HAUSDORFF DIMENSION OF CANTOR SETS AND POLYNOMIAL HULLS

Burglind JÖRICKE
Prépublication de l'Institut Fourier n ${ }^{\circ} 651$ (2004)
http://www-fourier.ujf-grenoble.fr/prepublications.html

Abstract

We give examples of Cantor sets in \mathbb{C}^{n} of Hausdorff dimension 1 whose polynomial hulls have non-empty interior.

In the 60 'ies W . Rudin [R] posed the following problem which arose in connection with Banach algebras and polynomial approximation. How small can the dimension of a compact subset K of \mathbb{C}^{n} be, provided its polynomial hull \hat{K} has non-empty interior. Asking about topological dimension, Vitushkin $[\mathrm{V}]$ and Henkin $[\mathrm{H}]$ constructed Cantor sets E in \mathbb{C}^{2} with the latter property. Note that Cantor sets have topological dimension zero. However, the set in Vitushkin's example has Hausdorff dimension 2 and in Henkin's example the Hausdorff dimension was even bigger. The known results gave rise to the conjecture (see also [V]) that the Hausdorff dimension of a set $K \subset \mathbb{C}^{n}$ must be at least n if \hat{K} has non-empty interior.

In the present note we show that this is not the case. However, it would be still interesting to give a reasonable sense to the notion of dimension which approves the corresponding conjecture as true.

The main result of this paper is the following

Theorem. - For any natural n there exists a Cantor set E in \mathbb{C}^{n} of Hausdorff dimension 1 whose polynomial hull contains the unit polydisc.

The estimate of the Hausdorff dimension is optimal.

Lemma 1. - If K is a compact subset of \mathbb{C}^{n} of zero linear measure (in particular, if the Hausdorff dimension of K is strictly less than one) then K is polynomially convex.

For convenience of the reader we include a proof of the lemma.

[^0]Proof. - The lemma is true for $n=1$. Indeed, take an arbitrary point $z \notin K$. After a translation we may assume that $z=0$. The radial projection of K to the unit circle has vanishing length, hence there is a ray $r e^{i \theta}, r>0$, which does not meet K. By Runge's theorem this means that $0 \notin \hat{K}$.

Assume the lemma is true for n. Prove it for $n+1$. Let $K \subset \mathbb{C}^{n+1}$ have zero length. Take an arbitrary point $z \notin K$. After a translation we may assume that $z=0$. Then there is a complex line through 0 which avoids K. Indeed, put $A_{n+1}=\left\{\left(z_{1}, \ldots, z_{n+1}\right) \in \mathbb{C}^{n+1}:\left|z_{n+1}\right|=\right.$ $\left.\max _{j=1, \ldots, n+1}\left|z_{j}\right|\right\}$. If a complex line through 0 intersects $A_{n+1} \backslash\{0\}$, it is contained in A_{n+1}. Since $0 \notin K$, there is a neighbourhood of the set $K \cap A_{n+1}$ which is covered diffeomorphically by the mapping

$$
\left(z^{\prime}, \zeta\right) \stackrel{\text { def }}{=}\left(z_{1}, \ldots, z_{n}, \zeta\right) \rightarrow\left(\zeta z^{\prime}, \zeta\right)
$$

where z^{\prime} runs over a neighbourhood of $\overline{\mathbb{D}}^{n}$ and ζ is in a suitable open subset of \mathbb{C}. Here \mathbb{D} denotes the open disc in \mathbb{C} and $\overline{\mathbb{D}}$ its closure.

The linear measure of $K \cap A_{n+1}$ in coordinates $\left(z^{\prime}, \zeta\right)$ is also zero, hence so is the linear measure of its projection parallel to the ζ-direction. Hence, for some $z^{\prime} \in \overline{\mathbb{D}}^{n}$, the line $\zeta \rightarrow$ $\left(\zeta z^{\prime}, \zeta\right)$ does not meet $K \cap A_{n+1}$, hence it does not meet K.

Denote by π the orthogonal projection in \mathbb{C}^{n+1} onto the orthogonal complement $L \cong \mathbb{C}^{n}$ of the above line. Then $\pi(K)$ has zero linear measure and does not contain the origin. By hypothesis its polynomial hull in $L, \widehat{\pi(K)}_{L}$, does not contain the origin. But then $0 \notin \pi(\widehat{K})$. (Consider a polynomial p on L for which $p(0)=1$ and $\max _{\pi(K)}|p|<1$ and extend p to \mathbb{C}^{n+1} not depending on the direction orthogonal to L.) Hence $0 \notin \widehat{K}$.

We prove the theorem first for the case $n=2$. The building block for the proof will be the following lemma, which is a refinement of the main lemma in [J]. By a complex affine mapping (opposed to a complex linear mapping) we mean a mapping of the form $z \rightarrow b+A z$, $z \in \mathbb{C}^{k}, b \in \mathbb{C}^{m}, A$ a constant $k \times m$ matrix, k and m natural numbers. In the same way we will distinguish complex affine and complex linear subspaces of \mathbb{C}^{n}. By an affine quasicircle $C \subset \mathbb{C}^{n}$ surrounding a point $p \in \mathbb{C}^{n}$ we mean the following: There exists a complex affine line in \mathbb{C}^{n} which contains p and C and a smooth quasiconformal mapping of \mathbb{C} onto this line which maps the origin to p and the unit circle to C. Denote by \mathbb{B}^{n} the open unit ball in \mathbb{C}^{n}.

Lemma 2. - Let $f_{j}, j=1, \ldots, N$, be N complex linear functions in \mathbb{C}^{2} which are transversal to each other and have gradient ∇f_{j} of length 1. Let σ be any positive number. Consider for each j an affine quasicircle C_{j} on $\left\{f_{j}=0\right\}$ which surrounds the origin and is contained in $\mathbb{C}^{2} \backslash \sigma \overline{\mathbb{B}^{2}}$. Denote by $T_{j}(\varepsilon)$ the closed ε-neighbourhood of C_{j}.

There exists a positive constant a depending only on the f_{j} but not on σ and C_{j} such that for each sufficiently small $\varepsilon>0$

$$
\begin{equation*}
(a \sigma)^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}} \overline{\mathbb{B}^{2}} \subset \widehat{\bigcup_{j}(\varepsilon)} \tag{1}
\end{equation*}
$$

(The set on the left hand side of (1) is the ball of radius $(a \sigma)^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}}$ and center 0 .)

Proof. - Assume $N \geqslant 2$. (The assertion for $N=1$ is trivial.) Replacing z by $\frac{z}{\sigma}$ and ε by $\frac{\varepsilon}{\sigma}$ we may reduce the general case to the case $\sigma=1$. Let now $\sigma=1$.

If $\varepsilon>0$ is small (smaller than the distance of C_{j} to $\overline{\mathbb{B}^{2}}$) then for each j

$$
\begin{equation*}
\widehat{T_{j}(\varepsilon)} \supset\left\{\left|f_{j}\right| \leqslant \varepsilon\right\} \cap \partial \mathbb{B}^{2} \tag{2}
\end{equation*}
$$

By assumption all sets $\left\{f_{j}=0\right\} \cap \partial \mathbb{B}^{2}$ are disjoint, hence there is a positive number a such that the sets $\left\{\left|f_{j}\right| \leqslant a\right\} \cap \partial \mathbb{B}^{2}$ are disjoint. We will prove that

$$
\begin{equation*}
\left\{\left|f_{1} \cdots f_{N}\right| \leqslant a^{N-1} \varepsilon\right\} \cap \partial \mathbb{B}^{2} \subset \bigcup_{j=1}^{N}\left\{\left|f_{j}\right| \leqslant \varepsilon\right\} \cap \partial \mathbb{B}^{2} \tag{3}
\end{equation*}
$$

Indeed, let z be a point in the left hand side of (3). Since $z \in \partial \mathbb{B}^{2}$, all except, maybe, one of the factors $\left|f_{j}(z)\right|$ exceed a, say all but, maybe, $\left|f_{j_{0}}(z)\right|$. Then

$$
\left|f_{j_{0}}(z)\right| a^{N-1}<\left|\left(f_{1} \cdots f_{N}\right)(z)\right| \leqslant a^{N-1} \varepsilon .
$$

Hence, $\left|f_{j_{0}}(z)\right| \leqslant \varepsilon$ and z is in the right hand side of (3).
Taking the polynomial hull in (3) and taking into account (2) we obtain

$$
\widehat{\bigcup_{j=1}^{N} T_{j}(\varepsilon)} \supset\left\{\left|f_{1} \cdots f_{N}\right| \leqslant a^{N-1} \varepsilon\right\} \cap \overline{\mathbb{B}^{2}} \supset a^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}} \overline{\mathbb{B}^{2}}
$$

since $f_{j}(0)=0,\left|\nabla f_{j}\right|=1$.
The proof of the theorem for $n=2$ will be based on the following lemma, which is a consequence of lemma 2.

Lemma 3. - Let $C \subset \mathbb{C}^{2}$ be an affine quasicircle and let σ be a small enough positive number. Denote by $T(3 \sigma)$ the 3σ-neighbourhood of C. For any natural number $N \geqslant 5$ there exists a constant c, depending only on N and on the torus $T(3 \sigma)$, and for each small enough $\varepsilon>0$ there exist closed disjoint tori $\widetilde{T}(3 \varepsilon)$ around affine quasicircles with the following properties.

The number $q(\varepsilon)$ of tori satisfies the inequality

$$
\begin{equation*}
q(\varepsilon) \leqslant c \varepsilon^{-\frac{4}{N}} \tag{4}
\end{equation*}
$$

the affine quasicircles have length not exceeding $10 \pi \sigma$, the tori $\widetilde{T}(3 \varepsilon)$ are contained in $T(3 \sigma) \backslash$ $T(2 \sigma)$ and

$$
\begin{equation*}
\widehat{\bigcup \tilde{T}(\varepsilon)} \supset T(\sigma) \tag{5}
\end{equation*}
$$

Proof. - Let g be a complex affine function such that $|\nabla g|=1$ and $C \subset\{g=0\}$. With the number N as in the statement consider complex linear functions f_{1}, \ldots, f_{N}, all transversal to each other and such that $\left|\nabla f_{j}\right|=1$ and the Hermitian scalar product $\left\langle\nabla f_{j}, \nabla g\right\rangle$ is small enough.

Consider a point $p \in T(\sigma)$, an index j and a number $b(p)$ strictly between 2 and 3. Denote by $C_{p, j}$ the intersection of $\partial T(b \sigma)$ with the complex line $\mathscr{L}_{j}(p)$ through p which is parallel to $\left\{f_{j}=0\right\}$. Then $C_{p, j}$ is an affine quasicircle surrounding p. Indeed, if F is complex affine with $|\nabla F|=1$ and ∇F orthogonal to ∇g then $\partial T(b \sigma) \cap\{F=F(p)\}$ bounds a disc in a complex line, the disc containing $p . C_{p, j}$ are small diffeomorphic perturbations of the circle.

Let $\widetilde{T}_{p, j}(\varepsilon)$ be the ε-neighbourhood of $C_{p, j}$. If $\varepsilon>0$ is small enough then for fixed p the 3ε-neighbourhoods $\widetilde{T}_{p, j}(3 \varepsilon), j=1, \ldots, N$, are pairwise disjoint and contained in

$$
\overline{T(b \sigma+3 \varepsilon) \backslash T(b \sigma-3 \varepsilon)} \subset T(3 \sigma) \backslash T(2 \sigma), \quad j=1, \ldots, N .
$$

Lemma 2 (applied after a translation) gives

$$
\begin{equation*}
\bigcup_{j=1}^{N} \widetilde{T}_{p, j}(\varepsilon) \supset p+(a \sigma)^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}} \overline{\mathbb{B}}^{2} \tag{6}
\end{equation*}
$$

for a constant $a>0$ which depends on N (precisely, on the choice of the f_{j} for given g and N), but not on p nor on ε.

Let now p run through a suitable $(a \sigma)^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}}$ net for $T(\sigma)$. One can choose the latter set so that it contains not more than $c^{\prime} \cdot \varepsilon^{-\frac{4}{N}}$ points $p_{k}, k=1,2, \ldots$. (c^{\prime} is a constant depending only on N and on the torus $T(3 \sigma)$.) Choose $b\left(p_{k}\right) \cdot \sigma=3 \sigma-5(2 k-1) \varepsilon$. If

$$
\begin{equation*}
10 c^{\prime} \cdot \varepsilon^{-\frac{4}{N}} \cdot \varepsilon<\sigma, \tag{7}
\end{equation*}
$$

then all $b\left(p_{k}\right) \cdot \sigma$ are in $[2 \sigma+5 \varepsilon, 3 \sigma-5 \varepsilon]$. Consider for each k the N affine quasicircles $C_{p_{k}, j}$ and the tori $\widetilde{T}_{p_{k}, j}(3 \varepsilon)$ associated with $p_{k}, b\left(p_{k}\right)$ and j as described above.

If (7) holds all tori $\widetilde{T}(3 \varepsilon)$ (corresponding to all k and j) are pairwise disjoint and contained in $T(3 \sigma) \backslash T(2 \sigma)$. Their number $q(\varepsilon)$ does not exceed $c \cdot \varepsilon^{-\frac{4}{N}}$ with $c=N \cdot c^{\prime}$ and the lengths of the affine quasicircles $C_{p_{k}, j}$ do not exceed $10 \pi \cdot \sigma$ if $\sigma>0$ is small and the angle between $\{g=0\}$ and $\left\{f_{j}=0\right\}$ is close to the right angle. Moreover, by (6)

$$
\bigcup_{k, j} \widehat{\widetilde{T}_{p_{k}, j}(\varepsilon)} \supset T(\sigma),
$$

since for p running over the p_{k} the balls on the right of (6) cover $T(\sigma)$.
Proof of the theorem for $n=2$. - Let $C^{(0)}$ be the circle $\left\{z_{1}=0,\left|z_{2}\right|=10\right\}$, let $\sigma=1$ and $T^{(0)}(3)$ be the closed 3-neighbourhood of $C^{(0)} . T^{(0)}(3)$ is a closed solid torus and $\widehat{T^{(0)}(1)} \supset$ $\overline{\mathbb{D}}^{2}$. Put $E_{0}=T^{(0)}(3)$.

Choose a sequence of numbers $N_{k} \geqslant 5, k=1,2, \ldots, N_{k} \rightarrow \infty$, for $k \rightarrow \infty$. Construct inductively a sequence of closed sets $E_{k}, k=1,2, \ldots, E_{k+1} \subset E_{k}$ for $k=0,1, \ldots$. Suppose the set E_{k} is obtained and has the following properties. E_{k} is the finite union of disjoint closed tori $T^{(k)}\left(3 \varepsilon_{k}\right)$ around affine quasicircles (tori in the k-th generation), and

$$
\begin{equation*}
\bigcup \widehat{T^{(k)}}\left(\varepsilon_{k}\right) \supset \overline{\mathbb{D}}^{2} \tag{8}
\end{equation*}
$$

The construction of the set E_{k+1} goes as follows.

Put $N=N_{k+1}$. Choose for each torus $T^{(k)}\left(\varepsilon_{k}\right)$ functions f_{1}, \ldots, f_{N} according to lemma 3 . Let $\varepsilon>0$ be so small that the inequalities (7) are satisfied for each of the tori $T^{(k)}\left(\varepsilon_{k}\right)$. Apply lemma 3 to each of the tori $T^{(k)}\left(\varepsilon_{k}\right)$ and obtain in each of them disjoint closed tori of width 3ε in the $(k+1)^{\text {st }}$ generation.

Denote all tori in the $(k+1)^{\text {st }}$ generation by $T^{(k+1)}(3 \varepsilon)$ (omitting indices labeling them). Their total number $q_{k+1}(\varepsilon)$ does not exceed $c_{k+1} \cdot \varepsilon^{-\frac{4}{N_{k+1}}}$, where the constant c_{k+1} depends on N_{k+1} and on all tori $T^{(k)}\left(3 \varepsilon_{k}\right)$ of generation k, in particular on the number of those tori.

Further, the $T^{(k+1)}(3 \varepsilon)$ are 3ε-neighbourhoods of affine quasicircles of length $\leqslant 10 \pi \varepsilon_{k}$ and the $T^{(k+1)}(3 \varepsilon)$ are contained in $\bigcup T^{(k)}\left(3 \varepsilon_{k}\right)$. Moreover, by lemma 3 (see (5) for each torus of generation k) we obtain

$$
\begin{equation*}
\widehat{\bigcup T^{(k+1)}}(\varepsilon) \supset \bigcup T^{(k)}\left(\varepsilon_{k}\right) \tag{9}
\end{equation*}
$$

hence, by (8)

$$
\begin{equation*}
\widehat{\bigcup T^{(k+1)}}(\varepsilon) \supset \overline{\mathbb{D}}^{2} . \tag{10}
\end{equation*}
$$

The set $\bigcup T^{(k+1)}(\varepsilon)$ can be covered by not more than s_{k+1} balls of radius ε, where

$$
\begin{align*}
s_{k+1} & =\text { const } \cdot q_{k+1}(\varepsilon) \cdot 10 \pi \varepsilon_{k} \cdot \varepsilon^{-1} \tag{11}\\
& \leqslant \text { const } c_{k+1} \cdot 10 \pi \varepsilon_{k} \cdot \varepsilon^{-1-\frac{4}{N_{k+1}}}
\end{align*}
$$

Choose now for ε a number ε_{k+1} so that (7) is satisfied for all tori of generation k,

$$
\begin{equation*}
\varepsilon_{k+1} \leqslant\left(c_{k+1} \cdot 10 \pi \varepsilon_{k}\right)^{-(k+1)} \tag{12}
\end{equation*}
$$

and $\varepsilon_{k+1} \rightarrow 0$ for $k \rightarrow \infty$.
Put $E_{k+1}=\bigcup T^{(k+1)}\left(3 \varepsilon_{k+1}\right)$. Then $E_{k+1} \subset E_{k}$ and $\widehat{E_{k+1}} \supset \overline{\mathbb{D}}^{2}$. The set $E \stackrel{\text { def }}{=} \bigcap_{k=0}^{\infty} E_{k}$ is a Cantor set with $\hat{E} \supset \overline{\mathbb{D}^{2}}$.

For each k the inclusion $E \subset E_{k+1}$ holds and E_{k+1} can be covered by not more than s_{k+1} balls of radius ε_{k+1} and for any positive α (11) and (12) imply

$$
\begin{equation*}
s_{k+1} \cdot \varepsilon_{k+1}^{1+\alpha} \leqslant \text { const } \cdot 10 \pi \cdot\left(\varepsilon_{k+1}\right)^{\alpha-\frac{1}{k+1}-\frac{4}{N_{k+1}} \underset{k \rightarrow \infty}{\longrightarrow} 0} \tag{13}
\end{equation*}
$$

(13) shows that the Hausdorff measure of E of dimension $1+\alpha$ is zero for any positive number α. Hence, the Hausdorff dimension of E equals 1 . (It cannot be less than 1 by lemma 1.) The theorem is proved for \mathbb{C}^{2}.

The proof for $n>2$ goes along the same lines with lemma 2 replaced by the following lemma 4. We will prove lemma 4, but skip the details of the proof of the theorem in higher dimension.

Let $n \geqslant 2$ and let $f_{j}, j=1, \ldots, N$, be complex linear functions in \mathbb{C}^{n}. We say that f_{j} are in general position if for each natural number $k \leqslant n$ the zero sets of any k of them intersect along an $(n-k)$-dimensional linear subspace of \mathbb{C}^{n}. In particular, the gradient of each of them is different from zero and the intersection of the zero set of any n of them is equal to the origin in \mathbb{C}^{n}.

Lemma 4. - Let $n \geqslant 2$ and let $f_{j}, j=1, \ldots, N$, be complex linear functions in \mathbb{C}^{n} in general position, $\left|\nabla f_{j}\right|=1$. Suppose $N \geqslant n$. For each subset $\mathscr{G}=\left\{j_{1}, \ldots, j_{n-1}\right\}$ containing exactly $n-1$ distinct elements of $\{1,2, \ldots, N\}$ denote by $C_{\mathscr{Z}}$ an affine quasicircle contained in the complex line $\mathscr{L}_{g}=\left\{f_{j_{1}}=\cdots=f_{j_{n-1}}=0\right\}$ and surrounding the origin. Suppose that for some constant $\sigma>0$ each quasicircle $C_{\mathscr{g}}$ is contained in $\mathbb{C}^{n} \backslash \sigma \overline{\mathbb{B}}^{n}$. For small enough $\varepsilon>0$ denote by $T_{\mathscr{g}}(\varepsilon)$ the ε-neighbourhood of $C_{\mathscr{Z}}$.

There exists a positive constant a depending only on f_{j} but not on σ nor on the $C_{\mathscr{g}}$ such that for each sufficiently small $\varepsilon>0$

$$
\begin{equation*}
(a \sigma)^{1-\beta_{n}(N)} \varepsilon^{\beta_{n}(N)} \overline{\mathbb{B}^{n}} \subset \widehat{\bigcup_{\mathscr{J}}} \widehat{T_{\mathcal{J}}(\varepsilon)} . \tag{14}
\end{equation*}
$$

Here $\beta_{n}(N) \stackrel{\text { def }}{=} \frac{n(n-1)}{2(N-n+2)}$. Note that $\beta_{n}(N) \rightarrow 0$ for n fixed and $N \rightarrow \infty$. The union on the right hand side is taken over all subsets $\mathscr{\mathscr { L }}$ of $\{1, \ldots, N\}$ containing $n-1$ distinct elements.

Proof. - The case of general $\sigma>0$ can be reduced to the case $\sigma=1$ by replacing z by $\frac{z}{\sigma}$ and ε by $\frac{\varepsilon}{\sigma}$. We may therefore assume that $\sigma=1$. Lemma 2 implies lemma 4 for $n=2$. Indeed, $\beta_{2}(N)=\frac{1}{N}$. Assume, lemma 4 is true for $n-1(n-1 \geqslant 2)$. Prove it for n.

Note first that there exists a constant $A>0$ depending only on n and on the functions f_{j} such that for each subset $\mathscr{\mathscr { L }}=\left\{j_{0}, \ldots, j_{n-2}\right\}$ of $\{1, \ldots, N\}$ containing $n-1$ distinct elements the set

$$
\left\{\left|f_{j_{0}}\right| \leqslant A \varepsilon, \ldots,\left|f_{j_{n-2}}\right| \leqslant A \varepsilon\right\}
$$

is contained in the ε-neighbourhood of the line $\mathscr{L}_{\mathscr{Z}}=\left\{f_{j_{0}}=\cdots=f_{j_{n-2}}=0\right\}$. Moreover, writing $\mathscr{J}=\left\{j_{0}\right\} \cup \mathscr{J}^{\prime}, \mathscr{J}^{\prime}=\left\{j_{1}, \ldots, j_{n-2}\right\}$, we find for each point $\zeta \in \mathbb{C},|\zeta| \leqslant A \varepsilon$, a subset $\tau_{j_{0}, \zeta, \mathscr{Z}^{\prime}}(A \varepsilon)$ of

$$
\left\{f_{j_{0}}=\zeta\right\} \cap\left\{\left|f_{j_{1}}\right| \leqslant A \varepsilon, \ldots,\left|f_{j_{n-2}}\right| \leqslant A \varepsilon\right\}
$$

with the following properties.
Identify the set $\left\{f_{j_{0}}=\zeta\right\}$ with \mathbb{C}^{n-1} by the affine mapping of \mathbb{C}^{n-1} into \mathbb{C}^{n} which preserves length and maps $0 \in \mathbb{C}^{n-1}$ to the orthogonal projection of $0 \in \mathbb{C}^{n}$ to $\left\{f_{j_{0}}=\zeta\right\}$. With this identification we choose $\tau_{j_{0}, \zeta, \mathscr{Z}^{\prime}}(A \varepsilon)$ as the $A \varepsilon$-neighbourhood in $\left\{f_{j_{0}}=\zeta\right\}$ of an affine quasicircle, the latter being close to $C_{\mathcal{Z}}$ and contained in $\left\{f_{j_{0}}=\zeta\right\} \cap\left\{f_{j_{1}}=\cdots=f_{j_{n-2}}=0\right\}$. If ε is small the sets $\tau_{j_{0}, \zeta, \mathscr{g}^{\prime}}(A \varepsilon)$ are outside the unit ball of $\left\{f_{j_{0}}=\zeta\right\}$. Moreover, the choice can be done in such a way that

$$
\begin{equation*}
\tau_{j_{0}, \zeta, \mathscr{G}^{\prime}}(A \varepsilon) \subset T_{\mathscr{L}}(\varepsilon) \tag{15}
\end{equation*}
$$

By the lemma for $n-1$ (applied to the $N-1$ functions $f_{j}, j \neq j_{0}$) for each $j_{0} \in\{1, \ldots, N\}$ and each $|\zeta| \leqslant A \varepsilon$

$$
\begin{equation*}
\bigcup_{\mathscr{Z}^{\prime}}^{\tau_{j_{0}, \zeta, \mathscr{Z}^{\prime}}}(A \varepsilon) \supset a_{n-1}(A \varepsilon)^{\beta_{n-1}(N-1)} \overline{\mathbb{B}_{\zeta}^{n-1}} \tag{16}
\end{equation*}
$$

where \mathscr{G}^{\prime} runs over subsets of $\{1, \ldots, N\} \backslash\left\{j_{0}\right\}$ containing $n-2$ different elements, a_{n-1} is a positive constant depending on the f_{j}, and \mathbb{B}_{ζ}^{n-1} is the unit ball in $\left\{f_{j_{0}}=\zeta\right\}$. Take in (16) the union over $|\zeta| \leqslant A \varepsilon$, we obtain by (15)

$$
=\left\{\begin{array}{|}
=\left\{j_{0}\right\} \cup \mathscr{J}^{\prime} \tag{17}\\
T_{\mathscr{J}}(\varepsilon) \supset\left\{\left|f_{j_{0}}\right| \leqslant A \varepsilon\right\} \cap a^{\prime} \varepsilon^{\beta_{n-1}(N-1)} \overline{\mathbb{B}^{n}}, ~
\end{array}\right.
$$

for another positive constant a^{\prime}.

It remains to prove the following
Claim. - For small $\varepsilon>0$ the polynomial hull of

$$
\begin{equation*}
\bigcup_{j_{0}=1}^{N}\left\{\left|f_{j_{0}}\right| \leqslant A \varepsilon\right\} \cap a^{\prime} \varepsilon^{\beta_{n-1}(N-1)} \partial \mathbb{B}^{n} \tag{18}
\end{equation*}
$$

contains the ball $a^{1-\beta_{n}(N)} \varepsilon^{\beta_{n}(N)} \overline{\mathbb{B}^{n}}$ for a positive constant a depending only on the $f_{j_{0}}$.
Proof. - Denote $\alpha=a^{\prime} \varepsilon^{\beta_{n-1}(N-1)}$ and change variables, $\tilde{z}=\frac{z}{\alpha}$. We have to consider the polynomial hull of

$$
\begin{equation*}
\bigcup_{j=1}^{N}\left\{\left|f_{j}(\tilde{z})\right| \leqslant \frac{A \varepsilon}{\alpha}\right\} \cap \partial \mathbb{B}^{n} \tag{19}
\end{equation*}
$$

There exists a constant $\tilde{a}>0$ such that on $\partial \mathbb{B}^{n}$ at most $n-1$ of the $\left|f_{j}\right|$ do not exceed \tilde{a}. This follows from the genericity assumption for the f_{j}. It implies that the set

$$
\begin{equation*}
\left\{\tilde{z} \in \partial \mathbb{B}^{n}: \prod_{j=1}^{N}\left|f_{j}(\tilde{z})\right| \leqslant \tilde{a}^{N-(n-1)}\left(\frac{A \varepsilon}{\alpha}\right)^{n-1}\right\} \tag{20}
\end{equation*}
$$

is contained in (19). Indeed, if \tilde{z} is contained in (20) then for some set \mathscr{J} containing $n-1$ elements

$$
\prod_{j \in \mathscr{Z}}\left|f_{j}(\tilde{z})\right| \leqslant\left(\frac{A \varepsilon}{\alpha}\right)^{n-1}
$$

hence, at least one of the $\left|f_{j}(\tilde{z})\right|$ does not exceed $\frac{A \varepsilon}{\alpha}$.
The obtained inclusion implies that the polynomial hull of (19) contains

$$
\left\{\prod_{j=1}^{N}\left|f_{j}(\tilde{z})\right| \leqslant \tilde{a}^{N-(n-1)}\left(\frac{A \varepsilon}{\alpha}\right)^{n-1}\right\} \cap \overline{\mathbb{B}^{n}} \supset \tilde{a}^{\frac{N-(n-1)}{N}}\left(\frac{A \varepsilon}{\alpha}\right)^{\frac{n-1}{N}} \overline{\mathbb{B}^{n}}
$$

Here we used that $f_{j}(0)=0$ and $\left|\nabla f_{j}\right|=1$.
Rescaling, $z=\alpha \tilde{z}$, we conclude that the polynomial hull of (18) contains the ball with center 0 and radius

$$
\begin{equation*}
\tilde{a}^{1-\frac{N-1}{N}} \cdot\left(A \varepsilon \alpha^{-1}\right)^{\frac{n-1}{N}} \cdot \alpha \tag{21}
\end{equation*}
$$

By definition of α and $\beta_{n-1}(N-1)$ the power of ε in the last expression is

$$
\begin{aligned}
\frac{n-1}{N}+\left(1-\frac{n-1}{N}\right) \frac{(n-1)(n-2)}{2(N-n+2)} & <\frac{n-1}{N-n+2}+\frac{(n-1)(n-2)}{2(N-n+2)} \\
& =\frac{n(n-1)}{2(N-n+2)}=\beta_{n}(N)
\end{aligned}
$$

Note that increasing the power of ε will decrease the expression (21) provided $\varepsilon<1$. Denote the absolute constant in (21) by $a^{1-\beta_{n}(N)}$. We obtained that the polynomial hull in (17) contains the ball of radius $a^{1-\beta_{n}(N)} \cdot \varepsilon^{\beta_{n}(N)}$ with center 0 .

Acknowledgments. The author is grateful to the Institut Fourier for the hospitality and for stimulating questions and discussions during a visit in Grenoble.

References

[H] Henkin G.M., Oral communication.
[J] Jöricke B., A Cantor set in the unit sphere in \mathbb{C}^{2} with large polynomial hull, to appear in Mich. Math. J.
[R] Rudin W., Function algebras, (Proc. Internat. Sympos., Tulane Univ., 1965), Scott, Foresman, Chicago, III, 1966.
[V] Vitushkin A.G., On a problem of W. Rudin, Dokl. Akad. Nauk USSR, 213 (1973), 14-15, transl. in Soviet. Math. Dokl., 14 (1973), 1618-1619.

Burglind JÖRICKE

Uppsala University
Dept. of Mathematics
Box 480,
S-751 06 UPPSALA (Sweden)
joericke@math.uu.se

[^0]: 2000 Mathematics Subject Classification: Primary:32E20, Secondary: 46J15, 46J20.
 Keywords: Cantor sets, polynomial hulls, Hausdorff dimension.

