HAUSDORFF DIMENSION OF CANTOR SETS AND POLYNOMIAL HULLS

Burglind JÖRICKE

Prépublication de l'Institut Fourier n° 651 (2004) http://www-fourier.ujf-grenoble.fr/prepublications.html

Abstract

We give examples of Cantor sets in \mathbb{C}^n of Hausdorff dimension 1 whose polynomial hulls have non-empty interior.

In the 60'ies W. Rudin [R] posed the following problem which arose in connection with Banach algebras and polynomial approximation. How small can the dimension of a compact subset K of \mathbb{C}^n be, provided its polynomial hull \hat{K} has non-empty interior. Asking about topological dimension, Vitushkin [V] and Henkin [H] constructed Cantor sets E in \mathbb{C}^2 with the latter property. Note that Cantor sets have topological dimension zero. However, the set in Vitushkin's example has Hausdorff dimension 2 and in Henkin's example the Hausdorff dimension was even bigger. The known results gave rise to the conjecture (see also [V]) that the Hausdorff dimension of a set $K \subset \mathbb{C}^n$ must be at least n if \hat{K} has non-empty interior.

In the present note we show that this is not the case. However, it would be still interesting to give a reasonable sense to the notion of dimension which approves the corresponding conjecture as true.

The main result of this paper is the following

THEOREM. — For any natural n there exists a Cantor set E in \mathbb{C}^n of Hausdorff dimension 1 whose polynomial hull contains the unit polydisc.

The estimate of the Hausdorff dimension is optimal.

LEMMA 1. — If K is a compact subset of \mathbb{C}^n of zero linear measure (in particular, if the Hausdorff dimension of K is strictly less than one) then K is polynomially convex.

For convenience of the reader we include a proof of the lemma.

²⁰⁰⁰ Mathematics Subject Classification: Primary:32E20, Secondary: 46J15, 46J20. *Keywords*: Cantor sets, polynomial hulls, Hausdorff dimension.

Proof. — The lemma is true for n = 1. Indeed, take an arbitrary point $z \notin K$. After a translation we may assume that z = 0. The radial projection of K to the unit circle has vanishing length, hence there is a ray $re^{i\theta}$, r > 0, which does not meet K. By Runge's theorem this means that $0 \notin \hat{K}$.

Assume the lemma is true for *n*. Prove it for n + 1. Let $K \subset \mathbb{C}^{n+1}$ have zero length. Take an arbitrary point $z \notin K$. After a translation we may assume that z = 0. Then there is a complex line through 0 which avoids *K*. Indeed, put $A_{n+1} = \{(z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} : |z_{n+1}| = \max_{j=1,\ldots,n+1} |z_j|\}$. If a complex line through 0 intersects $A_{n+1} \setminus \{0\}$, it is contained in A_{n+1} . Since $0 \notin K$, there is a neighbourhood of the set $K \cap A_{n+1}$ which is covered diffeomorphically by the mapping

$$(z',\zeta) \stackrel{\text{def}}{=} (z_1,\ldots,z_n,\zeta) \longrightarrow (\zeta z',\zeta)$$

where z' runs over a neighbourhood of $\overline{\mathbb{D}}^n$ and ζ is in a suitable open subset of \mathbb{C} . Here \mathbb{D} denotes the open disc in \mathbb{C} and $\overline{\mathbb{D}}$ its closure.

The linear measure of $K \cap A_{n+1}$ in coordinates (z', ζ) is also zero, hence so is the linear measure of its projection parallel to the ζ -direction. Hence, for some $z' \in \overline{\mathbb{D}}^n$, the line $\zeta \rightarrow (\zeta z', \zeta)$ does not meet $K \cap A_{n+1}$, hence it does not meet K.

Denote by π the orthogonal projection in \mathbb{C}^{n+1} onto the orthogonal complement $L \cong \mathbb{C}^n$ of the above line. Then $\pi(K)$ has zero linear measure and does not contain the origin. By hypothesis its polynomial hull in L, $\widehat{\pi(K)}_L$, does not contain the origin. But then $0 \notin \pi(\hat{K})$. (Consider a polynomial p on L for which p(0) = 1 and $\max_{\pi(K)} |p| < 1$ and extend p to \mathbb{C}^{n+1} not depending on the direction orthogonal to L.) Hence $0 \notin \hat{K}$.

We prove the theorem first for the case n = 2. The building block for the proof will be the following lemma, which is a refinement of the main lemma in [J]. By a complex affine mapping (opposed to a complex linear mapping) we mean a mapping of the form $z \to b + Az$, $z \in \mathbb{C}^k$, $b \in \mathbb{C}^m$, A a constant $k \times m$ matrix, k and m natural numbers. In the same way we will distinguish complex affine and complex linear subspaces of \mathbb{C}^n . By an affine quasicircle $C \subset \mathbb{C}^n$ surrounding a point $p \in \mathbb{C}^n$ we mean the following: There exists a complex affine line in \mathbb{C}^n which contains p and C and a smooth quasiconformal mapping of \mathbb{C} onto this line which maps the origin to p and the unit circle to C. Denote by \mathbb{B}^n the open unit ball in \mathbb{C}^n .

LEMMA 2. — Let f_j , j = 1, ..., N, be N complex linear functions in \mathbb{C}^2 which are transversal to each other and have gradient ∇f_j of length 1. Let σ be any positive number. Consider for each j an affine quasicircle C_j on { $f_j = 0$ } which surrounds the origin and is contained in $\mathbb{C}^2 \setminus \sigma \overline{\mathbb{B}^2}$. Denote by $T_j(\varepsilon)$ the closed ε -neighbourhood of C_j .

There exists a positive constant a depending only on the f_j but not on σ and C_j such that for each sufficiently small $\varepsilon > 0$

(1)
$$(a\sigma)^{\frac{N-1}{N}}\varepsilon^{\frac{1}{N}}\overline{\mathbb{B}^2} \subset \bigcup_j \widehat{T_j(\varepsilon)}.$$

(The set on the left hand side of (1) is the ball of radius $(a\sigma)^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}}$ and center 0.)

Proof. — Assume $N \ge 2$. (The assertion for N = 1 is trivial.) Replacing z by $\frac{z}{\sigma}$ and ε by $\frac{\varepsilon}{\sigma}$ we may reduce the general case to the case $\sigma = 1$. Let now $\sigma = 1$.

If $\varepsilon > 0$ is small (smaller than the distance of C_j to \mathbb{B}^2) then for each j

(2)
$$\widehat{T_j(\varepsilon)} \supset \{|f_j| \leqslant \varepsilon\} \cap \partial \mathbb{B}^2$$

By assumption all sets $\{f_j = 0\} \cap \partial \mathbb{B}^2$ are disjoint, hence there is a positive number *a* such that the sets $\{|f_j| \leq a\} \cap \partial \mathbb{B}^2$ are disjoint. We will prove that

(3)
$$\left\{ |f_1 \cdots f_N| \leqslant a^{N-1} \varepsilon \right\} \cap \partial \mathbb{B}^2 \subset \bigcup_{j=1}^N \left\{ |f_j| \leqslant \varepsilon \right\} \cap \partial \mathbb{B}^2.$$

Indeed, let z be a point in the left hand side of (3). Since $z \in \partial \mathbb{B}^2$, all except, maybe, one of the factors $|f_j(z)|$ exceed a, say all but, maybe, $|f_{j_0}(z)|$. Then

$$|f_{j_0}(z)| a^{N-1} < |(f_1 \cdots f_N)(z)| \leqslant a^{N-1} \varepsilon.$$

Hence, $|f_{j_0}(z)| \leq \varepsilon$ and *z* is in the right hand side of (3).

Taking the polynomial hull in (3) and taking into account (2) we obtain

$$\bigcup_{j=1}^{N} T_j(\varepsilon) \supset \left\{ |f_1 \cdots f_N| \leqslant a^{N-1} \varepsilon \right\} \cap \overline{\mathbb{B}^2} \supset a^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}} \overline{\mathbb{B}^2}$$

since $f_j(0) = 0$, $|\nabla f_j| = 1$.

The proof of the theorem for n = 2 will be based on the following lemma, which is a consequence of lemma 2.

LEMMA 3. — Let $C \subset \mathbb{C}^2$ be an affine quasicircle and let σ be a small enough positive number. Denote by $T(3\sigma)$ the 3σ -neighbourhood of C. For any natural number $N \ge 5$ there exists a constant c, depending only on N and on the torus $T(3\sigma)$, and for each small enough $\varepsilon > 0$ there exist closed disjoint tori $\tilde{T}(3\varepsilon)$ around affine quasicircles with the following properties.

The number $q(\varepsilon)$ of tori satisfies the inequality

(4)
$$q(\varepsilon) \leqslant c\varepsilon^{-\frac{4}{N}}$$

the affine quasicircles have length not exceeding $10\pi\sigma$, the tori $\tilde{T}(3\varepsilon)$ are contained in $T(3\sigma) \smallsetminus T(2\sigma)$ and

(5)
$$\widehat{\bigcup T(\varepsilon)} \supset T(\sigma).$$

Proof. — Let *g* be a complex affine function such that $|\nabla g| = 1$ and $C \subset \{g = 0\}$. With the number *N* as in the statement consider complex linear functions f_1, \ldots, f_N , all transversal to each other and such that $|\nabla f_j| = 1$ and the Hermitian scalar product $\langle \nabla f_j, \nabla g \rangle$ is small enough.

Consider a point $p \in T(\sigma)$, an index j and a number b(p) strictly between 2 and 3. Denote by $C_{p,j}$ the intersection of $\partial T(b\sigma)$ with the complex line $\mathscr{D}_j(p)$ through p which is parallel to $\{f_j = 0\}$. Then $C_{p,j}$ is an affine quasicircle surrounding p. Indeed, if F is complex affine with $|\nabla F| = 1$ and ∇F orthogonal to ∇g then $\partial T(b\sigma) \cap \{F = F(p)\}$ bounds a disc in a complex line, the disc containing p. $C_{p,j}$ are small diffeomorphic perturbations of the circle.

Let $\widetilde{T}_{p,j}(\varepsilon)$ be the ε -neighbourhood of $C_{p,j}$. If $\varepsilon > 0$ is small enough then for fixed p the 3ε -neighbourhoods $\widetilde{T}_{p,j}(3\varepsilon)$, j = 1, ..., N, are pairwise disjoint and contained in

$$\overline{T(b\sigma+3\varepsilon)} \setminus \overline{T(b\sigma-3\varepsilon)} \subset T(3\sigma) \setminus T(2\sigma), \quad j=1,\ldots,N.$$

Lemma 2 (applied after a translation) gives

(6)
$$\bigcup_{j=1}^{N} \widetilde{T}_{p,j}(\varepsilon) \supset p + (a\sigma)^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}} \overline{\mathbb{B}}^{2}$$

for a constant a > 0 which depends on N (precisely, on the choice of the f_j for given g and N), but not on p nor on ε .

Let now *p* run through a suitable $(a\sigma)^{\frac{N-1}{N}} \varepsilon^{\frac{1}{N}}$ net for $T(\sigma)$. One can choose the latter set so that it contains not more than $c' \cdot \varepsilon^{-\frac{4}{N}}$ points p_k , $k = 1, 2, ..., (c' \text{ is a constant depending only on$ *N* $and on the torus <math>T(3\sigma)$.) Choose $b(p_k) \cdot \sigma = 3\sigma - 5(2k-1)\varepsilon$. If

(7)
$$10c' \cdot \varepsilon^{-\frac{4}{N}} \cdot \varepsilon < \sigma,$$

then all $b(p_k) \cdot \sigma$ are in $[2\sigma + 5\varepsilon, 3\sigma - 5\varepsilon]$. Consider for each *k* the *N* affine quasicircles $C_{p_k, j}$ and the tori $\widetilde{T}_{p_k, j}(3\varepsilon)$ associated with $p_k, b(p_k)$ and *j* as described above.

If (7) holds all tori $\tilde{T}(3\varepsilon)$ (corresponding to all *k* and *j*) are pairwise disjoint and contained in $T(3\sigma) \smallsetminus T(2\sigma)$. Their number $q(\varepsilon)$ does not exceed $c \cdot \varepsilon^{-\frac{4}{N}}$ with $c = N \cdot c'$ and the lengths of the affine quasicircles $C_{p_k, j}$ do not exceed $10\pi \cdot \sigma$ if $\sigma > 0$ is small and the angle between $\{g = 0\}$ and $\{f_j = 0\}$ is close to the right angle. Moreover, by (6)

$$\bigcup_{k,j} \widehat{\widetilde{T}_{p_k,j}}(\varepsilon) \supset T(\sigma)$$

since for *p* running over the p_k the balls on the right of (6) cover $T(\sigma)$.

Proof of the theorem for n = 2. — Let $C^{(0)}$ be the circle $\{z_1 = 0, |z_2| = 10\}$, let $\sigma = 1$ and $T^{(0)}(3)$ be the closed 3-neighbourhood of $C^{(0)}$. $T^{(0)}(3)$ is a closed solid torus and $T^{(0)}(1) \supset \overline{\mathbb{D}^2}$. Put $E_0 = T^{(0)}(3)$.

Choose a sequence of numbers $N_k \ge 5$, $k = 1, 2, ..., N_k \rightarrow \infty$, for $k \rightarrow \infty$. Construct inductively a sequence of closed sets E_k , $k = 1, 2, ..., E_{k+1} \subset E_k$ for k = 0, 1, ... Suppose the set E_k is obtained and has the following properties. E_k is the finite union of disjoint closed tori $T^{(k)}(3\varepsilon_k)$ around affine quasicircles (tori in the *k*-th generation), and

(8)
$$\bigcup \widetilde{T^{(k)}(\varepsilon_k)} \supset \overline{\mathbb{D}}^2.$$

The construction of the set E_{k+1} goes as follows.

Put $N = N_{k+1}$. Choose for each torus $T^{(k)}(\varepsilon_k)$ functions f_1, \ldots, f_N according to lemma 3. Let $\varepsilon > 0$ be so small that the inequalities (7) are satisfied for each of the tori $T^{(k)}(\varepsilon_k)$. Apply lemma 3 to each of the tori $T^{(k)}(\varepsilon_k)$ and obtain in each of them disjoint closed tori of width 3ε in the $(k + 1)^{\text{st}}$ generation.

Denote all tori in the $(k + 1)^{\text{st}}$ generation by $T^{(k+1)}(3\varepsilon)$ (omitting indices labeling them). Their total number $q_{k+1}(\varepsilon)$ does not exceed $c_{k+1} \cdot \varepsilon^{-\frac{4}{N_{k+1}}}$, where the constant c_{k+1} depends on N_{k+1} and on all tori $T^{(k)}(3\varepsilon_k)$ of generation k, in particular on the number of those tori.

Further, the $T^{(k+1)}(3\varepsilon)$ are 3ε -neighbourhoods of affine quasicircles of length $\leq 10\pi\varepsilon_k$ and the $T^{(k+1)}(3\varepsilon)$ are contained in $\bigcup T^{(k)}(3\varepsilon_k)$. Moreover, by lemma 3 (see (5) for each torus of generation k) we obtain

(9)
$$\overline{\bigcup T^{(k+1)}(\varepsilon)} \supset \bigcup T^{(k)}(\varepsilon_k)$$

hence, by (8)

The set $\bigcup T^{(k+1)}(\varepsilon)$ can be covered by not more than s_{k+1} balls of radius ε , where

(11)
$$s_{k+1} = \operatorname{const} \cdot q_{k+1}(\varepsilon) \cdot 10\pi\varepsilon_k \cdot \varepsilon^{-1}$$
$$\leqslant \operatorname{const} c_{k+1} \cdot 10\pi\varepsilon_k \cdot \varepsilon^{-1-\frac{4}{N_{k+1}}}.$$

Choose now for ε a number ε_{k+1} so that (7) is satisfied for all tori of generation k,

(12)
$$\varepsilon_{k+1} \leqslant (c_{k+1} \cdot 10\pi\varepsilon_k)^{-(k+1)}$$

and $\varepsilon_{k+1} \to 0$ for $k \to \infty$.

Put
$$E_{k+1} = \bigcup T^{(k+1)}(3\varepsilon_{k+1})$$
. Then $E_{k+1} \subset E_k$ and $\widehat{E_{k+1}} \supset \overline{\mathbb{D}}^2$. The set $E \stackrel{\text{def}}{=} \bigcap_{k=0}^{\infty} E_k$ is a Cantor set with $\widehat{E} \supset \overline{\mathbb{D}^2}$.

For each *k* the inclusion $E \subset E_{k+1}$ holds and E_{k+1} can be covered by not more than s_{k+1} balls of radius ε_{k+1} and for any positive α (11) and (12) imply

(13)
$$s_{k+1} \cdot \varepsilon_{k+1}^{1+\alpha} \leqslant \operatorname{const} \cdot 10\pi \cdot (\varepsilon_{k+1})^{\alpha - \frac{1}{k+1} - \frac{4}{N_{k+1}}} \longrightarrow 0.$$

(13) shows that the Hausdorff measure of *E* of dimension $1 + \alpha$ is zero for any positive number α . Hence, the Hausdorff dimension of *E* equals 1. (It cannot be less than 1 by lemma 1.) The theorem is proved for \mathbb{C}^2 .

The proof for n > 2 goes along the same lines with lemma 2 replaced by the following lemma 4. We will prove lemma 4, but skip the details of the proof of the theorem in higher dimension.

Let $n \ge 2$ and let f_j , j = 1, ..., N, be complex linear functions in \mathbb{C}^n . We say that f_j are in general position if for each natural number $k \le n$ the zero sets of any k of them intersect along an (n - k)-dimensional linear subspace of \mathbb{C}^n . In particular, the gradient of each of them is different from zero and the intersection of the zero set of any n of them is equal to the origin in \mathbb{C}^n . LEMMA 4. — Let $n \ge 2$ and let f_j , j = 1, ..., N, be complex linear functions in \mathbb{C}^n in general position, $|\nabla f_j| = 1$. Suppose $N \ge n$. For each subset $\mathcal{J} = \{j_1, ..., j_{n-1}\}$ containing exactly n-1 distinct elements of $\{1, 2, ..., N\}$ denote by $C_{\mathcal{J}}$ an affine quasicircle contained in the complex line $\mathscr{G}_{\mathcal{J}} = \{f_{j_1} = \cdots = f_{j_{n-1}} = 0\}$ and surrounding the origin. Suppose that for some constant $\sigma > 0$ each quasicircle $C_{\mathcal{J}}$ is contained in $\mathbb{C}^n \setminus \sigma \overline{\mathbb{B}}^n$. For small enough $\varepsilon > 0$ denote by $T_{\mathcal{J}}(\varepsilon)$ the ε -neighbourhood of $C_{\mathcal{J}}$.

There exists a positive constant a depending only on f_j but not on σ nor on the $C_{\mathcal{J}}$ such that for each sufficiently small $\varepsilon > 0$

(14)
$$(a\sigma)^{1-\beta_n(N)}\varepsilon^{\beta_n(N)}\overline{\mathbb{B}^n} \subset \bigcup_{\mathscr{J}} \overline{T_{\mathscr{J}}}(\varepsilon).$$

Here $\beta_n(N) \stackrel{\text{def}}{=} \frac{n(n-1)}{2(N-n+2)}$. Note that $\beta_n(N) \to 0$ for *n* fixed and $N \to \infty$. The union on the right hand side is taken over all subsets \mathcal{J} of $\{1, \ldots, N\}$ containing n-1 distinct elements.

Proof. — The case of general $\sigma > 0$ can be reduced to the case $\sigma = 1$ by replacing *z* by $\frac{z}{\sigma}$ and ε by $\frac{\varepsilon}{\sigma}$. We may therefore assume that $\sigma = 1$. Lemma 2 implies lemma 4 for n = 2. Indeed, $\beta_2(N) = \frac{1}{N}$. Assume, lemma 4 is true for n - 1 ($n - 1 \ge 2$). Prove it for *n*.

Note first that there exists a constant A > 0 depending only on n and on the functions f_j such that for each subset $\mathcal{J} = \{ j_0, ..., j_{n-2} \}$ of $\{1, ..., N\}$ containing n - 1 distinct elements the set

$$\{|f_{j_0}| \leqslant A\varepsilon, \dots, |f_{j_{n-2}}| \leqslant A\varepsilon\}$$

is contained in the ε -neighbourhood of the line $\mathscr{L}_{\mathcal{J}} = \{f_{j_0} = \cdots = f_{j_{n-2}} = 0\}$. Moreover, writing $\mathscr{J} = \{j_0\} \cup \mathscr{J}', \ \mathscr{J}' = \{j_1, \ldots, j_{n-2}\}$, we find for each point $\zeta \in \mathbb{C}, |\zeta| \leq A\varepsilon$, a subset $\tau_{j_0, \zeta, \mathscr{J}'}(A\varepsilon)$ of

$$\{f_{j_0} = \zeta\} \cap \{|f_{j_1}| \leq A\varepsilon, \dots, |f_{j_{n-2}}| \leq A\varepsilon\}$$

with the following properties.

Identify the set $\{f_{j_0} = \zeta\}$ with \mathbb{C}^{n-1} by the affine mapping of \mathbb{C}^{n-1} into \mathbb{C}^n which preserves length and maps $0 \in \mathbb{C}^{n-1}$ to the orthogonal projection of $0 \in \mathbb{C}^n$ to $\{f_{j_0} = \zeta\}$. With this identification we choose $\tau_{j_0,\zeta,\mathcal{J}'}(A\varepsilon)$ as the $A\varepsilon$ -neighbourhood in $\{f_{j_0} = \zeta\}$ of an affine quasicircle, the latter being close to $C_{\mathcal{J}}$ and contained in $\{f_{j_0} = \zeta\} \cap \{f_{j_1} = \cdots = f_{j_{n-2}} = 0\}$. If ε is small the sets $\tau_{j_0,\zeta,\mathcal{J}'}(A\varepsilon)$ are outside the unit ball of $\{f_{j_0} = \zeta\}$. Moreover, the choice can be done in such a way that

(15)
$$\tau_{j_0,\zeta,\mathcal{J}'}(A\varepsilon) \subset T_{\mathcal{J}}(\varepsilon).$$

By the lemma for n - 1 (applied to the N - 1 functions f_j , $j \neq j_0$) for each $j_0 \in \{1, ..., N\}$ and each $|\zeta| \leq A\varepsilon$

(16)
$$\bigcup_{\mathcal{J}'} \overline{\tau_{j_0,\zeta,\mathcal{J}'}}(A\varepsilon) \supset a_{n-1}(A\varepsilon)^{\beta_{n-1}(N-1)} \overline{\mathbb{B}_{\zeta}^{n-1}},$$

where \mathscr{J}' runs over subsets of $\{1, \ldots, N\} \setminus \{j_0\}$ containing n - 2 different elements, a_{n-1} is a positive constant depending on the f_j , and \mathbb{B}^{n-1}_{ζ} is the unit ball in $\{f_{j_0} = \zeta\}$. Take in (16) the union over $|\zeta| \leq A\varepsilon$, we obtain by (15)

for another positive constant a'.

It remains to prove the following

CLAIM. — For small $\varepsilon > 0$ the polynomial hull of

(18)
$$\bigcup_{j_0=1}^N \{|f_{j_0}| \leqslant A\varepsilon\} \cap a'\varepsilon^{\beta_{n-1}(N-1)}\partial \mathbb{B}^n$$

contains the ball $a^{1-\beta_n(N)} \varepsilon^{\beta_n(N)} \overline{\mathbb{B}^n}$ for a positive constant a depending only on the f_{j_0} .

Proof. — Denote $\alpha = a' \varepsilon^{\beta_{n-1}(N-1)}$ and change variables, $\tilde{z} = \frac{z}{\alpha}$. We have to consider the polynomial hull of

(19)
$$\bigcup_{j=1}^{N} \left\{ |f_j(\tilde{z})| \leqslant \frac{A\varepsilon}{\alpha} \right\} \cap \partial \mathbb{B}^n.$$

There exists a constant $\tilde{a} > 0$ such that on $\partial \mathbb{B}^n$ at most n - 1 of the $|f_j|$ do not exceed \tilde{a} . This follows from the genericity assumption for the f_j . It implies that the set

(20)
$$\left\{ \tilde{z} \in \partial \mathbb{B}^{n} : \prod_{j=1}^{N} |f_{j}(\tilde{z})| \leqslant \tilde{a}^{N-(n-1)} \left(\frac{A\varepsilon}{\alpha}\right)^{n-1} \right\}$$

is contained in (19). Indeed, if \tilde{z} is contained in (20) then for some set \mathcal{J} containing n-1 elements

$$\prod_{j\in\mathscr{J}}|f_j(\tilde{z})|\leqslant \left(\frac{A\varepsilon}{\alpha}\right)^{n-1},$$

hence, at least one of the $|f_j(\tilde{z})|$ does not exceed $\frac{A\varepsilon}{\alpha}$.

The obtained inclusion implies that the polynomial hull of (19) contains

$$\left\{\prod_{j=1}^{N} |f_{j}(\tilde{z})| \leqslant \tilde{a}^{N-(n-1)} \left(\frac{A\varepsilon}{\alpha}\right)^{n-1}\right\} \cap \overline{\mathbb{B}^{n}} \supset \tilde{a}^{\frac{N-(n-1)}{N}} \left(\frac{A\varepsilon}{\alpha}\right)^{\frac{n-1}{N}} \overline{\mathbb{B}^{n}}$$

Here we used that $f_j(0) = 0$ and $|\nabla f_j| = 1$.

Rescaling, $z = \alpha \tilde{z}$, we conclude that the polynomial hull of (18) contains the ball with center 0 and radius

(21)
$$\tilde{a}^{1-\frac{N-1}{N}} \cdot (A\varepsilon \alpha^{-1})^{\frac{n-1}{N}} \cdot \alpha$$

By definition of α and $\beta_{n-1}(N-1)$ the power of ε in the last expression is

$$\frac{n-1}{N} + \left(1 - \frac{n-1}{N}\right) \frac{(n-1)(n-2)}{2(N-n+2)} < \frac{n-1}{N-n+2} + \frac{(n-1)(n-2)}{2(N-n+2)}$$
$$= \frac{n(n-1)}{2(N-n+2)} = \beta_n(N).$$

Note that increasing the power of ε will decrease the expression (21) provided $\varepsilon < 1$. Denote the absolute constant in (21) by $a^{1-\beta_n(N)}$. We obtained that the polynomial hull in (17) contains the ball of radius $a^{1-\beta_n(N)} \cdot \varepsilon^{\beta_n(N)}$ with center 0.

Acknowledgments. The author is grateful to the Institut Fourier for the hospitality and for stimulating questions and discussions during a visit in Grenoble.

References

- [H] HENKIN G.M., Oral communication.
- [J] JÖRICKE B., A Cantor set in the unit sphere in \mathbb{C}^2 with large polynomial hull, to appear in Mich. Math. J.
- [R] RUDIN W., *Function algebras*, (Proc. Internat. Sympos., Tulane Univ., 1965), Scott, Foresman, Chicago, III, 1966.
- [V] VITUSHKIN A.G., On a problem of W. Rudin, Dokl. Akad. Nauk USSR, 213 (1973), 14–15, transl. in Soviet. Math. Dokl., 14 (1973), 1618–1619.

Burglind JÖRICKE Uppsala University Dept. of Mathematics Box 480, S-751 06 UPPSALA (Sweden) joericke@math.uu.se