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1 Introduction

Let f =3, a(n)q" be a primitive cusp form of weight k, conductor C' and
character ¢ (see Miyake [5] page 164).
Let p be a prime not dividing C. We define modular forms fo and f° (as in
Dabrowski and Delbourgo’s paper [2]) by

fol2) := f(2) — oy £ (p2) (1.1)
where
X2 —a(@)X +9(9)d" ' = (X — ag)(X —af)

is the Hecke polynomial of f at prime ¢ ; and

f° = f§|W(4Cp) (1.2)

where

() == F(=3). (1.3)

The main purpose of this paper is to show the following equality.

Proposition 1. With the above notations the following equality holds

(1% Fodacy = T8y (4 /2a(4) = () (1, o (14)

where 7y is an algebraic number of modulus 1 uniquely determined by f and
1
By = b~ (p+ 1) (a(p) P, b

o, p+1 a, p+1)°

Remark : The main motivations of (1.4) are due to the properties : f0|Up =
apfo et fO|Ux =a,fO, where (3 b,9™)|Up = > bpng™ is the Atkin’s operator,
U, its adjoint on modular forms of level Np.

In particular, it is important to have a control on the behavior of both parts
of (1.4) in a p-adic family {fi} of modular forms (Coleman [1], Panchishkin [7]),
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because these quantities come up in special values of Ly, (j,x) (1 <j<k—1),
x is a Dirichlet character.

The authors want to thank professor Alexei Panchishkin for his help and
many advices.

2 Notations

Let us fix an embedding i, : Q — C.

We let every element a = ( z Z

h:= {2z € C| Im(z) > 0} by the rule

) of GL (R) act on the upper half-plane

az+b
= ——, for all .
z atd orall z€h

The group GL7 (R) acts on functions g : h — C by the rule
(9],7) 2) = (@et()*2(cz + d)*g(y2). (2.1)

Let Gi(N,v) denote the space of modular forms of weight k, level N and
character . An element f of Gi(N,)) satisfies

7| 7 =v(@4, for all y € ToV),

where

To(N) = {( “ ! ) € SLy(Z)

Let define the operators V (m), W(N) and U, on functions of complex vari-
able z by

¢c=0 (mod N)} . (2.2)

VmE) = glm2)
_ 7k/2 m 0
m gk( 0 1)(z). (2.3)
W) = (VEH (-5)
0 -1
= . 4
(v 5)o (24)

_ 1 u
9[Up(2) = P> 37 g (0 » ) (2.5)
u mod p k

V(m) takes G (N,v) to Gi(mN,1)), where ) is the character modulo mN
induced by ¢ ( Lemma 4.6.1 page 153 of Miyake [5]), and W (NN) takes G (N, )
to Gk (N, ) (Lemma 4.3.2 page 115 of Miyake [5]).




Proposition 2. These operators satisfy the following relations :
(f[W@N)[W(N) = (-1)*F; (2.6)

1w ) = w2 ) ven) = o] (7)) @)

FIW(N) =m*2 (f]V(m)) |W(mN) = f

m 0
) ( 0 1 ) ‘W(mN). (2.8)
If g and h are both modular forms in G (N, ) such that one of them is a

cusp form, then we define the Petersson inner product (g, h) 5 by

dxd
(9:h)y = / ghyt =2
To(N)\b Y

Let us view g and h as two modular forms of level M where N|M , then we
have the identity

(9, M) pr = [Lo(N) : To(M)] (g, h)n » (2.9)
because of —I belongs to I'o(N) (see Li [4]).
Finally, for g an element of G (N, ) and ¢ a prime number one put

9Ty = 9|U, + ¢ (9)d" ' 9|V, (2.10)

As proved by Hecke, T is a linear operator on Gi(N,%) (see Theorem 2.8.1
page 74 and pages 134-135 of Miyake [5]). We also note T}y the adjoint of Ty,
(for the above scalar product) on modular forms of level N.

The cusp form f =3, -, a(n)q" being primitive of weight k, conductor C
and character ¢, we have the identities

fITy =al)f, ifqtC; (2.11)
flU; = al@)f, ifq|C; (2.12)

where ¢ denotes an arbitrary prime number and the Hecke operators T, and U,
are defined on the space G (C,v).

3 The Trace Operator

Let us consider a modular form g in G (N,v). We view g as an element in
Gr(M, ) where M is a multiple of N. Following Serre’s paper [9] we define the
trace operator T by

g|Trif = Z%(’y)g‘k% (3.1)
YER

where we put ¥ () := ¥(d) when v = ( Z Z ), and where R is a complete
representative set of I'o(M)N\To (V).

Proposition 3. Tr¥ sends G (M,v) into Gi(N,1p).



Proof : First, let us check that TrY is well defined. Let v and v’ be in the
same coset. Then there exists an element « € T'o(M) such that v/ = a - y. We
find

<

(gl (a- v)g‘ka -y
(@9(7) (v(@)g],7)

P
(Mg,

Next consider a an element of T'g(V).

ZWg‘kv-a

YER

P(@) > P(y- a)g‘kv .

YER

g|TrJA\§I|ka

When « runs through R, the matrix 7 - @ runs through another complete set of
representative of To(M)N\TI'o(N). Therefore,

> oy a)g‘kv a=y E(v)g|ka,

YER YER
and we find
g|Trf‘V/[|ka = w(a)g|TrJA\’,I, for all @ € To(N).

Finally we look at the behavipr at cusps. Let 7o be an element of SLy(Z).
Since g is an element of G(M,1)), we have g|k’)/0 =2 n>0 an(70)g™™. Thus
we find

S Mgl

YELo(M)\To(N)

= o P an(rr)e M

YELo(M)\To(N) nz0

=) ( > @(v)an(w})) ™.

n20 \v€lo(M)\TIo(N)

9|TrN o

This shows that g|Trf{,/[ is holomorphic at each cusp. |
We now give the link between the trace operator and the Petersson inner
product

Proposition 4. Let g be as above and let h be a modular form in Gi(N,),
then

Proof : Indeed, for all v € T'o(V)
= () {9l 7-h)

because h is an element of G (N, ).



Therefore,

> o) (g],7 )y,

YER

= Z <g:h)M'

YeER

<9|TT%’h>M

To conclude, notice that the cardinality of R is precisely [[o(N) : To(M)]. O

4 A general result
Let N be a positive integer and let p be a prime integer not dividing N.

Proposition 5. Let g be a modular form in Gy(N,v) and let h be a modular
form in Gg(N,v). Then we have

(omen) (7)) =r=Gmwenn,. @

Proof : Since p and N are relatively prime, the Bezout’s identity gives two

integers a and f such that ap — BN = 1. So we obtain a complete set of
representatives of To(Np)\To(V),

U (V{52

u mod p

Using the definition (3.1), we get
dwm| (2 9|7k
L\ 0 1 N
= > gw) (
w mod p k

o (7)=(5% 1) (3 2 (5 1) enams

it comes that

2 ) +E@awa

g|W(N)

() = vglwn)

wen (o o) =(h 0 )wa

and, for each u mod p, we have

(v ) (2 D)= ) (v )

Furthermore,



0 (4.3) becomes

I
]

Yoy

u mod p

I
/N

(o 3 )+0

Let us use the identity (4.2.26) page 142 of Miyake [5]

— rvny p O 1 v
P ’“/29|Tp—¢(p)g‘k(0 1>+ > gk(o p)-

v mod p

The last equality and (4.5) implies that

(5 7)

Using (3.2) and (4.6) and assuming M = Np, we have Proposition 5 . O

g ( Try? = p'~*2g| T, W (IV). (4.6)

Corollary 1. With the same assumptions as in Proposition 5, we have

(3 D), o

Proof : Indeed, let us write

L51)),,

= (oW, 1w ) W)

<g|W(N),h

<g|W(N);h

L59),,
_ <h|W(N)—1W( )‘ (8 (1)) 9w >

Observing that g|W( € G(N,v) and h|W 1 € Gk(N,v), we see that
the assumptions of Proposition 5 are satified and

L61),, -

)

h|W(N)=1|T,|W(N), g|W (N

ph/21 <g|W<N), h e

g|w h|W N) T, W (V)
9>h|W 1|TP>N

T3 h[W(N) 1)y
g|T*|W h>

N

(
(
(
(9
(

N



5 Proof of Proposition 1

Let f be a primitive modular form of weight &k, conductor C' and character .
Put N =4C.

Proposition 6. There erists an algebraic number v of modulus 1 such that
FPwW(C) = 7. (5.1)

Proof : According to Theorem 4.6.15 in Miyake [5], there exists an algebraic
number ~ such that equality (5.1) is verified. We just need to check « is of
modulus 1.

Let us recall that fP(z) = f(—%). Applying W(C) to (5.1), by using (2.7)
we get

(-D*f = f|w(C)
(1) = A(/O2)" ’“f( )

(1 = AT (Ci)

(-1t = ST ’“f”( )
;o= AT ’“f”( i)
f = arwe
f = 7.

Since f is not the zero function, the last equality proves Proposition 6 . [

The proof of Proposition 1 splits into two steps. First, we express < f°, f0> Np

in terms of <f"|W(N), f>N (Lemma 1) , next <fp|W(N), f>N in terms of (f, )
(Lemma 2). Using both lemmas we will obtain (1.4) .

Lemma 1.
<f07f0>Np:ﬂp <fp|W(N)7f>N (52)
1
where B, := a p*k/2(p+1) ( o(zz’))pil 24 ao(z)p—kl)'

Proof: According to Definition (1.1) and to equality (2.3), fo = f—a;f|V(p)
According to definition (1.2) and to equality (2.8)

(f"—a_;p’“”f” (g f)) ‘W(Np)
k
FP|W (Np) — alp=*/2 fP|W (N).

fO




It follows that
<f0’f0>Np
= (WD) = ) - et

(p
L\ 0

(W), )y, + (@ (£ W0,

(7| W(ND), £, —p*/2a), <fp|W<Np>, /

Let us use the equality W(Np) = W(N) ( g (1J ) (see (2.7)).

Finally we obtain

<f0’f0>Np
= (rww

0 ;o
k ( g 1 ) ,f>Np ~ 2P k/z fp|W(N)’f>Np

( p ; )> . (5.3)
k Np
By Proposition 5, we have

0 -

<f"IW<N)‘ ( 01 ) & > = PPN D)y

k Np
= a@p" P (fIWN), )y -
In order to evaluate the last term in (5.3) let us use Corollary 1, giving
0 K/ «

(rwenus| (§9)), = #rrmmen,

k Np

= a(pp' 2 (fPIW(N), f) -

oyt <f”|W(N),f

Using (5.3) we find
(£ fo) = Bo (FIIWIN), )y (5.4)

where 8, = a(p)p' "2 — 2a,p~*/2(p + 1) + (c},)?a(p)p~*p'~*/2. Note that
o, # 0 because pt C, thus we have

1—-k _

ol ot/ a(p) p alp) 1
- Y (p+ )<a;, p+1_2+ oy p+1>

proving Lemma 1.
Notice next that
ap) p _, a1 a4 p 9 1
a, p+1 ap p+1 app+1 app+1




We find the following factorization properties

@ P %l % p %P %
a’p+1 app+1 a,p+1l opp+1 ayp
al
= (1--”) (“@Lq) (5.5)
ay, a, p+1
and
% P, % 1 _ a_ 1 o 1
a,p+1 ap,p+1 ay, p+1 a,p+1

(-5) () oo

Corollary 2. The algebraic number B, is not zero if and only if oy # .

Proof : Use factorization (5.6) together with the Petersson-Deligne’s evalua-
tion |a(p)|” < 4p*~* (giving |a(p)/ay| < 2). O

Moreover we can use (5.5) to simplify the formulas inside the section 4.4 of
J. Puydt’s thesis [8] (see Corollary 3 below).

Before proving Lemma 2, we give a more general result. Let consider S a
finite set of primes not dividing N. We put Mg := ][, .5 ¢ and we define

fos =1 [[Ud—aV (D), (5.7)
kies
and
s = f.5|,W (N Ms). (5.8)
Let us notice that
foipy = Jo,
f?p} = /"

Corollary 3. (see [8], chapter 4) We have

(£2 fo,s) NMs = (Hﬂl) (fPIW(N), £y - (5.9)

les

Proof : We make an induction on the number of elements of S. If S is the
void set, the result is clear and if S = {p}, it is Lemma 1.
Let ¥ = S U {p} where p is a prime not in S. We have

fox = fos|, (Id—a,V(p)), (5.10)

and L
R =p2f —app*2f3. (5.11)



Hence

<fg7f072>NMg

= (P18 — a2 £, fos, (Td— o) V(D) )

NMs,
0
- <fé’,s W(N Ms) ( p 0 ) ,fo,s>
k NMsx
—2a,p % (£$, fo,8) nus
2 —k p p 0
+ (ap) p7*( £ 5| W(NMs), fo.s 0 1
k NMs
= By {f% 0.5) wa -
as in the proof of Lemma 1. Hence the corollary is proved, by induction. |
Let us now prove the second step.
Lemma 2.
(PN, £y =7 (4 2a(@) = (@) (£, f)o (5.12)

Proof : We have to consider two cases :
i) Suppose 2|C. In that case, the action of the Hecke operator Uy = UsUs
on f is given by

. 1 v
_ gk/2—1
o= e 24 (o 7)
vmod4 'k
1 0 1 v
k/2—1
w5l (o4)(0 1)
vmod4 'K

As a consequence, by noticing that ( (1] _1 ) € Ih(0),

(FPIW(C), F|Us)

4k/2—lymzo‘:i4<f”|W(C)afk((1) 2)((1) ;>>N
tet 5 (e (o 3)] (o0 4)),
e (rwen (501)),

= g <fP|W(C),f

10



We deduce from the last equality

(FIWNYL ) = <f”|W(C)

Lo 7)),
e (o 1)),
= 4TME(fPIW(C), £|Us)
= 74 *2a(@)(f,f)y (b equality (5.1))
= 4@ (f, e -
ii) Suppose 2t C. A complete system of representative S for I'g(4C)\T'(2C)
is given by ( é (1) ) et ( 210 (1] ) So we have for any g € G(C,v)

o 0 -1 1 0
gfwae)| e = ngk(w 0 )<u2C 1)
_ Z ( 1 —u )( 0 —1)
- 9 Vo 2 20 0
uw mod 2 k
_ 1—k/2 20
k
It follows that
PPIWEC)|THS = 212 fo| T, W (20) — B(2) 7 (g ) weoe)
k

= 2mEpwe) (o §) -v@rwe)
Thus we obtain

(FIWN), Fac
= (f|WECITrag, )y
2 0

= 21-k2g(2) <f”|W(C) ( 01 >,f>20 = @) (f7W(C), fye
= 2R K2 (P |T,W(C), ) - 39(2) (W (C), f)
= [£42((2))? - 30@)] (W (C), ). -
Let us now use Lemma 4.5.7 (2) of Miyake [5],
ToTy = Ty + 2 - 4*/2714(2)1d

implying
(a(2))? = a(4) + 2 4%/2714p(2). (5.13)
It follows immediately that
4'742(a(2))? - 39(2) = 4'7*%a(4) — ¢(2) (5.14)
S0
(W), £y =7 [4H2a(4) = 0()] (£, P
proving Lemma 2. O

11



References

[1] Robert F. Coleman, P-adic Banach Spaces and Families of Modular Forms,
Inventiones mathematicae 127 (1997), 417-479.

[2] Andrzej Dabrowski and Daniel Delbourgo, S-Adic L-Functions Attached to
the Symmetric Square of a Newform, Proc. London Math. Soc. (1991), 559—
611.

[3] Neal Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate
Texts in Mathematics, vol. 97, Springer-Verlag, 1993.

[4] Wen-Ch’ing Winnie Li, Newforms and functional equations, Math. Annalen
212 (1975), 285-315.

[5] Toshitsune Miyake, Modular Forms, Springer-Verlag, 1989.

[6] Alexei A. Panchishkin, Admissible Measures for Standard L-Functions and
Nearly Holomorphic Siegel Modular Forms, Preprint MPI 42 (2002), 1-65.

[7]

, Two Variables p-adic L-Functions Attached to Eigenfamilies of
Positive Slope, Inventiones mathematicae 154 (2003), 551-615.

[8] Julien Puydt, Valeurs Spéciales de Fonctions L de Formes Modulaires
Adéliques , Ph.D. thesis, Institut Fourier, 2003.

[9] Jean-Pierre Serre, Formes Modulaires et Fonctions Zéta p-adiques, Lectures
Notes in Mathematics, vol. 350, Springer-Verlag, 1972.

INSTITUT FOURIER

Laboratoire de Mathémathiques
UMR5582(UJF-CNRS)

BPT74

38402 St MARTIN D’HERES Cedex
France
E-mail:bertrand.gorsse@ujf-grenoble.fr
gilles.robert@Qujf-grenoble.fr

12



