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ABSTRACT. Threefolds for which the varieties of (h + 1)-secant
h-planes have the dimension less then expected are classified for
h > 1. Geometry of such threefolds swept out by lines is de-
scribed.
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1. INTRODUCTION

In this paper we work over complex numbers.

Let us start from the famous Waring problem for forms: for given
m and n find a minimal number h such that a homogeneous form of
degree m in n + 1 variables could be represented as a sum of h + 1
powers of linear forms. F. Palatini and A. Terracini at the beginning
of XX century proposed a geometrical approach to the Waring problem
for general forms. They introduced the notion of variety of (h + 1)-
secant h-planes. Namely, for a variety X C PV of dimension n, variety
of (h + 1)-secants is

SM(X) = U (Toy ..., Th)-

Z0,...,tp€X, dim(zo,...,xn)=h

By the geometrical approach, the question “whether a general form of
degree m in n + 1 variables could be represented as a sum of h + 1
powers of linear forms” is substituted by “does the variety S"(v,,(P"))
coincides with the whole ambient space?”. Here v,,(P") is the projec-
tivization of the variety of all m-powers of linear forms on C**!, and
Um 1s a Veronese embedding, i. e. the map corresponding to the full
linear system of divisors of degree m. So, we came to calculating the
dimensions of S”(vy,(P")).

One can see that if X C PV is a non-degenerate irreducible variety
of dimension n, then the expected dimension of S*(X) is min{N, n(h+
1)+h}. The number 6 (X) = min{N, n(h+1)+h}—dim S"(X) is called
h-defect of X. So, in order to obtain the solution of the Waring problem
for general forms it is enough to calculate all the numbers 6, (v, (P")),
or, more generally, to find such m, n and h for which & (v,,,(P")) > 0.
This problem was solved by J. Alexander and A. Hirschowitz [1], [2],
(3], [4]-

For “general” variety X and any h one has that §,(X) = 0. If for
some h > 0 one has §, 1(X) = 0 and §,(X) > 0, the variety X is called
h-defective.

The main tool for studying defective varieties is the following lemma
due to A. Terracini:

Lemma. If zy,...,x, € X are general points and z € (xg,...,Ts) is
a general point, then T,S™(X) = (T, X, ..., Ty, X).

It is more or less clear that there are no h-defective curves. Defec-
tive surfaces were classified by many authors. Classically such surfaces
were considered by F. Palatini [12] and [13] whose classification theo-
rem has a serious gap. Then A. Terracini [16] completed F. Palatini’s
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classification. Also G. Scorza [15] and J. Bronowski [5] worked on this
topic. Both F. Palatini’s and A. Terracini’s papers are obscure and
difficult to read. L. Chiantini and C. Ciliberto [6] classified weakly de-
fective surfaces, of which defective surfaces form a special case. Their
approach is easier and faster then the previous ones. The result is as
follows:

Theorem. A surface X is h-defective iff X is one of the following:

(1) A non-degenerate surface X C ConerC, where C is a curve, L
s a linear space of dimension h — 1, N > 3h + 2 such that for
any linear subspace | C L one has dimm(X) = 2;

(2) X = (YY) C P¥+2 where Y C P'! is a non-degenerate
surface of minimal degree.

1-defective threefolds were classified by G. Scorza [14].

Theorem. (G. Scorza, [14]) An irreducible, non-degenerate, projective
3-fold X C PV is 1-defective if and only if a pair of N and X is of one
of the following:

X 15 a cone;

N =7 and X sits in a 4-dimensional cone over a curve;

N =7 and X 1s contained in a 4-dimensional cone over the Veronese
surface vo(P?) C P?;

N =9 and X is the Veronese variety vo(P?) C P° or a projection of it
inPY, N=7or8;

N =7 and X is a hyperplane section of the Segre variety P? x P? C P.

In more recent times F. Zak [17], T. Fujita and J. Roberts [10] and
T. Fujita [9] considered smooth defective threefolds. L. Chiantini and
C. Ciliberto [7] reworked the G. Scorza classification in an easy and
fast way.

During the writing of the present paper the author received the paper
of L. Chiantini and C. Ciliberto [8], where they proposed the classifi-
cation of h-defective threefolds for all h > 1.

In the present paper we also build the classification of h-defective
threefolds. Our way differs from the one used by C. Ciliberto and L.
Chiantini and results where obtained independently. Big part of the
present paper is devoted to studying threefolds that could be projected
to a hyperplane section of P? x P2. We prove that such threefolds often
are covered by lines; we describe such families of lines as sub-surfaces
of grassmannians; finally, we give the construction for obtaining such
threefolds.

For higher dimensional defective varieties only general properties are
known, see Zak [17].
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2. NOTIONS AND NOTATION

2.1. h-secant varieties and their defects.

Definition. The variety S"(X) = U,, . cx witay for iz (T0s - Th) 18
called h-secant variety of the variety X.

By counting dimensions one can see that if N is big enough then
the expected dimension of S"(X) is dim X - (h + 1) + h. Hence for an
arbitrary N the expected dimension of $*X is min{N,dim X - (h+1)+
h}.

Definition. The number d,(X) = dim X (h + 1) + h — dim S*(X) is
called the cumulative h-defect of the variety X C PV. The number
6n(X) = min{N,dim X (h + 1) + h} — dim S*(X) is called the h-defect
of the variety X c PV,

Definition. A variety X C PV is called h-defective, if §,(X) > 0 and
5h—1(X) = 0

Remark 1. If X is h-defective then dn(X) > 0 and dp_1(X) = 0. If
dn(X) > 0 and dj,_1(X) = 0 then S*(X) = P" or X is h-defective.

One can see that S(X) = S(S*¥(X),S"*-1X), where S(Y,Z) =
UyEY,zEZ,y;éz (y, 2).

Definition. For a general point z € S»X the variety

Sxhak = yly € SH(X), Fy' € SPH1X, y#y': z€ (y,y)}

is called the k-entry locus of z. If k = 0, the k-entry locus of z is also
called entry locus of z.

Further, if the value of h is fixed, we will denote x5 , o by X,(X)
or simply by X,.

Remark 2. (1) dim EX,h,z,k = dim EX,h,z,hfkfl-

(2) If SM(X) # PV, then dim Sy p, , g+ (X) +dp_g—1(X) = dp(X).
In particular, d;(X) > d;(X), if i > j.

(3) If X is h-defective, then V& < h di(X) =0 and dimXx p, , 1 =
dim EX,h,z,O = dh(X)

(4) Since do(X) = 0, one has dy(X) = dimXx .0 + dp—1(X) =
dim EX,h,z,O + ...+ dim EX,I,Z,O- This is the reason Why dh(X)
is a cumulative defect.
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For a general point z € S*(X) put
Vx p,» = {z|z is smooth, T, X C T,S"(X)}.

For the simplicity, we can write V,(X) or V, instead of Vx ., if the
value of h is fixed. Denote the dimension of Vxj, , by v, (X).

Remark 3. If z € (xo, ..., xp), where zg, ...,z € X are general points,
then, by Terracini lemma, (T,,X,...,T;, X) = T,S"(X). Hence,
Zo,...,%n € Vxp, and, thus, X,(X) C Vx .. Therefore, dim¥,(X) <
vp(X). If X is h-defective, one has dn(X) = dimX,(X) < yp(X).
More, PV # T,S"(X) and, since X is non-degenerate, we obtain X #
Vxh, and vp(X) < dim X. Finally, dy(X) < v, (X) < dim X.

Lemma 1. Suppose that a variety X C PV is non-degenerate, q¢ €
Sm=HX) and z € SH™(X) (I > 0) are general points, such that q €
Yx 1tmem—1, and T is the projection with the center at T,S™ 1(X).
Then
(1) m(z) is a general point of S'(w(X)) and 7 (Tr(»S'(w(X))) =
TZSH'm(X);
(2) dim7(X) =dim X — d,,(X) + dpp—1(X);
(3) for k > 1 one has di(7(X)) = diym(X) — dn(X) — k(dn(X) —
-1 (X));
(4) fork >0, 7(Vx gsm,2) = Va(x)bn(z) 0nd vg(7(X)) = Vmyr(X) —
dn(X) + dp1 (X);
(5) if dp(X) = 0 then dimn(X) = dimX and for k& > 1,
Ok (m(X)) = Oktm(X).-

The proof of this Lemma easily follows from Terracini lemma; for
the main part see [11, Proposition 1].

Corollary 1. Suppose that a variety X C PN is h-defective, m <
h—1, g€ 8™ Y(X) is a general point and 7 is the projection with the
center at T,S™ Y(X). Then w(X) is (h — m)-defective, dimm(X) =
dim X, for k > 1 one has dg(7(X)) = dgrm(X), 6k(7(X)) = dkrm(X),
p(m(X)) = Vs (X).

2.2. Other notations. We will denote by G(k, N) the grassmannian
of k-dimensional subspaces of PY. More, we will always assume that
G(k, N) is embedded in P(i1) " by Plucker embedding. For a point
a € G(k,N), the corresponding subspace is denoted by P%.

If x € X is a general point, the osculating space of order k to X at
the point x is the linear span of all partial derivatives of order not more
than k£ of some local parameterization of a neighbourhood of z. It is
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denoted by T*X. For exact definitions and properties see, e. g. [11,
Section 3.

If S is a set of linearly equivalent divisors on X, then the complete
linear system of divisors, containing S, we will denote by |S|. If L is
a linear system of divisors on X, xg,...,xx € X are general points
and my, ..., myg are positive integers, then L(—moxo — ... — mgxy) is
a subsystem of £ that consists of divisors having their multiplicities at
least m; at x;, 0 <1 < k.

Suppose that PN = (Ly,..., L), where Ly,..., Ly C P¥ are linear
subspaces of dimensions aq,...,a; respectively and N = a; + ... +
ar, + k — 1, i. e. these subspaces are in general position. Let ¢; :
P! — L, be a Veronese map of degree a;, 1 < i < k. Then the
variety J,cp1(@1(t), ..., @k(t)) is called the rational normal scroll of
type (a1, ...,ax) or simply a scroll of type (ai,...,ax) and is denoted
by Scroll,,.. ... We will call the curves ¢;(P*) C L;, 1 < i < k, basic
curves.

Take non-negative integers a, b, ¢ and consider two scrolls of types
(a,a+b) and (a+c, a+b+c) such that their linear spans are skew. Take
amap 7 : Scrollgieatpre —+ Scrolly o5 which is the projection from
¢ ruling lines. We will call the variety M = U, csron,,, o1pr. (T T(2))

4-scroll of type (a,b,c).

Remark 4. (1) 4-scrolls of types (a, b, c) and (a, c, b) coincide.
(2) dim(M) = dim(Scrolly qts) + dim(Scrollocatpre) +1 = 2a +
b+14+2a+b+2c+1+1=4a+2b+ 2c+ 3.

3. MAIN RESULTS
3.1. Main theorem.

Theorem 1. Suppose that X C PV is an irreducible, non-degenerate,
projective threefold. Its defect 6,(X) is not zero if and only if a triple
of X, N and dn(X) is of one of the following:

(1) X C Coner(Y), where L is a linear subspace, dimL < (h +
B —dimY) -2, 1 <dmY < 2 and Y C P" is non-h-
defective, Ny > (h 4+ 1)(dimY + 1); N = dimL + Ny + 1,
dp(X) > (h+1)(3—dimY) — 1 —dim L, 6,(X) > min{Ny —
(h+1)(dimY +1)+1,(h+1)(3—dimY) —1—dim L};

(2) X C Coner,(vo(Y)), where L C PN is a linear subspace having
dimL < h, Y C P"! is a non-degenerate surface of minimal
degree, N = 3h+3+dim L, d,(X) > h+1—dim L, 6,(X) > 1;

(3) X = m(v2(Y)), where Y C P**2 is a non-degenerate threefold
of minimal degree, L C P***5 is a linear subspace of dimension
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not more than 1, N = 4h +5 — dim L, d(X) = §,(X) = 1,
dn-1(X) =0

(4) X C Coner(vo(Y)), where L C PN is a linear subspace, 2 —
dp(X) > dim L > max{—-1,2 — w —dp(X)}, Y C PV
is a non-degenerate threefold such that diim I,(Y) = (}) — h —
1+ dp(X)+dimL, N = 4h +4 — dp(X), dp(X) = 1 or 2,
(Sh(X) = 1, 5h71(X) = 0,

(5) X is covered by lines of form ({(x),n(x)), * € Y, where Y
is a rational normal scroll of type (a,b), a,b > 1, a +b = h,
§:Y — Scrollyi1p41 95 an isomorphism and n = Ty, o vg,
where | CY is a ruling line, N = 4h + 3, dp(X) = 0p(X) =1,
(Sh_l(X) = 0;

(6) X is covered by lines of form (£(z),n(x)), x € Y, where Y =
Cone,(C) and C is a rational normal curve of degree h, & :
Y —-» Scrolly py1 1s a blowing-up of a line and 1 = Ty, © vy,
where y € Y is a smooth point, such that for a general point
5h_1(X) = 0;

(7) X =v3(P?) x P, N =19, dy(X) = 04(X) = 1, 63(X) = 0;

(8) X is a 4-scroll of type (a,b,c), 2a+b+c = 2h, b,c < h, b andc
are even iff h is, N = 4h+3, dp(X) = p(X) =1, §p_1(X) = 0.

3.2. Other results.

Proposition 1. Suppose that X C PN is an h-defective threefold, q €
Sh=2(X) is a general point and 7 is the projection from T,S"2(X).

If m(X) is a smooth hyperplane section of the Segre variety P? x P2,
then

(1) X is covered by one irreducible family of lines U C G(1, N);

(2) U =w3(Y), where Y C P"*! is a surface of minimal degree;

(3) if Y # va(P?), then for h + 1 general points of X there exists
unique rational normal scroll of type (h + 1,2h — 1), passing
through them;

(4) if Y = vy(P?), then for h + 1 general points of X there ex-
ists unique rational normal scroll of type (6,6), passing through
them;

(5) if Y is a rational normal scroll of type (a,b), a,b> 1, a+b = h,
then X is covered by lines of form (&(x),n(x)), € Y, where
§:Y — Scrollai1p41 98 an isomorphism and n = Ty, o vg,
where | CY 1s a ruling line;

(6) if Y = Cone,(C) and C is a rational normal curve of degree h,
then a general line of U is of form (£(x),n(x)), x € Y, where
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§:Y ——» Scrolly py1 is a blowing-up of a line and 1 = Ty, () 0va,
where y € Y is a smooth point, such that for a general point

x € (p,y) holds £(z) = n(x);
(7) if Y = Uz(]P’Q), then X = U3(P2) x P!:

Proposition 2. Suppose that X C PN is an h-defective threefold, q €
Sh=2(X) is a general point and 7 is the projection from T,S"2(X).
If m(X) is a singular irreducible hyperplane section of the Segre va-
riety P? x P2, then
(1) If X is not covered by lines, then X is the image of the projec-
tion of vo(Y') from two different smooth points, where Y C P+2
s a threefold of minimal degree;
(2) If X is covered by one irreducible family of lines U C G(1, N),
then:
(a) U = My (v3(Y)), where Y C PM is a surface of minimal
degree and y € Y s a smooth point;
(b) for h + 1 general points of X there exists unique rational
normal scroll of type (h,2h), passing through them;
(€) X = Ty p)my) (V2(Coney(Y))) and Cone,(Y) C P2 s
a threefold of minimal degree;
(3) If X is covered by two irreducible family of lines and U C
G(1,N) is one of these families, then:
(a) either U = Ty, (v3(Y)), where Y = Cone,(C) is a ratio-
nal normal scroll of type (a,b), a =0,b=h, orU = ¢(Y),
where Y is a rational normal scroll of type (a,b), a+b = h,
1 < a < b, and ¢ is given by complete linear system
12C + (3a + b)L|, where C is the basic curve of degree b
and L is a ruling line;
(b) X is a 4-scroll of type (a', 0, ), where a' > a, b’ =b—a
and 2a' + b + ¢ = 2h;
(c) for h+ 1 general points of X there exists unique rational
normal scroll of type (h+a' —a,2h—a'+a) passing through
them and consisting of lines from U.

The proofs of these Propositions are splitted into a lot of lemmas
from Section 6.

3.3. Proof of “if” part.

Lemma 2. Suppose that X C Coner(Y), where L is a linear subspace,
Y C P is non-degenerate variety. Then dp(X) > (h + 1)(dim X —
dimY) —1—dim L 4+ dp(Y) and 65(X) > min{Ny — (h + 1)(dimY +
1)+ 14dp(Y),(h+1)(dimX —dimY) — 1 —dim L + du(Y)}.
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Proof. For a general point z € S"(X) one has 7 (T,S"(X)) =
TFL(Z)Sh(Y). We have dimTﬁL(z)Sh(Y) = dimSh(Y) = (h+1)(dimY+
1) — 1 — du(Y). Thus, dim7,S"(X) = dimL n T,S"(X)+
dim 7, (T,8" (X)) +1 = dim LNT,8™(X) + (h+1)(dim Y +1) —da(Y) <
dim L+ (h+1)(dimY +1) —d,(Y). Hence, dp(X) = (h+1) dim X +h—
dim S"(X) > (h+1)dim X +h— (h+1)(dimY +1) —dim L+ d,(Y) =
(h+1)(dim X — dimY) — 1 — dim L + ds(Y) > 0. Since N = Ny +
dim L+1, we obtain 5 (X) = min{N, (h+1) dim X +h} —dim S*(X) >
min{ Ny +dim L+1—(h+1)(dim Y +1)—dim L+d(Y), (h+1)(dim X —
dimY) —1—dim L+ dp(Y)} = min{Ny — (h + 1)(dimY + 1) + 1+
dp(Y), (h+1)(dimX —dimY) — 1 —dim L + d,(Y)}. O

3.3.1. Items 1 and 2 of Theorem 1. Apply Lemma 2 to the item 1.
Since Y is non-h-defective and Ny > (h + 1)(dimY + 1), dy(Y) = 0.
Since dimL < (h+1)(dim X —dimY') — 2, dy(X) > (b + 1)(dim X —
dimY)—1—dimZL > 0 and 0;(X) > min{Ny — (b + 1)(dimY + 1) +
1L, (h+1)(dimX —dimY) — 1 —dim L} > min{1,d,(X)} = 1.

In the item 2, X C Coner(v2(Y)), where Y is a surface of minimal
degree in PTl. By the classification of defective surfaces, vy(Y) C
P3h+2 is h-defective surface with dj(vs(Y)) = 1. Thus, by Lemma 2,
one has dp(X) > (h+1)(3—-2)—1—-dimL+1=h+1—dimL and
5p(X) > min{3h+2—(h+1)(2+1)+1+1, (h+1)(3—2)—1—dim L+1} =
min{1, d,(X)}. Since dim L < h, we obtain d,(X) > 1 and §,(X) > 1.

3.3.2. Item & of Theorem 1. For the items 3 and 4, it is easier to
use the following observation, which follows from Lemma 1. Suppose
that h > 2. Take a general point x € X and consider the projec-
tion from 7, X. If mp, x(X) is a threefold and 7y, x (X) satisfies the
same conditions as X, but for A — 1, then dp(X) = dp_1 (71, x (X)),
On(X) = dp_1(mr,x (X)), 0p—1(X) = 6p_o(mr,x). Hence, we can reduce
the situation to h = 1. Also we will use the following fact. Let Y C PV
be a non-degenerate variety, locally defined by quadratic equations, i.
e. v2(Y) is a component of (v3(Y)) Nwe(PM). If y € YV is a general
point, then T, (yva(Y) © V2 = V2 O Ty, This fact is true, because both
maps are given by the complete linear system of quadrics containing y
with the multiplicity at least 2.

Suppose that X = 77 (vo(Y)), where Y C P2 is a non-degenerate
threefold of minimal degree. Note, that any variety of minimal degree
is defined by quadratic equations. Consider a general point z € X
and a point y € Y such that © = 7w (v2(y)). Then mp x(X) =
T (7, e (v) (V2(Y)) = 71 (va(my(Y))), where L' is an appropriate
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subspace, dim L' = dim L. Since 7,(Y") is a threefold of minimal de-
gree in P"*1 we are in the situation of A — 1. Thus, it is suffisient
to verify the case of h = 1, which is the classical one. First, let us
check that for any line L C PY and two general points z,y € vo(P?)
holds L N (T,ve(P?), T,u2(P?)) = 0. Assume the opposite and con-
sider the projection from T,vy(P?). Then we have that for a general
point y' € 7y, y,ps) holds 4,3y (L) N Ty r,u,mps)(v2(P?)) # 0. Since
Ty0s(p9) (V2 (P?)) = 02 (7,1 4 (P )) = vo(P?), we obtain that for certain
line L' C P° and a general pomt y' € vy(P?) holds L' N Tppva(P?) # 0.
Taking the projection from T vs(P?), one has that the image of L'
is a point and through that point there pass all tangent lines to a
CONIC 77,0, (P2) (v2(P?)) on a plane, which is impossible. Thus, L N
(TwUQ(P3),TyU2(IP3)> = @ HGDCG, dl(’ﬂ'L(Ug(Ps))) = dl(UQ(IP?’)) = 1.
Since dim(7z(vo(P?))) =9 —dim L — 1 > 7, one has (51(7rL(1)2(IP’3))) =
1. Finally, we should notice that also L N T,u(P?) = (. Thus,
Tyvo(Y)N L = 0 and 71 (ve(Y)) is a threefold. So, we were able to
make the step from A to h — 1.

3.3.3. Item 4 of Theorem 1. Suppose that X C Coner(ve(Y)), where
L C P is a linear subspace, d = 1,2 is a parameter, 2 — d > dim L >
max{—1,2 — W —d}, Y C P**! is a non-degenerate threefold
such that dimI,(Y) = () — h — 1 + d + dim L. First, note that Y is
locally defined by quadratic equations, if dim I5(Y") is greater then the
maximal possible for a variety of dimension 4 in P**!. This maximal
dimension is reached for four-folds of minimal degree, h — 2. It is
equal to (*;') — (h —2) = (}) — 2h + 3. Thus, if dy(X) + dim L +
h > 4 (in particular, if h > 4; if h = 4 and dimL +d > 0; if h =
3 and d + dimL = 2), Y is defined by quadratic equations. Take
a general point x € X and the point y = v, '(7.(x)) € Y. Then,
Tr,x(X) C Conep (T, va(v)(v2(Y)) = Conep (va(my(Y))). If h > 3,
the variety 7, x (X) is three-dimensional, because m,(Y’) is a threefold
(the case h = 2 we will consider independently). Let us show that
71, x (X) satisfies the conditions with the same value of the parameter
d. Since dim L' = dim L, the inequality 2 —d > dim L' > max{—1,2 —
(- D2) _ g} holds unless h = 4, d = 1, dimL = —1 and h = 3,
dim L =1 (exactly the same exceptions as above!). In all other cases
we also need to check dim Ir(m,(Y")). Since dim I5(Y) + dim(v2(Y)) =
dim H°(O(2),P**1), we have dim(vy(V)) = (*7%) =1 — dim L(Y) =
")y -1-(3)+h+1-d—dimL = 4h +3 —d — dim L. Since

dim(vy (7, (Y'))) = dim(ve(Y)) — dim T,y v2(Y) — 1 = dim(v,(Y)) — 4,
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one has dim Ir (7, (Y)) = dim H*(O(2), P") —dim(vs (1, (V))) = ("3?) —
1—(4h+3—d—dimL)+4=("}") —(h—1)—1+d+dimL".

Let us consider special cases. If h =4, d = 1, dim L = —1, then
dimL(Y)=6—-4—1+1—1=1,i. e. Y is contained in unique quadric
Q C P°and X = »y(Y), £ = vy(y). Since T, X C T,v2(Q), 77, x(X)
lays in the cone with the vertex 7, x (T,v2(Q)), which is a point, over
Ty 05(Q) (X) C Tryu(@) (12(Q)) = v2(my(Q)) = v2(P*). More, since Y is
contained in unique quadric, dim I»(m,(Y)) = 0. Since, L' is a point,
the conditions are satisfied for d = 1.

The case h = 3, dim L+d = 1. One hasdim [,(Y) =3-3—-1+1=0.
Thus, (v2(Y)) = (va(P*)). If ' € Y is a general point, one has
that 71, 0,()(v2(Y)) lays in a cone with the vertex at the point
T

1)2(y)v2(y) (Tw(y)’vg (P4)) over 7TTv2(y)1’2(P4) (’1)2 (IP4)) = UQ(]P3). Hence,
dim L' =dim L+ 1, 7,(Y) = P* and dim I5(m,(Y)) = 0. All conditions
are satisfied for the same value of d.

The case h = 2. In this case X C Coner(vo(P?)) and dim L+ d = 2.
Let us see that X is not 1-defective. Since dim(X) = dim(v,(PP?)) +
dim L+1 > 10, X is not v, (IP?) or its projections; X is not a section of
P? x P?, X is not a subset of 4-dimensional cone over vy(P?). Thus, X
could be either a cone, either a subset of a 4-dimensional cone over a
curve. These two cases are impossible, because 71,(X) = vo(P?), which
is not a cone and is not a subset of a 4-dimensional cone over a curve.
Therefore, for a general point z € X the variety 7, x(X) is a three-
fold. More, 77, x (X) C Coner (7, u(e2) (v2(P?))) = Coners (v2(P?)),
where L' = 7y, x(L), dim L’ = dim L. If d = 2, then L' is a point,
71, x(X) is a cone over v(P?). Thus, dy(X) = dy(m7,x (X)) =2 =d
and 62(X) = 01 (mr,x (X)) = 1; 01(X) = do(nr,x(X)) = 0. If d = 1,
then L' is a line. Thus, di(mr,x (X)) > 1. If di(mp,x(X)) = 2, then
7, x(X) is a cone over 1-defective surface; 71, x (X) is not a cone over
v2(PP?), because 71, x (X) is non-degenerate; 71, x (X) is not a cone over
a curve because 7 (71, x (X)) is not. Hence, dy(X) = di (77, x (X)) =
1=d and 52(X) = 51(7Tme(X)) = 1; 51(X) = 5()(7Tme(X)) = 0.

3.3.4. Items 5-8 of Theorem 1.

Lemma 3. If X is one of the items 5-8 of Theorem 1, then for h+ 1
general points there exists a rational normal scroll of type (a,b), a+b =
3h, a,b > h, passing through them.

Proof. Take h + 1 general points and concider lines ly,...,l, C X,
passing through them.

For the items 5 and 6 these lines give us certain points yg,...,y, € Y.
Since Y C P! is a surface of minimal degree, there exists a rational
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normal curve K of degree h passing through them. Then the surface S
covered by lines (£(x),n(z)), x € K, is a rational normal scroll. Really
for the item 5, £(K) is a rational normal curve of degree h + 1, n(K)
is a projection of a rational normal curve of degree 2h from its point,
which is a rational normal curve of degree 2h —1; (£(K)) N {(n(K)) = 0.
For the item 6, {(K) is a rational normal curve of degree h + 1 and
n(K) is a rational normal curve of degree 2h; (£(K))N{(n(K)) = £(K)N
n(K) = &(KN{p,y)). One can see that in this case S is a scroll of type

(h+1,2n—1).

For the item 7, lines ly,...,ls give us 5 points on v3(P?), i. e. 5
points on the plane. If K is a conic, passing through them, then the
surface v3(K) x P! contains I, ...,ls. This surface is a scroll of type
(6,6).

For the item 8, lines ly, ..., [, give us h+ 1 points on Scrollayca-+b+tec-

Through h+1 points on this scroll there passes a rational normal curve
K of degree a+c+ # Under the projection ¢ from c ruling lines this
curve goes to a rational normal curve of degree a + % By definition
of 4-scroll, the surface S, covered by lines (¢(z),x), € K, contains

lo,..., . Sisascroll of type (a+%,a+c+%); a+%+a+c+% =
2a + b +c+ h — Sh, a+ % — 2a—|—b-|-26+hfc — 3h;c Z 3h;h — h D

By the classification of h-defective surfaces one can see that Scroll,
is not h-defective, because a,b > h. Since dim(Scroll,p) =a+b+1 =
3h+1 < (h+1)-dimScroll,, + h, one has S"(Secroll, ;) = (Scrollyp)
and d(Scroll,y) = 1. Thus, if z € S*(Scroll,p), then T, (Scroll, ;) is
a curve. More, ¥,(X) D 3,(Scroll,p), and dy(X) > dp(Seroll,,) = 1.

Suppose that X is covered by an irreducible family of lines and
di(X) > 0. Take a general point 2’ € S¥(X) and consider ¥, (X).
By Terracini lemma, for a general point z € ¥,/(X) one has T, X C
T,S*¥(X). So, if | is a line of the family passing through =z, then
| c T,X C T,S*(X). Let M, be (the closure of) a subvariety of X
swept out by all such lines, passing through general points of X,/ (X).
Then M, C T,S*(X)Nn X.

Take general points zy,...,z, € X, z € (xg,..., ;) and consider
the corresponding surface S, that is a scroll of type (a,b), a +b =
3h, a,b > h. Then zg,...,z, € X,(Scroll,p). If dp1(X) > 0,
then for a general point 2’ € S"}(X) one can define a surface M,
as above. Take a general point 2’ € (zg,...,zp_1). Then by Ter-
racini lemma, 7, S" }(X) C T,S"(X). Hence, M,, C T,5"(X). Since
dmT,S"(X) = (h+1) dim X +h—dy,(X) < 4h+2 < N, X ¢ T,S*(X).
Thus, while we vary zo, ..., zh—1 € X,(Scroll,p) and 2/, the surface M,
cannot vary. Hence, M, D ¥,(Scroll,;). Since by our constructions,
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through a general point of X there passes only one line from the family,
we obtain M, O Secroll,, and the components of ¥,/(X) containing
Zo, - . -, Th_1, lay in Scroll,p. Since Scroll,p is not (h—1)-defective and
dim(Scroll,p) = a+b+1=3h+1> h-dimScroll,, + (h — 1), one
has dy_1(Scroll,p) = 0. Thus, dy—1(X) = 0. Hence, X is h-defective.

If dp(X) = 2, then, since T,S"(X)NX # X, M, = ¥,(X). Thus,
Scroll,p is a component of ¥,(X), passing through zo,...,z,. But
dp(Scroll,p) = 1 and X,(Scroll,p) is a curve. Thus, dp(X) = 1 and
(X)) =1.

3.4. Proof of “only if” part. From now on we will suppose that
X is an h-defective threefold, if the opposite is not written explic-
itly. Take a general point ¢ € S"~2(X). Denote the projection from
T,S"(X) by m. Note, that since dj,_o(X) = 0, one has dim 7,5" 2(X) =
dim $"2(X) = 4h—5. Since d;,_1(X) = 0, we also have dim 7(X) = 3.
By Corollary 1, one has vy (7(X)) = v, (X) and dy (7(X)) = dp(X) > 0.
Denote by N’ the dimension of the ambient space of 7(X), N' =
N —dimT,S$"2(X) - 1= N — 4h — 4.

Since 7(X) is an 1-defective threefold, we can apply the theorem of
Scorza to describe 7w(X). Let us also calculate the numbers dj(X) =
di(7(X)), va(X) = vy (w(X)) and N.

If 7(X) is a cone over a surface Y, we should distinguish the cases
dl(Y) = l/h(Y) = 1, dl(Y) = l/l(Y) =0 and dl(Y) = 0, I/l(Y) = 1.
In the first case d;(7(X)) = v;(7(X)) = 2. More, by the classification
of 1-defective surfaces, dim(Y) > 5 and Y is either a cone over a
curve, or vo(P?). Thus, N’ > 6 and 7(X) is either a cone over a curve
(see Section 4.2 and Corollary 2 for the classification of such X), or
a cone over vy(P?) (see Lemma 4); N > 4h + 2. In the second case
di(7(X)) = vy(w(X)) =1, N' > 7and N > 4h + 3; see Proposition 4
for the classification.

In the third case, by [6, Theorem 1.3], non-1-defective surface Y with
v1(Y) = 1, which is called 1-weakly defective, is either a subsurface of
a cone with the vertex at a point over v,(IP?), or a subsurface of a cone
with the vertex at a line over certain curve. Hence, 7(X) contained
either in a cone with the vertex at a line over v,(IP?), or in a cone with
the vertex at a plane over certain curve. Thus, the third case actually
consists of two other cases from the list of the theorem of Scorza, and
we will consider it as a part of further cases.

If 7(X) is a subvariety of a cone with the vertex at a plane over a
curve, then di(7(X)) =1, n(X) =2, N' > 7, N > 4h+ 3. See Section
4.2 and Corollary 2 for the classification.
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If 7(X) is a subvariety of a cone with the vertex at a line over vy(PP?),
then dy(7(X)) =1, n(X) =2, NN =7, N =4h + 3. See Lemma 4 for
the classification.

If N' =7 and 7(X) is a hyperplane section of the Segre variety P? x
P? C P® then di(7(X)) = vi(7(X)) = 1, variety X,(7(X)) = Vrx)1,0
is an irreducible conic, N = 4h + 3; see section 6 for classification.

If N' =7,8,9 and n(X) is the Veronese variety v2(P?) C P° or a
projection of it in PV, then di(7(X)) = 1 (n(X)) = 1, the variety
Y.(m(X)) = Va(x),1,. is an irreducible conic, N = 4h+3,4h+4,4h +5
respectively; see section 5.1 for classification.

4. Z/h(X) =2
4.1. 7(X) C Coner(v2(P?)), dim L = 2 — dp(X).

Lemma 4. If 7(X) C Coner(ve(P?)) and dim L = 2 — dy(X), then X
s one if the following threefolds:

(1) X C Conep(vy(Y)) € PH+4=dr(X) “yphere M C PHh+4=dn(X) s ¢
linear subspace, 2 —dp(X) > dim M > max{—1,2— W -
dp(X)}, Y C P! s a non-degenerate variety, dimyY = 3,
dim Ip(Y) = 8E30E2) _gp 9 (2 — djy(X) — dim M).

(2) X C Conep(vo(Y)), where M is a linear subspace of dimension
h+1—dy(X) and Y C P"! is a non-degenerate surface of
manimal degree.

(3) X C Coney(Y), where M is a linear subspace of dimension
h—1 andY C P33 is a non-h-defective surface.

Proof. First, note that in this case N = 4h + 4 — d,(X). Denote
by L£,(X) a system of divisors on X of the form V,(X), z € S*(X)

is general. Through general points zg,...,x, € X there passes ex-
actly one such divisor, which corresponds to z € (xo,...,x). Thus,
Take general divisors Dy, Dy € L, and general points xs,...,x, €

Dy N D,. The divisors have the form V,,(X) and V,,(X) for cer-
Lemma 1, 7(D;) = Vix)i,n(z), T(2%) € S(m(X)), i = 1,2, and thus
7(D1),m(Ds) € Ly(7(X)).

So, let us study the system £;(m(X)). Since m(X) C Coner (v2(P?)),
for a general point w € S(7(X)) in order to obtain the divisor Vy(x) 1w,
one has to consider a projection 7wy from the vertex L of the cone
(1, (m(X)) = vo(P?)). Then take the point 7 (w) € S(vo(P?)) and the
corresponding divisor Vi, p2),1,r, (w) C V2 (P?), which is a conic, or, more
concrete, vy(l), where | C P? is a certain line. Further, Vi(x) 1, =
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m(X) N Coner(Voy#2),1,n,(w)) \ L. In other words, the projection 7,
gives us one-to-one correspondence between the system £(7(X)) and
the system of conics on vy(IP?), which is a system of lines in P2. So, the
system L;(7(X)) is linear. Consider a map ¢ : 7(X) --+ P2, generated
by this system. Then vs 0 ¢ = 7. Hence, dim ¢(7(X)) = 2 and for
general divisor D € £;(m(X)) we have 2 - D is a hyperplane section of
7(X), containing L.

So, the divisors Vi(x)1,x(z1) and Vi(x),1,x(z,) are linearly equivalent.
So, divisors D; and D, are also linearly equivalent, and the system
Ly(X) is linear. More, the divisor 2 - D; is a hyperplane section of X.

Consider a map ¢y, : X -+ P"*1 given by the linear system £ (X).
Since, as we saw, dim (7 (X)) = 2 for a map, constructed by a liner
sub-system L1 (7(X)) C L,(X), we have that dim ¢, (X) > 2. Consider
a Veroneze embedding vo(P"*!) and take its restriction vy : op(X) —
PY'. Since the complete linear system of quadrics on P! is generated
by divisors of the form 2- H, where H is a hyperplane in P**!, and 2- D
is a hyperplane section of X for a general D € L,(X), we have that
any linear section of vy(p(X)) corresponds to a certain linear section
of X, or, in other words, v, 0 ¢}, is a (rational) linear map on X and
thus on P,

Denote by M the center of projection vo,0¢p. So, Ty = vo0,. Con-
sider the cases of dim y,(X) which coincides with dim ¢, (X), taking
into account that 3 > dim ¢, (X) > 2.

The case dimmy(X) = 3. Since N = 4h + 4 — dp(X), one has
that dim(my (X)) = 4h+4—dp(X) —dim M — 1. So, dim L (pn(X)) =
dim HO(O(2), P"+1) —dim vy (pp (X)) —1 = EEBE) _gp 44 d, (X) +
dim M. Since dim Ir(¢n(X)) > 0, in particular, dim M > 4h + 4 —
Ba3)02) g, (X) = 2 — 8022 g, (X). Note, that for i > 4 the
last unequality does not give us any restrictions on M; for h = 2 we
have dim M > 2 — d,(X); for h = 3 we have dimM > 1 — d(X). On
the other hand, for a variety Y of dimension k in P**! the maximal
possible value dim I5(Y"), which holds for varieties of minimal degree,
is dim HO(O(2), PM1k) — (h 41 — k 4 1) = OHA2OHZRD _py
k—2 = 03042 gy q)p 4 GUEHD Ror k= 3, we have that
dim I (n (X)) < @32 _yp 9 So, dim M < 2 — dy(X). Finally,
we have X C C’oneM(v (Y)) C P*+4=da(X) where M C P#+4=dn(X)
is a linear subspace, 2 — dp(X) > dim M > max{—1,2 — W -
dn(X)}, Y C PP is a non-degenerate variety, dimY = 3, dim I,(Y) =
BA3A2) g — 2 — (2 — dp(X) — dim M).
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Remark 5. The condition dim I,(Y) = W —4h—2—(2—dy(X)—
dim M) says that the number of linearly independent quadrics in P!
containing Y differs at most by 2 from the maximal possible for three-

dimentional varieties. In particular, for A > 3, we have that h — 1 >
degY <h+1—-dp(X)—dimM < h+1.

Ezample 1. Tt is well-known, that the variety X = vy(P?) C P is
8-defective with dg(X) = 2. Since X = vy(Y"), where Y = vy(P?) C P?,
X lays in a cone with the empty vertex over v2(Y"). So, in our notation
dimM = —1. Let us calculate dim I,(Y). If we interpret P° as a
projectivisation of symmetric 4 x 4 matrices and Y as a projectivisation
of symmetric matrices of rank one, we can see, that I,(Y) is generated
by 2 X 2 minors with exactly one linear relation among them. So,
dim (V) = 886 46 — 1 = 20 and thus G2 4. g9 (2 -
dg(X) —dim M) =55—-32—-2—1=20=dim I,(Y).

The case dimmy(X) = 2. By the same reasons, dim I(pp(X)) =

BA0H2) 4 —4+dy(X) +dim M. Since dim @, (X) = 2, we have that

dim I (n (X)) < @342 35 3. S0, dim M < h+1 — dy(X). On
the other hand, since dimm,(X) = 2, for a general point € X one
has dim7,X N M = 0. Since the variety X is non-(h — 1)-defective,
we have that for general points zg,...,z, 1 € X holds dim(7,, X N
M,. . T, , XNM)=~h-1. Hence, dimM > h —1. If dy(X) = 2,
we obtain that dimM = h—1 = h+ 1 — du(X), and p(X) is a
surface of minimal degree in P**1. If d,(X) = 1, either dim M =
h=h+1—dy(X) and ¢(X) is a surface of minimal degree in P!,
or dimM = h — 1 and dim I(p,(X)) = @042 _ 3 4 . .
is less than a maximal possible by 1. In the last case we can apply
Proposition 3. To apply it, we need to check that for a general point
y € v(P?) the variety 7r,,,p2 (v2(P?)) is not a cone, which is true,

because 7r, y,p2) (V2(P?)) = v2(P') is a conic. O

4.2. m(X) C Coneps-a,x)(C), where C is a curve, N' > 8 — d,(X),
N > dh+4 — dy(X).

Proposition 3. Suppose that X is non-degenerate irreducible h-defec-
tive variety, h > 2, ¢ € S""2(X) is a general point and T, sh-2(x) 15
the projection from T,S"=2(X). If mr,sh-2(x)(X) C Coner, (Yy), where
dim L, = 2(dim X —dim Y,) —d,(X) —1, Y, is such that d,(Y;) = 0 and
Ty, (Yy) is not a cone for a general point y € Yy, then X C Coner(Y),
where dim L = (h+1)(dim X — dimY) — d,(X) — 1, dimY = dim Y/,
dp(Y) = 0, S"Y is not a cone, S" g,y (Y)) is not a cone for a
general point y € Y, and S"(X) = Coner(S"(Y)).
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Proof. Let us use the induction on h.

Suppose that h > 3. Take a general point z € X and a general point
q € Cone,(S"3(X)). By Corollary 1 the variety mr, x(X) is (h — 1)-
defective and dj—; (77, x(X)) = dp(X). By Lemma 1, the point ¢’ =
Tr,x(q) € S"3(mp,x(X)) is general and m. 'y (T S"*(wr, x(X))) =
T,S"=2(X). So, for the corresponding projections we have: T, sh=2(X) =
T, 5h=3(xr, x (X)) © T, x - Hence, the variety 7r, x (X) satisfies the condi-
tions of Proposition for (h — 1)-defectivity, Ly = L, and Y, = Y;. So,
by induction, we have that mr, x(X) C Coner,(Y;), where dimY, =
dimYy = dimYy, d,— (Y,) = 0, S""(Y;) is not a cone, S"2(rr,y, (V2))
is not a cone for a general point y € Y, and S"~!(my, x (X)) is a cone
with the vertex L.

If h = 2 then S"2(X) = X and for a general point z € X we,
by our hypothesis, have that 7r, x (X) C Coney,(Y;), where dim L, =
2(dim X — dimY;) — do(X) — 1, Y, is such that d(Y;) = 0, 7y, (Yz)
is not a cone for a general point y € Y,. So, in order to have the
same basis for further constructions for all A > 2, we should show that
S(Y;) is not a cone and that S(7r,x (X)) = Coner, (S(Yz)). Assume
that S(Y;) is a cone with non-empty vertex R. Then by Terracini
lemma’ Uy,y1 €Y, y,y1 are general <TyK TZ/I Y) = UqES(Y),q is general TqS(Y) =
R # 0. Hence, Ry = U, cv. 4 is generat {1y Y> Ty Y) D R. Notice that
R, D T,Y. If R, # T,Y, then for a general point y; € Y one has
T,y (Ty,Y) D mry(Ry) # 0. Since 77,y (1,Y) = Trp v )Ty (Y),
the variety 77,y (Y) is a cone with the vertex 7,y (R,), which is ex-
cluded by the conditions. So, R, = T,Y" and, thus, R C T,Y. Since
the point y € Y is general, the variety Y is a cone with the vertex R,
which is impossible because of d;(Y) = 0. So, S(Y;) is not a cone.
Let us show that S(nr,x (X)) = Coner, (S(Y))- Since di(Yz) = 0, we
have dim S(Y;) = 2dim Y, + 1. Since dim X = dim 7y, x (X), we have
dim S(Coney,(Y;)) = dim Coney, (S(Y;)) =dim L, +dim S(Y;) +1 =
(2(dim X —dim ;) —dp(X)—1)+(2dim Y, +1)+1 = 2dim7r, x (X )+1—
d1 (WTxX(X)) = dim S(T('me(X)) Since S(Tl’me(X)) C S(COTL@LJ: (Yw)),
we obtain S(nr, x (X)) = S(Coner, (Y;)) = Coner, (S(Yz))-

Now complete the proof for all h > 2. Put M, = w;le(Lw). Then,
since S"~!(mr, x (X)) is a cone with the vertex L,, for a general point
q € S"Y(mr,x(X)) one has T,S5" ' (77, x(X)) D L. Since S"71(Y,) is
not a cone and 7z, (S"!(nr, x(X))) = S"7L(Y,), we obtain that

T,5" (mp,x (X)) C L.

geSh=(r, x (X)), g is general
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Thus,
N T,5" " (nr, x (X)) = L,
geS=Y (1, x (X)), q is general
or, by Lemma 1,
N T,SM(X) = M,.
g€Conez(SP—1(X)), q is general

Consider another general point z' € X. Then both spaces M, and

My lay in ﬂqume(x,m,)(sh_%X))’ o is general L¢S"(X).  Since the variety

S"=2(mr,y, (Y3)) is not a cone for a general point y € Yy, one has that

N T,5" (7, (1)) = 0.
geSh=2(r1, v, (Yz)), ¢ is general

Taking into account that my, = 7y, o 7wy, x and my, (X) =Y, we put
y = g, (7') and obtain that

WTme(WMm( m TqSh(X))) =

g€Cone, .1, (Sh=%(X)), ¢ is general

T, v, ( N T,5"(Yz)) =
g€Coney(Sh—2(Yy)), q is general

N T,5"2(mr,v, (V2)) = 0.

q€SM=2(r1, v, (Yz)), ¢ is general
Hence,

N T,S"(X))) C 7 (T,Ys) = (M, T X).

q€Cone, .1, (Sh=2(X)), q is general

Since My D Ty X, we finally have (M, M) = (M,, T X). Using this
fact, for a general point 2" € X and the point y” = m (2") € Y,, one
can see that mp, (My N Myn) C mpr, (My) N pg, (Myr) = mar, (T X) N
g, (T X) = TyY, N TynY, = 0, because dy_1(Y;) = 0 and, thus,
di(Y;) = 0. So, My NM,» C M, and since all three points z, z’, 2" € X
are general, we have that there exists a subspace L C PV such that for
general points z, 2’ € X holds M, N M, = L.
Put Y = 7,(X). Then X C Cone,(Y). Since

M, = N T,S"(X),
geConey (Sh—1(X)), q is general

we have that
L= N T,S"(X).

geSh(X), q is general
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Thus, S"(X) is a cone with the vertex L. Since 7 (S"(X)) = S"(Y),
we obtain that S"(X) = Coner(S"(Y)). Further,

N T,SM(Y) =
geSh(Y), q is general

N Trp(S" (m(X)) = N mr(TyS"(X)).
geSh(X), q is general geSh(X), q is general

Since L C T,S"(X) for any point ¢ € S*(X), we have

N m(T,5"(X)) =

geSh(X), q is general

7 N T,S"(X)) = m.(L) = .

geSh(X), q is general

Hence,

N T,S"(Y) =0
geSh(Y), q is general
and, thus, S"(Y) is not a cone. More, since L C T,5"(X) for a
general point ¢ € S"(X) and 7p(T,S"(X)) = Trp(S"(Y), one has
dim T,5"(X) = dim T}, ()S"(Y) +dim L+1. So, dim L = dim S*(X) —
dimS"(Y)—1=((h+1)-dim X +h—dp(X)) = ((h+1) -dimY + h —
dp(Y))—1=(h+1)(dimX —dimY) + dp(Y) — dp(X) — 1.

Since (M, M) = (M,, T X) and T,y X C M,s, one has that M, =
(Tp X, M, N My) = (TpyX,L). So, if y = mp(z) and ¢y = ('),
then T,Y NT,Y = mp(ToX) N1y (Tw X) = 7, (L, ToX) N (L, T X)) =
n(My N My) = 7, (L) = 0. Since the points z,2' € X are gen-
eral, we have d;(Y) = 0. On the other hand, 7, o7 x = Ty, =
W(TwX,L) = 7T7TL(TWX) oOTy = 7TTyY o Ty, and thus Yz = WLw(WTwX(X)) =
mr,y(7L(X)) = 7m,y(Y). Since di(Y) = 0, by Lemma 1, we have
that dimY = dimY, = dimY’ and d,(Y) = dp_1(Y;) = 0. Hence,
dim L = (h+1)(dim X —dimY) +d(Y) —dp(X) =1 = (h+1)(dim X —
dimY) — d(X) — 1. Also since S"1(Y,) is not a cone, we obtain that
S"(mr,y(Y)) is not a cone. O

Proposition 4. Suppose that X is non-degenerate irreducible h-defec-
tive variety, h > 2, ¢ € S"2(X) is a general point and T, sh-2(x) 18
the projection from TyS"*(X). If Ty, sn-2(x)(X) C Coner,(Y,), where
dim L, = 2(dim X —dim Y;) — dx(X) —1 and Yy is such that v, (Y;) = 0,
then X C Coner(Y), wheredim L = (h+1)(dim X —dimY") —dp(X) —
1, dimY =dimY, and v,(Y) = 0, in particular, d,(Y) = 0.
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Proof. Let us use Proposition 3. To apply it we need to show that
d1(Yy) = 0 and 7r,y,(Y,) is not a cone for a general point y € Y.
Really, 0 = v,(Yy) > di(Yy) > 0 and, thus, di(Yy) = 0. If 7p,y,(Y,)
is a cone with the vertex R, for a general point y € Y, then for
a general point ' € Y, and a general point y” of the fiber F,, =

(72, v, ((By, 71,3, (1)) \ By) NYg) \ T, Yy ome has Try 77,y (Ye) =
Ty, ) T1,v, (Yq) and, thus, 7y, (TyYy) = 71y, (T,nYy). Hence,
T,Y, C (1,Y,,T,Y,) and, thus, for a general point ¢' € (y,y’) one
has Vy, 1,4 O Fyy and v1(Yy) = dimVy, 1 4 > dim F,,,y > 0, which is
not the case.

To complete the proof we should slightly modify the proof of Propo-
sition 3. During that proof we had that 77,y (Y) = Y, in the corre-
sponding notation (z € X is a general point, y = 7 (z) € Y, Y, is
such that 71, x (X) C Coner,(Y,)). So, by induction on h we have that
vp—1(Yz) = 0. Since di(Y) = 0, by Lemma 1, v,(Y) = vp_1(Y,) =
0. U

Corollary 2. Suppose that h > 2 and ©(X) C Coner(Y'), where Y’
is a curve and dim L' = 2dim X — dy(X) — 3. Then X C Coner(Y),
where Y is a curve and dim L = (h + 1) dim X — dp(X) — h — 2.

Proof. Since X is h-defective variety, by Corollary 1, the variety 7(X) is
1-defective, dim7(X) = dimX and di(7(X)) = dp(X). So,
dim(r(X)) > 2dimm(X) + 1 — dy(7(X)) = 2dim X + 1 — dp(X).
Hence, dim(Y') = dim(r (X)) —dim L' —1 > (2dim X + 1 — dp(X)) —
(2dim X —dp(X)—3) —1 = 3. Since for a general point ¢’ € S(Y”) one
has dim 77, S(Y') < 3, we have that T,y S(Y") # (Y"') and, thus, Vi1 4
is just a finite number of points. Hence, v4(Y’) = 0. So, we can apply
Proposition 4, which finishes the proof. O

5. v4(X) =1 AND 7(X) IS NOT A CONE

Further we will consider the cases when 7(X) is v,(P?) or its pro-
jection or a hyperplane section of P? x P2. For both these cases for
a general point 2z’ € S(7(X)) the variety Vy(x)1,. = Xz (7(X)) is an
irreducible conic.

Lemma 5. Suppose that X is an h-defective threefold and for a general
point ' € S(m(X)) the variety Vi(x)1,» = Sy(7(X)) is an irreducible
conic. Then
(1) for a general point z € S*(X) the curve ¥,(X) is a rational
normal curve of degree 2h;
(2) If w € S*¥(X), k < h — 2, then the projection from T, S*(X)
restricted to X s a birational isomorphism.
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Proof. By Lemma 1 and Corollary 1, we have that v, (X) = vy (7(X)) =
dp(X) = di(n(X)) = 1 and 7(Vxp,2) = Va(x)1,4(z) for a general point
z € SM(X) such that ¢ € Sxppo Since dp(X) = vp(X) = 1, we
obtain that ¥,(X) = Vxp, is a curve and 7(X,(X)) = X, (7(X))
is an irreducible conic. Since ¢ € Xxp,h-2, ¢ € (Zo,-..,Tp2) for
some (general) points of 3,(X). More, by Terracini lemma, 7 is the
projection from (T3, X, ..., T,,_,X). Thus, it is sufficient to show that
if h > 2, for a general point z € X and a general point z € S"(X)
such that x € ¥,(X) the curve 7, x(¥,(X)) = Xrp (o) (mx (X)) is a
rational normal curve of degree 2h —2, then ,(X) is a rational normal
curve of degree 2h.

Since X.(,)(7(X)) is an irreducible conic, for a general point z' €
En(z) (W(X)) holds Twl’iT(X) N <E7r(z)(7T(X))> = Tw,EW(z) (W(X)) Thus,
for a general point x € ¥,(X) holds T, XN(X,(X)) = T,;X,(X). There-
fore, the projection 7, x restricted to (3,(X)), is the projection from
7,5, (X).

Let us show that the projection from 7, C for a general point x € C'
is a birational isomorphism. Assume the opposite. Then for a general
point y € C the plane (T,C,y) contains other point y' € C. If we
take the projection from T,C, then m1,c(y') € Try, o ()mr,c(C). Since
mr,¢(C) is a rational normal curve of degree 2h — 2, one has 77, ¢(y') =
mr,c(z). Thus, y' € (T,C,z). Since T,C NT,C = 0, y' € (y,x),
i. e. general secant line of (' is a three-secant. Hence, the same is
true for 77, x(C'), which is a rational normal curve of degree 2h — 2.
Thus, it is impossible, and the plane (T,,C,y) meets C' only by z and
y. Therefore, the projection from 7,C for a general point z € C is a
birational isomorphism. If H' is a general hyperplane containing 7,,C,
then H' N C consists of 2h — 2 points, which are the preimages of the
points 7r,¢(H') N 71, (C), and the point x with the multiplicity 2.
Thus, degC = #(H'NC) =2h — 2+ 2 = 2h.

Further, if y € X is a general point and ¢ € (T, X,y) is another
point of X \ 7, X, then T,,X C (T, X,T,X). Hence, if z € S"(X) is
a general point such that z,y € X,(X), then z,y,y" € Vxp,. Since
mr,x is a birational isomorphism restricted to Vx ., one has ¢y’ = v,
and 7, x is a birational isomorphism on X, if h > 2. If w € S*¥(X),
k < h — 2, then the projection from 7,,S*(X), by Terracini lemma, is
a composition of k + 1 projections of type 7, x. Thus, the projection
from T,,S*(X) is a birational isomorphism on X. O

5.1. vp(X) =1, m(X) is the Veronese variety vy(IP?) or one of its
projections. The possible cases in this situation are the following:

(1) m(X) = va(P%);
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(2) m(X) = 74 (vo(P?)), where z is a point;
(3) m(X) = mr(v2(P?)), where a line L intersects vy(P?) with mul-
tiplicity at most 1;
(4) m(X) = m(v2(P?)), where a line L intersects vy(P?) in two
different points;
(5) m(X) = 7r(v2(P?)), where a line L intersects vo(P?) with mul-
tiplicity 2 at one point.
The cases 1-3 are covered by Lemma 7. For the case 4 see Lemma 8
and further the section for m(X) = P? x P> N1 H. In the case 5 one
has 77, (v2(P?)) C Coney(vo(P?)), where | = 7, (T,vo(P?)) is a line and
v2(P?) = Tp,0,p3)v2(P?). Hence, in this case v1(X) # 1 and we do not
consider it here.

Lemma 6. Suppose that dim X > 2, for a general point x € X and
the projection 7' from T* X, the normalization of 7'(X) is a birational
projection of a linearly normal variety Y, from its point y,. Let D, be
the image on 7'(X) of the exceptional divisor of the projection m,, :
Y, -+ 7'(X). If dimT*X is the mazimal possible and the preimage
D = 7"71(D,) does not depend on x, then there exist a linearly normal
variety X' and its point x' such that 7w,/ (X') is a normalization of X and
for a general point y € X' the variety TTk X! (X") is linearly isomorphic
to Yﬂw,(y).

Proof. We will denote the linear system of hyperplane sections of a
variety Z by H(Z).

Since D, is the exceptional divisor of the projection 7, _, the pullback
of H(Y,) to n'(X) is a sub-system of the system |H(7'(X)) + mD,]|,
where m is an appropriate multiplicity. Since Y, is linearly normal,
these systems are equal. By definition of an osculating space of order
k, the pullback of the system H (7' (X)) to X is H(X)(—(k+1)z). Since
D does not depend on x and, thus, does not contain x, the pullback of
the system H(Y;) to X is equal to |H(X) + mD|(—(k + 1)x).

Consider the system |H(X) + mD| and the map ¢ : X --» X/,
given by this system. Consider the point y = ¢(z), which is gen-
eral for X’. Then the projection Y is given by the linear system
H(X')(—(k + 1)y) and, thus, the composition myxx: 0 ¢ is given by
[ H(X) + mD|(—(k + 1)z). Hence, mrex:(X') is linearly isomorphic to
Y, and dim(X') = dim(Y;) + dim 7} X" + 1. Further, since the lin-
ear system |H(X)| is complete, the system |H(X)|(—(k + 1)) is also
complete and, thus, if X” is a normalization of X and z” € X" is a
point, corresponding to z, then 7z n(X") is a normalization of ' (X).

Therefore, dim(Y;) = dim(mpx xu(X")) +1 = dim(X") — dim T}, X",
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we obtain dim(X’) = dim(X") 4 (dimTf X’ — dim T}, X") + 1. Since
|H(X) +mD| = ||H(X)| +mD|, one can construct a linear projection
7" . X' ——» X", Thus, dimT;X' > dim Tk X" > dimTFX. If the
dimension of T¥X is the maximal possible for an osculating space of
order k to a variety of dimension dim X, then dimTF X"’ = dim T}, X"

and dim(X') = dim(X") + 1, i. e. X" is a projection of X' from its
point. O

Proposition 5. Suppose that dim X = n > 2, for a general point
x € X the dimension of T*X is mazimal possible, and for the projection
n' from TF*X the variety ©'(X) is a birational projection of vg1(Y")
from L', where Y' C P™ is a variety of minimal degree, m > n, L' N
ve(Y") ={y1, ...,y } is a finite number of points and ¥V 1 < i < holds
Tyve1(Y)NL = {y;}. If the set of divisors {D, ..., D;} on X, which
are the preimages under ' of the exceptional divisors corresponding to
points o, - - - , Y, does not depend on x, then X is a birational projection
of v 1(Y) from L, where Y C P™! is a variety of minimal degree,
LN (Y) is a finite number of points and ¥V y € L N w1 (Y) holds
Tyop1(Y) N L = {y}.

Proof. Let use induction over /.

The base, I = 0. Thus, we need to show that for a general point
r € X and the projection 7’ from T#X the normalization of 7'(X)
is vg41(Y’), where Y' C P™ is a variety of minimal degree, then the
normalization of X is vy, 1(Y), where Y C P™"! is a variety of minimal
degree. By the hypothesis and the definition of an osculating space of
order k, the pullback of H(7'(X)) to X equals to H(X)(—(k + 1)z).
Hence, the pullback of | (7'(X))| equals to |H(X)|(—(k+ 1)z). Thus,
we can suppose that X and 7'(X) are linearly normal, i. e. 7/(X) =
vg+1(Y"). Denote by £, the linear system corresponding to v}, o 7'.
One has H(X)(—(k+1)x) C [(k + 1)L,].

If y' € Y’ is a general point, then WTUzck U () © UkL = V1 O Ty
+

because both maps age given by the system H°(O(k + 1),Y")(—(k +
1)y"). Therefore, if we take general points z1,...,Z;,—, € X, then the
projection 7 from (TFX,...,TF . X)is a composition of the pro-
jections from TFX and (Tf,( 7'(X),...,T¥ 7'(X)). By our hy-

z1) T (Tm—nt1)

pothesis, 7'(X) = Vg1 (Y7). Thus, #"(X) =
Uk+1(71'<v;_"1_ (77"(wl))a---avgj_l(Wl(xm—n+1)))(YI))' Since Y’ C P™ is a variety
of minimal degree, 7"(X) = ver1(P* ') and Ly(—21 — ... — Ty_ni1)

is the pullback of the system of vy (P""2), P2 C P! If we ex-
change the roles of x and 1, the projection 7" will not change. Thus,
Lo(—x — 29 — ... — Ty py1) = Ly(—21 — ... — Tpy_pns1). Hence,
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Ly (—x) = L;(—xz1). Therefore, there exists a linear system £ on X
such that for a general point z € X holds £, = £L(—z), dim L = m+1.
Consider the map ¢ : X --» P™! given by £. Put Y = ¢(X).
By definition, m,;) 0 ¢ = “1;+11 o 7'. Therefore, for a general point
y € Y the projection of Y from y is a variety of minimal degree,
and, thus, Y is a variety of minimal degree and L is complete. Since
H(X)(—=(k+1)x) C |(k+1)L,| and the system H(X) is complete, we
have H(X) = [(k +1)L] and X = vp41(Y).

The step is given by Lemma 6. g

Lemma 7. Suppose that m(X) = npvy(P?), where L' is a linear sub-
space intersecting vy (P?) with multiplicity at most 1, dim L' < 1. Then
X = 7p(v2(Y)), where Y C P2 is a threefold of minimal degree,
dim L = dim L' and the multiplicity of intersection L with vo(Y") equals
to the one of L' and vy (P?).

Proof. Let us use induction over h. For the base, h = 1, there is nothing
to prove. The step is given by Proposition 5. To apply it, we need to
show that if for a general point x € X holds 71, x(X) = 7, (v2(Y2)),
and L, intersects vo(Y;) with multiplicity 1, then the preimage D of
the corresponding exceptional divisor D, under 7T,1_1m1X does not depend
on z. Consider general points xg, ldots, x, o € X. Then the projection
7' from (T, X, T, X,...,T,,_,X) is a composition of the projections
from T, X and from (T, y (20)T1x (X)), - - o, Top x (e _) "1 x (X)) Since
mr,x (X) = mr, (v2(Yz)), the last projection restricted on 77, x (X) takes
it to 7, (V}), where Y, = miyo y »y(Ya) and y; = vy ' (71, x (;)). Since
the points ¥y, ..., Ys_2 € Y, are general and Y C P! is a threefold of
minimal degree, Y, = P2. Since L, intersects vo(Y;) with multiplicity
1, L intersects vo(Y,) with miltiplicity 1. Thus, the exceptional divisor
of the projection from L! could be uniquely determined as a minimal
line on a rational normal scroll of type (1, 2) or on its projection to P3.
Thus, it preimage D will not change if we will exchange the roles of
the points z and zy. Hence, D does not depend on z. ]

Lemma 8. If H is tangent to P? x P? at the point x g, then P2 x P2NH
is linearly isomorphic to m(ve(P?)), where | is a line meeting vo(P?) at
two different points.

Proof. Let I; and I be two lines in the multiplied planes of P? x P2,
Take the subvariety I; x Iy C P? x P? and consider the projection
¢ : P8 ——» P* from (I; x l,). Then the restriction of ¢ on P? x P? is a
birational isomorphism. The images ¢(l; x P?) and p(IP? x l5) are lines
and the map ¢! : P* ——» P2 x P? is generated by the full linear system
of quadrics containing these lines.
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So, for any hyperplane H C P® containing /; x I one has that H N
P? x P? is am image of the map ¢! restricted on ¢(H), i. e. the map
generated by the full linear system of quadrics on P* = (H) containing
o(H)N(ly xP?) and (H)N@(P? x I3). Since the hyperplane H does
not contain any of subvarieties P! x P? C P2 x P? and P? x P! C P? x P2,
varieties @(H) N ¢(l; x P?) and o(H) N o(P? x ly) are points. Hence,
HNP? x P? is a projection of vy(P?) from two its different points.

On the other hand, if H is tangent to P? x P2, then H contains a
plane P2 x {z}. Thus, for any line I, € P2, containing z, the intersection
H N P? x I, is reducible and consists of the components P? x {z} and
l; x Iy for certain line /;. Applying the construction described above we
obtain that H NP? x P? is a projection of vy(IP?) from two its different
points. O

6. vy (X) =1, 7(X) IS A HYPERPLANE SECTION OF THE SEGRE
VARIETY P? x P2.

6.1. General properties. Let m(X) = P? x P2 N H. First, note that
there are three different types of disposition of H and P? x P2:

(1) H does not contain any plane from the families {*} x P? and
P? x {*} or, in other words, H is not tangent to P? x P?;

(2) H contains a unique plane from one of the families {*} x P? or
P? x {x}. Then H contains a unique plane from another family
also and thus H is tangent to P? x P? at unique point z;

(3) H contains one-dimensional sub-family of planes from one of
the families {*x} x P? or P? x {*}. Then this sub-family is a
family of planes of type P! x P? or P? x P.. More, in this
case H contains also one-dimensional sub-family of planes from
another family, and, finally, H = (I; x P?,P? x [,), where [; and
l, are certain lines.

In the third case the section HNP? xP? = [; x P2?UP? x [, is reducible and

both irreducible components are degenerate (actually, the dimension of
the linear span of each equals to 5). Thus we do not consider this case.

Remark 6. Actually, all threefolds from the first item are linearly iso-
morphic to each other. The same is true for the second item also.

The following lemma will be used often in this section as motivation
for induction over the order of defectivity.

Lemma 9. If h > 2 and x € X 1is a general point, then for a general
point ¢" € S"3(X) the threefolds T 1y §h=3 (g, x (X)) T X (X) and m(X)
are linearly isomorphic.
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Proof. By Lemma 1, the threefold 77, x (X) is (h — 1)-defective and for
a general point ¢ € S"2(X) such that z € X,, one has that ¢" =
mr,x(¢') € SP3(mp,x(X)) is a general point, Ty S"3 (17, x (X)) =
71, x (Ty S"=2(X)). Hence, the projection from T,;S"=2(X) is a compo-
sition of the projections from 7, X and from T,»S"~(7r, x(X)). Thus,
T 53y x (X)) (T x (X)) = P2 x PN H'. ]

Our target is to find family of lines covering X. Suppose that X
is covered by an irreducible family of lines and dn(X) > 0. Take a
general point z € S"(X) and consider ¥,(X). By Terracini lemma, for
a general point z € ¥,(X) one has T, X C T,5"(X). So, if [ is a line
of the family passing through z, then | C T, X C T,S"(X). Let M, be
(the closure of) a subvariety of X swept out by all such lines, passing
through general points of ¥,(X). Then M, C T,S"(X) N X.

So, we will study surfaces lying in 7,5"(X) N X for a general point
z € S"M(X).

Lemma 10. If z € S(7(X)) is a general point, then T,S(n(X))N7(X)
is reducible and consists of two copies of Scrolly o, which intersect each
other by the conic X, (n(X)).

The family of such scrolls consists of two linear systems of dimension
2 each. Scrolls from different linear systems are not linearly equavia-
lent.

Proof. First, notice that z € S(P? x P?) is a general point. Hence, its
entry locus %, (P? x P?) is l; x Iy for certain lines /; and ly. Since for a
general point (21, 22) € [y X Iy one has T(g, 4,)P? xP? = {z,} x P?UP? x
{z,} and by Terracini lemma T;, ;,)P* x P* C T,S(P? x P?), we obtain
that {z1} x P2UP? x {x,} C T,S(P? x P?). Varying z; € [; and zo € I,
we get that [y xP2UP? x 1, C T,S(P? xP?). Finally, since deg P? xP? = 6
and deg [y xP? = deg P? xl, = 3, one has [; x P2UP? x I, = T,S(P? xP?).
More, I} x P2NP? x I, =1} x Iy = 3, (P? x P?).

Since 7(X) = P> x P2N H, one has that ¥,(7(X)) = Z,(P* xP))NH
is a conic and S(7(X)) = S(P? x P*) N H. So, T,S(n(X)) = T,S(P? x
P?)N H and 7#(X)NT,S(7(X)) = X NT,S(P* x P*) N H = (I x P> U
P> xl)NH = (I, x PPN H)U (P? x I, H). But the only hyperplane
sections of the Segre variety P! x P? are Scroll; 5 and P! x [ U {z} x P?
for certain line [ and point x. Since the point z is general and H does
not contain one-dimensional family of planes from P? x P2, the only
possibility for the intersection is Scroll; ». More, the intersection of two
obtained scrolls is (I x PPNH)N (P2 xl;NH) = (I} x PPNP2 x 5)NH =
LxloNH =3, x )N H =3, (1(X)).
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There are two natural families of described scrolls: the scrolls of type
I, xP?NH and the scrolls of type P2 x ;N H. Since the system of divisors
of type I; x P? on P? x P? gives the natural projection P? x P? — P2, it
is a linear system. Thus, the system of scrolls of type I; x P2N H is also
linear. Two scrolls from different systems are not linearly equivalent,
because for a general line of type {*} x P2 N H the intersection with a
general divisor of the first family is empty, but the intersection with a
general divisor of the second family is a point. O

Lemma 11. For a general point z € S*(X) and a general point q €
Y x,h,2,h—2 the intersection TZS"(X) NX consists of two surfaces Sy and
Sa, which are mapped to Scrolly o under the projection from T,S"%(X);
SN Sy =3%,(X)UC,, where C, C T,5"2(X).

Proof. Take a general point z € S"(X) and consider the intersection
T,S"(X) N X. Since X is a non-degenerate threefold in P***3 and
dimT,5"(X) = dim S*(X) = dim X - (h+1) + h —dy(X) = 4h +2, the
variety T,5"(X) N X is a (reducible) surface. Suppose also that ¢ €
Y x hzh—2- Then by Terracini lemma 7,S5"%(X) C 7,5"(X) and, thus,
(X NT,S"(X)) = m(X) N n(T,S"(X)). By Lemma 1, 7(7,5*(X)) =
Tr(»S(m(X)). So, by Lemma 10, we have that (X N T,5"(X)) con-
sists of two copies of Scroll; o, which intersect each other by the conic
Yr(z(m(X)). Since the projection 7 is a birational isomorphism and
the point 7(z) is general in S(m(X)), X N T,S"(X) consists of irre-
ducible surfaces S,; and S, 2, which are mapped (birationally) to the
scrolls by m, and a (possibly reducible) surface S, 3, which loses the
dimension under 7. Note, that the surface S, 3 depends on ¢ and does
not depend on z such that ¢ € ¥x,4_2. Hence, S;3 C T,5"(X) for
such general point z. Thus, 7(Sg) C (yesir(x) T,S(m(X)),
which is empty. So, S,3 C T,S"%(X).

By Remark 2, dimXxp,p—2 = dp(X) = 1, thus we may vary ¢ €
Y X h2,h—2 continously. At the same time the intersection 7,S"(X) N X
contains only finite number of irreducible components. Hence, S = S5, 3

), 2’ is general

does not depend on ¢ € X, 5 2. Consider the points xg,...,z5 2 €
X such that ¢ € (xg,...,z, o) and general z, 1,2, € X such that
z € (¢,xp_1,%p)- Since ¢ and z are general, x, ..., z, are also general

in X. By Terracini lemma, S C (T, X,...,Ty,_,X). Changing g we
obtain that S C (T,, X, ..., Ty, ,X). Since X is non-(h — 1)-defective,
one has S C (1, X, ..., Ty,_,X). Following this procedure, we finally
obtain that S € T, X,i=0,...,h. So, S = 0.

So, there exist exactly two irreducible surfaces Sy, So C T,S"(X)NX,
which are mapped birationally to the scrolls of type (1,2) by 77, gn—>(x)

(or, in our notation, 7 for ¢ fixed). More, S; NSy maps to m(S;) N7 (Ss),
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which is ¥;,)(7(X)). On the other hand, since in our case under
c0n51derat10n dh( ) = vp(X) = di(n(X)) = vi(n(X)) = 1, we have
that Vx,, = X,(X) and Vi(x),1,7(z) = La(z)(7(X)). By Lemma 1, one
has T(Vxh,z) = Va(x),1,7(2)- So, T(3,(X)) = Zr)(m(X)) = 7(S1 N Sy).
Since z is general for ¢, all the points of ¥.(,)(7(X)) are general for
7(X). Taking into account that 7 is a birational isomorphism and
¥,(X) is irreducible, we obtain that S; NSy = X,(X) U C,, where
C, C T,S"2(X). O
Lemma 12. (1) For a general point 2’ € S"(S;) and a general
point ¢ € S"%(S;) one has T,S"(X) D S; and the variety
T, sh-2(s;)(Si) 48 linearly isomorphic to Scrolly 5.
(2) The family of components of T,S*(X)N X, z € S*(X) is gen-
eral, has the dimension h+1 and consists of two linear systems
L1(X) and Lo(X). Through h + 1 general points of X there
pass exactly one surface of every of these systems.
(3) The dimension of the linear span of such general surface is 3h+
1.
(4) If S1 € L1(X) and Sy € Lo(X) are general, then S N Sy =
Y. (X) for certain (general) point z € S*(X).
(5) For a general point z € X and a general surface S € L;(X)(—x)
one has mr,x(S) € Li(mr,x (X)), i=1 or 2.

Proof. First, let us take the point z € S"*(X) for which the surface
S; was constructed. As we saw, X, C S;. So, we can take points
xo,-.-,Tp € S; such that z € (xg,...,x,). Consider the point ¢ €
(To, .-y Th-2), ¢ € Lxp.n2 and the projection 7 from 7,5"?(X).
Then, as we saw, 7(S5;) is a Scroll;» and 7(z) € S(7(S;)). Further,
if we take two general points z}_,,z} € S; and a general point 2’ €
(To, .., Th 9,Th_1,7}), we have, by Lemma 1, that 7(7T,S"(X)) =
Tr)S(n(X)) and 7(2') € S(m(S;)). Since S(7(S;)) coincides with
(m(S;)), one has Tr(:nS(m(X)) D TrS(7(S;)) = S(w(Si)) D 7(Ss).
Since T S"(X) = 7 (Tr(:S(7(X))), we obtain that S; C T,,S"(X).

So, starting from the points xg, ..., x,, which depend on z and the
construction of S;, after some iterations of substituting some points by
general points as above, we obtain that for general points zg, ...,z €
S;, 2" € (xg,-..,my) holds T,,S*(X) D S;. More, for the point ¢' €
(o, ..., Th—2), ¢ € Xx . n2 the projection Tr,sh-2(x) takes S; to
Scrolly 2. Since 2’ is general, ¢’ is also general in (zo, ..., Tp_2).

Let F be the family of components of T,,S*"(X) N X, 2’ € S*(X).
For h + 1 general points zg,...,x, € X and a general point z €
(xo,...,zh) there exist exactly two components S;, Sy € F passing
through zy, ..., s, which are the components of 7,5"*(X) N X. On
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the other hand, if some general surface S from F contains the points
Xg, - - -, Xy, these points are general for S. Thus, S is one of two compo-
nents of T,5"(X)N X. Hence, dim F = h+1 and through h+1 general
points of X there pass exactly two surfaces of this family. More, by
Lemma 11, $1 NS, = ¥,(X)UC,, where C, C T,5"2(X), C, ¢ ,(X)
and g € (zg,...,ZTh—2) N Xx h.no Hence, doing in the same way as
in the proof of Lemma 11, we may obtain that C, C T}, X, 0 <14 < h,
and, thus, is empty.

Further, take a general point z € S"(X) and two surfaces Si, Sy C
T,S"(X)N X. Let L£3(X) be the system of components T,/S"*(X) N X
other than S;, where 2’ € S*(S)) is a general point. Since T, S"(X) is
a hyperplane, £o(X) is a sub-system of a linear system. On the other
hand, if 2/, 2" € S*(S;) are two general points such that T,,S"(X) =
TZIISh(X), then Ezl (X) = VX,h,z’ = VX,h,z” = EzII(X) At the same
time, for general points zg,...,z, € S; and a general point 2" €
(zo,...,zn) C S"(S;) one has ¥, (X) > zg,..., 7. So, the dimension
of the family of entry loci in S; is equal to h+1, and, thus, the dimension
of different spaces of type T,,S"(X), 2/ € S"(X) is equal to h + 1.
Hence, Lo(X) is a linear system. More, if 2/,2" € S*(S;) are two
general points such that T,,S"(X) N X = T,nS*"(X) N X = S}, then
Y (X) =8NS, =%,(X). So, the dimension of £5(X) is equal to
the dimension of the family of entry loci on S;, which is A + 1.

The linear system L£;(X) is defined in the same way based on S.
One has S; € L£1(X), Sy € Lo(X). By Lemma 10, S; and S, are
not linearly equivalent. So, £1(X) N Lo(X) = 0. Since dim £;(X) =
dim Lo(X) = h + 1, through h + 1 general points of X there passes at
least one surface from £;(X) and one surface from L£5(X). As we saw,
through h + 1 general points of X there pass exactly two surfaces from
F. So, through these points there passes exactly one surface of every
of £;,i=1,2.

Consider general points xg,...,z, € X and z € (xg,...,2,) and
a component S of the intersection 7,5"(X) N X. Then the points
Xo, . .., xp are general for S. In particular, the spaces 13,5, ...,T,, S
are in a general position. Thus, for a general point ¢’ € (g, ..., Zp 2)
one has dimT,;S"2(S) = dim(T,S, ..., Ty, ,S) = (h —1) - dim S +

h —2 = 3h — 4. Since dim(ry,sn-2(5)(5)) = 4, one has dim(S) =
4+ (3h—4)+1=3h+1.

Consider a general point z € X. The family of components of
Ty S" Y, x (X)) N7, x(X), 2" € S" (7, x (X)), consists of two lin-
ear systems L;(mr,x (X)) and Lo(mr,x(X)). Take a general surface
S € L£1(X) such that z € S. Then for a general point z € S"(S) such
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that z € ¥,(X), one has S C T,S"(X) N X. Since 77, x () is a general
point of Sh_l(ﬂ'Txx(X)) and TwTaﬂX(z)Sh_l(TrTxX(X)) = 7TT$X(TzSh(X)),
we have that 77, x (S) C Tr,, (2)S" ™ (71, x (X)) V77, x (X) is one of the
components. Hence, we can choose the numbers of the linear systems

in order to have S € Ly (mp, x(X)). O
6.2. Lines on X.
6.2.1. General facts.

Lemma 13. Let D be an irreducible surface such that for a general
point x € D the projection mq,p from T, D of D is a birational iso-
morphism to its image and the projected surface mr,p(D) satisfies the
following condition: for a general point y € nr,p(D) the tangent space
Tynr,p(D) meets mp, p(D) by a line. Then one of the following condi-
tions holds:

(1) D contains one-dimensional family of lines and for a general
point x € D one has that T, D N D is a line;

(2) for two general points xy,x1 € D there ezists a twisted cubic in
D containing them.

Suppose in addition that for two general points xq,x1 € D the pro-
jection 7' from (Ty, D, Ty, D) is a birational isomorphism to ils image
and the projected surface ©'(D) satisfies the following condition: for
a general point y € 7'(D) the tangent space Tyn'(D) meets ©'(D) by
a line. Then D contains one-dimensional family of lines and for a
general point x € D one has that T, D N D 1s a line.

Proof. Take two general points xg, z; € D. Let 7, 7 be indeces such that
{i,j} = {0,1}. If T,, DN D is a curve, then this curve is mapped to

aline Trp (a7, p(D)N T, p(D) under the projection 71, p- Since
J

T, D is a birational isomorphism on D, one has T,, DNT,, D = (. So,
the restriction of 7T, D tO T, D is isomorphism, and 7, DN D is a line.

Let us suppose now that 7,,D N D is a finite set of points, ¢ =
0,1. Since TWTmiD(l'j)ﬂ-TwiD(D) N 77, p(D) is a line, the variety D N
(T, D, T;,D) is a curve. If this curve is singular at x;, its tangent
space at x; coincides with 7). D. Since the curve itself is projected to a
line under T, D its tangent space, which is 7}, D, is also projected to a
line. The last is not the case because, as we saw, T, DNT,, D = (0. So,
the curve D N (T,,D,T,, D) is smooth at the points xy,z;. Hence, it
has unique irreducible one-dimensional component C;, passing through
z; (1 = 0,1). Note, that C; is smooth at z; and ﬁijD(Ci) is a line,

passing through T, p(z;). Now let us consider two cases.



DEFECTIVE THREEFOLDS 31

Cy # Cy. Consider the variety mr, p(C;), which is a subvariety of the
line 77, p(D N (T D, Ty, D)). Also since T, D N D is a finite number
of points, one has C; ¢ T,,D and, thus, 77, p(C;) # 0. If 77, p(C;)
is a line, then 77, p(z;) € 7, p(C;). Since 77, p is a birational iso-
morphism, one has z; € Cj, which is impossible. If 7, p(Ci) is a
point, then dim(7,,D,C;) = 3. Since the codimension of WijD(<CZ’>)
in 7, (T, D) equals to 1, we obtain that (C;) has the codimension 1 in
(T, D, C;), and, thus, C; is a plane curve. So, for a general point y € C;
one has T,C; N T,,, D # 0. But the subvariety {y € D|T,DNT,,D # 0}
is one-dimensional at most, and the curve Cj; is a component of it.
Hence, the curve C; does not depend on the choise of z;, C; = C(z;).
Since the projection 7, p restricted to C(x;) is a birational isomor-
phism to a line, one has T;;;D N C(z;) # (. Since C(z;) C D the
point T3, D N C(x;) € Ty, D N D, which is a finite set of points. So,
the point T;;; D N C(z;) does not depend on the choise of z;. Hence,
MNeeD . is general C(T) # 0. But for a general point x € D the curve C(z)
is irreducible by definition. So, the set (\,cp 4 is genera C (%) 1s a finite
number of points. Therefore, finally, the point 7, D N C (z;) does not
depend on the choise of z; and z;. Hence, in particular, this point is
contained in T, DNT,, D, which is impossible, because T,;, DNT;;, D = 0.

Co = C1. Since 77, p(C)p) is a line passing through 77, p(z;), it lays
in the 2-dimensional space Tr;, (27T, p(D). Thus, dim(rr, p(Co)) N
T’/rTmiD(CUj)WTmiD(D) = dlm 7TTmiD(<Co> M WTziD(ij D) =1. Since TJ;zD M
Ty; D = 0, one has that dim(Cy)NT,; D < 1. Since (Co)NTy; D D Ty, C,
we obtain that (Co) N T,;D = T,,Cy. Hence, the projection from
T, D restricted to (Cy) is the projection from T,,Cy, i. e. a birational
isomorphism to a line, and dim(Cyp) = 3. Further, since 77, p(Cp) is a
line, for a general point y € Cy one has Ty, )71, p(D) N7y, p(D) =
mr,,0(Co) and the irreducible component of the curve (T,,D, T,D)nD,
passing through y, is again Cy. So, the curve Cy does not depend on
the choise of the point z; € Cy. Therefore, by the symmetry, it does
not depend on the choise of z; € Cj and, thus, for a general point
y € Cy the projection from T, Cy of Cj is a birational isomorphism to a
line. Finally, since a general point of Cj could not be a flex point, we
have that Cj is a twisted cubic in certain P3.

Consider a projection 7’ = (T, D,T,, D) a0d suppose that for a general
point ' € 7'(D) one has Tyyn'(D) N7'(D) is a line. Let us show that
it is impossible for D to satisfy the condition that trough two general
points there passes a cubic. Assume the converse. Take a general point
y € D. Then for the pairs (y, ) and (y,z;) there exist two cubics,
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passing through the points of the pair. Both these cubics are mapped
to lines, passing through 7'(y) under the projection 7’. Since 7’ is a
birational isomorphism, we obtain that T, 7' (X) N7’ (X) contains at
least two different lines, which contradicts the hypothesis. O

Lemma 14. If S C P* is irreducible nondegenerate surface, which
contains one-dimensional family of lines with a rational base and -
dimensional family (I > 1) of curves of degreem > 1, 551 <m < k—1
and k = 2m — 1+ 2, then S is a rational normal scroll of type (a,b),
a+b=k—-1,a,b<m.

Proof. By Grothendieck theorem, there exists a normal scroll of type
(a,b), a < b, and a linear subspace L C (Scroll,,), which does not
intersect this scroll, such that S = 7, (Scroll,p), where 7y, is the pro-
jection from L, and 7, is a birational isomorphism on Scroll,;. So,
k = dim(S) = dim(Scroll,p) —dimL —1=(a+b+1)—dimL - 1<
(@+b+1)—(-1)—1=a+b+1. More, Scroll,;, has to contain an I-
dimensional family of curves of degree m. Since m < k—1 < a+b < 2b,
any such curve intersects a general ruling line of our scroll by one point.
Therefore, the dimension of full linear system of curves of degree m on
a normal scroll of type (a, b) is 2m — (a+b) + 1, if m > b; otherwise it is
0 or-1. Hence, I <2m—(a+b)+1ora+b<2m—1[+1. On the other
hand, £ = dim(S) = dim(Scroll,)—dim L—1 = (a+b+1)—dim L—1 <
(a+b+1)—(-1)—1=a+0b+1. Hence, £ < 2m — [+ 2. Since by
our hypothesis £k = 2m — [ + 2, one has that dim L = —1, and S is a
normal scroll of type (a,b), a+ b=k — 1 and a,b < m. O

Corollary 3. (1) If a general surface of the linear system L;(X)
(here i is equal to 1 or 2) contains one-dimensional family of
lines, then this surface is a rational normal scroll of type (a,b),
a+b=3h, h<a,b<2h.
(2) Suppose that h > 3. Then the following conditions are equiva-
lent:
(a) for a general point z a general surface S" € L;(mr,x (X))
is a rational normal scroll of type (a',V'), o' <V';
(b) a general surface from L;(X) is a rational normal scroll of
type (o' + 1,0/ +2) or (a' + 2,0/ + 1), ifa’' =0 — 1.

Proof. Denote that surface by S. Then, by Lemma 12, one has that
dim(S) = 3h + 1. For a general point z € S"(S), by Lemma 11,
holds ¥,(X) C S and, by Lemma 5, ¥,(X) is a rational normal curve
of degree 2h. Thus, through A + 1 general points of S there passes
one rational normal curve of degree h + 1, which lays in S. So, S
contains (h+ 1)-dimensional family of rational normal curves of degree
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2h. Hence, the base of the family of lines has to be rational. More, the
surface S satisfies the conditions of Lemma 14 for k = 3h+1,l = h+1
and m = 2h. Therefore, S is a normal scroll of type (a,b), a + b = 3h,
a,b < 2m (and, thus, a,b > h).

By Lemma 12, surfaces of the system L;(7r, x (X)) are the images un-
der 71, x of surfaces of £;(X) passing through x. Thus, if a general sur-
face S € L;(X)(—x) is covered by lines, then 77, x(S) € L;(7r,x (X)),
which is a general surface of this system, is covered by lines too. More,
S is a rational normal scroll of type (a,b), a +b = 3h, a < b. For a
general point € S one has that 77, x(5) is a scroll of type (a—1,b—2),
which equals to (a’,8'), where o' < &'. Thus, if @ < b, then the only
possibilityisa' =a—1,0' =b—-2 (a=d +1, b=V +2). If a = b,
then it is possible also that ' = b -2, 0 =a—1,1. e. o = b — 1,
a=da+2,b="b+1.

Suppose now that a general surface of L;(nr, x(X)) is covered by
lines. Moving z in X, we obtain (without loss of generality) that a
general surface of the family £;(X), passing through z is projected by
71, x t0 Scrolly sn—3—q. So, for a general surface S of the system £;(X)
and a general point € S one has that 77, x () is a scroll of type (@', 0')
(h—1<d, 00 <2h—2,d+V =3h—3,d <V). By Lemma 12,
dim(S) = 3h + 1, dim(my, x(S)) = 3h — 2. Hence, dim 7, X N (S) = 2
and, thus, T, X N (S) = T,S and 71,5(S) is a scroll of type (d, V).
So, S satisfies the conditions of the first part of Lemma 13. More,
for a general point z' € mr,5(S) = Scrollyy the image of 7, 5(S)
after the projection from T, 77, 5(S) is a rational normal scroll of type
(' — 1,0 —2). Since @’ > h—1> 2 and &' > 3(h — 1) > 3, one has
o —1>1,V—-2>1and (¢’ -1)+(b'=2)=ad'"+V -3=3h—6> 3.
Thus, for the scroll of type (¢’ — 1, — 2) the intersection of a general
tangent plane with the scroll itself is exactly one line. Therefore, the
surface S satisfies the conditions of the second part of Lemma 13 and,
thus, S contains one-dimensional family of lines. U

6.2.2. Families of lines on X as surfaces in G(1, N).

Lemma 15. Suppose that a general surface S € £1(X) contains one-
dimensional family of lines C(S) ¢ G(1,N), and U C G(1,N) is
a corresponding two-dimensional family of lines that sweeps out X,
C(S) CcU. Then:

(1) Through a general point x € X there passes exactly one line oy
from U, which is contained in all S € L,(X)(—zx).

(2) For a general surface S € L1(X) the curve C(S) is a rational
normal curve of degree 3h.
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(3) The system L1(U) of curves C(S), S € L1(X), is a linear sys-
tem of dimension h + 1, and, thus, gives us the map @ : U —-+
Pt

(4) The surface Y = @(U) is a surface of minimal degree.

(5) If r € X 1s a general point and L, = {{a|a € G(1,N), P N
T, X # 0}), then 7, (U) C G(1, N — 4) is the family of lines
that sweeps out mr, x (X) and all ruling lines of a general surface
from Li(mp,x (X)) belong to this family.

(6) If ¢y @ mr,(U) —+ Y, is a map gwen by Li(ng, (U)), then
T3(as) © P = Pz 0 Ty, (restricted to U).

(7) Ly contains the osculating space T, U of order 2 to U at the
point o,.

Proof. For a general point x € X and a genral surface S € £;(X)
passing through x, S contains also certain line, passing through =z.
Since the number of lines passing through z is finite (because the same
is true for (X)), we have that there exists a line o € U, passing throgh
x and containing in all S € £,(X)(—=z). Thus, for general « € U and a
general point z € P, holds P} C S for all S € £;(X)(—z). If through
a general point x € X there pass two lines from U, then they are both
general in U and, thus, they are cointained in all S € £;(X)(—z).
By Lemma 3, such general S is a rational normal scroll of type (a,b),
h <a,b <2hand a+ b = 3h. Thus, if a < b, then a > h > 1 and
b > %h, which is equivalent to b > 2. Hence, S does not contain two
different lines passing through its general point . Therefore through
a general point © € X there passes exactly one line from U.

By Lemma 3, a general surface S € £;(X) is a rational normal scroll
of type (a,3h — a), where h < a < 2h, and, thus, C(S) is a rational
normal curve of degree 3h.

Consider general points ug,...,u, € U and xzg,...,x, € X such
that z; € P, 0 < i < h. Then by Lemma 12, there exists unique
surface S € L£;(X) passing through zg,...,x,. Thus, this surface,
which is a scroll, contains the lines P, ,..., P, or C(S) 3 ug, ..., up.
On the other hand, if for some S' € £,(X) holds uy,...,u, € C(5'),
then S” 3 xy,...,z,, and, by Lemma 12, S’ = S. Denote by L(U)
the family of curves on U of type C(S), S € £1(X). Then we have
that through h + 1 general points of U there passes exactly one curve
from L£(U). By [6, Theorem 5.10], either £(U) is a linear system, or
it is composed with a pensil. The latter is not the case, because a
general curve of type C(S) is irreducible. So, L(U) gives us a map
@ : U —-+ P! because dim £,(X) = h+ 1. Put Y = 3(U).
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Let us show that Y C P! is a surface of minimal degree. Really, if
degY > h+1, then for two general surfaces S1,Se € £1(X) the curves
C(S1) and C(S,) intersect each other by at least h+1 points, which are
general for U, i. e. SN .S, contains at least h+ 1 ruling lines. Since S}
and S, are rational normal scrolls of type (a,b), h < a,b < 2h, any h+1
ruling lines are in general position and dim(S; N Ss) > 2h + 1. Thus,
2h+1=4h+1 and (S, S2) does not coincide with the ambient space.
On the other hand, for a general surface S3 € £;(X) the intersection
S3M(S1US;y) contains at least 2(h+1) ruling lines. Since Ss is a rational
normal scroll of type (a,b) for a,b < 2h, the linear span of these lines
contains S3. Thus, S3 C (S}, Ss) and, therefore, X C (Sj, Ss), which
is not true because X is nondegenerate.

If L, = {aJa € G(1,N), P. NT,X # 0}), then for the projection
71, : G(1, N) -—=» G(1, N — 4) we have that for any o € G(1,N) \ L,
holds mr, x (P,) =Py, (4, 1. e. the projection 7, is induced by 7z, x.
Therefore, 7z, (U) is a family of lines for 7y, x(X). The linear system
of curves L1 (mr, (U)) contains curves of type C(S’), S" € L1 (mr,x(X)).
By Lemma 12, S" = 7y, x(S) for a certain S € £;(X), S 5 z. Since
C(mr,x(S)) = 71, (C(S)), the map given by L1(U)(—ay) (i. e. all
divisors from £;(U) that contain the point «;), which is 75(a,) © @,
coincides with the composition ¢, o7y, .

To show that L, D T2U it is sufficient to check that T2C(S) C L,
for a general S € £,(X), S > z. The latter fact could be shown by
local computations. ]

Lemma 16. (1) If P2 x P2 N H is not singular, then both families
of lines on this threefold in G(1,7) are linearly isomorphic to
V3 (]P2)
(2) If P2 x P2 N H is singular, then both families of lines on this
threefold in G(1,7) are linearly isomorphic to m,(vs(P?)), where
a € v3(P?); the exeptional divisor of the projection from « is a
line corresponding to all lines laying in P> C P2 x P2N H and
passing trough the point of tangency of H to P? x P2.

Proof. Consider the family of planes U’ C G(2,8), which are of type
P? x {x}. It is not hard to see that U’ = v3(P?). Put L = ({a|a €
G(2,8), P2 C H}). Then the projection 77 : G(2,8) --» G(1,7)
satisfies the following condition: for any o € G(2,8) such that o ¢ L
holds P, N H =P, . Thus, U = 7 (U").

If P? x P? N H is not singular, then one can show that L N (U’) = §.
Hence, U = v3(P?) is a linearly normal surface.
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If P2 x P2 N H is singular, then L N (U’) = {a}, where P2 is a plane
laying in H. Hence, U = 7,(v3(P?)) is a linearly normal surface. The
exeptional divisor then corresponds to P2 and it describes all lines in
P2, passing through the point of tangency of H to P? x P2 O

Lemma 17. Suppose that a general surface S € £1(X) contains one-
dimensional family of lines, U C G(1,N) is a corresponding two-
dimensional family that sweeps out X and U = ¢(Y), where Y C P+
is a surface of minimal degree and ¢ = p~'. Then for a general point
B €U one has dimTZU = 5.

(1) If 7(X) = P? x P? N H is not singular, then dim(U) = 6h + 3
and ¢ = vs. U 1is linearly normal.

(2) If m(X) = P2 x P2 N H is singular, then dim(U) > 6h + 2. If
dim(U) = 6h + 3, then ¢ = vy and U is linearly normal. If
dim(U) = 6h + 2, then either ¢ = m, ovs and x € (v3(Y)), or
Y = Scroll,p, wherel1 <a <b<h—-1,a+b=~h and ¢ is
given by the complete system [2C + (3a+b)L|. U is not linearly
normal iff x ¢ v3(Y).

Proof. Use an induction by h. The base, h = 1. By Lemma 16, U
is linearly isomorphic to v3(P?) or m,(v3(P?)). In both these cases for
general 8 € U holds dimTZU = 5. Also dim(v3(P?)) =9 =61+ 3,
dim(7, (v3(P?))) =8 =6-1+ 2.

The step. For a general point z € X we construct L, = ({a]a €
G(1,N), PL NT,X # 0}). By Lemma 15, 7;_(U) is a family of lines
for w7, x(X), for which by induction we have that for general point
B € mr,(U) holds dimTymp, (U) = 5. Thus, for general point v €
U one has dim TfU > 5. Since the maximal possible dimension for
T?U is 5, we obtain dimT2U = 5. More, if o € U corresponds to
a line passing through x, then, by Lemma 15, L, > T2 U. Hence,
dim L, N (U) > dim T2, U = 5, and dim(U) = dim(nr, (U)) + dim L, N
(UY+1 > dim(nz, (U)) + 6. By induction, dim{(ry, (U)) > 6(h—1)+3
(or 6(h — 1) 4+ 2). Thus, dim(U) > 6h + 3 (or 6h + 2).

By Lemma 15, U = (Y, where Y C P"*! is a surface of minimal
degree. Also, a general hyperplane section of Y is taken by ¢ = ¢! to
a rational normal curve of degree 3h. By the classification of surfaces
of minimal degree, Y is either Scroll,,, where a + b = h, or va(P?). If
Y = Scrollyp, 1 <a <b< h—1,a+b= h, then ¢ is given by subsystem
of |kC + IL|, where C' C Scroll, is a rational normal curve of degree
b. If H' is a hyperplane section, then H' - (kC +IL) = kb+ | = 3h.
By Lemma 18, dim [kC + IL| = ¥ (5 — a) 4 (k + 1)l + k. More,
6h + 2 < dim(U) < dim |kC + [L|. From these inequalities follows
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ke€[2,3+ %] Thus, k could be equal to 2 or 3 or, if h = 2, to 4. In
the last case we have a = b =1 and [ = 2, and by changing the ruling
family on quadric, we will have £ = 2. If k = 2, dim [2C + (3a+b)L| =
Zb—a)+2+1)(Ba+b) +2=6a+6b+2=06h+2 Ifk =3,
dim [3C + 3aL| = 32(b—a) + 3+ 1)3a+ 3 = 6a + 6b + 3 = 6h + 3,
and |3C + 3aL| coincides with the complete system of cubic. Thus,
U = wv3(Scrollyp) or U = my(vs(Scrollyp)), where x € (vs(Scrollyp)) is
a point. In the first case U is linearly normal, in the second one U is
linearly normal iff z € vs(Scroll, ).

If Y = Cone,(C), degC = h, then ¢ is given by a subsystem of
|IL|. If H' is a hyperplane section, then H' - (IL) = | = 3h. Thus, ¢
is given by a subsystem of the complete linear system of cubics. By
Lemma 18, dim [3hL| = 22h+3 = 6h+ 3. Thus, U = v3(Cone,(C)) or
U = my(v3(Cone,(C))), where z € (v3(Cone,(C))) is a point. In the
first case U is linearly normal, in the second one U is linearly normal
iff z € v3(Cone,(C)).

By the similar reasons, if Y = v,(IP?), then for a general conic Q C
P?, holds ¢(v2(Q)) is a rational normal curve of degree 34 = 12. Thus,
the map ¢ o vy is given by a susbsystem of complete linear system of
sixtics on P2, the dimension of which is equal to (°}?) — 1 = 27 =
6-4+3=06h+ 3. Thus, U = v3(ve(P?)) or U = 7, (v3(va(P?))), where
r € (v3(v2(IP?))) is a point. In the first case U is linearly normal, in
the second one U is linearly normal iff z € vs(ve(P?)). O

Lemma 18. (1) Ifa,b > 1, then Pic(Scrollys| = Z2. Suppose that
a < b. Let C be a rational normal curve of degree b, which is
one of the generators of the scroll, and L is a ruling line. Then
for 1> —1 and k > 0 one has dim [kC + IL| = *E (h —q) +
k+Dl+k If—-(m—-1)b—a)—2>1>-m(b—a)—1 and
1 < m <k, then dim |kC + L] = Gt gy 4 (1 4
mb—a)+1)(k—m-+1)—1.

(2) For the scroll of type (0,b) and | > 0 one has dim|IL| =
k(k+1)

=5—=b+ (k+ 1)l' + k, where k and I' are integers such that

Il=kb+1l and 0 <[ <b.

Proof. Since L-L=0,L-C =1,C-C =b—a, one has L- (kC+IL) =
E(L-C)+I(L-L)=k-1+1l-0=kand C-(kC+IL) = k(C-C)+I(C-L) =
k-(b—a)+1-1=k(b—a)+!. Thus,if |kC +IL|# (0, then & > 0 and
k(b—a)+1>0.

More, if for D € |kC +IL| holds D- L > k+1, then D = L+ D'.
If I > 0, then for k£ general points of L it is easy to find such reducible
divisor, which consists of [ ruling lines and certain k£ rational normal
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curves of degree b each. Hence the map from |kC + [L| to the linear
system of k£ points on L is an epimorphism, and, thus, dim |kC +[L| =
dim [kC + (I — 1)L| + k + 1. Similarly, if for D € |kC + L] holds
D-C>k(b—a)+1+1, then D =C + D". For the same reason, if
[ >0, one has dim |kC + [L| = dim |(k — 1)C +IL| + k(b—a) + 1+ 1.

Therefore, if | > 0, one has dim |kC + [L| = dim |kC| + (k + 1)l =
(k+ (k=D 4. +D)(b—a)+k+(k+1) = HEL B —a) 4 (k+1)1 + k.

If | = —1, then dim |kC+IL| = dim |kC|—(k+1) = k(kTH)(b—a)—l =
@(b —a)+ (k+ 1)l + k. In order to decrease | below —1, we can
use the same observations. For example, if —1 > [ > b — a, then
for £ — 1 general points of L it is easy to find such reducible divisor,
which consists of b — a 4 [ ruling lines, one minimal curve and certain
k — 1 rational normal curves of degree b each. Hence, the map from
|kC + L] to the linear system of k£ points on L contains in its image
the sub-system, divisors of which contains the point of intersection of L
and the minimal curve. Thus, dim |kC +[L| > dim [kC + (I —1)L| + k.
More generally, if —(m —1)(b—a)—1>1> —-m(b—a), (1 <m < k),
then for £ — m general points of L it is easy to find such reducible
divisor, which consists of m(b— a) + [ ruling lines, m copies of minimal
curve and certain k£ —m rational normal curves of degree b each. Hence,
the map from |kC + [L| to the linear system of £ points on L contains
in its image the sub-system, divisors of which contains the point of
intersection of L and the minimal curve with multiplicity m. Thus,
dim |kC+IL| > dim |kC+(I—1)L|+(k—m)~+1. Finally, dim [kC—1L| >
dim [kC' — (b—a+1)L|+k(b—a) > ... > dim |[kC — ((k—1)(b—a) +
DL+ b—-a)(k+...+2) > dim|kC — k(b — a)L| + (b — a)(k +
A2+ (b—a—1)-1=dim|kC — k(b — a)L| + (b — a)*EL 1.
Hence, dim [kC — k(b — a)L| < dim |kC — 1L| — (b — a)* & 41 =
@(b—a)—l—(lﬂ—kl)(—l)ﬁqﬂ— (b—a)@—#l = 0. Since the system
|kC — k(b—a)L| contains at least k times minimal curve, its dimension
is not less than 0. Therefore all inequalities here are equalities.

If a =0, then L = C,L-C =1, C-C = b. Since Scrolly
is a cone over the curve C, it has a singularity at the point p of its
vertex. Therefore we will calculate all the indices of intersection outside
p. Thus, for divisors C4,Cy, D1, Dy such that C; is equivalent to D;,
i=1,2,p¢Cy,peCy,pé¢ Dy, p€ Dy, 0one has Cy - D; =C - Dy =
Cy-Dy > Cy-Dy and L-L = 0. Hence, for a general divisor D of the
system |kC +[L|, where 0 <1 < b, holds D-C = kb+1, D-L = k. So,
all the equalities written for the case a > 1 hold in the case a = 0. In
particular, if 0 < [ < b, dim [kC + IL| = *&p 4 (k + 1)l + k. Thus,
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for [ > 0 one has dim |IL| = @b + (k+ 1)I' + k, where k and I are

such integers, that [ = kb+ 1" and 0 <!’ < b. O

6.2.3. 7(X) =P? x PN H 1is smooth.

Lemma 19. If7(X) = P2 xP?NH, where H is not tangent to P? x P?,
then for one of the systems L£1(X) and Lo(X) a general surface of that
system is a scroll of type (a,3h — a), where h+1 < a < 2h—1; a
general surface of another system contains only finite number of lines.

Proof. Take a general surface S; € L;(X), i = 1,2, and a general
point ¢’ € S"=%(S;). The projection from T,S"~2?(X) is a birational
isomorphism by Lemma 5. By Lemma 12, it maps S; to Scroll; o.

Let us use an induction over h.

The base, h = 2. Since for a general point y in Scroll, » the tangent
space at y meets the scroll by a single line, we can apply Lemma 13
to the surface S;. So, we have that either S; contains one-dimensional
family of lines or it contains two-dimensional family of cubics. In the
first case by Corrolary 3, S; is either Scrolly 4 or Scrollss. Also we
should note that the preimage of the line, which is a minimal section
in Scroll, 5, is either a minimal conic or a certain cubic respectively.

If S; contains two-dimensional family of cubics, take a general point
z € S; and consider the family of all entry loci (for S?(S;)), which pass
through z. By Lemma 5, these curves are in general rational normal
curves of degree 4, which under the projection 7’ from 7, S; are mapped
to conics on Scroll; 5. Since the family of conics on Scroll, o contains
in its closure reducible conics, the family of curves on .S; also contains
reducible curves in its closure. More, a reducible conic on Scroll; o
consists of a minimal curve (a line) and one of ruling lines. Hence its
reduced preimage consists of the preimage of a minimal curve and a
cubic. Since this reduced curve lays in the closure of the family of
curves of degree 4, the preimage of a minimal curve on Scroll; » under
7' is a line.

Since 7(X) = P? x P2 N H is a non-singular section, the only lines
it contains are lines of types {*} x P2N H or P? x {x} N H. Any of
these lines is a ruling line for one-dimensional family of surfaces linearly
isomorphic to Scroll; . Hence the preimage under the projection 7 of
such general line is a line or a cubic. If the preimage of a general line
of the first family is a line, take a general scroll of type (1,2), which
is ruled by lines of first family. The minimal curve, which is a line,
for this scroll belongs to the second family of lines on 7(X). Hence,
its preimage under 7, as we saw, is either a conic or a cubic. Since it
cannot be a conic, it is a cubic and, thus, 7, X N X contains Scrolls 3.
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More, the preimage of a general line from the second family is a cubic.
If the preimage of a general line from the first family is a cubic, by the
same arguments we can obtain that the preimage of a general line from
the second family is a line and, thus, 7,.X N X again contains Scrolls 3.

The step is given by Lemma 3. g

Lemma 20. If 7(X) = P2 xP?NH, where H is not tangent to P? x P?,
then X is swept out by a family of lines U C G(1,N) such that U =
v3(Y), where Y C P is a surface of minimal degree, and U is linearly
normal.

Proof. By Lemma 19, a general surface of the system £;(X) is a ratio-
nal normal scroll of type (a,3h — a), where h+1 < a < 2h — 1. Hence,
we can apply Lemma 15. Thus, U = ¢(Y), where Y is a surface of
minimal degree in P"*1, o = $~!. There exist two ways to see that 1)
is given by the complete linear system of cubics. The first is to apply
Lemma 17. The second is by induction over h.

The base, h = 1, holds by Lemma 16. The step. In the notations
from Lemma 15, 9(U) =Y and 7p(a,) © ¢ = @z 0 7r,. Since all these
maps are birational isomorphisms and, by induction, ¢, = @' = vs,
we have 7p, o ¢ = v3 0 Tg(,). Therefore, the map ¢ is given by linear
system of cubics on Y. For calculating the dimensions of complete
linear systems of cubics on surfaces of minimal degree in P**! and the
possible dimensions of (U) see Lemma 17. O

6.2.4. m(X)=P2 x P2N H is singular.

Lemma 21. If a general surface of the system Ly(X) contains only
finite number of lines, then there exists a plane P, C X such that

(1) for general points xo, ..., xh_o € X and the projection ©' from
(Tpo X, ..., Ty,_,X) hold
(a) T'(Py) =P* x {xy} CP2x PPN H' = 7'(X), where xy is
the component of the point of tangency of H' to P? x P?,
(b) 7'(S2) = Iy x PPN H', 7'(S1) = P? x Iy N H' for general
Si € Li(X)(—x0— ... —xh9),1=1,2 (I1,ly are lines).
(2) a general surface of the system L1(X) does not intersect Py
(3) a general surface of the system Lo(X) intersects Py by a line.

Proof. This proof is similar to one of Lemma 19. By Lemma 12, for a
general surface S; € £;(X), ¢ = 1,2, and general points x, ..., Tp 2 €
S; the projection from (77,S;,...,Ty,_,S:), which is a birational iso-
morphism by Lemma 5, maps S; to Scroll; ».

Let us use an induction over h.



DEFECTIVE THREEFOLDS 41

The base, h = 2. Since for a general point y in Scroll; » the tangent
space at y meets the scroll by a single line, we can apply Lemma 13
to the surface Sy. So, we have that either Sy contains one-dimensional
family of lines or it contains two-dimensional family of cubics. The first
is not the case by our hypothesis. Thus, S, contains two-dimensional
family of cubics. Take a general point x € S5 and consider the family
of all entry loci (for S%(S;)), which pass through z. By Lemma 5, these
curves are in general rational normal curves of degree 4, which under
the projection 7r, s, are mapped to conics on Scroll; 5. Since the family
of conics on Scroll; , contains in its closure reducible conics, the family
of curves on S; also contains reducible curves in its closure. More, a
reducible conic on Scrolly » consists of a minimal curve (a line) and one
of ruling lines. Hence its reduced preimage consists of the preimage of a
minimal curve and a cubic. Since this reduced curve lays in the closure
of the family of curves of degree 4, the preimage of a minimal curve on
Scroll;  under 77, g, (and, thus, under 77, x) is a line.

Let z € X be a general point and 7’ be the projection from 7T, X.
Then '(X) = P2x P2 N H', where H' is a hyperplane tangent to P? x P?
at the point (yg:, rg). By Lemma 12, we can choose the order of P?’s
such that 7/(Sy) = Iy x PPN H', ©'(S;) = P? x [, N H' for general
S; € Li(X)(—x), i = 1,2 (I1, 1y are lines). For the singular threefold
P? x P2 N H' surfaces of type l; x P2 N H', where I; C P? is a line, are
scrolls of type (1,2) and their minimal curves are lines [; X {zy: }. Thus,
a general surface Sy € Lo(X)(—x) contains a line, which is projected
by 7' to a line on the plane P? x {xz}. Hence, this family of lines
on X is two-dimensional and these lines sweep out a surface, which is
projected by 7’ to P? x {zz}. So, this surface is a plane P, C X and
T.X NP, = (). By construction, S, N P, is exactly a line. More, for a
general surface S; € £1(X)(—x) the intersection S;NP; is projected by
7' to (P? X Iy) N (P? x {zg}) N H', which is empty. Thus, S; N P, = (.

The step. Take a general point € X. Then a general surface of the
system Lo(7r, x (X)) contains only finite number of lines, and, thus,
there exists a plane Py C 7r,x(X). Put P» = mp'x(P;). For gen-

eral points x,..., 2,3 € X and corresponding points xy,...,z)_5 €
mr,x(X), the projection ' from (T, X, T, X,...,T,,_,X) is a com-

position of the projections from T, X and 7" from (T 7, x(X),. ..,
Ty, 71, x(X)). More, n'(Py) = 7"(Py) = P* x {zxpn} CP*xP*NH" =
7"(X), where zy» is the component of the point of tangency of H" to
P? x P2. Therefore, if we exchange the roles of z and z(, the image
7'(P) will not change, and P, does not depend on z. Further, since 7"

takes the plane Pj to a plane, the center of projection does not intersect
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P;. Hence, Ty 77, x (X)N Py = () and, thus, T;,, X N(P,) = (). Therefore,
T, X N{P,) = () and P, is a plane. All other reqired observations easily
follow from the same for 77, x (X). O

Lemma 22. If general surfaces from L1(X) and Lo(X) contain only
finite number of lines, then X = 7y, yva(Y), where Y C PM*2 4s a
threefold of minimal degree and y1,y2 € vo(Y) are different smooth
points.

Proof. Let us use the induction over h. The base, h = 1, (actually, this
is not the base, because there are a lot of lines for A = 1) is given by
Lemma 8. If X = P? x P2 N H, then the exceptional divisors are two
planes of form P? x {yz} and {zy} x P?, where (2, yy) is the point
of tangency of H' to P? x P2

The step. By Lemma 21, there exist two planes P, P, C X such

that for general points xg,...,z,_2 € X and the projection 7’ from
(TpoX, ..., Ty, ,X) hold 7/(X) = P2 x PPN H', 7'(Pp) = P? x {ymw}

and 7'(P)) = {xy} x P?, where (zy/,yg) is the point of tangency
of H' to P> x P2. Thus, the planes P;, P, after the projection from
Ty, _,X will satisfy the similar condition for h—2 general points and, by
induction, are corresponding exceptional divisors. Thus, we can apply
Proposition 5.

Since the exceptional divisors are planes, the points of vo(Y") laying

in the center of projection are smooth. O

Remark 7. A point vy(y) € v2(Y) is smooth iff y € YV is smooth. If V'
is a variety of minimal degree and y € Y is a singular point, then Y
is a cone with the vertex at y. Hence, Y is covered by lines passing
through y. Under the map m,,) o vo every such line goes to a line.
Thus, 7y, () (v2(Y)) is covered by lines.

So, if X = 7y, yoyv2(Y), where y; is a smooth and y, is a singular
points, then X is covered by one irreducible family of lines. If both
y1 and yo are singular, then X is covered by two different irreducible
families of lines.

Lemma 23. (1) Suppose that a general surface from L1(X) con-
tains one-dimensional family of lines and a general surface from
Lo(X) contains only finite number of lines. If U C G(1,N)
1S a two-dimensional corresponding family of lines on X, then
U =n,(v3(Y)), where Y C P"*! is a surface of minimal degree
and x € v3(Y') is a smooth point.
(2) If for both linear systems L1(X) and Lo(X) a general surface
contains one-dimensional family of lines and U C G(1,N) is
a family of lines, corresponding to L£1(X), then U is either
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T (p)V3(Cone, (C)), where C is a rational normal curve of de-
gree h, either p(Scroll,p), where 1 < a < b< h—1 and ¢ is
given by the system |(3a+b)L+2C|. In both cases U is linearly
normal.

Proof. Concider threefold 7(X) = P? x P2 N H, where H is tangent to
P? x P? at unique point (zg,ym). Take a general line [; 3 xz. Then
Iy xP*NH contains {xy } xP?. Thus, there exists a line ly > y; such that
LhxP’NH =1 xl,U{zg} % P2. The quadric [; x Iy is covered by lines
from both families £, (7 (X)) and Lo(7(X)), and I} x{yn} € L,(7(X)),
{zu} Xy € Lo(m(X)). Hence, £1(7(X)) contains all lines in P? X {yy}
passing through (zg,yg). Also we have an isomorphism 9 : z}; — yj;
such that V o € 3 holds [y X Iy C H. Thus, there exists one-
dimensional family of surfaces covered by lines from both families.

If a general surface from £,(X) contains only finite number of lines,
by Lemma 21, there exists a plane P, C X such that a general surface
of the system £;(X) does not intersect P,. Since P, C X, it should
be covered by lines from U. Since such general line does not intersect
P, there is one-dimensional subfamily C' C U of lines laying in P;.

Since for general points xg,...,z,_2 € X and the projection 7’ from
(TyoX, ..., Ty, ,X) hold

(1) ©'(Pp) = P? x {ym} C P2 x P2 N H' = 7/(X), where (zg,ym)
is the point of tangency of H' to P? x P2,
(2) ©'(S1) =P? x Iy H' for general S; € L1(X)(—x¢—...— T 2),
[y is a line.
So, the family C' goes under 7’ to the family of lines in P? x {yg:}
passing through (zg,yg). Since the projection 7’ restricted to P, is
an isomorphism, C is a family of lines on P, passing through @'~ (ya),
i. e. aline in G(1,N).

By Lemma 17, U is either v3(Y), either 7, (v3(Y)), where Y C Pi*!
is a surface of minimal degree and x € (v3(Y)), or U = @(Scroll,p),
where 1 < a <b< h-1,a+b=h and ¢ is given by the complete
system |2C + (3a + b)L|. Since U contains a line, the only possibility
is U = mu3(Y), where z € v3(Y) and C is the exceptional divisor of
the projection from z. Since C is a line, z is a smooth point of v3(Y).
More, we obtain that U is linearly normal.

Consider the case when for both linear systems £;(X) and Lo(X) a
general surface contains one-dimensional family of lines. On 7(X) there
exists one-dimensional family of surfaces covered by lines from both
families. The preimages of these lines under 7 are again lines. Hence,
X contains one-dimensional family of surfaces, which contain two one-
dimensional families of lines from both £;(X) and £2(X). So, those
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surfaces are nonsingular quadrics in P2. The family of lines laying on
such quadric is a conic in G(1, N). Thus, U contains one-dimensional
family of conics. By Lemma 17, either U = v3(Y), either U = m,v3(Y),
where Y C P"*! is a surface of minimal degree and z € (v3(Y)), or
U = p(Scrollyp), where 1 <a <b< h—1,a+b=hand g is given by
the complete system [2C + (3a + b)L|. If U = v3(Y) or U = m,v3(Y),
where x ¢ v3(Y), U does not contain conics. If U = m,v3(Y"), where
z € v3(Y), then the only conics it contains are the images of lines,
passing through vy '(z). Thus, v3'(z) should be the vertex of a cone
and Y = Cone,(C). If U = ¢(Scroll,p), where 1 < a <b < h—1,
a+b = h and ¢ is given by the complete system |2C + (3a + b)L|, then
U contains one-dimensional family of conics, which are the images of
ruling lines of Scroll, . In all these cases U is linearly normal. O

6.3. Geometry of X in the case, when X is swept out by a fam-
ily of lines. Our further considerations will be based on the following
fact:

Lemma 24. [[8], Proposition 6.9] Let X C PV be an irreducible, non-
degenerate, projective, reqular threefold. Let k > 2 and assume that
a general tangential projection X1 of X is linearly normal and con-
tained in the Segre embedding of P* x P¥. Suppose that each of the
two projections of X; to P¥ spans PX. Then X is linearly normal and
contained in the Segre embedding of P¥+! x P*+1. Moreover each of the
two projections of X spans P+,

Denote by p; and p, the projections of P! x PP*+! to the first and
the second factors. If we know, that X is covered by lines and X C
P*+1 x PA*1 then one (or both) of the projections p;, p; takes X to a
surface. The other will take X to a threefold covered by lines. Further
we will study all possible cases.

Lemma 25. [[8], Corollary 6.17] Let X be an irreducible, non-degene-
rate threefold in P*+t1 x P*+1 &k > 2 which does not lie in the 2-uple
embedding of P¥*1. Assume that each of the two projections of X to
P+ spans PE+1. Then X spans a space of dimension at least 4k + 3.

Furthermore, if X spans a P**3 then given k + 1 general points of
X, there 1s a rational normal curve C of degree 2k on X containing
the given points, and X is k-defective.

Lemma 26. If m(X) =P? xP2N H and X is swept out by a family of
lines, then

(1) X C Pt Ph-l—l;
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(2) for a general point x € X one has T, X = T,Ph! x PA1 N (X),
i. e. X is a component of PP xPMINL, where dim L = 4h+3;

(3) pi(X) C PP are varieties of minimal degree;

(4) the projections p; and py are given by linear systems L£1(X) and
Lo(X) respectively;

(5) Suppose also that a general surface of L£1(X) is covered by lines,
U C G(1,N) is the corresponding family of lines covering X,
and U = o(Y), where Y C P"*L is a surface if minimal degree
and ¢ is as in Lemma 17. Then Y 1is linearly isomorphic to

p1(X).

Proof. The first statement immediately follows from Lemma 24.

Take a general point z = (z1,75) € P! x PP, For the projection
from {x;} x P"*! restricted to P"*! x P! holds p; o Ty uprsr =
Tz, © p1. Thus, for the projection from T,P"*1 x P! = ({z;} x
P PAHL x {z9}) we have p; o Ty prtiyprit = Ty, 0 piy @ = 1,2, So,
for the variety mp, pri1yprt1(X) C P* x P hold p;(mp,priiypri (X)) =
7z, 0 pi(X). Hence, (p;(mp,prtixprt1(X))) = P". Since X, and, thus,
Tp,phtixph+1(X) are covered by lines, 7p, pr+iypr+1(X) is not a subset of
the diagonal, and we can apply Lemma 25. So, dim(7r, prtiypr+1(X)) >
A(h — 1) + 3 = 4h — 1. Thus, dimT,P**! x PP+ 0 (X) = dim(X) —
dim(mp prtiypr+r (X)) — 1 < 4dh+3 — (dh — 1) — 1 = 3. If we take
x € X general point, then T, X C T,P"*! x P"*!. Since dimT, X = 3,
we obtain T, X = T,P"*! x PA*1 N L, where L = (X). Thus, X is a
component of P! x P+l L.

To show that p;(X) is a variety of minimal degree, it is sufficient to
prove that for general points zg,...,z, € X, m = h+ 1 — dimp;(X),
the projection 7" of p;(X) from (p;(x),...,pi(x)) is a birational iso-
morphism. Since X is a component of the linear section, for a general
point z € p;(X) the fiber p; '(z) is a linear subspace. The same is
true for the projected threefold mr, x, .1, x) (X). Thus, if 7’ is not a
birational isomorphism and for two general points yo, y1 € p;(X) holds
7' (yo) = 7'(y1), the projection T Ty X,...Tar X) Should take the points
p; '(yo) and p;'(y;) to one point. Since m < h — 1, by Lemma 5,
the last projection is a birational isomorphism, and, therefore, pi’ is a
biratinal isomorphism.
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Take a general point z € S"(X) and general points g, ..., T, C
¥,(X) such that z € (zo,...,xy). Then

T,8"(X) = (T X, ..., Ty, X) =
(T, PP x PP AL, Ty, PP PP A L) C
(T, PP x PP T, PP x PPN L =
{{p1(z) X PP P xpo(20)), . . ., (p1(wp) X PP PP xpo (1)) )N L =

((pr(o) X P, pa(n) X P4, (PPFY X py (o), - - -, PMHE X pa(an)))
NL=

((pr(0), - - - pr(an)) x PP X (po(wo), - .-, palan))) N L =
(Ly x PP PR L) N L,

where L, Ly are hyperplanes. Since (L; x PA! Prtl x L) NP x
Pl = Ly x PMPPUPML x Ly, X ¢ (Ly x P PP+ x L,). Since
T,5"(X) is a hyperplane in L, we obtain T,S"(X) = (L; x P+ P+ x
Lyy N L. Thus, T,S"(X)N X = (L x PAL P x LyN X = (L; x
PP x Loy NP x PPN X = (L x PP UPH x Ly) N X =
(L1 x PRI N X)U (P! x LyN X). Therefore, L; x PPN X € £,(X),
P! x Ly N X € Ly(X). Varying the point z, we obtain that £;(X)
coincides with L; x PPN X, L; C P*! is a hyperplane. Thus, £;(X)
is the system of preimages of hyperplane sections of p;. Also, £o(X)
gives us po.

By Lemma 15, the map from U to Y is given by the linear system
C(S), S € L1(X), where C(S) is a family of ruling lines on S. Since
a p; contracts lines from U, one can construct a map U --+ m(X).
Since the preimages of hyperplane sections of p; (X) are given again by

C(S), S € L1(X), we have Y = p;(X). O

6.3.1. X is covered by only one irreducible family of lines, which are
ruling lines of surfaces from the system L1(X).

Lemma 27. (1) There ezists a map v : p1(X) --+ G(1,h+1) such
that X is copered by lines of type {p1(x)} X ]P’}/J(p1 () T € X s
a general point.
(2) Ifm(X) = P2xP?2NH is smooth, then 1) is a linear isomorphism.
(3) If m(X) = P2 x P2 N H is singular, then 1) is the projection
from a smooth point y € p1(X) =Y such that U = Ty, vs(Y),
where U C G(1, N) is a family of lines covered X .

Proof. Since X is a component of the linear section P**! x PPN L, for
a general point z € X one has p;*(p;(z)) is a linear subspace. Since p;
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contracts lines from U, py'(p1(z)) is a line of U. Thus, pa(p7 ' (p1(z)))
is a line on po(X) and pi ' (pi1(2)) = {p1(2)} X p2(p; " (p1(2))). Denote
by W C G(1,h + 1) the corresponding family of lines covering ps(X).
Then we have a required map ¥ : p;(X) —-+» W.

Let us study 1. Take a general surface S € £;(X). By Lemma 26,
p1(S) is a hyperplane section of p; (X), which is a rational normal curve
of degree h. Since p, is the restriction of 7,  pr+1y, where L; C Ph+1
is a hyperplane, one has ps(S) = 7, xpr+1)(S). More, L1 x P NS C
(L1 N pi(S)) x PP N L. Since Ly N p1(S)) is h points, (L; Npi(S)) x
P**1NL is exactly h lines laying in general position. By Lemma 3, S is a
rational normal scroll of type (a,b), h < a < b < 2h, a+b = 3h. Hence,
the projection of Scroll,y from h its ruling lines gives us Scrollg pp—p-
Thus, p2(S) is a rational normal scroll of type (a— h,b—h). The family
of ruling lines of this scroll is a rational normal curve of degree h in
G(1,h+1). Hence, ¢ takes general hyperplane section of po(X), which
is a rational normal curve of degree h, to a rational normal curve of
degree h on W.

Concider a hyperplane section K C W. Then K N(p;(S)) is a set
of h points as a hyperplane section of (p;(S)). Thus, ¥ *(K) N pi(S)
is a set of h points. Since p;(S) is a hyperplane section of p;(X), one
has degy™'(K) = h. But the only curves of degree h on a surface
p1(X) C P**! of minimal degree h are its hyperplane sections. Thus,
the preimages under v of hyperplane sections are hyperplane sections,
and 1 is a projection from certain linear subspace M C P+l On
the other hand, since 1(p;(S)) is a rational normal curve of degree h,
dim(W) > h. Thus, dim M < 0. If M is a point and M ¢ p;(X), then
for h general points of X there exists S € £1(X) such that S is not
linearly normal and its normalization is a rational normal scroll of type
(a,b), a + b = 3h. Take the projection from the linear span of tangent
spaces of h — 1 general points of X, which maps X to P2 x P2N H. We
obtain, that there exists one-dimensional family of not linearly normal
surfaces in P? x PN H, whose normalizations are rational normal scrolls
of type (1,2), which is not true. If M € p;(X) is a singular point, then
7mam(p1(X)) is a curve, which is not the case. If M € p;(X) is a smooth
point, then X contains lines {M} x P., where « is a point of the
exceptional divisor, which is a line. Thus, these lines form a line in
U C G(1,N). By Lemma 23, U = Ty, (v3(Y)) and the only line on
it is the exceptional divisor of the projection from wv;3(y). Therefore,
using the isomorphism of Y and p;(X), we obtain that M corresponds
to y. O
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Lemma 28. Suppose that X is covered by one irreducible family of
linesU C G(1,N).

(1) If 7(X) =P? x P> N H 1is smooth, then

(a) if U = v3(Y), where Y is a rational normal scroll of type
(a,b), a,b > 1, a+ b = h, then X is covered by lines of
form (£{(x),n(z)), x € Y, where £ : Y — Scrollyi1p41 1S
an isomorphism and n = my,qyove, where I C'Y is a ruling
line;

(b) if U = v3(Y), where Y = Cone,(C) and C is a rational
normal curve of degree h, then a general line of U is of
form (£(x),n(x)), x € Y, where £ :' Y —-» Scrolly p4q is
a blowing-up of a line and 1 = Ty, o v2, where y € Y
is a smooth point, such that for a general point x € (p,y)
&(z) = n(z);

(c) if U = v3(vo(P?)), then X = v3(P?) x P'.

(2) If m(X) = P> xP* N H is singular and U = Ty, (v3(Y)), where

Y C P! s a surface of minimal degree and y € Y is a smooth

point, then X = Ty, (p)vs(y)) (V2(Cone,(Y))).

In all these cases the embedding X — PP x PP is unique upto an
automorphism.

Proof. Let us describe families of lines covering po(S) in G(1,h + 1).
By Lemma 26, po(X) C P**! is a threefold of minimal degree. By the
classification, py(X) is either a rational normal scroll of type (c,d, e),
c<d<e, ctd+e=h—1,oracone Cone,(vy(P?)), h = 5. The family
of lines containing in planes of Scroll. 4. is a rational normal scroll of
type (c+d,c+e,d+e) in G(1,h+1) (c+d < c+e < d+e). If Scroll, 4.
contains a family of lines which do not belong to its planes, then the
only non-trivial case is ¢ = d = e, h = 4. In this case the family of
lines is the family of fibers in P! x P? C P°. The corresponding surface
in G(1,h+1) is vo(P?). The family of lines on Cone,(v2(P?)) also form
va(P?) € G(1,h+1).

Now we will study the ways how p;(X) (or its projection) could be
included in these families. By Lemma 26, p;(X) C P**! is a surface of
minimal degree. By the classification, p;(X) is either a rational normal
scroll of type (a,b), a < b, a+b = h, or v5(P?), h = 4. First, consider
the case when 1 is an isomorphism. Thus, p;(X) is a subvariety of the
family of lines on po(X). If Scroll,, C Scrolleydctedre, then c+d < a,
c+e<b Thus,c+ (c+d+e) <a+b Sincec+d+e=h-1
and a+b=h, weobtainc< 1. If c=1,thena=d+1,b=e+ 1.
Hence, po(X) = Scrolly 4151 and for points of the basic curve of
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Scroll,p of degree a there correspond ruling lines of a natural sub-
scroll type (1,a — 1); for points of the basic curve of Scroll, of degree
b there correspond ruling lines of a natural sub-scroll type (1,b—1); for
points of a ruling line there correspond lines in a plane of p,(X) passing
through the point of this plane laying on the minimal line. If ¢ = 0,
then either ¢ > dand b =e, or a = d and b > e. In both cases Scroll,
is not contained in Scrollg, C Scrollgegie. Thus, b > d + e. Since
d4+e=h—1and a+b= h, one has eitherb=h—1,a=1,e =h— 2,
d=1,eitherb=h—1,a=1,e=h—-1,d=0,orb=h,a=0,e = h—1,
d = 0. In the first case to points of basic curves of Scroll,; there
correspond ruling lines of natural sub-scrolls of Scroll.4.: Scrolly,
and Scrollyp—1 (¢c=0,d =1,e = h —1). In the second case the scroll
of type (c+d,c+e,d+e) = (0,h—1,h—1) should contain a line, which
does not belong to its planes. Thus, h —1 = 1, and situation is similar
to the previous case. Let us describe X. Concider the maps %,, Vs, ¥
from P! to corresponding basic curves of Seroll,p and Scroll, 4. and
the map g, : Scroll,y — Scrolly., which are coherent with 1): if
t € P! and z € (Yu(t),1u(t)) C Scrollep, then Py = (¥e(t), Yae(7))-
So, X is covered by lines of form ((z,%.(t)), (z,%4(x))). The map
z — (z,1.(t)) takes p1(X) = Scroll,; to a scroll of type (a + 1,0+ 1)
and coincides with blowing-up of one ruling line. Since 14 is equivalent
to a projection from a ruling line, the map z +— (2,4 ()) is equivalent
to composition of vy and a projection from a conic, which is the image
of a ruling line.

Ifb=h,a=0,e=h—1,d=0, the situation is more complicated.
First, to points of a ruling line of p;(X) = Secrolly, = Cone,(C) there
correspond lines in a plane of po(X) = Scrollypn—1 = Cone,(C') pass-
ing trough one point on /. Denote by g : p;(X) --+ [ the corresponding
map. One has, that for the vertex p of p;(X) there corresponds the
vertex [ of py(X), i. e. 1)y is a blowing-up of p. For points of the basic
curve of degree h there correspond lines from Scroll, j_1, whose mini-
mal curve is [ and whose basic curve coincides with one of Scrolly g 1.
It is hard to give nice geometrical description of X. But one should
note, that X contains one special line {p} x [, which corresponds in
U = v3(Cone,(C)) C G(1,N) to a singular point. Also X is covered
by one-dimensional family of rational normal scrolls of type (1, 2), con-
taining the special line as one of ruling lines. Minimal curves of these
scrolls are ruling lines of Scroll; 11, whose minimal curve is again the
special line. More precisely, we can decribe X as follows. Take a sub-
scroll M = Scrolly 1 C Serollygp—1 with the vertex r € [. Then one
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has a map 91 : p1(X) —-» M, ¢1(z) = Pb(z) N M. This map is well-
defined for all points except y € p;(X) such that IF’}/)(y) C M. Thus,
geometrically, 1; is the projection from y. More, ¢y(z) = ¢1(z) = 7,
if x € (p,y) is a general point. So, X is swept out by lines of form
((z,v0(x)), (x,91(x))). The map = — (z,1o(z)) gives us a blowing-
up of a line to Scroll; p+1. The map =z — (z,v:(z)) is geometrically
Tya(y) OV2. Scrolly py1 intersects my, () (v2(p1(X))) by the image of (p,y).

If p1(X) = v2(P?) and h = 4, then to points of vy(P?) there corre-
spond fibers of P* x P? = py(X). To describe X, we should take two dif-
ferent planes P, P, C P! x P2, consider two maps vy : py(X) — P, 1 :
p1(X) — P,. Then X is covered by lines of form ((z, ¢ (z)), (z, ¥2(x))),
T € p1(X) = vy(P?). Since the map x — (x,;(z)) has v3(P?) its image,
we have that X = v3(P?) x P’

Consider the case, when v is the projection from the smooth point
y € pi(X). If p1(X) is a rational normal scroll of type (a,b), then
my(p1(X)) is a rational normal scroll of type (', b'), where (', V') equals
to (a—1,b) or (a,b—1). If p;(X) = vy (P?), then 7, (p1(X)) is Scrolly ».
In any case, @' + b = h — 1. Using the same analysis as above, we
obtain that ' > c+d, b > c+e. Sinced +b =h—-1=c+d+e,
the only possibility is ¢ = 0, d = @', e = 0'. Thus, pa(X) = Scrolly o p
and for points of the basic curve of Scroll,; of degree a there corre-
spond ruling lines of a natural sub-scroll of type (0,a’); for points of
the basic curve of Scroll,; of degree b there correspond ruling lines
of a natural sub-scroll of type (0,b'). Denote the vertex of py(X) by
p. Let ¢y : p1(X) --» Scrolly sy be a map, that puts a point  on
the line ¢(z), and ¢ (p1(X)) = Scrolly . Note, that ¢ geometri-
cally is the projection from y. Then X is covered by lines of form
((z,p), (x,91(z))). The map = — (x,p) is just a linear embedding.
The map = — (x,v:(z)) is equivalent to m,,(,) o v;. Consider a cone
M = Cone,(p;(X)) C P"*? and an embedding 7 : p;(X) — M. Since
p1(X) is a surface of minimal degree, M is a threefold of minimal
degree. Take a threefold X' = 7y, (r),0a(i(y))) (V2(M)). Then the ex-
ceptional divisor, corresponding to r, is linearly isomorphic to p;(X).
More, Ty, (r),s(i(y))) © V2 04 restricted to pi (X) is equivalent to 7y, () o vs.
Any line on M, passing through the vertex r, goes to a line under
T wa(r)a(i(y))) © V2- Thus, X "is covered by the same family of lines as X.
Therefore, X = X'. So, X = Ty, (r)wa(y)) (V2(M)), where M C P2 is
a singular threefold of minimal degree, r is its vertex and y' is a smooth
point.
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Since all the data, i. e. pi(X), p2(X), 9, could be uniquely upto
an automorphism of X could be determined, X has unique embedding
into P! x P! upto an automorphism. U

Lemma 29. If n(X) is smooth and X # vs(P?) x P!, then a general
surface of L£1(X) is a rational normal scroll of type (h+ 1,2h —1). If
X = v3(P?) x P!, then a general surface of L1(X) is a rational normal
scroll of type (6,6).

If m(X) is singular, then a general surface of L£1(X) is a rational
normal scroll of type (h,2h).

Proof. If 7(X) is smooth and ¢ : p;(X) — G(1,h + 1) is the corre-
sponding map, then a general surface S € £;(X) is swept out by lines
{z} x IP}p(m), x € pi(X) N H', where H' is a hyperplane, and, thus,
p1(X) N H' is a rational normal curve of degree h. If p;(X) is a scroll,
then the surface in po(X) covered by lines ¥(z), z € p;(X) N H', is al-
ways a scroll of type (1, h—1). Thus, S is a scroll of type (h+1,2h—1).
If p1 (X) = vo(PP?), then the corresponding sub-scroll in py(X) = P2 x P!
is of type (2,2). Thus, S is a scroll of type (6,6). Of 7(X) is singular,
then the sub-scroll in py(X) = Serolly oy corresponding to a hyper-

plane section of p;(X) is of type (0,h). Thus, S is a scroll of type
(h,2h). O

6.3.2. X 1is covered by two families of lines, which are ruling lines of
surfaces from L£1(X), Lao(X).

Lemma 30. Suppose that X is covered by two irreducible families of
lines, U C G(1,N) is one of these families and U = p(Y'), where Y is
a rational normal scroll of type (a',V'), a’ < V', a' +0 = h, and ¢ is
given by the complete linear system |2C + (3a’ + V')L| for a’ > 0 and
© = Tyy(p) © V3, for a' = 0 and p being the vertex of Y. Then X is a
4-scroll of type (a,b,¢), b =10 —d', 2a+b+c = 2h, a > o'. The number
of non-isomorphic embedding U into G(1,N) equals to [%] For such
fized embedding the corresponding embedding of X into P! x Phtl s
unique upto an automorphism.

Proof. Since X is covered by two families of lines, p;(X) and po(X)
are surfaces, covered by lines. By Lemma 26, p;(X) = Y and po(X)
is a surfaces of minimal degree, i. e. a rational normal scroll of type
(a”,b”), a" < b”, a" + b = h.

As in the case of one family of lines one can construct two maps
P12 p1(X) -+ G(1,h+ 1) and 95 : po(X) --+» G(1,h + 1) such that
X is covered by lines of form {z} x ]lez;l(;c)v z € p1(X), and by lines of
form lepz(y) x {y}, y € p2(X). More, if (z,y) € X is a general point,
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then y € ]qupl(x) and z € Py, «y)- Hence, for any point y' € qupl(x) holds
(z,y') € X, and, thus, z € ]P’qlpz(y,). Since there is only one ruling line
of p1(X) passing through z, we obtain that ¥y(y) = 12(v'), i. e. 1y
is a constant along a ruling line. The same is true for ;. Therefore,
there exist two maps !, ¢4 : P! — G(1,h + 1) such that X is covered
by quadrics of form Py, ,, X Py, ), t € P.

Further, one can construct four maps &1, &,m1,m0 @ P! — PAHL
which give us the basic curves of the scrolls pi (X), p2(X) and Py, ) =
(&1(t), &(1)), IF’TIP,1 @ = (m(),m(t)). The degree of these curves are
a', b, a", b" respectively. Consider Scrolly i o+ given by its basic
curves (&(t), m(t)), (&1(t),m2(¢)), t € P, and Scrolly o p+y given by
its basic curves (&(¢), (1)), (&2(),72(t)), t € PL. By the projection
po these scrolls are naturally isomorphic to po(X) = Scrolly y. Thus,
there exists a natural isomorphism between the scrolls 7 such that p, =
po o 7. Thus, for a general point & € Scrolly o o4y the line (z,7(x))
belongs to X. Hence, X is 4-scroll of type (a' + a”,b' — o', 0" — a"),
2@ +ad")+ W —ad)+ (V" —d")=ad +V +a"+ V" =2h. So, we can
determine b, but cannot determine a and c¢. One has: a' < a% <
2h—b _ 2h—(g’—a’) —

5 % +a'. Thus, the number of different solutions for a
and ¢ equals to [2]. If we know, that X is a 4-scroll of type (a, b, c), then
the system o' +ad”" =a, b —ad' =0, 0" —d" =c,d +b' =h,d" +b0" =h
has unique solution. Thus, the embedding of X into P"*! x P! ig
unique. ]

Remark 8. If X = Ty, (2)05()) (V2(Y)), where Y C P"*2 is a threefold of
minimal degree and x,y € Y are singular points, then Y is a rational
normal scroll of type (0,0,h). X is covered by two families of lines,
which are the images of lines on Y passing through = or y. Thus,
X C PP x PP py(X) = pao(X) = Serollyp, and X is a 4-scroll of
type (0, h, h).

Lemma 31. A general surface of L1(X) is a rational normal scroll of
type (h+a—a',2h —a+d').

Proof. A general surface of S’ € £;(X) is swept out by lines {z} X
]P)lllq(w)’ z € pi(X) N H', where H' is a hyperplane. Thus, p;(X) N H’
is a rational normal curve of degree h. Let p: P* — p;(X) N H' be a
map such that u(t) € ]P;,lpz(t)- Then the curves (i, 71(¢)) and (u, 72(t))
are basic curves for S’. These curves have the degree h +a” and h + b"
respectively. Since a” = a — a' and " = h — a”, one has that S’ is a
rational normal scroll of type (h+a —a',2h — a + d'). O
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