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Abstract

We give examples of Cantor sets in C” of Hausdorff dimension 1 whose polynomial
hulls have non-empty interior.

In the 60’ies W. Rudin [R] posed the following problem which arose in connection with Ba-
nach algebras and polynomial approximation. How small can the dimension of a compact sub-
set K of C" be, provided its polynomial hull K has non-empty interior. Asking about topological
dimension, Vitushkin [V] and Henkin [H] constructed Cantor sets E in C2 with the latter prop-
erty. Note that Cantor sets have topological dimension zero. However, the set in Vitushkin’s
example has Hausdorff dimension 2 and in Henkin’s example the Hausdorff dimension was
even bigger. The known results gave rise to the conjecture (see also [V]) that the Hausdorff
dimension of a set K ¢ C" must be at least 7 if K has non-empty interior.

In the present note we show that this is not the case. However, it would be still interest-
ing to give a reasonable sense to the notion of dimension which approves the corresponding
conjecture as true.

The main result of this paper is the following

THEOREM . — For any natural n there exists a Cantor set E in C" of Hausdorff dimension 1
whose polynomial hull contains the unit polydisc.

The estimate of the Hausdorff dimension is optimal.

LEMMA 1. — IfK isa compact subset of C" of zero linear measure (in particular, if the Haus-
dorffdimension of K is strictly less than one) then K is polynomially convex.

For convenience of the reader we include a proof of the lemma.
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Proof. — The lemma is true for n = 1. Indeed, take an arbitrary point z ¢ K. After a
translation we may assume that z = 0. The radial projection of K to the unit circle has vanishing
length, hence there is aray re’?, r > 0, which does not meet K. By Runge’s theorem this means
that0 ¢ K.

Assume the lemma is true for n. Prove it for n + 1. Let K ¢ C’**! have zero length. Take
an arbitrary point z ¢ K. After a translation we may assume that z = 0. Then there is a
complex line through 0 which avoids K. Indeed, put A,+1 = {(z1,...,2p+1) € cntl . |Zp+1| =
max j=1,.,n+1 12l}. If a complex line through 0 intersects A,+1 \ {0}, it is contained in Ay+;.
Since 0 ¢ K, there is a neighbourhood of the set K n A,+; which is covered diffeomorphically
by the mapping

7 def ’
(Z ’C) = (Z]’---;Zn;C) - (Cz ’C)

where z' runs over a neighbourhood of D" and € is in a suitable open subset of C. Here D
denotes the open disc in C and D its closure.

The linear measure of K N A,+1 in coordinates (z’, C) is also zero, hence so is the linear
measure of its projection parallel to the C-direction. Hence, for some z’ € D", the line £ —
(CZ',C) does not meet K N A,+1, hence it does not meet K.

Denote by 7T the orthogonal projection in C"! onto the orthogonal complement L = C"
of the above line. Then 1(K) has zero linear measure and does not contain the origin. By
hypothesis its polynomial hull in L, n/(E) L, does not contain the origin. But then 0 ¢ 71(1? ).
(Consider a polynomial p on L for which p(0) = 1 and max (k) | p| < 1 and extend p to C"*!
not depending on the direction orthogonal to L.) Hence 0 ¢ K. U

We prove the theorem first for the case n = 2. The building block for the proof will be
the following lemma, which is a refinement of the main lemma in [J]. By a complex affine
mapping (opposed to a complex linear mapping) we mean a mapping of the form z — b+ Az,
z € (Ck, b € C™, A aconstant k X m matrix, k and m natural numbers. In the same way we
will distinguish complex affine and complex linear subspaces of C”. By an affine quasicircle
C c (" surrounding a point p € C" we mean the following: There exists a complex affine line
in C" which contains p and C and a smooth quasiconformal mapping of C onto this line which
maps the origin to p and the unit circle to C. Denote by B” the open unit ball in C”.

LEMMA 2. — Let fj, j=1,..., N, be N complex linear functionsin C2 which are transversal
to each other and have gradientV f; of length 1. Let o be any positive number. Consider for each
J an affine quasicircle Cj on { fj = 0} which surrounds the origin and is contained in C2\ oB2.
Denote by Tj(¢) the closed €-neighbourhood of Cj.

There exists a positive constant a depending only on the f; but not on o and C such that for
each sufficiently smalls > 0

1 —
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(The set on the left hand side of (1) is the ball of radius (ao) s% and center0.)



Proof. — Assume N > 2. (The assertion for N = 1 s trivial.) Replacing z by Z and & by <
we may reduce the general case to the case o = 1. Letnow o = 1.

If ¢ > 01is small (smaller than the distance of C jto @) then for each j
©) Tj(e) > {1 fjl < &} noB?,

By assumption all sets { f; = 0} N 0B? are disjoint, hence there is a positive number a such that
the sets {| fj| < a} n oB? are disjoint. We will prove that

=

3) f - vl <a¥ el nos? ¢ | {1 £l < e} noB?.

Jj=1

Indeed, let z be a point in the left hand side of (3). Since z € oB2, all except, maybe, one of the
factors | fj(z) | exceed a, say all but, maybe, | fjo (z)]. Then

| fio@1 a¥ < (fi-- ) <aV e

Hence, | fj,(z)| < €and z is in the right hand side of (3).

Taking the polynomial hull in (3) and taking into account (2) we obtain

)

— N-1 1—
Ti(e) D {|fl"'fN| <aN_ls}m[BzDa N e¢N[B2
i=1

~
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since f;(0) =0, |V fj| = 1. O

The proof of the theorem for n = 2 will be based on the following lemma, which is a conse-
quence of lemma 2.

LEMMA 3. — Let C C C? be an affine quasicircle and let o be a small enough positive num-
ber. Denote by T (30) the 30 -neighbourhood of C. For any natural number N 2 5 there exists a
constant c, depending only on N and on the torus T (30°), and for each small enough € > 0 there
exist closed disjoint tori T'(3¢) around affine quasicircles with the following properties.

The number q(¢) of tori satisfies the inequality

=

4) qe) <ce N,

the affine quasicircles have length not exceeding 10Tt o, the tori T (3¢) arecontainedin T (307)
T (20) and

5) UT) > T(0).

Proof. — Let gbe a complex affine function such that |[Vg| = 1and C C {g = 0}. With the
number N as in the statement consider complex linear functions fi,..., fy, all transversal
to each other and such that |V f;| = 1 and the Hermitian scalar product (V f;, Vg) is small
enough.



Considerapoint p € T (o), anindex jand a number b( p) strictly between 2 and 3. Denote
by C,, j the intersection of 0T (bo) with the complex line Z;( p) through p which is parallel to
{ fj = 0}. Then C, ; is an affine quasicircle surrounding p. Indeed, if F is complex affine with
IVF| = 1 and VF orthogonal to Vg then 0T (bo) n {F = F(p)} bounds a disc in a complex
line, the disc containing p. Cp, j are small diffeomorphic perturbations of the circle.

Let T, p, j (€) be the e-neighbourhood of Cy, j. If € > 0 is small enough then for fixed p the
3&-neighbourhoods YN"p, j(35), j=1,.., N, are pairwise disjoint and contained in

T(bo +3¢)\T(bo—-3s) c TBo)\T(20), j=1,...,N.

Lemma 2 (applied after a translation) gives
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for a constant a > 0 which depends on N (precisely, on the choice of the f; for given gand N),
but not on pnoron ¢.

Let now p run through a suitable (ao) % s% net for T (o). One can choose the latter set
4
so that it contains not more than ¢’ - e~ ¥ points P k=1,2,... (¢’ is a constant depending
only on N and on the torus T (30).) Choose b(py) - 0 =30 — 5(2k — 1)e. If

/ —

(7 10c¢ - ¢

=2/

-e< o0,

then all b(py) - o arein [20 + 5¢,30 — 5¢]. Consider for each k the N affine quasicircles Cpkrj
and the tori YN"pk, j(3s) associated with pg, b(px) and j as described above.

If (7) holds all tori T (3¢) (corresponding to all k and j) are pairwise disjoint and contained
in T(30) \ T(20). Their number g(¢) does not exceed c - 5_% with ¢ = N - ¢’ and the lengths
of the affine quasicircles Cp,, ; do not exceed 107 - ¢ if o > 0 is small and the angle between
{g =0} and { f; = 0} is close to the right angle. Moreover, by (6)

—

U Ty, () D T(o),
kj

since for p running over the py the balls on the right of (6) cover T (o). O

Proof of the theorem forn = 2. — Let C9 be the circle {z1 =0, |z2] =10},leto =1 and
T (3) be the closed 3-neighbourhood of Cc®, 70)(3) is a closed solid torus and T© (1) >
D Put By = T (3).

Choose a sequence of numbers Ny > 5, k = 1,2,..., Ny — oo, for k — o. Construct
inductively a sequence of closed sets Ey, k = 1,2, ..., Ex4; C Exfor k =0,1,.... Suppose the
set Ey is obtained and has the following properties. Ey is the finite union of disjoint closed tori
T (k) (3&x) around affine quasicircles (tori in the k-th generation), and

o ——

(8) UT® () > D

The construction of the set Ej.1 goes as follows.



Put N = Nj4;. Choose for each torus T (%) (¢x) functions fi,..., fy according to lemma 3.
Let £ > 0 be so small that the inequalities (7) are satisfied for each of the tori T*) (¢). Apply
lemma 3 to each of the tori T ¥ (¢x) and obtain in each of them disjoint closed tori of width 3¢
in the (k + 1) generation.

Denote all tori in the (k + 1)St generation by T (k+1) (3¢) (omitting indices labeling them).
__4
Their total number g1 (€) does not exceed cj41 - € Vk+1, where the constant ¢ depends on

Nj.+1 and on all tori T k) (3&r) of generation k, in particular on the number of those tori.

Further, the T(k“)(?)e) are 3e-neighbourhoods of affine quasicircles of length < 107rey
and the T K+ (3¢) are contained in T k) (3€x). Moreover, by lemma 3 (see (5) for each torus
of generation k) we obtain

©) UT®D(e) o TP (ep),
hence, by (8)
(10) | T+ () 5 B

The set |J T (k+1) (¢) can be covered by not more than s balls of radius ¢, where

11 Sk+1 = const: Gr4+1(€)- 10TTE g1
) D
< constcpyq- 10mTER- 8 Net1,

Choose now for € a number €; so that (7) is satisfied for all tori of generation k,
(12) Ekr1 < (Cxgr- 10mreg) ~(FHY
and €447 — Ofor k — oo,

— — def o .
Put Ex+1 = U T(k+1)(3$k+1). Then Ex+1 C Ex and Ej4q D D°. Theset E = M Egxisa
k=0

Cantor set with £ > D2,

For each k the inclusion E C Ej41 holds and Ej4; can be covered by not more than si;
balls of radius €4+, and for any positive « (11) and (12) imply
14
(13) Sei1- £ < const- 1077 (g47)" F1 Nert =0
(13) shows that the Hausdorff measure of E of dimension 1 + « is zero for any positive number
«. Hence, the Hausdorff dimension of E equals 1. (It cannot be less than 1 by lemma 1.) The

theorem is proved for C2. U

The proof for n > 2 goes along the same lines with lemma 2 replaced by the following
lemma 4. We will prove lemma 4, but skip the details of the proof of the theorem in higher
dimension.

Letn > 2andlet f;, j = 1,..., N, be complex linear functions in C". We say that f; are
in general position if for each natural number k < n the zero sets of any k of them intersect
along an (n — k)-dimensional linear subspace of C”. In particular, the gradient of each of them
is different from zero and the intersection of the zero set of any n of them is equal to the origin
in C".



LEMMA 4. — Letn > 2 andlet fj, j=1,..., N, becomplex linear functionsin C" in general

position, |V f;| = 1. Suppose N > n. Foreach subset,y = { ji, ..., jn-1} containingexactly n—1
distinctelements of{1,2, ..., N} denote by C(g an affine quasicircle contained in the complex line
Yy = { fap="=Ffj= 0} and surrounding the origin. Suppose that for some constant

o > 0 each quasicircle Cy is contained in C"* \ oB". For small enough ¢ > 0 denote by Ty (¢)
the e-neighbourhood of Cy .

There exists a positive constant a depending only on f; but not on o nor on the Cy such that
for each sufficiently smalls > 0

(14) (ac) ! Bn(N) Bn(N)gR U Ty(e).
g

def _ .
Here 8,(N) = % Note that B,(N) — 0 for n fixed and N — . The union on the

right hand side is taken over all subsets 4 of {1, ..., N} containingn — 1 distinct elements.

Proof. — The case of general o > 0 can be reduced to the case o = 1 by replacing z by <
and € by . We may therefore assume that o = 1. Lemma 2 implies lemma 4 for n = 2. Indeed,
Ba(N) = % Assume, lemma 4 is true for n — 1 (n — 1 > 2). Prove it for n.

Note first that there exists a constant A > 0 depending only on n and on the functions f;
such that for each subset 4 = { jo,..., jn—2} of {1,..., N} containing n — 1 distinct elements
the set

Ufil S A&, | Fin,l < Ag}

is contained in the e-neighbourhood of the line Yy = {fiy ="+ = fj,» = 0}. Moreover,
writing 7 = {joy U 4', 4 ={ji,..., jn—2}, we find for each point € C, |C| < Ag, a subset
T jo.t,g (A€) of

Uiy =Chn {1 fjl S Ag | fl,,l < Aé)

with the following properties.

Identify the set { fj, = T} with C"~! by the affine mapping of C"~! into C”* which preserves
length and maps 0 € C”*! to the orthogonal projection of 0 € C” to { fi, = C}. With this
identification we choose T o ld (Ag) as the Ae-neighbourhood in { fj, = T} of an affine qua-
sicircle, the latter being close to Cy and contained in { fj; = T} N { fi=""=Ffjo= 0}. If
¢ is small the sets T ol g’ (Ag) are outside the unit ball of { f o = C}. Moreover, the choice can
be done in such a way that

(15) Tjog,g (A8) C Ty(e).

By the lemma for n — 1 (applied to the N — 1 functions fj, Jj # jo) for each j, € {1,..., N}
and each || < Ae
(16) U TjoyC,j'(Af) D) an_l(AS)Bn—l(Nfl)[BZ—]’

j,



where 7 " runs over subsets of {1, ..., N} \ { jo} containing n — 2 different elements, a,_1 is a
positive constant depending on the fj, and [B%Z‘1 is the unit ball in { fj, = T}. Take in (16) the
union over |C| < Ae, we obtain by (15)

——

4 U YZZ(E) o {] f]0| < Agl n a’gﬁnfl(N*I)W’
J=1jotvg’
for another positive constant a’. -

It remains to prove the following

CramM. — For small € > 0 the polynomial hull of

N
(18) U {1 fiy] < Ae} 0 a' efn1 V=D opn
Jjo=1

contains the ball a'~#n(N) ¢ \NYBT for a positive constant a depending only on the fio-

Proof. — Denote « = a’€#n-1N=1 and change variables, Z = . We have to consider the
polynomial hull of

N _ Ag n
(19) U {Ifj(z)|<—}ma[B :
j=1 *
There exists a constant @ > 0 such that on 0B” at most 7 — 1 of the | fj| do not exceed 4. This

follows from the genericity assumption for the f;. It implies that the set

N
(20) zeaw: [[ 11 <a¥ o (
j=1

Ag\ 1
=)

is contained in (19). Indeed, if Z is contained in (20) then for some set 4 containing n — 1

1154 < (%)1

=

elements

hence, at least one of the | fj (2)| does not exceed %.

The obtained inclusion implies that the polynomial hull of (19) contains

N n-1

Ag\ 11 _ N-(n-1) (AE\ N —
[[15@<a D (S5) tasroa 80 (55) " &
= B I

Here we used that f;(0) =0and |V f;[ = 1.

Rescaling, z = «Z, we conclude that the polynomial hull of (18) contains the ball with
center 0 and radius

N-1 n—1
1) @V - (A HN -



By definition of &« and $,,-1 (N — 1) the power of ¢ in the last expression is

n—1+(1_n—1>(n—1)(n—2)< n-1 +(n—1)(n—2)
N N 2(N—-n+2) N-n+2 2(N—-n+2)
_ n(n-1) _
TaN _nvy PN

Note that increasing the power of € will decrease the expression (21) provided € < 1. Denote the
absolute constant in (21) by al~Pn(N)  We obtained that the polynomial hull in (17) contains
the ball of radius a' #n(NV) . ¢Bn(N) with center 0. O
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