((R3)A\b)2. Therefore, they must be satisfied in the image of the closure Cy (M). Since they read as
stated when cp € I5" (diag(M \ 00)?) , that is when Ap = 0, (and hence A4 = 0, too) we are done.

o

Let
Moo : T,  (c0?) — S ((TOOM)A) C M4 (c0?)

denote the canonical projection.

An element in the target of II,, will be seen as a non-zero map from A to T M up to dilation.

Example 3.8 Charts of M“(co?) near 11" (c0?).

Let
oo 1R — M
be a smooth embedding such that ¢ (0) = co. Then the composition
ltinli . - A
10, oo[xS((R?’)A)mu tip 1cat10n(R3)A(¢ ) A

induces the chart
P(A;000) + [0,00[xS((R¥)A) —  MA(c0?)
(A u) = oo O AU when X\ # 0.

Here, u is seen as a map from A to R3.
Note that o (¢(A; ¢oo)(0,u)) = Dodoo © u.

Lemma 3.9 Anyc = (ca)acv,azp € Cv (M), satisfies the following property (C3): For any two non-
empty subsets A and B of V such that A C B, if cg € Hgl(ooB), then the restriction to A of Il (cp)
is a (possibly null) positive multiple of Il (ca).

ProOF: This can be proved along the same lines as Lemma 3.7 using the chart of Example 3.8, and
this is left to the reader. o

Example 3.10 Charts of C'(A; M) near the intersection of IT;'(c0®) and the closure of the
strict diagonal of (M \ co)”.
Use the notation of the previous example 3.8. Let b € A. Assume A4 > 1. From @[NJ(A; Doo; D)

10,00[x S (R? x (R®)A\))  — A
. Do (77Y) ife="b
(A9 (Ye)ee(avy) = <c — { ¢Oo(/\(ﬁ%y +y.)) ifec#b )

we get a chart

$(A; docib) £ 0,00 5 x [0, 50[xS (RN M) — C(4; M)
with the property that

T (A G0t B) (0t 1,0)) = o © A (( u)h o+ uv>

-
hN
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as a map from A to M, where v(b) = 0. In particular
5" (00) N Tm (V(A; 6003 B)) = (A3 6c:b) ({0} x 5% x [0, 00[x5 ((RHAW) ),

and
Moo : I (004) NIm (Y(A; ¢oe; b)) — S (TaM)?) C MA(c0?)
P (A; $oo3 0)(0,u, 11, 0) = Dodes 0 (gzu’ + )
where u” stands for the constant map with value .
The boundary I3} (diag(Ts M)4) of diag((M \ 00)4) is ¥(A; ¢oo; b) ({0} x S% x {0} x S ((R3)(A\))),
The projection p; of ¥(A4; ¢so; b)(0,u,0,v) onto the boundary of C1(M) is Dodoo (1) € S(Too(M)).

Let

A
Hm,d:H;l(diag(TooM)A))—>S< TooM )

diag(Teo M)4
denote the canonical map. Note that it reads
¢(Aa d)ooa b)(07 u, 07 U) = D0¢Oo v

in the above charts.

Lemma 3.11 Any ¢ = (ca)acv,azp € Cv(M), satisfies the following property (C4): For any two
subsets A and B of V' such that the cardinality of A is greater than 1 and A C B, if cg € Hgl(ooB),
and if Il (cp) is a constant map (or is diagonal) then the restriction to A of U a(cp) is a (possibly
null) positive multiple of oo q(ca).

PROOF: Again, this can be seen on the charts given in the previous example. Consider the projection
Hap of [[ocy.cpp C(C; M) onto C(A; M) x C(B; M) in a neighborhood of some ¢ such that oof =
p(cp), s (cp) is constant, oo = TIp(ca) and I (ca) is constant. Then

(¥(A; 6003 0) H X (B3 9o03b) 1) 0 g
maps the elements of Cy (M) to elements of the form
(AAa UA, LA, VA, )‘Ba UB, LB, UB)

where Aa, Ap, pa, g €]0,+00, ua,up € S?, va € S((R3)A\Y), vp € S((R?)P\P), and,

Ap_ o da
ViB P T

Apipp(vB) = Aaprava

where p is the natural projection (or restriction) from (R3)Z\* to (R3)4\. Now, it is easy to conclude

as before. o

3.4 Sketch of construction of the differentiable structure of Cy (M)

In this subsection, we sketch the construction of the differentiable structure of Cy (M) and we reduce
the proofs of Propositions 2.5, 2.6, 2.7, 2.8 to the proofs of Lemmas 3.16, 3.18 and Proposition 3.13
stated below.
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We shall use the notation A C B (resp. A C B) to say that A is a subset (resp. strict subset) of
B. Define Cy (M) to be the set of the elements ¢ = (ca)acv,azp of

I cm
ACV,A#D

that satisfy the properties (C1), (C2), (C3) (C4), of Lemmas 3.1, 3.7, 3.9 and 3.11. These lemmas
ensure that Cy (M) is a subset of Cy (M).

An element of Cy (M) is a map (ITy (cy) € MY) from V to M with additional data that allow
us to see

e the restricted configurations corresponding to a multiple point x # oo at any scale A C
Iy (cy)~!(x) as a non-constant map Ig(ca) from A to T, M up to dilation and translation,

e the restricted configuration at a scale A C Iy (cy)~1(00) first as a non-zero map Il (c4) from
A to Too M up to dilation, and, if this latter map is constant,

e with an additional zoom, the restricted configuration at a smaller scale as another independent
non-constant map I 4(ca) from A to Too M up to dilation and translation.

with respective compatibity conditions (C2), (C3), (C4). Therefore, elements of Cy (M) will be called
limit configurations.

We are going to prove that Cy (M) is equal to Cy (M) and to construct a differentiable structure
for Cy (M) by proving the following proposition.

Proposition 3.12 For any ¢® € Cy (M), there exist
1. k €N, and an open neighborhood O of 0 in [0,00[*, (set [0, 00[°=]0, 00[’= {0} if k =0)
2. an open neighborhood W of a point w® in a smooth manifold W without boundary,
3. an open neighborhood U of c° in HAgV,A;é(A C(A; M),

4. a smooth map & : OxW — U such that £(0;w®) = 0, E(OxW) € Cy (M), and £((ON]0, co[*) x
W) = Cy(M)N&(0 x W),

5. a smooth map r: U — R¥ x W such that
e 1o is the identity of O x W,
e r(UNCy(M)) COxW, and
o the restriction of Eor to U N Cy (M) is the identity of U N Cy (M).

(This implies that £(O x W) =U N Cy(M).)

Proposition 3.12 easily implies that our £ form an atlas for C’V(M ) that becomes a smooth
manifold with corners and that Cy (M) = Cy (M). Furthermore, with such an atlas, the inclusion
¢ from Cv (M) to [[acy azp C(A; M) will be smooth, and a map f from a smooth manifold X to
Cy (M) will be smooth if and only if ¢ o f is smooth.

When #V = 1, we observe at once that Cy (M) is diffeomorphic to C(V'; M). Therefore, our two
definitions of Cy (M) coincide. We shall prove the following proposition in Subsection 3.7.
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Proposition 3.13 Let V = {1,2}. Let C2(M) denote the manifold obtained from M?(co,00) by
blowing up oo X C1(M), C1(M) x oo and diag(C1(M)) as in Subsection 1.1. Let Cy (M) be the
compactification of Co(M) defined in this subsection. Then Cy(M) is canonically diffeomorphic to

Cy(M).
Lemma 3.14 Propositions 3.12 and 3.13 imply Proposition 2.5.

PROOF: It is obvious from Proposition 3.12 that (Cy (M) = «(Cy(M))) is the interior of Cy (M).
On C'V(M), for e = (a,b), pe is given by the projection on C(e; M) that determines the projections
on C({a}; M) and C({b}; M). These projections naturally extend from Cy (M) to the closure of the
image of C’V(M) in C.(M), and they will be smooth because they come from the smooth projections
and because of the forms of our charts. o

Proposition 2.6 is easier to prove than Proposition 2.5 and could be proved before. Neverthe-
less, we shall focus on the proof of Proposition 2.5 and see Proposition 2.6 as a particular case of
Proposition 2.5 with the help of the following proposition 3.15.

Let 0V denote the constant map with value 0 in (R3)Y, where R? = $3 \ co. The preimage of
0V under the canonical projection Iy : C(S% V) — (S3)V is the set of non-constant maps from
V to To(R?) up to dilation and translation. This allows us to see Sy (R?) as an open submanifold of
IT,;'(0V). Furthermore, for a given element sy of Sy (R3), there is a unique element of Cy (S3) whose
projection on C(V; M) is sy (by (C2) that determines its other projections). This allows us to see
Sy (R3) as a subset of Cy (S3). Set

Sv(R?) = (Iy o py) "1 (0V) N Cy (57).

Sy (R3) is a compact set that contains Sy (R?). Proposition 2.6 now becomes the consequence of the
following proposition (together with Proposition 3.12) by a proof similar to the proof of Lemma 3.14
above.

Proposition 3.15 For any ¢ € C’V(S3) such that Iy o py () = 0V, in Proposition 3.12, we have
1Lk>1, W=R3xW,
2. Sy(R%)NU = ¢ (0 x W ({0} x 0,00 {0} x 7)),
3.5(0><Wfﬂ(ﬁ&xkhuﬂ”4x{0}x1%))::§Vﬂ@)ﬁlﬁ
Proposition 3.12 and Proposition 3.15 are a consequence of the two following lemmas.
Lemma 3.16 Proposition 3.12 and Proposition 3.15 are true when HV(CQ/) is a constant map of MV .

Lemma 3.17 (1) Lemma 3.16 implies Proposition 3.12.
(2) Assume Lemma 3.16 is true. Let (A;)i=1,2,....s be a partition of V into nonempty subsets

V:ﬁ&.
i=1

Let ¢; : R® — M, fori=1,...,s, be embeddings with disjoint images in M. Let U4 be the following
open subset of C(A; M).

Ua={ca € C(A;M);TIo(ca)(AN A;) C ¢;(R®)}
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and define

Qv=Cy(M)n [ Ua and Qa, =Ca, (M) [ Ua
0CACV DCACA;

Then the map (Qv — [[;_, Qa,) induced by the restrictions is a diffeomorphism.

ProoF OF LEMMA 3.17: (1) Let ¢ = (%) acv.azp € Cv(M). Consider the map Iy (cy) from V to
M and set
Iy (cy)(V) = {m1,ma,...,ms}

and
A =Ty (ev) " H(my)

Choose embeddings ¢; : R® — M, for i = 1,..., s, with disjoint images in M such that ¢;(0) = m;.
Let ¢ =y, = (%) aca, az0 € C 4, (M) denote the restriction of ¢® to A;. According to Lemma 3.16,
we may find k;, U;, Oz, Wi, w?, &, r; satisfying the conclusions of Proposition 3.12 with (c?, 4;) instead
of (%, V), and after a possible reduction of U;, O;, W;, we may assume that U; C [] aca, Ua. Then,
set k=307 ki, O=][;, 0;, W=[[_, Wi, w® = (w?)ie{17...78}'

U=]]uv: % 11 C(A; M)

i=1 ACV Vi, AN(A\A;)#£D
Define {((v,w) = (vi,...,vs,w1,...,ws)) = (§(v,w)a) acv,axp by {(v,w)a = & (vi,wi)a if A C A;
and 4 (E(v,w)a)(a € A;) = I, (§(v,w)4,)(a). When A intersects all the (A \ 4;), ITa(&(v,w)a)
is not constant. Since the restriction of II4 to the preimage of the set of non-constant maps is a
diffeomorphism onto its image, (v, w)4 is smoothly well-determined for these A. Therefore ¢ is well-
determined and smooth. Furthermore, (v, w) satisfies (C1) by construction and &(v, w) satisfies the
other conditions (C2), (C3) and (C4) that are (thanks to (C'1) and to the choice of the U;) conditions
on some & (v, w) 4 and £(v,w)p for A C B C A;. It is easy to see that £(0,w?) = ¢, and £((ON]0, co[*) x
W) c Cy (M) since the elements of Cy (M) are the elements ¢ of Cy (M) such that Iy (cy) € MY is
an injective map from V to (M \ 0o). We also easily see that

Cv (M) N &0 x W) C £((0N]0, 00[*) x W).
When 7;(u; € U;) = (r}(u;) € R¥ ;02 (u;) € W;), define
r((Ui)ieq1,....s1; (CA) ACV v, AN(A\ A1) 2£0)

= ((r} (w))ieqr,...s1; (2 (w))ieq,....5)-

Now, it is easy to see that Lemma 3.16 implies Proposition 3.12. The second part (2) of the lemma
follows from the above proof. o

Assume that Proposition 3.12 is true and come back to the faces defined in Subsection 2.2.
First recall that F(oo; V) = Si(TocM") C S((TwM)V) embeds in C(V;M). This embedding is
smooth and canonical. Furthermore, by (C1) and (C3), there is a unique map of F'(co; V) into Cy (M)
whose composition with the projection on C(V'; M) is the above embedding. Since the restrictions are
smooth from C(V; M) N Si(TooMV) to the C(A; M) for A C V, the charts of Proposition 3.12 for
Cy (M) = Cy (M) make clear that F(co; V) smoothly injects into Cy (M). Lemma 3.17 allows us
to conclude that for any non-empty subset B of V, F(oo; B) injects into Cy (M), smoothly and
canonically. It is easy to see that the projections p. associated to pairs of elements of V restrict to the
image of F(oo; B) as described in Subsection 2.2. The reader can similarly check that, for any subset
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B of V with (§B > 2), F(B) smoothly and canonically injects into Cy (M) and that the restrictions
of the p. to the images of the F(B) are described in Subsection 2.2. Obviously, the images of the
F € 0,(Cy(M)) are disjoint.

Let us inject (f(B) = f(B)(R?)) into Sy (R3) where B is a strict subset of V, §B > 2. Identify
¢(B) = ¢(b). In particular, S’{b}U(V\B)(R3) smoothly embeds into C(V;5%) N 11, (0V). When 4 is a
non-empty subset of V' that is not a subset of B, S’{b}U(V\B)(R3) smoothly projects to C(A;S3) N
I1;,*(04) by the restrictions imposed by (C'1) and (C2) (that do not determine anything for the subsets
of B where ¢ is constant). Now, Sz(R?) smoothly embeds into C(B;S%) NIz (07) and smoothly
projects to C'(A4; S3)N H;‘l(OA), when A is a non-empty subset of B, by the restrictions imposed by
(C1) and (C2). This allows us to define a canonical smooth injection of f(B)(R?) into Sy (R?), and
the p. have the desired form on the image. When B and B’ are two disjoint subsets of V', f(B) and
f(B’) are disjoint.

The F(oo; B), F(B) and f(B)(R?) will be identified with their images.

S’{b}u(v\ B)(R3) with a subspace of S made of maps that are constant on B, by setting

Lemma 3.18 Assume that Proposition 3.12 is true. In Proposition 3.12,

e when Iy (cY,) is a constant map with value m € (M \ o0),
k=1 if and only if * € F(V),

o when Iy (cY,) is the constant map with value oo,
k=1 if and only if ® € F(co; V),

o when Iy (cY,) is the constant map 0V of (S3)V,
k =2 if and only if ° € f(B)(R3) for some strict subset B of V with §B > 2.

PROOF OF PROPOSITION 2.7 ASSUMING PROPOSITION 3.12 AND LEMMA 3.18:

Let ¢ belong to a codimension one face of Cy-(M). As in the proof of Lemma 3.17, set Iy (cy ) (V) =
{m1,ma,...,ms}, and A; = Iy (cy) ~!(m;). Choose embeddings ¢; : R® — M, for i = 1,..., s with
disjoint images in M such that ¢;(0) = m;. Then by Lemma 3.17, if ¢4, belongs to a codimension
d(i) face, then ¢ belongs to a codimension (Y_;_, d(i))-face. Therefore, there exists a unique j such
that ¢4, belongs to a codimension one face. Set B = A;. When i # j, ¢4, belongs to the interior
Ca, (M) of C4,(M), and since €4, is constant, A; contains a unique element and c¢|4, does not map
it to oo. Two cases occur. Either cg(B) = {00} and ¢ € F(oo; B), or cg(B) = {cg(b)} C (M \ o)
and ¢ € F'(B). Therefore the union of the codimension one faces is a subset of [[cg, (o, (ar)) £~ Con-
versely, Lemma 3.18 and the local product structure of Lemma 3.17 make clear that [] . 1 (Cv (M) F
is a subset of the union of codimension one faces. Now, it is clear that every F € 01(Cy(M)) is
connected. Furthermore, the closure of any such F' does not meet any other F’ € 9;(Cy (M)).

Let us prove this for F = F(oo; B). In the closure of F(oo; B) all the configurations map B to
oo therefore F(oo; B) may only meet the F(oco; A) such that B C A. Consider a configuration ¢
in (F(oo; B) N F(oo; A)). With the notation of Example 3.8, since ¢ € F(oo; B), palc) = ca =
Y(A; o) N u € S((R*)4)), where v maps B to 0; then Iy (cqa) maps B to 0, but in this case
¢ ¢ F(oo; A). A similar proof left to the reader leads to the same conclusion for F' = F(B). Therefore,
the I are closed in the finite disjoint union ] 01 (Cy (M) F. Thus, they are the codimension one faces

of Cy (M), and consequently, they smoothly embed in Cy (M). o

PROOF OF PROPOSITION 2.8 ASSUMING LEMMA 3.16 AND LEMMA 3.18: It is immediate from
Lemma 3.18 and Proposition 3.15 that the disjoint union of the elements f(B)(R3) of 9;(Sy (R?))
coincides with the union of the codimension one faces. A proof similar to the above one shows that
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the f(B) are the connected components of this union. Therefore, they are the codimension one faces
of Sy (R3) and they smoothly embed there. o

Proposition 3.13 will be proved in Subsection 3.7. Apart from Proposition 3.13, we are left with
the proofs of Lemmas 3.16 and 3.18 about the structure of Cy (M) near a configuration ¢ such that
Iy (cY) is the constant map m" with value m. The case where (m # o) will be treated in the next
subsection. The case (m = 00) is similar though more complicated, it will be treated in Subsection 3.6,
but some arguments will not be repeated.

3.5 Proof of Proposition 3.12 when IIy/(c),) = m", m € M \ c.

Let ¢ : R® — (M \ 00) be a smooth embedding, ¢(0) = m. If 1V =1, set k = 0, W = R3, w" = 0,
U=¢(R?) CCi(M),&=¢andr=¢ ', and we are done. Assume fV > 2. Let ¢® = (%) acv.a40 €
Cv (M) be such that Iy (c),) = m" .

The tree 7(c') associated to the limit configuration c°.

We shall define a set 7(c") of subsets of V with cardinality > 2 as follows.

The set is organized as a tree with (V € 7(c°)) as a root. The other elements of 7(c?) are
constructed inductively as follows. Every element A of 7(c?) is the daughter of its unique mother A
in 7(c%), except for V that has no mother, and some elements have daughters (i.e. are the mother of
these). A daughter is strictly included into its mother, and any two daughters are disjoint. Therefore,
it is enough to construct the daughters of an element A. By assumption, ¢4 € IT*(diag(M \ 00)?) C
C(A; M). Thus,

T, MA
Ma(ci) € 5 (diag(TmMA)>
defines a map from A to T3, M up to translation and dilation. The daughters of A will be the preimages
of multiple points. The preimages of non-multiple points will be the sons of A.
7(c%) has the property that whenever {A, B} C 7(c?), either A C B, or BC A, or ANB = 0.
Fix ¢°, and 7 = 7(c?). For any A € 7 choose a basepoint b(A) = b(A;7), such that if A C B, if
B e 1, and if b(B) € A, then b(A) = b(B). When A € 7, D(A) denotes the set of daughters of A.

Configuration spaces associated to 7.

For any A € 7, consider the following subsets of the unit sphere S((R3)Y) of (R*)V equipped
with its usual scalar product. Define the set C(A4;b(A);7) of maps w : V — R? such that

o [[w]=1
e w(b(A)) =0, w(V\A) = {0}, and
e w is constant on any daughter of A.

It is easy to see that C'(A;b(A); ) has a canonical differentiable structure (and is diffeomorphic to a
sphere of dimension (3(44 — Y., #4; + n — 1) — 1) where A4,..., 4, are the daughters of A.

Note that ¢ = v(4;¢;b(A))(0;0;w%) with the notation of Example 3.6 where the natural
extension wY (by some zeros) of w € (R3)M\A)  (R3)V is in C(A;b(A); 7).

Define the set O(A;b(A);7) of maps w: V — R3 such that

o wl=1

e w(b(A)) =0, w(V\ A) ={0}, and
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e Two elements of A that belong to different children (daughters and sons) of A are mapped to
different points of R3.

It is clear that O(A;b(A);T) is an open subset of S((R?)4\(4)) that contains w?. Set
Wa = O(4A;0(A); 7) N C(A;0(A); 7)
W4 is an open subset of the sphere C'(A;b(A); 7).
The data U, W, w° and k.
o k=t{r.
o W=Rx [Tac- Wa

W will be an open neighborhood of w® = (0; (w9 )ae,) in W.

o U =Tlae, ¥(A;:0:b(4)) (R? x [0,00[xO(4;b(A); 7)) X [T 4, C(A; M)

e U will be an open neighborhood of ¢ in U.

Construction of .

Let
P = ((pa)aeriu; (wa)aer) € RT x W

and
P? = ((0) aer; 0; (wh) aer) = (0;0°).
When A € 7, define

va=va(P) = 3 [T so | we e S(E)ND) c s(®P)Y)

Cer;CCA \Der;CCDCA

Note that v4 is a smooth function defined on R¥ x W, and that v, (PY%) = wY. In particular,

|| va(P?) ||= 1 and W]ﬁﬁg” is in O(A;b(A); 7). Therefore, we can choose neighborhoods O of 0 in

[0, 00[F and W of w® in W, so that for any P in O x W, || va(P) ||# 0 and ”237213” is in O(A4;b(A); 7).
We choose O and W so that these properties are satisfied for any A € 7.

In order to define £, we define its projections &4 (P) onto the factors C(A; M). First set

v (P) = (V5 63 b(V)) (u; v Hz—zw

Then

My (Ev (P))(a) = olu+ T rov (@)

When A € 7, set

My [ va ITIp 7 ACDCV HD w4
a(P) = 00 ) (1 + o () cracoey D,
[ ov |l [ ov |l [ va |l
The latter definition makes sense because v; is not constant on A since HZ:*;% belongs to
O(A;b(A); 7). Indeed, either I 4 (£ 4(P)) is non constant and then its restriction to A is non constant,
and we take the usual smooth restriction, or II 4 (£ 4(P)) is constant with value ¢(v), and we take the
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restriction of the map Dy¢ o v, from A to Ty(v)M up to translation and dilation. It is easy to check
that this restriction is smooth from this open subset of C’(/l; M) to C(A; M), by using appropriate
charts of C'(A; M) and C(A; M) as in Example 3.6 with the same basepoint for A and A. Thus, we
defined a smooth map ¢ from O x W to U such that £(0; w®) = ¢°.

Checking that ¢ satisfies (C1).

It is enough to check that IT4({(P)a) = Iy (§v(P))ja forany Ac 7. Let Ac 7, a € A.

My (€v(P))(a) = ¢ | u+ e Y I w0 wel

[ ov | Cera€C \DeT;CCDCV

where the elements C' of 7 that contain a, are
1. the C of 7 such that A C C that satisfy we(a) = we(b(A)), and
2. the C of 7 such that a € C C A that satisfy we(b(A)) = 0.
In particular,
1% Ky
ut ——oy(b(A) =u+ —— Z H up | we(a).
ol Fov | CerAcC \ Der;CcCDCV

Therefore,

o (v (6 (P)) (a) — (u+ by vv(b(A)))
Tov T

- ¥ I wowe@

H v H CeT;aeC;CCA \Der;CCDCV

_ HDET;AQDQV KD
[ ov |

va(a).

Checking that £(O x W) c Cy (M).

It is enough to check that &(P) satisfies (C2) since Iy (§y (P))(V) C (M \ 00). Let A € B C
Iy (€y(P))~(z). If B is not in 7, then B C IIy (& (P))~1(x) (see the construction of £5(P)), and
¢p(P) is the non-trivial restriction of 4 (P). Therefore, for this proof, we may assume that B € 7.
Similarly, we may assume that A € 7. Then it is enough to check that the restriction of vp to A up
to translation is a (> 0) multiple of v4, and this is easy to observe in the defining formula for v 4.

Checking that £((0N]0, co[F) x W) = Cy (M) NEO x W).

Let us first prove that £((ON]0, co[¥) x W) € Cy (M). Since (C1) is fulfilled in the image of £, it
is enough to prove that Iy (& (P)) is injective when the pg are non zero. Let a and b be in V', and
let A be the smallest element of 7 that contains both of them. Then va(a) # va(b) since oo is in

vaA

O(A;b(A); 1), thus IT4(€4(P)) separates a and b, and we are done thanks to (C1). Conversely, since
as soon as a 4 vanishes, the corresponding IT4(€4(P)) is constant,

Cyv (M) NEO x W) C £((0N)0, 00[*) x W),

Construction of r.
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For any A € 7, choose b'(A) # b(A) € A to be either the element of a son of A or a basepoint of
a daughter of A that does not contain b(A4). Note that w (v'(A)) # 0.
The map r will factor through the projection onto

T w(4; 0:6(4)) (R? x [0, 00[xO(A; b(A); 7)) .
AeT

Let
Q= (Y(A;¢;b(A))(ua; Aa;ya)) ser

be a point of this space and let

Q) = ((na)acr;uv; (wa)aer)

denote its image in R* x W. The map uy is already defined and smooth, and we need to define the

pa and the w4 as smooth functions of (ua; Aa;ya)aer. Define wl € (R3)4 by

wl (CL) _ { yA(Cl) ifa € (A\ (UBED(A)B))
A ya(b(B)) ifa € Bandif B € D(A)

Then set .
Wy

wy = ——

| wh |l

Since ya € O(A;b(A); 1), || wh [|# 0, and w4 is smooth. Then define py = Ay, and for A€ 7, A#V,

_ Jwa®' ) | (ya(0"(4) —y4(b(A)), wa(t'(4)))

y4(0(A)) [ | wa(v'(A)) |2

Then it is clear that 7 is smooth from U to R¥ x W.

Checking that r o ¢ is the identity of O x W.

We compute
ro& (P = ((na)aer;u; (wa)aer)) = r((€a(P))aer)

= ((1a) aer;uy; (Wa) acr).

where
§v (P) = (V361 b(V)) (us s ),
| v ||
£a(P) = ¥(A: 61 b(A)) (uA;AA;yA - vA) ,
| va |

and v4 has been defined in the construction of &.
We easily find © = uy and fiy = py, and wa = wy. Since

(va(V'(A)) —v4(b(A))) = pawa(V'(A)) and vs=[lvs [l yz

lva Il (wa(®'(A) = y4(6(A)) = pawa(t'(A)).

Furthermore,
YA (A) = —— 03 ((A) = ——w,; ('(4)).
R Toal

Therefore 14 = pa. Thus, r o £ is the identity of O x W.
Checking that (U N Cy(M)) C [0, c0[F xW.
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When Q = (¢(4; ¢;b(A))(ua; Aa;ya)) 4, comes from an element of Cy (M), if A and B are two
elements of 7 such that A C B, then for any a € A,

up + Apyp(a) = ua + Aayal(a),

and the map from A to R3 that maps a to (yg(a) — yp(b(4))) is a (> 0) multiple of y4.

r(Q) = ((ra)aersuv; (wWa)aer)

where

[wi®(A)) [ | y4(b'(A)) = y4(b(A)) |

1y 4 (A) || wa(®'(A))
when A € 7, A # V. Indeed, ((y4)j4 — (y4(b(A)))?) is a (> 0) multiple of y4, and ya(b'(A)) is a
(> 0) multiple of w4 (b'(A)). In particular, a4 > 0, py = Ay is also positive.
Also, note that r(c?) = PP.
Now, choose (¢ > 0) such that [0,e[*C O, reduce O into [0,[F and set

U=r"1]—e¢elfxw).

Then (U N Cy(M)) C O x W.
Checking that £o T\UnGy (M) is the identity of U N C’V(M)
Keep the above notation for @ and r(Q). Assume Q € U N Cy (M).

(Eor(@))a =v(A;¢;b(A))(Ta; N HZ_::H)

where v4 is the vector associated to (@) in the construction of &.

Proof that ya =

va
lvall”

Let by be an element of A. Inductively define
B'={p}CcB*=B'Cc...cB*'=Bic...c B-=A.

Set y; = ypi, by = b(B?), b, = b'(B*) and w; = wpi. Then

. Ny | w1 ( }H) [l Z/j+1(b}) = yj+1(bj) |l ‘
valbo) =2 (H T Gro) 1y @) wi(bo)

i=1 \ j=i
where i) |
w;(bo) = myi(bi—l)-
Therefore
& T2 1y 0) = yisa (b)) || )
va(bo) = wa(b' (A = J i (bi
A(bo) ; | wa(b'(A)) ( T (0,0 | Yi(bi—1)
while
k
ya(bo) =Y (ya(bi1) —ya(bi),
=1
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and since, for i < j,

|| Yj+1(0] ) Yj+1(05) ||

7 i (V) =y () |
yatbi) 13 T )
e | wal(A) |
- w A b/
vl = e
and ya = ma7- °

Note that Ay = wy = Ay, 4y = uy, and therefore (£ or(Q))y is the restriction of @ to V whose
value in M at b(A) determines @4 by (C1) that is fulfilled in the image of . Therefore 414 = u4.

Proof that Aa = Aa for A *V.

Now, let us compute Ay for A € 7, A # V. Define
B'=ACB?>=B'c...cB*™' =Bic...cB"=V.

Again, set y; = yp:, b; = b(B?), b, = b/(B*) and w; = wgs.

Ay = Av || va || H (H Wit1 (V1) || I yi1(67) — yig1(bi) ||)
[ ov || [ wi (B) 1 1l i1 (bigy) |l
where ,
v ll= [ wa(¥'(4)) |
| ya(v'(A)) |l
Therefore
iy = v v V) I H<| Yir1(bi) — yit1 (bs )||)
| ya(b'(A | | yz+1( i) |
where ,
g = ¥ ) =g G 1y
RACHN
| Yi+1(65) — yiv1(bi) ||)
Aa = Ay (
H H yz(b’) [
Thus Aa = Aa.
When A ¢ 7, (£ or(Q))a is the restriction of @ ; to A, and we can conclude that the restriction
of £or to UNCy (M) is the identity. o
This concludes the proof of Proposition 3.12 in this case. o

Proposition 3.15 follows from a careful reading of the previous proof. Since V € 7, k =V > 1.
Choose the natural embedding
¢:R> — §3 =R3U {0}

The elements of Sy (R3) N U (resp. Sy (R3) N U) are the elements whose projection onto C(V; M) is
of the form ¥(V; ¢;b(V))(0 € R3; uy = 0;yy) for some yy (resp. for some injective yy/). In particular,
the second item is true where py is the distinguished real parameter that vanishes if and only if
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Iy (ey) is constant. Now, since vy is injective if and only if all the pp are non-zero for D € 7\ V,
the third item is true. Proposition 3.15 is proved. o

In this case, Lemma 3.18 also follows from a careful reading of the previous proof. Indeed, k = 1
if and only if 7 = {V'}, that is if and only if ¢, € S’V(Tc(b)M), that is if and only if ¢ € F(V'). Now,
k =2 if and only if 7 = {V, B} for some strict subset B of V with §B > 2, that is if and only if :
I4(cY) is constant on B and injective on {b} U (V' \ B), and I4(c}) is injective.

This is equivalent to say that under the assumptions of Lemma 3.18, ¢* € f(B)(R?). Lemma 3.18 is
proved in this case. <
3.6 Proof of Proposition 3.12 when ITy(c),) = ooV

Let ¢oo : R® — M be a smooth embedding, ¢o(0) = oo. Let ¢ = (¢%) acv.azp € Cv(M) be such
that IIy (¢),) maps every point of V to oc.

The tree 7(c") associated to .

We shall define a set 7 = 7(c?) of non-empty subsets of V as follows.

The set is organized as a tree with V' as a root. The other elements of 7 are constructed inductively
as follows. Again, every element A of 7 is the daughter of its unique mother A in 7, except for V that
has no mother, and some elements have daughters (i.e. are the mother of these). In order to define
the daughters of A € 7, consider the map defined up to dilation

My (%) : A — Too(M).

e If this map Il (c%) is non-constant, or if A has only one element, then A is non-degenerate. In
this case, let Ay denote the preimage of {0} under I (c%). If A is non-empty, Ag is a daughter
of A and this daughter is said to be special; the other daughters of A will be the preimages of
multiple points different from 0 under I (c%). The preimages of non-multiple points different
from zero will be the sons of A.

e If the map II(c%) is constant, and if 4 > 2, then A is degenerate, and we consider the
non-constant map defined up to translation and dilation

Moo.a(ch) : A — Too(M).

The daughters of A are the preimages of multiple points under this map, and its sons are the
preimages of the other points.

By definition V' is special, and an element A # V of 7 is special if and only if Hoo(c%)(A) = {0}.
Let 74 be the set of the degenerate elements of 7, and let 74 be the set of the special elements of
7. When A € 7, D(A) denotes the set of daughters of A. Note that

o Ve,

DAery) CranN(r\7s)

D(A ¢ 74) C (ta U {Ao}),

e T=T,UTy

e IfA+V, Acr,, then A ¢ 74, therefore Aer,.
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In particular,
7, ={V =V(1),V(2),...,V(0)}

where V(i)o =V (i+1) # 0 if i <o, and V(0)g = 0. Also note that 7s N 74 C {V (o)}
Fix ¢*, and 7 = 7(c"). For any A € 7 choose a basepoint b(A) = b(A;7), such that

e b;=0b(V(i)) =b(V(o)) forany i =1,...,0, and,

e if AC B,if Be 7, and if b(B) € A, then b(A) = b(B).

Configuration spaces associated to 7.

Let ¢ € {1,...,0}. Define the smooth manifold C(V(i);7) as the following submanifold of the
unit sphere S((R3)Y) of (R®)Y equipped with its usual scalar product. The set C(V (i);7) is the set
of maps w : V — R? such that

o wl=1
e w(V(i)o) = {0}, w(V\ V(7)) = {0}, and
o — if V(i) ¢ 74, w is constant on any daughter of V (i), and,
— if V(i) € 74, w is constant.
Define the open subset O(V (i); 7) of S((R?)V(®) as the set of maps w : V — R3 such that
. -1

o w(V\V(i)) = {0},

o If V(i) ¢ 74, two elements of V(i) that belong to different children (daughters and sons) of V'(7)
are mapped to different points of R?, and

o 0¢ w(V(i)\ V(i)o)-
Set Wf =0O(V(i);7) N C(V(i); 7). W is an open submanifold of the sphere C'(V (i); 7).

3

Then after a proper scalar multiplication, the natural extension s{ (by some zeros) of (Dyso) 10
Hoo(c?,(i)) is in Wp.

For any A € 74, consider the smooth manifold C'(4;b(A);7) and the open subset O(A;b(A); )
of S((R3)4\?(4)) defined as in Subsection 3.5. Set

Wa =0(A4;0(A);7) NC(A;b(A); 7).

Then after a proper normalization, the natural extension w9 (by some zeros) of (Dopoo)™! o
Moo ,q(c) is in Wa.

The data U, W, w° and k.

o k=141, +tira = 0+ 74
o« W = H;;l W x HAer Wy
e W will be an open neighborhood of w® = ((s9);e1,.. o1; (W) aer,) in W.

o« U= HAerd Y(A; doo; b(A)) ([O,oo[xS2 x [0, 00[xO(A; b(A);T))

% Tac (g Y(Ai ) (10 5[ O(A; 7)) x Tag, C(A; M)
(with the charts of Examples 3.8 and 3.10).
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e U will be an open neighborhood of ¢ in U.

Forgetting [] ¢, C(Ai M).

When A ¢ 7, let A be the smallest element in 7 that contains A. Let C' = [] 4y 49 C(4; M),
C™ = [l4e. C(A; M) and let Cf,(M) be the subspace of C™ made of the elements that satisfy the
restriction conditions (C1), (C2), (C3), (C4) of Lemmas 3.1, 3.7, 3.9, 3.11 that involve elements of 7.
Let p™ : C' — C7 be the natural projection. Define the following smooth map

Jip"(U) — C

by v7(c = (ca)aer) = (da)acv,azp, where da = c4 when A € 7, and d4 is the restriction of ¢4 to
A otherwise (so that the restriction conditions (C1), (C2), (C3), (C4) are satisfied for (A, A)). Note
that such a restriction is well-defined and smooth from p A(U ) to C(A; M) since A is not contained a
daughter of A. See the charts of Examples 3.8 and 3.10. In particular, ¢™ is smooth. The proofs of the
following assertions are left to the reader.

o p7(Cv(M)) € CF (M),

e p o LITpT(U) = Identity(p” (U))

© oD e = Identity (U N Cy (M)).
o 7 (pT(U)NCY(M)) C Cy(M).

We shall prove the following lemma.

Lemma 3.19 There exist
1. >0,0=][0,¢[F,
2. an open neighborhood W of w® in W,
3. an open neighborhood U™ of p™(c*) in p™(U),
4. a smooth map (p" 0 &) : O X W — U7 such that
o (p70&)(0;uw’) =pT(c"),
o (pTo&)(OxW)cCCy (M), and
e py o&(w € O,w) is an injective map from V to (M \ oo) if and only if w €]0, o0o[¥,
5. a smooth map v : p"(U) — R* x W such that
e 77 op” o& is the identity of O x W,
e r"(UTNCL(M)) COxW, and
o the restriction of pT o {or™ to U™ NCY, (M) is the identity of UT N C,(M).

This lemma implies Proposition 3.12 in this case because £ = 17 o (p” 0 &), U = (p7)~(U™) and
r =17 op” have the desired properties under its conclusions.

Construction of p” 0 ¢, O and W.

Set
P = ((vi)ieq1,...05 (BA) Acry; (Si)ieq,....01; (WA) Aery) € RT X RT® x W,
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P = ((O)i€{17...7a}; (O)Aem (5?)i€{17...,a}; (w%)Aem)) = (O;UJO)-
When A € 74, define

Ba=waP)= Y [T w0 we e S@RAN@) c s(®)Y).
Cer;CCA \Der;CCDCA

wp =wap + Z HoWe -
CceD(A)

Set
S¢ = Sg + NV(U)@V(U) if V(J) € Tq
S50 = 84 + ECGD(V(U)) lcwe otherwise.

Fori=o0—1,0—2,...,1, inductively define

5; = 8 + Vit18i41 + Z HoWC -
CED(V(4));C£V (i+1)

Define -
)‘V(r) =\ = Hyi
i=1

so that ()\igi)\v(i+1) = /\i+1§i+1~
The W4, Ar, and §; are smooth functions defined on R* x W, such that @A(PO) = w% and
In particular, since the norms of these vectors are 1 for P°, we can choose neighborhoods O of
0 in [0, 00[F and W of w® in W, so that for any P in O x W

e the norms of the w4 (P) and 3;(P) do not vanish,

o TEAF € O(A:b(A):7), and,

5i(P .
o miEy € OV (@7

We choose O and W so that these properties are satisfied for any A € 74, and for any i =
1,2,...,0.

When A € 7, let V(i(A)) be the smallest element of 75 such that A C V(i(A)). Define 54 € (R?)4
as the restriction of 3;(4) to A.

In order to define p7 o &, we define its projections £4(P) onto the factors C'(A4; M) for A € 7.
When A € 7\ 74, €a(P) = ¥(Ai doc) i) |l 3 [ 727).
When A € 74, £4(P) = ¢Y(A; doo; b(A)) (L a;ua;ma;va) with

La=XNiayViA | 5a(b(A)) ||

1 (C))
[ 54(b(A)) ||
g = 11 ip | @4 ||

VEA || 54(b(A)) ||

Derg;ACDCV (i(A))

=

_ A
| @4 ||

vA

Thus, we defined a smooth map p™ o £ from O x W to p™ (U).



Checking that p™ o ¢ satisfies (C1).

Since the restriction of \;§; to V(i +1) is A\j118;+1, when ¢ < o —1, it is enough to check that for
any A, I14(€4(P)) is equal t0 ¢oo © (Ni(a)(5i(a))a). When A ¢ 74 it is obvious. Let us now consider
the case when A € 74.

S$4 = constant map + H up | wa.
DeTa; ACDCV (i(A))
Therefore
¢ o (a(€a(P)))
= Ny | (Ba(d(A)))* + 11 pp | wa

DeTg;: ACDCV (i(A))

= )\1(14) §A .
Checking that p” o ¢ satisfies (C3).
Here, we need to check that when A C B, (and when \; gy = 0) (5;(p))|4 is a (> 0) multiple of
3 S 5. , — (17¢ Vs d
(Sz(A))\A- mce (Sz(B))|V(z(A)) Hj:i(B)+1 Vi) Si(A)s we are done.
Checking that p™ o ¢ satisfies (C2) and (C4).

These conditions must be checked for some A C B, when the restriction of 5;z) to B is constant.
In this case, since % € O(V(i(B));7), B € 74, and therefore A € 74. These conditions say that,

up to translation, (wp )4 is a (> 0) multiple of (wa) (when (HDerd;BngV(i(B)) ,uD) = 0). They are
realised with (HDer;AgDcB MD) =0 as a factor.
We have proved that p"o{(Ox W) C C7,(M) and it is easy to see that p™o&(P? = (0;w®)) = p™(c?).

Checking that py o &{((pna,vi) € O,w € W) is injective and does not reach oo if and only if
all the y4 and the v; are non zero.

Remember from the proof that p™ o€ satisfies (C1), that the restriction IT4(£4(P)) of Iy (§v (P))
iS ¢oo © ()\i(A)(éi(A))M) for A € 7. Now, IIy (& (P)) is injective and does not reach oo if and only if
A151 is injective and does not reach 0.

In particular, if IIy (§y(P)) is injective and does not reach oo, all the restrictions A 4)(5;(a))|a
are injective and do not reach 0 and this easily implies that the p4 and the v; are non zero.

Conversely, assume that the p4 and the v; are non zero, and let us prove that A\;§; is injective
and does not reach 0. Since v1 = A1, it is enough to prove that §; is injective and does not reach 0.
Let a and b be in V, and let A be the smallest element of 7 that contains both of them. If A € 74,
’LZIA(CL) 75 TIJA(b) and §i(A)(CL) 75 51'(,4)([)). If A ¢ Tds A = V(Z(A)), and 51'(,4)(&) 75 gi(A)(b)- Since
51|v(i(a)) is a non zero multiple of 5;(4), it separates a and b, and 3; is injective. If 51(a) = 0, then
5i({ay)(a) = 0, and this is impossible, therefore §; does not reach 0.

Construction of r7.

Let ¢ € p"(U).

c= ((%b(A; Pooi b(A))(Casuasma;va)) ser, s V(A5 oo ) (La; SA))AE(T\Td)) :
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We shall define

TT(C) = ((Vi)ie{l ..... a}s (NA)AEm% (Si)ie{l ..... a}s (wA)Aem)-

Definition of wa, for A € 14.
Let A € 74. Define w} € (R*)4 by

U}l (a) _ ’UA(Cl) ifa S (A \ (UBED(A)B))
A va(b(B)) ifac€ B with B¢ D(A)
and set L
W4
wy = ——.
| wh |l

Definition of s;, fori e {l,...,0}.
Let V(i) ¢ 74. Define s} € (R?)V(®) by

0 ifae V(i)
si(a) = { Svepy(a) ifae (V(i)\ (UsenwyB))
Sy (b(B)) ifa € B where B € D(V(i)) and B # V(i)o

and set

If V(o) € 14, then

Definition of pa, for A € 14.
For any A € 7 such that (f4 > 2), choose b/'(A) # b(A) € A to be either the element of a son of A or
a basepoint of a daughter of A that does not contain b(A).

e lfAcry (ifA¢r,,) andif A ey,

A = (V' (4)) = v,4(b(A)), wa (V' (A))) | wat'(A)) |
(wa(V'(A)), wa(t'(A))) oz (A) |-

e lfAcry if A¢r,, andif A ¢ 7y,

s = (S (A)) = 54 ((A), wa®'(A)) | s (b'(A)) ||
(wa(b'(A)), wa(b'(A))) I S4(/(A)) ||

o If V(o) € 74, then puy (o) = with

my (o)
1Dy (o) |l

Wy (o) = Z ( H MD) we-
(o)

Cer;CCV (o) \DeT;CCDCV

Definition of v;, fori € {1,...,0}.
Set S; = Sy ;) when V(i) ¢ 74, and set b = b'(V'(i)) when §V (i) > 1.

e When i > 2,
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If i = o, and, if V(o) € 74 or if {V (o) = 1, then

)
(Si—1(bs), si(b)) |l si—1(bi_1) |l
(8i(bo); 5i(bo)) I Sima(Vf_y) I’

v; =

— Otherwise,
. — i1 (b9), si(W)) || si-a(biy) |
(si(b7), 5:(b5)) || Siea(biy) ||

o —IfVer,oriftV=1 vy ="~4.
— IV ¢rgandif §V > 1,

g Sy D). (B))
EICARCA)

Then it is clear that r™ is smooth from p7(U) to R* x W.
Checking that r” o p” o £ is the identity of O x W.

We compute
rTop” 0 &(P = ((Vi)iequ,....0; (BA) Acras (Si)ic1,....01; (WA) Aery))

= ((Vz{)ie{17...,a}; (#Q&)Aem; (S;)i€{17...7a}; (w;x)Aem)-

It is clear that w'y = wa for any A € 74 and that s, = s; if V(i) ¢ 74.

If V(o) € 74, then s, is constant and nggg:gﬂ = HZZE?Z?H'

} _ I Uv(a) —
Thus wy (o) = R and s = (\/W) = Sg.

Checking that p'y = pa, for A € 14.

o If Ac 7y, if A¢Ts, and if A€ 74, then

o= Wi lea®@) N @A)
A las T e @A) wa(

\:5>
S

and
W4 (b'(A) — w4 (b(A)) = pa (wa(V'(A) —wa(b(A))) = pawa(b'(4)).

Therefore, p/y = pa.

e IfAcry if A¢ T, andif A ¢ 7y,

Sa _ISa@ A1, _ IS,
A Ayt

AT a0 @) 14 sa

and
54(0(A)) = 34(b(A) = pa (wa(V'(A)) — wa(b(A))).
Therefore, p/y = pa.

Ity (o)l

o If V(O') € Td, then my ) = ﬂv(g)m,
~ So(bs
where So-(bo-) = So-(bo-) = m

Thus, my (5) = pv (o) | Wv (o) ||, and /J/v(g) = Kv(o)-
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Proving that v, = v;, fori e {1,...,0}.

e When i > 2,

-§'i7 S'i i —
S = Si1 = [ty = RGeS Si1(be) = visi(b), and

Si—1(b)) = visi(b) if V(i) ¢ 74 and §V (i) > 1. Therefore, v, = v;.

e f Very,oriffV =1,
vy = Ly where by = 1BV || Sv(b(V)) |, and Sy (b(V)) = sy (b(V)) = \/n_VuV Therefore,
v1 = fy, and we are done.

o If V¢ ryandif iV > 1,

s1(by 3 Sv (b)),51(b] ~
v =Ly W7 by =1 || 51 ||, where Sy = | = W&, and 51(by) = s1(b).

a1l

Thus, v = v;.

Thus, 77 o p™ o £ is the identity of O x W.
Checking that 7 (p™(U) N Cf(M)) C [0, c0[FxW.
Let ¢ = (ca)aaer € p"(U) N O (M) with

c :{ V(A; 0oo; b(A))(lasua;masva) ifAETy
A V(A5 90 )(£a;Sa) if Ae(r\ 1)

e If Acry (if A¢ 7)) and if A € 74, then (v4(b'(A)) —v4(b(A))) is a (> 0) multiple of
(va(V'(A)) —va(b(A))) that is a positive multiple of w4 (b'(A)), therefore,

= Iwa'(4)) — v (0(A) [l | walb VAl 0.

[ wa(t'(A)) || oz (A) |~

e If Ac 7y, if A¢ 7s, and if A ¢ 74, similarly,

_ 1 Sa0(A) = S4(0(4) || I s 5/ (A)) |

- >0
[ wa('(A)) | 154 (A)) |
o If V(o) € 74, then puy (o) = ng‘:ﬁ > 0.
e When i > 2,
— Ifi=o0, and, if V(o) € 7q or if §V (o) = 1, then
. (!
LSt sl
[I'si(bo) I Il Si1(bi_y) |l
— Otherwise,
v v
IS @ s G I

Vi = Z
| si®) I I Si—1(0f_y) |l
o —IfVer,oriffV=1 v =4 >0.
IfV ¢ 7qandif gV > 1,

ISv®) Il <
Ta® ] =

1/126
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Therefore all the 4 and the v; are positive. Also, note that 77 (p™(c)) = P°.
Now, choose (¢ > 0) such that [0,e[*C O, reduce O into [0,e[* and set

U™ = (") —e,e[FxW).
Then p" o (O x W) C U™, r"(UTNCY(M)) CO x W.

Checking that p" o & o TrUTﬂC‘T/(M) is the identity. ) ~
Keep the above notation introduced to check that r7(p™ (U)NCT(M)) C [0, 00[Fx W and assume
that c € U N CY,(M).

Introducing more notation to prove that {4 o r™(c) = ca, for any A € 7.

r7(c) = ((Vi)ieqr,....ors (HA) Acry; (8i)iefn,....0); (WA) Acry)-

Define wy, for A € 74, §; and \;, for i € {1,...,0} as in the construction of p™ o {. Then
i Y(A; boo; b(A)) (Cas iias ha; Todp) i A € g
gA(T (C)) = A A ~ . S if A
Y(A; oo ) (Nigay Il Sica) Ham) if Ae(r\ 1)

where, for A € 74,
ZA = /\i(A)\/ﬁ_A H gi(A) (b(A)) ”7
| Sicay(b(A)) ||

and

P | @4 ||
! ( 1l (i(A))“D)\/ﬁ_AII i (AN T

DeTq; ACDCV

Proving that va = Hg—zl\ when A € 14.

Since || v4 ||= 1, it suffices to prove that
- 1
Y
where because wq = ||w1}4|| wh
| w) = [ waW(A) I _ [oa®'(A) ||
[ wa®'(A) I [ wa®'(A)) ]

e When A has no daughters, since w4 = wa = wy = v4 and | w ||= 1, we are done.

e Assume that we = mvc for any C' € D(A). Let C € D(A).

Since ¢ € CT, (M), ((va)jc — (va(b(C)))Y) is a positive multiple of v, while (ve)|p(c)pr(c)} 1S
a positive multiple of we that vanishes at b(C). Therefore,

1 [va(®'(C) —va(6(C)) |

HCZ Tl 1 Twe®@©@) ]
pe 1 uat’(©) —valb(C)) |
Tws |~ Twh ™ Jee®@©@)

and
| va(t'(C)) —va(b(C)) IIUc — o
[ ve (@' (C) | '

| wh |l da=wh+ Y
CeD(A)
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This proves that w4 = mv 4 by induction.
A

Proving that Sa = IIz (A)” when A € (1 \ 14).
IffA =1, then A = V( )s 3i(A) = Si(a) = Sa, and we are done.
Assume A =V (i) ¢ 74 and A4 > 1.

We need to prove that, S; = Sy ;) =

H?II' Again, it is enough to prove that 5; = ”—SliﬂSi where, since
[ (3

B 1 1
5 = eI
5! = s (09 I Il Sa(®) |l
’ [s:(07) [ Il sa(b5) |
Let C € D(V (i), C # V(i)

( 0-
Then (S;(b'(C)) — Si(b(C))) is a (> 0) multiple of (ve(V (C)) =|| wg || we (V' (C))) (see the previous
proof),
1St (€)) = Si(b(O)) |

ke =

st | | we (b'(C)) |l ’
and,
pe L [ Si(C) — Sib(©)) ||
lwe st | ve@®'(C)) |l
Therefore
s3I B vanvme = s; + ZCGD(V(i));C;éV(i)O H%I | si | ve
=sl4 3 . L IS @e)-sieEenl,,
i CeD(V(4));C#V (i)o lve (0 (C)

= (S)ivanvio
e When V(o) ¢ 74, and when i = o,

V(i)o = 0 and we can conclude.

e When V(o) € 74, and when i =0 — 1 > 1,
By definition of v,

|| Si(b )Illlsz ||
Vg = =tV
| so(bo) Il [| Si(b | 51 ||
Therefore

I'si | Gvae =i |l Vo o =l st || Vo (5o + 1y (0)iv(s))

= V(o) || Si(bs) | (50 + Lv(o |‘|/(w;/(0) | UV(U))
bo’ uV(U) (e (e
= iV (o) || Si(bs) |l (\/W) + My (o)Vv (o)
= (Sl)\V(o)

since the latter right-hand side is a (> 0) mutiple of the previous right-hand side, and since the
norms of their values at b, are the same.

e When V(i+ 1) ¢ 74, and when 5,41 = T Sit1,

”5%+1

Vit1

(gi)|V(i+1) = 1/7;+1§7;+1 = Si+1
| siga |l
llsicall 11Si(bs i g i
v o Toatay  Hitl=o andiffVe) =1, (3.20)
+1 = s : .
Isivall 118i(bip )l otherwise.

[ RG]
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Thus, in the second case,

I3l Gowen = oot g = (S e
| Sit1(bipq) |l
In any case, || si || (3:)jv (1) = (Si)jv+n)-
We conclude that §; = ”5—11”5'1' for any ¢ such that V(i) ¢ 74, with a decreasing induction on .

Proving that {4 = A4 || §4 || when A € (7 \ 74).
If such an A exists, V ¢ 74. Let A= V(i) ¢ 74, and let us prove that £y = A; || &; ||

where S; =|| s} || 5, || 3 ||= H—SIW’ Ai = [[jo, vj and vy = Ly | s1 ||. (The latter equality is obvious if
_ ‘ _ p Isv @)l
gV =1, otherwise V ¢ 74 and vy = fy |\§X(b’11)|| )

If ¢ = 1, we are done.
Otherwise, for any j < i, according to 3.20,

= I'sian TS v+ |
’ ETE

Therefore, '
Al sl =5 ||1H;:1 vj
i—1
I =
. i—1 1(Si) v+l
= tv 1o s

where EV(]) (Sj)\V(jJrl) = éV(j+l)Sj+1- It follows that fv(l) = /\z || 51 || by induction on 3.

Proving that ty ;) = Uy (o), My (e) = My (o) and~€~V(g) = ly (o) when V(o) € 74.
Let V(o) € 74. We already know that vy (,) = 7=~ In particular,

lov o) [
S¢ =85+ /LV(G')UN)VSU)
=so + vy | Dy (o) | Vv (o)
V(o)
_ [
(W) + My (0)VV (o)
iy = SO@)
| 3 (b(V () |l ’

ViV(o) || 5:(6(V(9))) lI=1,

| Wy |l

My (5) = 1V (o) = = My (o)
V(o) || 55 (b(V(2))) |
We are left with the proof that 2‘/(0) =Ly (o)
e When o =1,
Vie) =V, by =\ =v = ly, and we are done.
e When o > 1,
Since p" o€ or7(c) € CT (M),
- V(o) .
> Uy (o) - Wy (o) ~
l o T +m o)~ = /\071(8071) o)
vie) ( ﬁV(a)) YOy o v
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Thus, ZV(U)gd = év(ofl)(SV(ofl))IV(U)'
Since ¢ € Cy, (M),

Cy ()80 = Ly (o—1)(SV(e=1))|V(e)-
This implies that ZV(O’) = gv(g).

Proving that £ 4 = ZA, ma=ma and g = uas when A € 74, A# V(o).

We already know that ITy (cy) = Iy (€y o r7(c)) in M. This map from V to M may be written as
boo © f where f € (R?)Y = (1 Sy if V ¢ 74, and f = (/51 if V € 74. Since both ¢ and p”™ o £ 077 (c)
satisfy (C'1), then £4 =|| f(b(A)) || VA and £4 =|| f(b(A)) || VEA. Therefore, £4 = £ 4.

Now, f4 is a (> 0) multiple of ((ua/vFA)* +mava)) and ((@a/vEA)? + mava). Thus, if fi4 # 0,

using
((wa/ VEDA 4 mava) (b(A)) = (wa/V/EA) and ua [=1.

we easily conclude that

(ua/VEA)A + mava = (ia/V/EA)? + mava.
Now, if fj4 = 0, since fjy(i(a)) is a (> 0) multiple of 5;4), and since 5,4y does not vanish on A, we de-
duce that fjy(;4)) = 0. Then (C3) implies that (gi(A))\A is a (> 0) multiple of ((UA/\/ﬂA)A + mAvA))
and ((@a/vEA)* +1mava)), and we conclude as before that

(ua/VEA)? + mava = (1a/V/EA)? + mava.
This implies of course that m4 = m4 and 214 = u4. o

This finishes the proof of Lemma 3.19 and thus Proposition 3.12 is proved.
o

To prove Lemma 3.18 in this case, we again look at the above proof. Here, £ = 1 if and only if
= {V} and 74 = 0, that is if and only if II.o(c?) is an injective map from V to (TsM \ 0) (up to
dllatlon)7 that is if and only if ¢® € F(oc0; V). Lemma 3.18 is now proved. o

3.7 Proof of Proposition 3.13

First define a smooth map of the following form

H: Cy(M) — C(V;M)xC({1};M)x C({2}; M)
¢ = (p2(e),m1(e), r2(c)
whose image will be in Cy (M).
Since C2 (M) is a blow-up of C(V; M) along co x Cy(M) and C1 (M) x oo, we get the canonical
smooth projection

Py Co(M) — C(V; M)(—2

Let i € {1,2}. Let pgyy : MY — M1 be the canonical restriction, and let

—MY).

7y = pgiy o Iy opa : Co(M) — M.

Let 7; denote the restriction of 7; from (IIy o p2)~" ((M \ 00)?) to (M \ 00). We are now going to
define a smooth extension of the r; to Ca(M) so that H(C2(M)) C Cy(M).

Let II; : C1(M) — M be the canonical projection. Since the blow-up of M x (M \ co) along
00 X (M \ 00) is canonically diffeomorphic to the product of the blow-up of M at oo by (M \ 00), it
is easy to observe the following lemma.
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Lemma 3.21 For any two disjoint open subsets V1 and Vo of M, there is a canonical diffeomorphism

(I o p2)~ (Vi x V)22 (v s 11 (1)

where r1 and ro coincide with the previous maps r1 and ro wherever it makes sense.

o

Let us now prove that r; extends to a smooth projection from Cy(M) onto Cy(M). This exten-
sion will be necessarily unique and canonical, it will be denoted by r;. By symmetry, we only consider
the case i = 1. It remains to define r; on (IIy o pa) (00, 00) and to prove that it is smooth there.
The canonical smooth projection Iz (o 00y from Co(M) to M?(co,00) maps (IIy o pa)~* (o0, 00) to
(ST(OO,OO)Mz). In turn, S’T(OO,OO)M2 \ S(0 x Too M) projects onto SToo M as the first coordinate. It is
easy to see that this smoothly extends the definition of r; outside H]_le(oo)oo) (S(0 x TooM)). To con-
clude, we recall the structure of Cy(M) near H&g(wm) (S(0 x TooM)). According to Proposition 3.5,

since the normal bundle of co x M at (c0,00) in M? is (TsxM x {0}), 1’[1\_/[12(OO ooy (S(0 X Too M) is
the product ST M x S(0 x TooM). Define 1 as the projection on the fiber ST oM C C1(M) in this

product. From the chart ¢ : (R3)? — M?2, that induces the chart
Y1 1 [0, 00[x S((R*)?) = §° — M?(c0,00)
such that Iy o 91 (A; (2,9)) = (Do (AZ), doo(Ay)) that in turn, induces the chart near S(0 x T M)
Yy 1 [0,00[xR? x §2 — M? (00, 00)
such that ITy o ¥ (X; (2,¥)) = (Poo (AT), oo (Ay)), We get a chart
Y31 [0, 00[x ([0, 00[x S?) x §? — Co(M)
such that IIy o pa o th3(A; 1525 ¥)) = (Poo (AUT), Poo (Ay)). Using a similar chart for C (M), r; will read
(A s 5 9) = (A )

and is smooth.

Now, our map H is well-defined and smooth. The elements of H(Cy(M)) satisfy (C1) and (C3)
(of Lemmas 3.1 and 3.9). Thus, since V has two elements, H(C2(M)) C Cy (M) and we have defined
a smooth map H from Cy(M) to Cy (M), that extends the identity of Cy(M).

Let py : Cy (M) — C(V; M) be the canonical projection. Define

K : Cv(M) I CQ(M)

o {(ev) ¢ (o0 x C1(M)) U (C1(M) x o)

| py (e ifey € (0o x C1(M))U (C1(M) x co

Klev, e, e2) = { (r1,72)"Y(c1,¢2)  if Hy (cy) is not constant.

The map K is consistently defined outside pj,'((co x C1(M)) U (9C; (M) x o)), and it is smooth
there. We shall extend K by the canonical identifications on py'((co x 9C1(M)) U (9C1 (M) x 00))
and use the charts of Cy (M), near py,' ((co x dC1(M))U(9C; (M) x 00)) to prove the smoothness. For
example, py,! (00 x AC1 (M)) is the subset of S({0} X Too M) x S(Too M x {0}) x S({0} x Too M) where
the first and third coordinate coincide. There, 74 = 0, 75 = {V, {1}}, and the chart £ of Subsection 3.6
reads:

+
(V1,v2,81 = sy, 82 = 8{1}) = (V(V5 000) (V1 || sV + Vas{1} I ”?‘;Jrly,ij:g”)a
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BT} 6o0) (1023 5011), B(2E: 600) (15 5v/(2))).
Mapping £(v1,v2, 51 = sv, 52 = sq13) to ¥3(v1, e, 5713, 5v(2)) (Where v3 is defined above in this sub-
section) smoothly extends K to py,' ((co x dC1 (M)). Similarly, K smoothly extends to py;' (9C (M) x
00). Then K and H are smooth maps that extend the identity of C3(M) that is dense in both spaces.
Therefore K and H are inverse of each other and they are diffeomorphisms. o
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Terminology
blow-up, 37, 38
dilation, 37
edge-orientation, 6

form
admissible, 18
antisymmetric, 5
fundamental, 5

half-edge, 5

Jacobi diagram, 5
automorphism of, 5, 16
edge-oriented, 16
labelled, 16
orientation of, 5

linking number, 12
orientation of a finite set, 6

Pontryagin class, 8, 29
Pontryagin number, 8, 9

trivialisation standard near oo, 4

vertex-orientation, 6
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Cv(M), 14, 37, 43, 44
C(V(i);T), b5

01(Cv (M)), 15
01(Sv (X)), 16
On, 17,18

&, 17
E(T),5
Ei, 9, 10, 27, 34

F(B), 15
F(B)(X), 15
F(oo; B), 14
F(V), 25

'z, 20

H, 7
H(), 5

IF,F; 19
Ir(M;Q), 17
Ip(wM), 7
Ip(u)T), 10

THX, 6, 23

L, 5, 10

7,5
i2(mC), 9, 30, 31

Notation

£, 10, 11 vV({), 5

¢, 10, 18, 24

6. 34, 36 X(Z), 37, 38

NERT Z(M), 10, 11

A, 11 Z(M;tar), 10, 17

Lo, 12 zn(E;w), 24, 25
Zn(M), 7

M4 (c0?), 37 Zn(M; 1), 7

My, 30 Zn(wM), 18

m&, 30 zn(Tr), 17

M?(c0, ), 3

O(A;b(A); 1), 48
Q, 16

wr, 10, 17, 36
OV (i);T), 55

pa, 37

Pe, 6, 10
PT), 16

Do 39

14, 37

P,(T), 16

oo (), 54
Hoo)d(c?él), 54
pm(Tar), 5

1, 8,9, 29, 32
V(A ¢5b), 4
Y(A; ¢oo), 4
A? ¢007 )

o(
o(
o(
¥(g), 9

~—

9

p, 7, 10, 28, 30

S, (X), 9, 14
Sy (X), 9
Si(To MB), 14
Sy(Er), 10, 17, 34
S(V), 3

Sv(Rg , 45

Sy (X), 14

7(c0), 48, 54
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