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Abstract

We give examples of Cantor sets in Cn of Hausdorff dimension 1 whose polynomial

hulls have non-empty interior.

In the 60’ies W. Rudin [R] posed the following problem which arose in connection with Ba-

nach algebras and polynomial approximation. How small can the dimension of a compact sub-

set K ofCn be, provided its polynomial hull K̂ has non-empty interior. Asking about topological

dimension, Vitushkin [V] and Henkin [H] constructed Cantor sets E in C2 with the latter prop-

erty. Note that Cantor sets have topological dimension zero. However, the set in Vitushkin’s

example has Hausdorff dimension 2 and in Henkin’s example the Hausdorff dimension was

even bigger. The known results gave rise to the conjecture (see also [V]) that the Hausdorff

dimension of a set K ⊂ Cn must be at least n if K̂ has non-empty interior.

In the present note we show that this is not the case. However, it would be still interest-

ing to give a reasonable sense to the notion of dimension which approves the corresponding

conjecture as true.

The main result of this paper is the following

T . — For any natural n there exists a Cantor set E in Cn of Hausdorff dimension 1

whose polynomial hull contains the unit polydisc.

The estimate of the Hausdorff dimension is optimal.

L 1. — If K is a compact subset ofCn of zero linear measure (in particular, if the Haus-

dorff dimension of K is strictly less than one) then K is polynomially convex.

For convenience of the reader we include a proof of the lemma.
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Proof. — The lemma is true for n = 1. Indeed, take an arbitrary point z ∉ K . After a

translation we may assume that z = 0. The radial projection of K to the unit circle has vanishing

length, hence there is a ray re iθ, r > 0, which does not meet K . By Runge’s theorem this means

that 0 ∉ K̂ .

Assume the lemma is true for n. Prove it for n + 1. Let K ⊂ C
n+1 have zero length. Take

an arbitrary point z ∉ K . After a translation we may assume that z = 0. Then there is a

complex line through 0 which avoids K . Indeed, put An+1 = {(z1, . . . , zn+1) ∈ C
n+1 : |zn+1| =

max j=1,...,n+1 |z j |}. If a complex line through 0 intersects An+1 \ {0} , it is contained in An+1.

Since 0 ∉ K , there is a neighbourhood of the set K ∩ An+1 which is covered diffeomorphically

by the mapping

(z′,ζ)
def
= (z1, . . . , zn ,ζ) -→ (ζz′,ζ)

where z′ runs over a neighbourhood of D
n

and ζ is in a suitable open subset of C. Here D

denotes the open disc in C andD its closure.

The linear measure of K ∩ An+1 in coordinates (z′,ζ) is also zero, hence so is the linear

measure of its projection parallel to the ζ-direction. Hence, for some z′ ∈ D
n

, the line ζ →

(ζz′,ζ) does not meet K ∩ An+1, hence it does not meet K .

Denote by π the orthogonal projection in Cn+1 onto the orthogonal complement L � C
n

of the above line. Then π(K ) has zero linear measure and does not contain the origin. By

hypothesis its polynomial hull in L,
�

π(K )L , does not contain the origin. But then 0 ∉ π(K̂ ).

(Consider a polynomial p on L for which p(0) = 1 and maxπ(K ) |p| < 1 and extend p to Cn+1

not depending on the direction orthogonal to L.) Hence 0 ∉ K̂ .

We prove the theorem first for the case n = 2. The building block for the proof will be

the following lemma, which is a refinement of the main lemma in [J]. By a complex affine

mapping (opposed to a complex linear mapping) we mean a mapping of the form z → b + Az,

z ∈ C
k , b ∈ C

m, A a constant k × m matrix, k and m natural numbers. In the same way we

will distinguish complex affine and complex linear subspaces of Cn. By an affine quasicircle

C ⊂ Cn surrounding a point p ∈ Cn we mean the following: There exists a complex affine line

inCn which contains p and C and a smooth quasiconformal mapping ofC onto this line which

maps the origin to p and the unit circle to C . Denote by Bn the open unit ball in Cn.

L 2. — Let f j , j = 1, . . . , N , be N complex linear functions inC2 which are transversal

to each other and have gradient∇ f j of length 1. Let σ be any positive number. Consider for each

j an affine quasicircle C j on { f j = 0}which surrounds the origin and is contained inC2 \ σB2.

Denote by T j(ε) the closed ε-neighbourhood of C j .

There exists a positive constant a depending only on the f j but not onσ and C j such that for

each sufficiently small ε > 0

(1) (aσ)
N−1

N ε
1
N B2 ⊂

�⋃

j

T j(ε).

(The set on the left hand side of (1) is the ball of radius (aσ)
N−1

N ε
1
N and center 0.)
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Proof. — Assume N
�

2. (The assertion for N = 1 is trivial.) Replacing z by z
σ

and ε by ε
σ

we may reduce the general case to the case σ = 1. Let now σ = 1.

If ε > 0 is small (smaller than the distance of C j to B2) then for each j

(2)
�

T j(ε) ⊃ {| f j | � ε} ∩ ∂B
2.

By assumption all sets { f j = 0}∩ ∂B2 are disjoint, hence there is a positive number a such that

the sets {| f j | � a} ∩ ∂B2 are disjoint. We will prove that

(3)
{
| f1 · · · f N | � aN−1

ε
}
∩ ∂B

2
⊂

N⋃

j=1

{
| f j | � ε

}
∩ ∂B

2.

Indeed, let z be a point in the left hand side of (3). Since z ∈ ∂B2, all except, maybe, one of the

factors | f j(z)| exceed a, say all but, maybe, | f j0(z)|. Then

| f j0(z)| aN−1 < |( f1 · · · f N )(z)| � aN−1
ε.

Hence, | f j0(z)| � ε and z is in the right hand side of (3).

Taking the polynomial hull in (3) and taking into account (2) we obtain

�

N⋃

j=1

T j(ε) ⊃
{
| f1 · · · f N | � aN−1ε

}
∩ B2 ⊃ a

N−1
N ε

1
N B2

since f j(0) = 0, |∇ f j | = 1.

The proof of the theorem for n = 2 will be based on the following lemma, which is a conse-

quence of lemma 2.

L 3. — Let C ⊂ C2 be an affine quasicircle and let σ be a small enough positive num-

ber. Denote by T (3σ) the 3σ-neighbourhood of C. For any natural number N
�

5 there exists a

constant c, depending only on N and on the torus T (3σ), and for each small enough ε > 0 there

exist closed disjoint tori T̃ (3ε) around affine quasicircles with the following properties.

The number q(ε) of tori satisfies the inequality

(4) q(ε) � cε−
4
N ,

the affine quasicircles have length not exceeding 10πσ , the tori T̃ (3ε) are contained in T (3σ) �
T (2σ) and

(5)

�⋃
T̃ (ε) ⊃ T (σ) .

Proof. — Let g be a complex affine function such that |∇g| = 1 and C ⊂ {g = 0}. With the

number N as in the statement consider complex linear functions f 1, . . . , f N , all transversal

to each other and such that |∇ f j | = 1 and the Hermitian scalar product 〈∇ f j ,∇g〉 is small

enough.
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Consider a point p ∈ T (σ), an index j and a number b(p) strictly between 2 and 3. Denote

by Cp, j the intersection of ∂T (bσ) with the complex line L j(p) through p which is parallel to

{ f j = 0}. Then Cp, j is an affine quasicircle surrounding p. Indeed, if F is complex affine with

|∇F | = 1 and ∇F orthogonal to ∇g then ∂T (bσ) ∩ {F = F (p)} bounds a disc in a complex

line, the disc containing p. Cp, j are small diffeomorphic perturbations of the circle.

Let T̃p, j(ε) be the ε-neighbourhood of Cp, j . If ε > 0 is small enough then for fixed p the

3ε-neighbourhoods T̃p, j(3ε), j = 1, ..., N , are pairwise disjoint and contained in

T (bσ + 3ε) � T (bσ − 3ε) ⊂ T (3σ) � T (2σ), j = 1, . . . , N .

Lemma 2 (applied after a translation) gives

(6)

�

N⋃

j=1

T̃p, j(ε) ⊃ p + (aσ)
N−1

N ε
1
N B

2

for a constant a > 0 which depends on N (precisely, on the choice of the f j for given g and N ),

but not on p nor on ε.

Let now p run through a suitable (aσ)
N−1

N ε
1
N net for T (σ). One can choose the latter set

so that it contains not more than c′ · ε−
4
N points pk , k = 1, 2, . . .. (c′ is a constant depending

only on N and on the torus T (3σ).) Choose b(pk) · σ = 3σ − 5(2k − 1)ε. If

(7) 10c′ · ε−
4
N · ε < σ ,

then all b(pk) · σ are in [2σ + 5ε, 3σ − 5ε]. Consider for each k the N affine quasicircles Cpk , j

and the tori T̃pk , j(3ε) associated with pk , b(pk) and j as described above.

If (7) holds all tori T̃ (3ε) (corresponding to all k and j) are pairwise disjoint and contained

in T (3σ) � T (2σ). Their number q(ε) does not exceed c · ε−
4
N with c = N · c′ and the lengths

of the affine quasicircles Cpk , j do not exceed 10π · σ if σ > 0 is small and the angle between

{g = 0} and { f j = 0} is close to the right angle. Moreover, by (6)

�⋃

k, j

T̃pk , j(ε) ⊃ T (σ),

since for p running over the pk the balls on the right of (6) cover T (σ).

Proof of the theorem for n = 2. — Let C (0) be the circle {z1 = 0, |z2| = 10}, let σ = 1 and

T (0)(3) be the closed 3-neighbourhood of C (0). T (0)(3) is a closed solid torus and
�

T (0)(1) ⊃

D
2

. Put E0 = T (0)(3).

Choose a sequence of numbers Nk
�

5, k = 1, 2, . . . , Nk → ∞, for k → ∞. Construct

inductively a sequence of closed sets Ek , k = 1, 2, . . ., Ek+1 ⊂ Ek for k = 0, 1, . . .. Suppose the

set Ek is obtained and has the following properties. Ek is the finite union of disjoint closed tori

T (k)(3εk) around affine quasicircles (tori in the k-th generation), and

(8)

�⋃
T (k)(εk) ⊃ D

2
.

The construction of the set Ek+1 goes as follows.
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Put N = Nk+1. Choose for each torus T (k)(εk) functions f 1, . . . , f N according to lemma 3.

Let ε > 0 be so small that the inequalities (7) are satisfied for each of the tori T (k)(εk). Apply

lemma 3 to each of the tori T (k)(εk) and obtain in each of them disjoint closed tori of width 3ε

in the (k + 1)st generation.

Denote all tori in the (k + 1)st generation by T (k+1)(3ε) (omitting indices labeling them).

Their total number qk+1(ε) does not exceed ck+1 · ε
−

4
Nk+1 , where the constant ck+1 depends on

Nk+1 and on all tori T (k)(3εk) of generation k, in particular on the number of those tori.

Further, the T (k+1)(3ε) are 3ε-neighbourhoods of affine quasicircles of length � 10πεk

and the T (k+1)(3ε) are contained in
⋃

T (k)(3εk). Moreover, by lemma 3 (see (5) for each torus

of generation k) we obtain

(9)

�⋃
T (k+1)(ε) ⊃

⋃
T (k)

(εk) ,

hence, by (8)

(10)

�⋃
T (k+1)(ε) ⊃ D

2
.

The set
⋃

T (k+1)(ε) can be covered by not more than sk+1 balls of radius ε, where

sk+1 = const· qk+1(ε)· 10πεk· ε
−1(11)

� const ck+1· 10πεk· ε
−1− 4

Nk+1 .

Choose now for ε a number εk+1 so that (7) is satisfied for all tori of generation k,

(12) εk+1 � (ck+1· 10πεk)
−(k+1)

and εk+1 → 0 for k → ∞.

Put Ek+1 =
⋃

T (k+1)(3εk+1). Then Ek+1 ⊂ Ek and �Ek+1 ⊃ D
2

. The set E
def
=

∞⋂
k=0

Ek is a

Cantor set with Ê ⊃ D2.

For each k the inclusion E ⊂ Ek+1 holds and Ek+1 can be covered by not more than sk+1

balls of radius εk+1 and for any positiveα (11) and (12) imply

(13) sk+1· ε
1+α
k+1 � const· 10π· (εk+1)

α− 1
k+1−

4
Nk+1 -→

k→∞
0.

(13) shows that the Hausdorffmeasure of E of dimension 1 +α is zero for any positive number

α. Hence, the Hausdorff dimension of E equals 1. (It cannot be less than 1 by lemma 1.) The

theorem is proved for C2.

The proof for n > 2 goes along the same lines with lemma 2 replaced by the following

lemma 4. We will prove lemma 4, but skip the details of the proof of the theorem in higher

dimension.

Let n
�

2 and let f j , j = 1, . . . , N , be complex linear functions in Cn. We say that f j are

in general position if for each natural number k � n the zero sets of any k of them intersect

along an (n− k)-dimensional linear subspace ofCn. In particular, the gradient of each of them

is different from zero and the intersection of the zero set of any n of them is equal to the origin

in Cn.
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L 4. — Let n
�

2 and let f j , j = 1, . . . , N , be complex linear functions inCn in general

position, |∇ f j | = 1. Suppose N
�

n. For each subset J = { j1, . . . , jn−1} containing exactly n−1

distinct elements of {1, 2, . . . , N}denote by CJ an affine quasicircle contained in the complex line

LJ =
{

f j1 = · · · = f jn−1 = 0
}

and surrounding the origin. Suppose that for some constant

σ > 0 each quasicircle CJ is contained in Cn � σB
n

. For small enough ε > 0 denote by TJ (ε)

the ε-neighbourhood of CJ .

There exists a positive constant a depending only on f j but not on σ nor on the CJ such that

for each sufficiently small ε > 0

(14) (aσ)1−βn(N )εβn(N )Bn ⊂

�⋃

J

TJ (ε).

Here βn(N )
def
= n(n−1)

2(N−n+2) . Note that βn(N ) → 0 for n fixed and N → ∞. The union on the

right hand side is taken over all subsets J of {1, . . . , N} containing n − 1 distinct elements.

Proof. — The case of general σ > 0 can be reduced to the case σ = 1 by replacing z by z
σ

and ε by ε
σ

. We may therefore assume that σ = 1. Lemma 2 implies lemma 4 for n = 2. Indeed,

β2(N ) = 1
N

. Assume, lemma 4 is true for n − 1 (n − 1
�

2). Prove it for n.

Note first that there exists a constant A > 0 depending only on n and on the functions f j

such that for each subset J = { j0, . . . , jn−2} of {1, . . . , N} containing n − 1 distinct elements

the set

{| f j0| � Aε, . . . , | f jn−2| � Aε}

is contained in the ε-neighbourhood of the line LJ = { f j0 = · · · = f jn−2 = 0}. Moreover,

writing J = { j0} ∪ J ′, J ′ = { j1, . . . , jn−2}, we find for each point ζ ∈ C, |ζ| � Aε, a subset

τ j0,ζ,J ′(Aε) of

{ f j0 = ζ} ∩
{
| f j1| � Aε, . . . , | f jn−2| � Aε

}

with the following properties.

Identify the set { f j0 = ζ}withCn−1 by the affine mapping ofCn−1 intoCn which preserves

length and maps 0 ∈ C
n−1 to the orthogonal projection of 0 ∈ C

n to { f j0 = ζ}. With this

identification we choose τ j0,ζ,J ′(Aε) as the Aε-neighbourhood in { f j0 = ζ} of an affine qua-

sicircle, the latter being close to CJ and contained in { f j0 = ζ} ∩
{

f j1 = · · · = f jn−2 = 0
}

. If

ε is small the sets τ j0,ζ,J ′(Aε) are outside the unit ball of { f j0 = ζ}. Moreover, the choice can

be done in such a way that

(15) τ j0,ζ,J ′(Aε) ⊂ TJ (ε).

By the lemma for n − 1 (applied to the N − 1 functions f j , j ≠ j0) for each j0 ∈ {1, . . . , N}

and each |ζ| � Aε

(16)

�⋃

J ′

τ j0,ζ,J ′(Aε) ⊃ an−1(Aε)βn−1(N−1)
Bn−1
ζ ,
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where J ′ runs over subsets of {1, . . . , N} � { j0} containing n − 2 different elements, an−1 is a

positive constant depending on the f j , and Bn−1
ζ is the unit ball in { f j0 = ζ}. Take in (16) the

union over |ζ| � Aε, we obtain by (15)

(17)

�⋃

J ={ j0}∪J ′

TJ (ε) ⊃ {| f j0| � Aε} ∩ a′εβn−1(N−1)
Bn,

for another positive constant a′.

It remains to prove the following

C. — For small ε > 0 the polynomial hull of

(18)
N⋃

j0=1

{| f j0| � Aε} ∩ a′εβn−1(N−1)
∂B

n

contains the ball a1−βn(N )εβn(N )Bn for a positive constant a depending only on the f j0 .

Proof. — Denote α = a′εβn−1(N−1) and change variables, z̃ = z
α

. We have to consider the

polynomial hull of

(19)
N⋃

j=1

{
| f j(z̃)| � Aε

α

}
∩ ∂Bn.

There exists a constant ã > 0 such that on ∂Bn at most n − 1 of the | f j | do not exceed ã. This

follows from the genericity assumption for the f j . It implies that the set

(20)


z̃ ∈ ∂Bn :

N�

j=1

| f j(z̃)| � ãN−(n−1)
(

Aε

α

)n−1



is contained in (19). Indeed, if z̃ is contained in (20) then for some set J containing n − 1

elements
�

j∈J

| f j (z̃)| �
(

Aε

α

)n−1

,

hence, at least one of the | f j(z̃)| does not exceed Aε
α

.

The obtained inclusion implies that the polynomial hull of (19) contains




N�

j=1

| f j(z̃)| � ãN−(n−1)
(

Aε

α

)n−1

 ∩ B

n ⊃ ã
N−(n−1)

N

(
Aε

α

) n−1
N

Bn.

Here we used that f j(0) = 0 and |∇ f j | = 1.

Rescaling, z = αz̃, we conclude that the polynomial hull of (18) contains the ball with

center 0 and radius

(21) ã1−N−1
N · (Aεα−1

)
n−1

N ·α.
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By definition of α and βn−1(N − 1) the power of ε in the last expression is

n − 1

N
+
(

1 −
n − 1

N

)
(n − 1)(n − 2)

2(N − n + 2)
<

n − 1

N − n + 2
+
(n − 1)(n − 2)

2(N − n + 2)

=
n(n − 1)

2(N − n + 2)
= βn(N ).

Note that increasing the power of εwill decrease the expression (21)provided ε < 1. Denote the

absolute constant in (21) by a1−βn(N ). We obtained that the polynomial hull in (17) contains

the ball of radius a1−βn(N )· εβn(N ) with center 0.
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