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Abstract

We prove that for all algebraic number β > 1 the strings of zeros in the Rényi β-

expansion dβ(1) of 1 exhibit a lacunarity bounded above by log(s(Pβ))/ log(β), where

s(Pβ) is the size of the minimal polynomial of β. The conjecture about the specification

of the β-shift, equivalently the uniform discreteness of the sets Zβ of β-integers, for

β a Perron number is discussed. We propose a classification of algebraic numbers β >

1 according to the asymptotic “quotient of the gap” value of the Rényi β-expansion of

1 and examplify it, in a complementary classification of Blanchard’s with the classes C1 to

C5.

1. Introduction

Let β > 1 be a real number. In [Ren] Rényi introduced the numeration in base β, es-

tablishing a correspondence between R
+ and the set of sequences (xi)i>0 on the alphabet

{0, 1, 2, . . . , dβ − 1e} ( dβ − 1e is by definition the smallest integer greater than or equal to

β − 1) by the formula : x =
∑k

i=−∞
x−i+kβ

i , with βk 6 x < βk+1, x0 ≠ 0, called Rényi β-

expansion of x. Parry [Par] [Fr1] [Fr2] has shown that the knowledge of the Rényi β-expansion

dβ(1) of 1 is sufficient to make this correspondence bijective, once so-called Parry’s inequali-

ties are satisfied. More recently the integers in base β, or β-integers, defined as the real num-

bers equal to the integer part of their Rényi β-expansion, denoted by Zβ, were introduced by

Gazeau [Ga] and Burdik et al. [BFGK]. The sets Zβ are discrete. However, it is an open question

whether they are uniformly discrete in general [GVG] (on mathematical quasicrystals and De-

lone sets see also [La] [Me] [BM]), and it is conjectured that this is true for all Perron numbers
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[Be1] [Be2] [GVG]. When β = h > 2 is an integer then Zβ = Z is uniformly discrete and the

conjecture holds. Thurston [Th] has shown that this conjecture is true in the case where β is a

Pisot number in general.

On the other hand Schmeling (Theorem A in [Sc]) has shown that the class (class C3) of

real numbers β > 1 such that the Rényi β-expansion of 1 contains bounded strings of zeros,

but is not eventually periodic, has Hausdorff dimension 1. For all β in this class the β-shift

is specified (Blanchard [Bl] p. 138). The specification of the β-shift is equivalent to the fact

that the set Zβ is uniformly discrete (see Section 2; Prop. 3.5 in [Sc], Prop. 4.5 in [Bl], [GVG]).

In terms of the ergodic properties of the β-shift, the above conjecture was already stated as

one of the basic questions about Rényi β-expansions of real numbers in Blanchard [Bl] §4 pp

137–139. Restated in this context, the conjecture is expressed as follows:

C 1. — All Perron numbers β > 1 for which dβ(1) is infinite are such that

dβ(1) contains bounded strings of zeros.

From [Sc] we expect that this conjecture holds for a large class of algebraic numbers.

T 1.1. — Let β > 1 be a algebraic number. Denote by dβ(1) := 0.t1t2t3 . . ., with

ti ∈ Aβ := {0, 1, 2, . . . , dβ − 1e} its Rényi β-expansion of 1. Assume that dβ(1) is infinite and

lacunary in the following sense: there exist two sequences {mn}n>1 and {sn}n>0 such that

1 = s0 6 m1 < s1 6 m2 < s2 6 . . . 6 mn < sn 6 mn+1 < sn+1 6 . . .

with (sn − mn) > 2, tmn ≠ 0, tsn ≠ 0 and ti = 0 if mn < i < sn for all n > 1. Then

(i) lim sup
n→+∞

sn

mn
6

log(s(Pβ))

log(β)
, (1)

where s(Pβ) is the size of the minimal polynomial of β. Moreover, if lim infn→+∞(mn+1 −mn) =

+∞, then

(ii) lim sup
n→+∞

sn+1 − sn

mn+1 − mn
6

log(s(Pβ))

log(β)
. (2)

Note that the term “lacunary” has often other meanings in literature. Note also that we do

not assume t j ≠ 0 for all j such that sn 6 j 6 mn+1 (for all n > 1 ). The quotient

sn/mn > 1 is called “quotient of the gap” following [Os] [Os2].

We will say that the lacunarity of dβ(1) is linearly bounded when there exists a constant

C, 1 6 C < +∞, such that lim sup sn/mn 6 C . Each time lacunarity appears in dβ(1) for β an

algebraic number > 1, it is linearly bounded by Proposition 2.1 below and more accurately by

Theorem 1.1. Consequently we may try a classification of algebraic numbers β > 1 as follows:

first, we assume that t j ≠ 0 for all j such that sn 6 j 6 mn+1 in order to describe uniquely

the zeros and the strings of zeros in dβ(1). Then, referring to Blanchard’s classification [Bl],

either dβ(1) is finite or, equivalently the β-shift is of finite type (class C1); or it is eventually

periodic if and only if the β-shift is sofic (class C2); or, when dβ(1) is infinite, lacunary and not

eventually periodic, β belongs to one of the following classes Q0, Q1, or Q2, where Q0 is the

union of Q(1)0 , Q(2)0 and Q(3)0 , and where the class C3 is the union of Q(1)0 and Q(2)0 .
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What are the classes of algebraic numbers β > 1 such that

(Q(1)0 ) : 1 = lim
n→+∞

sn

mn

with (mn+1−mn) bounded ? (3)

(Q(2)0 ) : 1 = lim
n→+∞

sn

mn
with (sn − mn) bounded and lim(mn+1 − mn) = +∞ ? (4)

(Q(3)0 : non C3) : 1 = lim
n→+∞

sn

mn
with lim sup

n→+∞
(sn − mn) = +∞ ? (5)

(Q1) : 1 < lim sup
n→+∞

sn

mn

<
log(s(Pβ))

log(β)
? (6)

(Q2) : lim sup
n→+∞

sn

mn
=

log(s(Pβ))

log(β)
? (7)

In Section 3 the above conjecture is investigated numerically for large Perron numbers

β > 1, as a function of the degree of β and of the maximal modulus of the conjugates of

β. Examples of transcendental numbers in Q(1)0 : the Komornik-Loreti constant [AC] [KL] and

Sturmian numbers [CK], are also given, together with the example of a Perron number which

is not a beta-number ([So], page 483).

2. Proof of Theorem 1.1

Since we exclude algebraic numbers β > 1 for which the Rényi β-expansion dβ(1) of 1 is

finite, we can consider that β does not belong to N. Indeed, if β = h ∈ N, then dh(1) = 0.h is

finite (Lothaire [Lo], Chap. 7). If β 6∈ N, then dβ − 1e = bβc and the alphabet Aβ equals

{0, 1, 2, . . . , bβc}, where bβc denotes the greatest integer smaller than or equal to β.

Recall that, if P(X ) =
∑m

i=0 ai X i , with am ≠ 0, is an arbitrary polynomial with complex

coefficients, we denote by s(P) =
∑m

i=0 |ai | the size of P(X ). If Pβ(X ) =
∑d

i=0 αi X i ∈ Z[X ],

with αd ≠ 0,α0 > 0, d > 1, is the minimal polynomial of β > 1 and P∗

β (X ) = X d P(1/X ) its

reciprocal polynomial, the size of Pβ(X ) is an integer and : s(Pβ) = s(P∗

β ) > 1.

From the representation dβ(1) = 0.t1t2t3 . . . of 1, let us construct the “lacunary” power

series f (z) :=
∑+∞

i=1 ti z i associated with the β-shift (lacunary in the sense of Theorem 1.1).

Since dβ(1) is assumed infinite, its radius of convergence is 1. By definition, it satisfies

f (β−1
) = 1. (1)

By this equality, we mean that the function value f (β−1) is algebraic, equal to 1, at the real

algebraic number β−1 located inside the open disk of convergence D(0, 1) of f (z) in the

complex plane. This fact is an intrinsic feature of the Rényi expansion process which leads to

the following important consequence.

P 2.1. —

lim sup
n→+∞

sn

mn
< +∞. (2)
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Proof. — This is a consequence of Theorem 1 in [Ma]. Indeed, if we assume that there ex-

ists a sequence of integers (ni) which tends to infinity such that limi→+∞ sni
/mni

= +∞, then

f (z) would be admissible in the sense of [Ma]. Since f (z) is a power series with nonnegative

coefficients, which is not a polynomial, the function value f (β−1) should not be algebraic.

But it equals 1, which is algebraic. Contradiction.

Let us improve Proposition 2.1. Let us assume that

lim sup
sn

mn
>

log(s(Pβ))

log(β)
(3)

and show the contradiction for the assertion (i) (similarly for (ii)). Güting [Gü] has proved that

the approximation of algebraic numbers by algebraic numbers is fairly difficult to realize by

polynomials. In the present proof, we use approximation theorems obtained by Güting [Gü]

on the values of the “polynomial tails” of the power series f (z) at the algebraic number β−1,

to obtain the contradiction. Let us write

f (z) =

+∞∑

n=0

Qn(z) (4)

with

Qn(z) :=

mn+1∑

i=sn

ti z i , n = 0, 1, 2, . . . . (5)

By construction the polynomials Qn(z), of degree mn+1, are not identically zero and Qn(1) >

0 is an integer for all n > 0.

Denote by Sn(z) = −1+
∑mn

i=1 ti z i the mnth-section polynomial of the power series f (z)−
1 for all n > 1. We have: s(Sn) = 1 +

∑mn
i=1 ti = 1 +

∑n−1
j=0 Q j (1). From Theorem 5 in [Gü], we

deduce that only one of the following cases (i) or (ii) holds, for all n > 1:

(i) Sn(β
−1
) = 0, (6)

(ii)
∣

∣

∣Sn(β
−1
)
∣

∣

∣ >
1

(

1 +
∑n−1

j=0 Q j (1)
)d−1 (

s(P∗

β
)
)mn

. (7)

Case (i) is impossible for any n. Indeed, if there exists an integer n0 > 1 such that (i) holds,

then, since all the digits ti are positive and that β−1 > 0, we would have ti = 0 for all

i > sn0
. This would mean that the Rényi expansion of 1 in base β is finite, which is excluded

by assumption. Contradiction. Therefore, the only possibility is (ii), which holds for all integers

n > 1.

On the other hand, since
∣

∣

∣Sn(β
−1)

∣

∣

∣ =
∑+∞

i=sn
tiβ

−i for all integers n > 1, we deduce that

∣

∣

∣Sn(β
−1
)
∣

∣

∣ 6
bβc

1 − β−1
β
−sn n = 1, 2, . . . . (8)

Putting together (7) and (8), we deduce that

βsn

(

1 +
∑n−1

j=0 Q j(1)
)d−1 (

s(Pβ)
)mn

6
bβc

1 − β−1
(9)
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should be satisfied for n = 1, 2, 3, . . .. Denote un :=
βsn

(

1+
∑n−1

j=0 Q j (1)
)d−1(

s(Pβ)
)mn

, for all n > 1.

Proof of assertion (i): From Inequality (3) assumed to be true there exists a sequence of integers

(ni) which tends to infinity such that limi→+∞
sni

mni
>

log(s(Pβ))

log(β)
. Hence, there exists i0 such

that
sni

mni
>

log(s(Pβ))

log(β)
for all i > i0. Now,

(

1

1 + bβcmni

)d−1









β

sni
mni

s(Pβ)









mni

6
1

(

1 +
∑ni−1

j=0 Q j(1)
)d−1









β

sni
mni

s(Pβ)









mni

6 uni
. (10)

For i > i0 the inequality

1 =
β

log(s(Pβ))

log(β)

s(Pβ)
<
β

sni
mni

s(Pβ)
(11)

holds. This implies that the left-hand member of (10), hence uni
also, tends exponentially to

infinity when i tends to infinity. The contradiction now comes from (9) since the sequence

(un) should be uniformly bounded.

Proof of assertion (ii): For n = 1, 2, . . ., let us rewrite the n-th quotient

un+1

un
=

βsn+1−sn

s(Pβ)
mn+1−mn

(

1 +
∑n−1

j=0 Q j(1)
)d−1

(

1 +
∑n

j=0 Q j(1)
)d−1

(12)

as

un+1

un
=





β

sn+1−sn
mn+1−mn

s(Pβ)





mn+1−mn

(mn+1 − mn + 1)(d−1)





(mn+1 − mn + 1)(d−1)

(

1 +
∑n−1

j=0 Q j(1)
)d−1

(

1 +
∑n

j=0 Q j(1)
)d−1





 (13)

and denote

Un :=
1

(mn+1 − mn + 1)(d−1)







β
sn+1−sn

mn+1−mn

s(Pβ)







mn+1−mn

(14)

and

Wn := (mn+1 − mn + 1)(d−1)





1 +
∑n−1

j=0 Q j(1)

1 +
∑n

j=0 Q j (1)





d−1

(15)

so that un+1/un = UnWn .

Let us prove that lim supn→+∞ Un = +∞. If we assume that lim infn→+∞(mn+1 − mn) =

+∞ and that lim supn→+∞(sn+1 − sn)/(mn+1 − mn) > log(s(Pβ))/ log(β) then

1 =
β

log(s(Pβ))

log(β)

s(Pβ)
<
β

sni +1−sni
mni +1−mni

s(Pβ)
(16)

for some sequence of integers (ni) which tends to infinity so that limi→+∞ Uni
= +∞ expo-

nentially, by (14).

L 2.2. —

0 < lim inf
n→+∞

Wn (17)
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Proof. — Assume the contrary. Then there exists a subsequence (ni) of integers which

tends to infinity such that limi→+∞ Wni
= 0. In other terms, for all ε > 0, there exists i1 such

that i > i1 implies Wni
6 ε, equivalently

(mni +1 − mni
+ 1)





1 +

ni−1∑

j=0

Q j (1)





 6 ε
1

d−1 ×




1 +

ni∑

j=0

Q j(1)





 . (18)

Since, by hypothesis, tsn > 1 and tmn+1 > 1 for all n > 1, we have: ni 6 1 +
∑ni−1

j=0 Q j(1).

On the other hand, Qni
(1) 6 bβc(mni +1 − mni

+ 1). Then, from (18) with ε taken equal to 1,

we would have

ni 6 1 +

ni−1∑

j=0

Q j(1) 6
Qni

(1)

(mni +1 − mni
+ 1)− 1

6 bβc × mni +1 − mni
+ 1

mni +1 − mni

6
3

2
bβc. (19)

But the left-hand member of (19) tends to infinity which is impossible. Contradiction.

From Lemma 2.2 there exists r > 0 such that Wn > r for all n large enough. Therefore,

un+1/un = UnWn > rUn for all n large enough. Since lim supn→+∞ Un = +∞ we conclude

that lim sup un+1/un = +∞, hence that lim sup un = +∞. This contradicts (9) and proves the

assertion (ii) of Theorem 1.1.

3. Comments and examples

1.— The class C3 in the classification of Blanchard of real numbers > 1 is badly known [Bl]

[Sc] [CK]. Conjecture 1 asserts that the union of the classes C1, C2 and C3 contains all Perron

numbers β > 1. Let us give, after Solomyak ([So], p 483), the example of a Perron number

which is not a beta-number therefore which is not in the class C2, without knowing whether

it is in the class Q0, Q1 or Q2. This will allow to estimate the sharpness of the upper bound

log(s(Pβ))/ log(β) of the “quotient of the gap” value in Theorem 1.1. Recall that a real number

β > 1 is a beta-number if the orbit of x = 1 under the transformation Tβ : x → βx (mod 1) is

finite [Lo] [PF]. A beta-number β is such that dβ(1) is finite (class C1) or eventually periodic

(class C2). The set of all conjugates of all beta-numbers is the union of the closed unit disc

in the complex plane and the set of reciprocals of zeros of the function class { f (z) = 1 +∑
a j z j | 0 6 a j 6 1}. This domain, say Φ, was studied by Flatto, Lagarias and Poonen [FLP]

and Solomyak [So]. After [So], the Perron number β = 1
2
(1+

√
13) is not a beta-number, though

its only conjugate β′ = 1
2
(1 −

√
13) lies in the interior int(Φ). The real algebraic integer β is

the dominant root of the irreducible polynomial, of degree 2, Pβ(X ) = X 2 − X − 3. With

the notation dβ(1) =
∑+∞

j=1 t jβ
− j , we have the following factorization of the corresponding

analytic functions, for |z| > 1, where Tβ = T 1
β and T

j+1
β

= Tβ(T
j
β
) for j > 1 :

1 −
+∞∑

j=1

t j z− j = (1 − β/z)





1 +

+∞∑

j=1

T
j
β
(1)z− j





 . (1)

It is easy to check that a long string of zeros given by t j = 0 for mn < j < sn corre-

sponds to a value T
mn
β

(1) very close to zero, followed by a limited “geometric progression”
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T
j
β
(1) = β j−mn T

mn
β

(1) for mn < j < sn . Since T
j
β
(1) = α jβ + γ jβ

′, for α j , γ j ∈ Z, where

|γ j+1| > |γ j | with |ββ′| = 3 an integer, we conclude, by easy diophantine approximation argu-

ments, that the occurrence of arbitrary long strings of zeros in the nonperiodic Rényi expansion

dβ(1) is not unavoidable a priori . . . . As for the “quotient of the gap” value, since s(Pβ) = 5, it

is bounded above by log(5)/ log(β) which is roughly equal to 1.929515.... This upper bound is

slightly smaller than the degree d = 2 of β, but ≠ 1 (As shown below, a natural upper bound

is d log(1 + β)/ log(β) ). This does not suffice to deduce that β = 1
2
(1 +

√
13) belongs to Q0.

Let us investigate whether the conjecture could be true for Perron numbers β large enough,

that is which lie in a neighbourhood of +∞. Let β > 1 be a Perron number of degree

d > 2 and denote by β(1), β(2), . . . , β(d−1) the conjugates of β = β(0). Let Pβ(X ) be the

minimal polynomial of β. Let Kβ := max{β−1|β(i)| | i = 1, 2, . . . , d − 1}. After Lemma 2 in [Li2]

the following inequality holds:

Kβ < K max
β := 1 − 1

(dβ)6d3 . (2)

A simple relation between Kβ, the degree d and s(Pβ) is given by the following

L 3.1. —

s(Pβ) 6 (β + 1)(Kββ + 1)d−1. (3)

Proof. — This comes from the relations between the coefficients αi and the roots of Pβ(X ) =∑d
i=0 αi X i =

∏d−1
i=0 (X − β(i)). We have: αd = 1, |αd−1| = |

∑d−1
i=0 β(i)| 6 β + (d − 1)Kββ and

|α0| 6 β(Kββ)
d−1. For j = 1, 2, . . . , d − 1, αd− j = (−1) j

∑

06i1<i2<...<i j 6d−1

β
(i1)β

(i2) . . . β(i j ).

Hence, for j = 1, 2, . . . , d − 1,

|αd− j | 6 β

∣

∣

∣

∣

∣

∣

∣

∣

∑

16i2<i3<...<i j 6d−1

β
(i2)β

(i3) . . . β(i j )

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∑

16i1<i2<...<i j 6d−1

β
(i1)β

(i2) . . . β(i j )

∣

∣

∣

∣

∣

∣

∣

∣

6 β





d − 1

j − 1



(Kββ)
j−1 +





d − 1

j



(Kββ)
j .

We deduce:
d∑

j=0

|αd− j | 6

d∑

j=1

β





d − 1

j − 1



(Kββ)
j−1 +

d−1∑

j=0





d − 1

j



(Kββ)
j

6 (β + 1)

d−1∑

j=0





d − 1

j



(Kββ)
j = (β + 1)(Kββ + 1)d−1.

C 3.2. —

log(s(Pβ))

log(β)
6
(d − 1) log(1 + Kββ) + log(1 + β)

log(β)
. (4)
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If β is a Pisot number, then Kββ < 1 and we know from a Theorem of Parry [Par] that

Pisot numbers are beta-numbers (see also [Be1] and [Sch]). The “quotient of the gap” value

in dβ(1) is of course bounded since dβ(1) is then eventually periodic (see also [Bo1]). On the

other hand, we observe that the above upper bound of (4), in the case where β is assumed large

enough, is bounded by 1 + o(1). This is coherent with the conjecture. This reasoning can be

extrapolated to beta-numbers for which the conjugates are known to be bounded in modulus

by (1 +
√

5)/2 [So] [FLP] or to Perron numbers for which all the conjugates lie within a closed

disk D(0, M) centered at the origin of fixed radius M > 1 in the complex plane (see [Bo2] for

Salem numbers), so that: |Kββ| 6 M . In these three cases,

(d − 1) log(1 + Kββ)

log(β)
= o(1), when β tends to + ∞.

In this numerical context, when β belongs to a neighborhood of +∞, the proximity to 1 of

the upper bound of (4) is used as a test. By extrapolation we obtain the following assertion: for

all Perron numbers β such that the following assumption

(H ) :
(d − 1) log(1 + Kββ)

log(β)
= o(1), when β tends to + ∞,

holds, then β would belong to Q0 and Conjecture 1 has chances to be true, without being able

to discriminate the case “β ∈ Q(3)0 ” supposed never to occur. Indeed, from Corollary 3.2, then

we have:

log(s(Pβ))

log(β)
6
(d − 1) log(1 + Kββ) + log(1 + β)

log(β)
= o(1) +

log(1 + β)

log(β)
= 1 + o(1).

If (H) is not satisfied, the upper bound of the “quotient of the gap” value in Theorem 1.1 is

not sharp enough or, if not, the conjecture is not true. Else, this could reveal two different

behaviours of Perron numbers: the first one being characterized by conjugates β(i) which do

not go too quickly to infinity in modulus (as stated by (H)), when β tends to infinity, and the

second one, where one conjugate (at least) has a modulus ( ' Kββ ) which becomes prominent

in the upper bound of (4), for which the conjecture would perhaps be false. In this last case,

when |Kββ| ' β, the upper bound
(d−1) log(1+Kββ)+log(1+β)

log(β)
in (4) equals d

log(1+β)
log(β)

= d + o(1) >

1 + o(1), when β tends to infinity. In any case, the following inequality holds:

log(s(Pβ))

log(β)
6 d

log(1 + β)

log(β)
. (5)

2.— Rational numbers p/q > 1: assume that p and q are two coprime integers > 1 such

that p/q > 1. Then dp/q(1) is obviously infinite. It is also non-periodic. Recall the proof of the

non-periodicity [Fr2]: if we assume that it is eventually periodic, then the (
p
q
)-shift would be

sofic and p/q would be a Perron number by a Theorem of Lind [Li1] and Denker, Grillenberger

and Sigmund [DGS]. But a Perron number is an algebraic integer and we have assumed that

q ≠ 1 preventing p/q from being a rational integer. Contradiction.

Since Pp/q(X ) = qX − p, we have:

log(s(Pp/q))

log(p/q)
=

log(p + q)

log(p/q)
. (6)
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When q is fixed and p is large enough, this bound is 1 + o(1), but it may take large values

for large q’s. What are the rational numbers p/q > 1 which belong to Q(1)0 , Q(2)0 , Q(3)0 , Q1 or

Q2 ?

3.— The Komornik-Loreti constant: it is defined as follows [KL] [AC].

T 3.3. — There exists a smallest q ∈ (1, 2) for which there exists a unique expansion

of 1 as 1 =
∑

∞

n=1 δnq−n , with δn ∈ {0, 1}. Furthermore, for this smallest q, the coefficient

δn is equal to 0 (respectively, 1) if the sum of the binary digits of n is even (respectively, odd).

This number q can then be obtained as the unique positive solution of 1 =
∑

∞

n=1 δnq−n. It is

equal to 1.787231650 . . ..

This constant q is named Komornik-Loreti constant. Allouche and Cosnard [AC] have

shown more.

T 3.4. — The constant q is a transcendental number, where the sequence of coeffi-

cients (δn)n>1 is the Prouhet-Thue-Morse sequence on the alphabet {0, 1}.

The uniqueness of the development of 1 in base q given by Theorem 3.3 allows to write

dq(1) = 0.δ1δ2δ3 . . . ,

the coefficients δn being the digits of the Rényi q-expansion of 1. Since the strings of zeros

and 1’s in the Prouhet-Thue-Morse sequence are known (Thue, 1906/1912; [AS]) and uniformly

bounded, the constant q belongs to the class Q(1)0 .

4.— Sturmian numbers in (1, 2) (in the sense of [CK]): The real number β > 1 is called a

Sturmian number if dβ(1) is a Sturmian word over a binary alphabet {a, b}, with 0 6 a < b =

bβc. Chi and Kwon [CK] have shown the following theorem.

T 3.5. — Every Sturmian number is transcendental.

Let us consider all the Sturmian numbers β ∈ (1, 2) for which the two-letter alphabet

is {0, 1}. For such numbers lacunarity appears in dβ(1) (in the sense of Theorem 1.1). By

Theorem 3.3 in [CK] strings of zeros, resp. of 1’s, cannot be arbitrarily long. Hence, all Sturmian

numbers in (1, 2) are in the class Q(1)0 .
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285, (1977), 419–421.

[Be2] A. B-M, Questions diverses relatives aux systèmes codés : applications au θ-shift, preprint.
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