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Introduction

We consider in this paper a self-adjoint semi-classical system of N pseudo-dif-
ferential equations of order 0 with N complex valued unknown functions U=
Uy, Uy), -

HU = 0(h™) (1)

~

on the real line. Here H = (H;,)i<ij<n is a matrix of semi-classical pseudo-
differential operators of order 0 in 1 variable z with (I:IZ])* = I:IZ] For applica-
tions, it will be important to consider the case where H=H , depends smoothly
on a germ of parameters u € (R? 0). In our previous papers [5, 6], we derived
normal forms near the eigenvalues crossings which allow to compute a local scat-
tering matrix including the Landau-Zener amplitude. The goal of this paper is
to compute global objects including interferences effects. The general picture is
already provided by the study of the scalar case [9] from which we know that we
need to define ad’hoc Bohr-Sommerfeld phases.
We want to cover the following examples:

e Adiabatic limit in quantum mechanics with avoided crossings: in that case,
1 = 0 is the case of true crossings. We want to compute the global scattering
matrix. Our results extend the adiabatic theorem of quantum mechanics
which is usually given with a gap condition. The references [1], [3], [13] and
[19] chap. TV have no gap condition, but do not include the case of avoided
crossings. The case of one avoided crossing and the Landau-Zener formula
is now well understood thanks to the works of several people starting with
[15], see also [§].

In the case of several crossings (analytic case), using Stokes lines, they are
many works where the interferences effects are exponentially small [16, 18],
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but they do not cover the case of avoided crossings uniformly w.r. to the
perturbation parameter.

The main point here is to get results on the formal series expansion in h, i.e.
modulo O(h™), of the scattering matrix, uniformly w.r. to the deformation
parameter.

e Born-Oppenheimer type operators: in this case, p includes the spectral
parameter (see also [14] and [20]). We are interested into the asymptotic
expansion of the eigenvalues using singular Bohr-Sommerfeld quantization
rules. There is no previous result of this type except in the non singular
case where the most precise results are shown in [12].

The general terminology is the same as in [5] and [6], but in the present paper,
our phase space will always be 2 dimensional:

H#

class

: T*R — Herm(CY) |

the (matrix valued) principal symbol, is the dispersion matriz, and C), = p;l(O)
with p, = det(H/,,..) the dispersion relation.

We first recall the local normal form as derived in our previous papers [5, 6]
and we solve it. After that, we come to the new part which consists in deriving
global objects in the spirit of [9].

We will need another piece of information which we call Bohr-Sommerfeld
phase; let us take any simple cycle ¢ (with singular vertices z1,- -+, 2;,- -, 2,) of
the dispersion relation Cy. We will associate to ¢ a real valued symbol S, (u) ~
> 2o Si(p)h? were the Sj’s are formal power series in p. Sy is a purely classical
object which involves regularized action integrals. S;(0) is computed using the
transport equation which is smooth along the edges [z;, zj+1] (Berry phases) and
singular Maslov indices. From the Bohr-Sommerfeld phases we recover the global
objects mod O(h>).

1 The local normal form

Let us recall the following result from [11, 5, 6] (see also [8]):

Theorem 1 Let us assume that the function po(x,§) = det(Heass y=0) admits at
the point zy € T*R a non degenerated critical point of Morse index 1 (also called
hyperbolic critical point, because the Hamiltonian vector field of po is hyperbolic
at the singular point zy) and with critical value po(zy) = 0.

Then, we can find the following objects which depends smoothly on p close
enough to 0:



o A smooth family of germs of canonical transformations x, : (T*R,0) —

(T*R, zo) such that
Pulxu(@,€)) = eu(, E)(2§ = 0(p))

with e, an invertible germ function and vy a germ of > 0 function of p
satisfying vo(0) = 0. Moreover, the Taylor expansion of ~yq is unique.

o A smooth family of unitary FIO’s U, associated to x, and N x N matrix
of WDO s A,

so that, we have the following normal form (called the Landau-Zener normal form )
near zy:

R ( D « ) 0
ANUSH,U, A, = a
0 Q
with D =22 o, h) ~ S22 a;(u)h? a symbol and Q is elliptic.

Moreover, ag is a complex valued function of p which satisfies

laol* (1) = Y0(p)

and we have
pu(Z()) + O(u?’) )

Yo(p) = —
|detpf(20)]

Remark 1 In [6/, Theorem 1 is proved under the following transversality hy-
pothesis:

(%) if W C Herm(C") is the submanifold defined by dimker H = 2, we
assumed there that (u,2) — Hgass,(2) is transversal to IV at the point
(0, Zo).

This hypothesis can be restored using more parameters, so that Theorem 1 is
also correct. For simplicity,

we will assume that hypothesis (x) holds true in what follows.

It implies that u — ag(p) is a submersion from (R? 0) onto (C,0). We will
denote by Z = ay ' (0). Z is a smooth germ of codimension 2 manifold of (R%,0).
Formal expansions w.r. to the parameter . mean formal expansions along Z.

Remark 2 Contrary to the scalar case, there is no arbitrary choice concerning
the images of the half axes {{ = 0,2 > 0}, ... by x. The smooth arcs of the
dispersion relation are oriented in the following way: there is a change of the
Morse index of the quadratic form associated to H..ss from m to m + 1 while
crossing these arcs. The sign of this change is preserved by the gauge transform
which acts directly on the previous quadratic form by an invertible linear change
of variable. We choose to orient the arcs so that the Morse indez is bigger on the
right than on the left of the path.



Figure 1: the jumps of the Morse index of the dispersion matrix

Remark 3 The symbol o is not uniquely defined because a diagonal unitary
gauge transform preserves the normal form while changing o by some phase shift
exp(i@(h)). Its modulus y(p, h) = |a(u, h)|? is uniquely defined from the Landau-
Zener coefficient given in Equation (6).

The matriz A is defined up to matrices which will change the phase of a.
More precisely, if Ag is the principal symbol of A at the crossing point, the
only prescription is that Ay is a map from CV to CN which sends C*> @ 0 into
ker Hy(zo) and satisfies Ao ((C @& 0) @ 0) = £y and Ao ((0® C) & 0) = Ey where
Ej = lim, . s,z ker Ho with Ay = xo({§ = 0}) and Ay = xo({z = 0}). The
choice of (Ao)|c2ao will be important in the computation of S1(0) in section 5.

The previous result is a microlocal result and the subject of the present paper
is to get a global result.
In the adiabatic case (see Section 6.1), we get

Yo(p) = % +0(1?)

where gap(y) is the minimal gap of the avoided crossing and X/, are the slopes of
the unperturbed eigenvalues at the crossing point.

2 The local scattering matrix for the Landau-
Zener normal form

The goal of this section is to compute in a very explicit way the local 2 x 2
scattering matrix 7 for the Landau-Zener normal form :

Du+av =0
(LZ){ oau+azv =0 (2)



Let us put v = |a|? and let us choose some small @ > 0 and assume y < a?. Let
CY? = {x€ = v} be the characteristic manifold. The set CL”N{max(|z|, |{|) > a}
is the union of 4 connected arcs. These arcs are labelled A" as follows:

o AP ={(z,§) € CY¥ | v < —a}

o AT = {(z,6) € C¥% | ¢ < —a}

o A= {(z,§) € C* | { > a}

o AM = {(z,§) € (5% | v > a}.

The meaning of the labels is as follows:

e “in” (resp. “out”) means that the arc oriented according to remark 2 is
incoming (resp. outgoing).

e “+7 (resp. “—”) means that the vanishing eigenvalue of the dispersion
matrix is the largest (resp. smallest) one.

We start defining 4 WKB (exact) solutions of the previous system associated
to the 4 Lagrangian arcs A1°":

§ m=0

Wout . U ut(x) — l’l% ,Uout(x) — —@l‘i%_l
_. ‘ B . +‘l, _. ‘ltl

wir ut(z) = 2, viM(z) = az? (3)
. -0 i1 —— = X

W (e = —agy L (e =€

Wiut . uiut(g) — ag:lﬁ_ 7 Uiut(é') _ g:lﬁ



~

where f(£) is the h—Fourier transform of f(x) defined by

1
\V2mh

and x4 = Y (£x)|z| with Y the Heaviside function.
Computing the Fourier transforms of uy and vy, we get the following com-
patibility conditions in order to get microlocal solutions of (2) near the origin:

f(&) =

‘464%f@Nmﬂ,

Wt (x) « h%“%irgzi:f) (ie™2r Wi(z) + ie~"2r W (z))
Wi(z) e 3RS (e m i (z) — iem (o)

If Wn =y, Wit + y_ W™ and WO := 2, W 4 z_TW°" are WKB-solutions

of Equation (2) outside the origin, we get, for any microlocal solution near the

origin,
< - ) - < y )
24 Yy

where 7 is the unitary matriz defined by:
1 —-B 1
TZZ(B?—A? —B) 4)

ol
+Z%F(1—|—zh)e_ﬂ% ' 5)
V2T«
The matrix 7 will be called the local scattering matriz associated to the
singular point (and the choice of a normal form). Unitarity of 7 is checked using

the well known formula

with

SIS

el .
e"2n, B =1ih

T
(1l +ix)(1 —ix) =
(1+iz)I( i) sinh 7z
which implies |A]? = |B]? +1, AB = AB.
The transmission coefficient
B
r=|3| = ew-rD) )

gives the Landau-Zener formula. The previous explicit expression for the scat-
tering matrix will allow to define in the next section the Bohr-Sommerfeld phases
and to take into account interferences patterns due to several (avoided) crossings.



3 Singular Bohr-Sommerfeld phases

3.1 Outline

To each cycle ¢ of the dispersion relation Cy, we can associate, using the recipe
of [9], a singular phase of the form

Su(1) = So(p) + hSy(p) + - - -

where the S;’s are smooth w.r. to .

In this section, we will define precisely these phases. We show that they are
uniquely defined as formal power series w.r. to (i, h). More precisely, each S; (1)
is well defined modulo flat functions on Z (see Remark 1). We will give more
precise properties of Sy in section 4 and S in section 5: Sy(u) is, as a formal power
series, a purely classical object derived from the dispersion relation, while S;(0)
is a semi-classical object associated to phases given by the transport equation
which in the adiabatic case are Berry phases.

3.2 Bohr-Sommerfeld phases: a definition

Let us take a simple oriented cycle ¢ of the dispersion relation Cy (boundary of
a bounded component of T*R \ Cy). Let z1, z, -, z, be the singular points of
c ordered cyclically around c. For each singular point z;, let us build a FIO U;
and a VDO gauge transform A; (all depending smoothly on p) which give the
normal form of Theorem 1 with a; = o (i, h) a full symbol. .

We will define H,,(c) = exp(iSy(u)/h) as follows: we will denote by W."; out

in, out

the images of W by the operators U}’ A. These functions are WKB solutions
of equation (1) associated to arcs of C), near z;. We introduce also WKB solutions
u; of (1) along arcs of C,, close to |z;, zj4+1]. From those objects we get a global
holonomy H,,(c) of the cycle ¢ defined as follows: we have (by uniqueness, modulo
multiplication by a full symbol, of WKB solutions) for example near z;:

_ ) in
uj = a; W2,

o in
uj—1 =y; Wi .

We define H,(c) = IT7_,y;z; . In other words, H,(c) is the holonomy of a sheaf
on ¢ given by the WKB solutions on the smooth part of the cycle and whose
jumps of section are given from the normal forms. In our previous example

in in
Wi, — W,

s
Lemma 1 We have |H,(c)| = 1+ O(h>).

Proof.—



Figure 3: defining H,(c)

Following [7] section 11.2.1. and Figure 4, we associate to the cycle
¢ an unitary scattering matrix S, which is computable from the lo-
cal unitary scattering matrices associated to the singular points and
the holonomy H,(c). If this holonomy does not satisfy |H,(c)| =
14 O(h®), the global scattering matrix would not be unitary: the
previous matrix is the product of (unitary) local scattering matrices
and a diagonal matrix whose unique nonzero entry is H,(c).

X1
Y1

x <

Figure 4: the scattering matrix associated to a cycle

O
Taking the Logarithms, we get the phase Sp(p)/h = Y772 S;(11)h/~" which is
well defined modulo a multiple of 27.

Lemma 2 Given the gauge transforms used in the normal form of Theorem 1,
the Taylor expansions of the S;’s at = 0 are uniquely defined.

Proof.—



We will use the fact that the local scattering matrix computed in
Section 2 is irreducible in the domain AV < |a(p)| < v/h, meaning
that none of the entries are O(h*°) in this domain. It implies that,
for each j, the W' U5 can be, up to a global multiplication by a
symbol, defined as sets of WKB solutions for which the scattering
matrix is given by Equations (4) and (5) with the value of « given by
the normal form at the point z;.

4 The classical part 5

4.1 S is classical

We have the following:

Theorem 2 For any simple cycle ¢ of Cy, the function So(u) depends only on
the dispersion relation C,,.

Proof.—

From the definition, Sy depends only on the terms in 1/h in the
phases of the images by our normal form transformations of the ex-
plicit solutions of the normal form. Those terms depends only on
the canonical transformations used in the normal form and the as-
sociated generating functions via stationnary phases (the Lagrangian
manifolds).

4.2 Sj as a regularized action integral

Let us denote by |u| = d(p, Z). As in [9], it would be nice to get Sp(i) as a
regularisation of an usual action integral. A basic fact in [9] was that any simple
cycle ¢ is a limit of a cycle of ', as 4 — 04. This is no longer the case here
because vy > 0; one can see an example in section 4.4. The idea is now to forget
the initial problem and to work only with the dispersion relation C), which can
be embedded into a larger family C;, for which we can define action integral in
some suitable sectors of the (¢, 1) space. We can then restrict to t = 0 and get
our actions Sy.

We will calculate Sy by first computing the same object Xo(t, i) for C;,, =
{p(z, & p) — ¢t =0} and taking So(p) = Eo(0, p).

The cycle ¢ is a limit of a cycle ¢(t, u) of Cy,, as (t, 1) — 0 in some sector
Qui={(t.0)| £ ¢ > 0, || << [f]}



We have, for (¢, u) € Q,

&@MZ/€M+XH%NMWMm@MFD,

v j=1

where the + signs depends on orientation and can be determined from the Loga-
rithmic singularities of the action integrals. The contributions %o (¢, i) (In |0, (¢, p)|—
1) come from the phase shift between xiﬁ/ " and 6;”/ 4 expressed as a WKB func-
tion of the single variable x.

Knowing that ¥ is smooth, the previous formula defines the Taylor expansion
of ¥ w.r. to (¢, ) and hence the Taylor expansion of Sy w.r. to p.

4.3 The analytic case

In the analytic case, we could also consider the Riemann surfaces X, = {p, = 0}
and look at some complex cycles ¢, on X, whose limit is c. Those cycles are not
unique, but the real part of their action integrals are well defined and we can
then take directly the previous regularisation.

4.4 An example

Let us consider the adiabatic equation:

hdX
—— = A,X
i dt u(t)

a=(1 ")

and the only cycle ¢y of Cy passing by the singular points (41, £1). It is clear
that ¢y is not a limit of real cycle ¢, of C), because the matrix A,(¢) has real
eigenvalues for each ¢ and so C), is the union of 2 disjoint graphs and has no real
cycle.

with

5 The subprincipal action

We know that the Landau-Zener coefficient given by Equation (6) is 0(h>) if
|| >> v/h. Tt implies that in order to solve our problem up to O(v/h) terms it
is enough to know Sy mod O(|u|?) and S; for p € Z. Let us assume that we have
local coordinates so that 0 € Z. We will describe below the calculus of S;(0).

Lemma 3 Assuming || = 0, the principal part a(z)exp(iS(z)/h) of the WKB
solutions of Equation (1) associated to arcs |z, zj41] of Co can be smoothly ex-
tended beyond the singular vertices as WKB functions.

10



Proof.—

The property is invariant by FIO and it is enough to prove it for the
solutions of the normal form given in Equation (3). The point is that
ao(0) = 0, hence v = O(h?).

O
The previous result is related to the fact that the adiabatic theorem is still
valid in case of eigenvalue crossings (see [1, 3]).
We will define on ¢ a piecewise smooth Hermitian line bundle L with a con-
nection as follows:

e On each arc [2;, zj11], L, = ker Hoass(2) with the connection given by the
transport equation as in [12] (in the case of the adiabatic limit, it is the so
called geometric connection or Berry phase [2]).

e At each singular point, there are 2 limit fibers L, ; and from A, (defined
in Remark 3) we have an isomorphism between both limits given by trans-
porting the isomorphism (1,0) — (0,1) of C® 0 on 0 & C by (Ao)|c2a0-

Definition 1 The phase exp(iSY (0)) is the holonomy of the discontinuous line
bundle L.

Figure 5: the singular Maslov indices

Using the calculus of [10] (page 20) (we alert the reader that the previous
convention for Maslov indices are not the same in the paper [9]), we can also put
the:

Definition 2 The (singular) Maslov index m(c) € Z/2 of a simple cycle ¢ which
is the boundary of a bounded connected component of T*R\ Cy is given by: m(c) =
Msmooth (€) + Masing(¢) where Mgmootn(¢) is the usual Maslov index of a smooth
deformation of ¢ while mgng(c) is a sum of :I:% associated to the singular points
according to the rules of Figure 5.

11



The Maslov index of any cycle is defined by linearity from the previous Maslov
indices, so it gives a cocycle. For example, the Maslov index of a smooth cycle
(even if not simple) is the usual one, namely £2.

Theorem 3 Using the previous definitions, we have:
$1(0) = 57 (0) +m(e)5 -

Proof.—

The proof follows essentially the lines of [9] p. 474-476.

Let us give some details. A priori, there are several cases to check
depending on the position of the cycle ¢ at the singular points w.r. to
the verticals. We will assume that the matrix

X’(@Z(i Z)

of the canonical transformation xy = x, satisfies a # 0 and b # 0, this
is the generic case. We define

| +1ifab>0
] —1ifab<0

The generating function p(x,y) = @s(z, y)+O0(|x]>+|y|?) of x, defined
by X(y, —0y) = (z, Oyp), satisfies po(x,y) = 5 (da® —2zy+ay?). We
need to compute mod o (1) the values for x close to 0 of the images
by the normal form transform of

we) = (Y9

and
0

0= vy )

Let us assume that the principal symbol of the ¥ DO gauge trans-
form is the NV x N matrix

o(A)(y,n) = ( ai(y,m) daly,n) - ) :

We get for the components of both WKB solutions for x small but
1ONZETro:

W (z) = (2rh) 3/ / er C@N =IO (1), (y, n)dydy'dn |
y' >0

12



with C(0,0) = |b|~2, and
W (z) = (2rh) ™! / e @V O () (y, 1) dydy .
n>0

If we evaluate the integrals by stationnary phase, the dominant
contributions come from the critical points and not from the bound-
ary. The determinant of both Hessians are the same, while the signa-
ture differs by 1. The final result follows then by

e Looking at the value of the stationnary phase calculations as x
is close to 0: the limits are respectively

C(0,0)e™=™/*@,(0,0)
and
C(Ov O)&Q(Ov O)

e if ¢ > 0, one should add a contribution of the smoothed ¢, while
if £ < 0 there is no such contribution.

e Remembering that
Agicze0 = (@1(0,0) @5(0,0) ) .
O

6 Application 1: adiabatic limit with avoided
crossings

6.1 Adiabatic limit

We consider the following equation:

1dX

1 dr
where A,(t), 0 <t < a, is a self-adjoint matrix which is smooth w.r. to (¢, u)
and we consider 0 < 7 < a/h. The limit A — 0 of this equation is called the
adiabatic limit.

We can rewrite Equation (7) in a standard semi-classical form by puting
t = hrt:

= Au(hT)X (7)

hdX
T ALt X (8)

where 0 < ¢t < a.

We will assume that the eigenvalues of A, (0) and A,(a) are all non degenerate.
The scattering matrix S(u, h) : CN¥ — C¥ is defined by X(0) — X (a) where X
is a solution of Equation (8 ).

13



6.2 Outside eigenvalues crossings

Let A(t) be an eigenvalue of multiplicity 1 of Ag(¢) for ¢ in some open intervall I.
Then Equation (8) admits a unique (up to multiplication by some function of h)
formal WKB solution given by

X(t) = eMB)/h <§: aj(t)hj)

where A'(t) = A(t) and ao(t) satifies:
o ag(t) € ker (Ap(t) — A(1))
e Vay(t) = 0 where V is the geometric or Berry connection.

Let us recall that Vg pa(t) = I1,a'(t) where II; is the orthogonal projection
of C onto the eigenspace ker(Ag(t) — A(t)).

The previous statement is the content of the so called quantum adiabatic
theorem and goes back to [3].

6.3 Avoided crossings

What happens when eigenvalues become degenerate at some values of ¢?

Let us try to understand the generic situation. It is well known that eigenvalue
crossings for a real symmetric (resp. complex Hermitian) matrix is a codimension
2 (resp. 3) property. It is the content of the well known Wigner-Von Neumann
theorem [21].

Physically, eigenvalues crossings can still occur for symmetry reasons. But,
if we break the symmetry by a small perturbation of size u, we will get the so-
called avoided crossings. We have now two small parameters: the semi-classical
(adiabatic) parameter h and the perturbation parameter . The previous results
allow to discuss the uniform expansion of the scattering matrix w.r. to both small
parameters.

6.4 Precise assumptions

We will assume that the eigenvalues of Ay () cross transversally only by pairs on
10,a[. The dispersion relation C,, C T*[O, a] is defined by p,(t,7) = det(rld —
A, (t)). So that C, is exactly the union of the graphs of the eigenvalues of A, (?).

6.5 Calculation of the scattering matrix

Let us describe how to compute the global scattering matrix in the case of Figure
7. Let us start with the 4 local scattering matrices §;, 7 = 1,---,4 and the 2
holonomies H,(cx), k =1,2.

14



Figure 6: the dispersion relation for the adiabatic limit

Figure 7: recipe for the global scattering matrix
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We try to describe a global solution of our system which is given from WKB
solutions associated to each arc of a maximal tree of Cy. We have 10 equations
with 13 unknowns which allow to compute ¢ from .

(w_ = H,(c1)wy

v_ =H,(ca)vy

It turns out that the global scattering matrix is the product of 5 unitary matrices
as follows :

T U U U
T — z — P — | v — | vy — 7
w— W Y3 Y3

7 Application 2: EBK quantization rules

\\ -

Figure 8: the dispersion relation for the Born-Oppenheimer Hamiltonian

We consider a Born-Oppenheimer Hamiltonian of the following form:

o 2
K - w?% 2 1d+ V,,(2)

where V,, : R — Herm(C") is smooth w.r. to (z,v). We assume:

16



The eigenvalues of V(x) are of multiplicities at most 2 and cross transver-
sally.

The following properness condition:
V,(x) > p(x)Id
where limjg|_.o p(z) = 400.

We choose E so that, for any x € R, E is not a degenerate eigenvalue of
Vo ().

If the eigenvalue \;(z) of Vy(x) satisfies A;j(xo) = E, then X:(xq) # 0.

We can apply the previous method in order to compute EBK quantization
rules for the equation (K, — E)U = O(h™) .
EBK quantization can be solved following the same path; but is this case we

have

the same number of equations than of unknowns and EBK rule is given by

the vanishing of a suitable determinant as in [9].
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