Algebraic version of the clover calculus for homology 3 -spheres

Emmanuel Auclair, Christine Lescop *

January 20, 2004

Prépublication de l'Institut Fourier n ${ }^{o} 632$ (2004)
http://www-fourier.ujf-grenoble.fr/prepublications.html

Abstract

We present an alternative definition for the Goussarov-Habiro filtration of the \mathbb{Z}-module freely generated by oriented integral homology 3 -spheres, by means of Lagrangian-preserving homology handlebody replacements (LP-surgeries). Garoufalidis, Goussarov and Polyak proved that the graded space $\left(\mathcal{G}_{n}\right)_{n}$ associated to this filtration is generated by Jacobi diagrams. Here, we express elements associated to LP-surgeries as explicit combinations of these Jacobi diagrams in $\left(\mathcal{G}_{n}\right)_{n}$. The obtained coefficient in front of a Jacobi diagram is computed like its weight system with respect to a Lie algebra equipped with a non-degenerate invariant bilinear form, where intersection forms of 3-manifolds play the role of the Lie bracket and the linking number replaces the invariant form. In particular, this article provides an algebraic interpretation of the graphical clover calculus developed by Garoufalidis, Goussarov and Polyak. This interpretation induces splitting formulae for all finite type invariants of homology 3 -spheres.

Keywords: 3-manifolds, homology spheres, finite type invariants, Jacobi diagrams, Borromeo surgery, clover calculus, Goussarov-Habiro filtration A.M.S. subject classification: 57 M 27 57N10

1 Introduction

In 1995, in [Oht], Tomotada Ohtsuki introduced a notion of finite type invariants for homology 3 -spheres (that are compact oriented 3 -manifolds with the same homology with integral coefficients as the standard 3 -sphere S^{3}), following the model of the theory of Vassiliev invariants for knots in the ambient space \mathbb{R}^{3}. He defined a filtration of the real vector space freely generated by homology 3 -spheres and began the study of the associated graded space. In [Le], Thang Le finished identifying this graded space to a space of Jacobi diagrams called $\mathcal{A}_{\mathbb{R}}(\emptyset)$. The Jacobi diagrams, precisely defined in Subsection 2.1, are represented by trivalent finite graphs with additional orientation information.

[^0]Similar filtrations of the \mathbb{Z}-module freely generated by homology 3 -spheres and their relationships have been studied by Garoufalidis, Goussarov and Polyak and others. See [GGP] and references therein. Over $\mathbb{Z}[1 / 2]$, all of them are equivalent to the Ohtsuki filtration [GGP].

Among these filtrations, the most convenient one is the Goussarov-Habiro one where the Matveev Borromeo surgeries [Mat] (defined in Subsection 2.2) play the role of the crossing changes in the knot case. It allowed Garoufalidis, Goussarov and Polyak to define a set of generators $\Psi_{n}(\Gamma)$ for the degree n part \mathcal{G}_{n} of the associated Goussarov-Habiro graded \mathbb{Z}-module, for Jacobi diagrams Γ with at most n vertices [GGP]. See Subsection 2.3. Garoufalidis, Goussarov and Polyak also gave some graphical rules that allow one to reduce an element to a combination of their generators. This set of rules is the so-called clover calculus. Here, these rules are enclosed in two propositions 4.13 and A.1.

Our main theorem 3.5 expresses elements of \mathcal{G}_{n} associated to the LP-surgeries defined in Subsection 3.1, as explicit combinations of the $\Psi_{n}(\Gamma)$, in terms of intersection forms and linking numbers. Therefore, this article presents a completely algebraic version of the Garoufalidis-Goussarov-Habiro-Polyak clover calculus. Furthermore, it tightens the links between Jacobi diagrams and topology by relating the vertices of the Jacobi diagrams to intersection forms of 3-manifolds and the diagram edges with linking numbers.

We also give an alternative definition of the Goussarov-Habiro filtration of the \mathbb{Z}-module of integral homology 3 -spheres, by means of LP-surgeries. See Corollary 3.2 .

Let us now give a slightly more specific description of our main theorem 3.5.
A homology genus g handlebody is an oriented compact 3-manifold with the same integral homology as the standard genus g handlebody H_{g}. The boundary ∂A of such a manifold A is then homeomorphic to the genus g surface ∂H_{g}. The Lagrangian \mathcal{L}_{A} of A is the kernel of the map induced by the inclusion from $H_{1}(\partial A ; \mathbb{Z})$ to $H_{1}(A ; \mathbb{Z})$. A Lagrangian-preserving surgery or LP-surgery on a homology sphere M consists in removing the interior of such a homology handlebody $(A \subset M)$ and replacing it by another such B whose boundary ∂B is identified to ∂A so that $\mathcal{L}_{A}=\mathcal{L}_{B}$.

In our definition of the Goussarov-Habiro filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ of the \mathbb{Z}-module $\mathcal{F}=$ \mathcal{F}_{0} freely generated by the oriented homology spheres up to orientation-preserving homeomorphisms, the $n^{\text {th }}$ module \mathcal{F}_{n} is generated by brackets $[D]$ of so-called n component LP-surgeries D that are made of n disjoint LP-surgeries $\left(A_{i}, B_{i}\right)$ in M. (The A_{i} are disjoint in M.)

$$
[D]=\sum_{J \subset\{1, \ldots, n\}}(-1)^{\sharp J}\left(\left(M \backslash \sqcup_{j \in J} \operatorname{Int}\left(A_{j}\right)\right) \cup_{\partial}\left(\sqcup_{j \in J} B_{j}\right)\right) .
$$

Our main result expresses the bracket $[D]$ of an n-component LP-surgery D as

$$
[D]=\sum_{\Gamma} \ell(D ; \Gamma) \Psi_{n}(\Gamma)
$$

in $\mathcal{G}_{n}=\mathcal{F}_{n} / \mathcal{F}_{n+1}$, where the coefficient $\ell(D ; \Gamma)$ of $\Psi_{n}(\Gamma)$ is an explicit function of the intersection forms of the manifolds $\left(A_{i} \cup-B_{i}\right)$, of the linking pairings on $H_{1}\left(A_{i}\right) \otimes H_{1}\left(A_{j}\right), i \neq j$, and of variations of the Rohlin invariant when replacing A_{i} by B_{i}.

Let us roughly define $\ell(D ; \Gamma)$ when n is the number of vertices of Γ and when Γ admits no non-trivial automorphism. The general definition of $\ell(D ; \Gamma)$ is given in Subsection 3.2. When a bijection σ from the set of vertices of Γ to $\{1, \ldots, n\}$ is given, the intersection form of each $\left(A_{i} \cup-B_{i}\right)$ is placed at the vertex $\sigma^{-1}(i)$. The intersection forms are next contracted along the edges with respect to the linking pairing to produce a number $\ell(D ; \Gamma ; \sigma)$, and $\ell(D ; \Gamma)=\sum_{\sigma} \ell(D ; \Gamma ; \sigma)$. This construction is similar to the construction of weight systems associated to Lie algebras.

The proof of Theorem 3.5 goes as follows. We first prove that the standard Goussarov, Garoufalidis and Polyak generators have appropriate coefficients in Subsection 4.1. Then we use the similarities between the behaviour of the bracket in \mathcal{G}_{n} and the behaviour of our coefficients to reduce the proof to this former case.

Though this article is largely inspired by [GGP], it is written in a self-contained way in an attempt to replace all the graphical arguments in [GGP] by more intrinsic algebraic arguments.

Theorem 3.5 can be used to derive formulae on the behaviour under LP-surgeries of all finite-type invariants of homology spheres in the Goussarov-Habiro sense. For example, it immediately leads to splitting formulae for the restriction to homology spheres of the Kontsevich-Kuperberg-Thurston universal finite-type invariant $Z_{K K T}$ of rational homology spheres. In [L2], the second author proved that these formulae generalise to rational homology spheres and to rational homology handlebody replacements that preserve the rational Lagrangians. These generalized splitting formulae are fairly easy to guess from the Kontsevich-Kuperberg-Thurston construction (but much harder to prove in general), they actually led the second author to the formulae of Theorem 3.5. These formulae had been previously noticed by G. Kuperberg and D. Thurston in the special case where rational homology handlebodies are reglued by a homeomorphism that induces the identity in homology [KT]. This special case is sufficient to prove that $Z_{K K T}$ is universal among finite-type invariants of homology spheres.

The second author thanks Thang Le, Gregor Masbaum and Dylan Thurston for useful and pleasant conversations.

2 Background

2.1 Jacobi diagrams

In what follows, a Jacobi diagram Γ is a trivalent graph without simple loop like $-\infty$. Let $V(\Gamma)$ and $E(\Gamma)$ denote the set of vertices of Γ and the set of edges of Γ, respectively. A half-edge c of Γ is a pair $c=(v(c) ; e(c))$ where $v(c) \in V(\Gamma), e(c) \in E(\Gamma)$ and $v(c)$
belongs to $e(c)$. The set of half-edges of Γ will be denoted by $H(\Gamma)$ and its two natural projections above onto $V(\Gamma)$ and $E(\Gamma)$ will be denoted by v and e, respectively. An automorphism of a Jacobi diagram Γ is a permutation ϕ of $H(\Gamma)$ verifying the two following conditions

$$
\begin{array}{lll}
\left(e(c)=e\left(c^{\prime}\right)\right) & \Rightarrow & \left(e(\phi(c))=e\left(\phi\left(c^{\prime}\right)\right)\right) \\
\left(v(c)=v\left(c^{\prime}\right)\right) & \Rightarrow \quad\left(v(\phi(c))=v\left(\phi\left(c^{\prime}\right)\right)\right)
\end{array}
$$

for any $c, c^{\prime} \in H(\Gamma)$. An automorphism ϕ of a Jacobi diagram Γ preserves the vertices of Γ if

$$
\forall c \in H(\Gamma), v(\phi(c))=v(c) .
$$

Let $\operatorname{Aut}(\Gamma)$ be the set of automorphisms of Γ. Let $\operatorname{Aut}_{V}(\Gamma)$ denote the set of automorphims of Γ that preserve the vertices of Γ. Let $\sharp \operatorname{Aut}_{V}(\Gamma)$ denote the number of automorphisms of Γ that preserve the vertices. A vertex-orientation of a Jacobi diagram Γ is an orientation of each vertex of Γ, that is a cyclic order of the three half-edges that meet at that vertex. Two vertex-orientations of Γ are equivalent if and only if the cardinality of the set of vertices where they differ is even. An orientation of Γ is an equivalence class of vertex-orientations. An oriented Jacobi diagram is a Jacobi diagram carrying an orientation. A Jacobi diagram Γ is reversible if there exists automorphism ϕ of Γ that reverses an orientation of Γ. For any automorphism ϕ of Γ, set

$$
\operatorname{sign}(\phi)=\left\{\begin{array}{cl}
1 & \text { if } \phi \text { preserves the orientation } \\
-1 & \text { if } \phi \text { reverses the orientation. }
\end{array}\right.
$$

Note that, for all $\phi \in \operatorname{Aut}_{V}(\Gamma), \operatorname{sign}(\phi)=1$.
The degree of a Jacobi diagram is half the number of all its vertices. Let \mathcal{A}_{k} denote the free abelian group generated by the degree k oriented Jacobi diagrams, quotiented out by the following relations AS and IHX.

AS - relation

IHX - relation
Each of these relations relate diagrams which can be represented by immersions that are identical outside the part of them represented in the pictures. In the pictures, the cyclic order of the half-edges is represented by the counterclockwise order. For example, AS identifies the sum of two diagrams which only differ by the orientation at one vertex to zero. The space \mathcal{A}_{0} is equal to \mathbb{Z} generated by the empty diagram. In what follows, if Γ is an oriented Jacobi diagram, then $-\Gamma$ denotes the same Jacobi diagram with the opposite orientation. If Γ is reversible, then $\Gamma=-\Gamma$.

$2.2 \quad Y$-graphs and the Goussarov-Habiro filtration

Here, we give a brief review about the Y-surgery, or the surgery along Y-links, which is presented in [GGP]. The Y-surgery is equivalent to the Borromeo transformation in Matveev's work [Mat].

Let Λ be the graph embedded in the surface $\Sigma(\Lambda)$ shown in Figure 1(a). In the 3handlebody $(N=\Sigma(\Lambda) \times[-1,1])$, the edges of Λ are framed by a vector field normal to $\Sigma(\Lambda)=\Sigma(\Lambda) \times\{0\} . \Sigma(\Lambda)$ is called a framing surface for Λ. Let $L(\Lambda) \subset N$ be the link presented in Figure 1(b) with six framed components that inherit their framings from $\Sigma(\Lambda)$.

Figure 1: Y-graph and associated link
Let M be a 3-manifold. A Y-graph in M is an embedding ϕ of N (or $\Sigma(\Lambda)$) into M up to isotopy. Such an isotopy class is determined by the framed image of the framed unoriented graph Λ under ϕ. A leaf of a Y-graph ϕ is the image under ϕ of a simple loop of our graph Λ. An edge of ϕ is an edge of $\phi(\Lambda)$ that is not a leaf. The vertex of ϕ is the unique vertex of $\phi(\Lambda)$ adjacent to the three edges. With this terminology, a Y-graph has one vertex, three edges and three leaves. Let $G \subset M$ be a Y-link. A leaf

l of a Y-component of G is trivial if l is 0 -framed and if l bounds an embedded disc in $M \backslash G$.
The Y-surgery along the Y-graph $\phi(\Lambda)$ is the surgery along the framed link $\phi(L(\Lambda))$ (see [Rol, Chapter 9], or [Lic, Chapter 11] for details about surgery on framed knots). The resulting manifold is denoted by $M_{\phi(\Lambda)}$. An n-component Y-link $G \subset M$ is an embedding of the disjoint union of n copies of N into M up to isotopy. The Y-surgery along a Y-link G is defined as the surgery along each Y-component of G. The resulting manifold is denoted by M_{G}.
In this article, the homology coefficients will always be integers. A \mathbb{Z}-sphere is a compact oriented 3-manifold M such that $H_{*}(M)=H_{*}\left(S^{3}\right)$. It is also called a homology sphere. A homology handlebody or \mathbb{Z}-handlebody is an oriented, compact 3-manifold A with the same homology (with integral coefficients) as the standard (solid) handle-
body H_{g} below.

Note that the boundary ∂A of such a \mathbb{Z}-handlebody A is homeomorphic to the boundary Σ_{g} of H_{g}. For any surface Σ, let $<,>_{\Sigma}$ be the intersection form on Σ. For a \mathbb{Z}-handlebody A, \mathcal{L}_{A} denotes the kernel of the map from $H_{1}(\partial A)$ to $H_{1}(A)$ induced by the inclusion. It is a Lagrangian of $\left(H_{1}(\partial A) ;<,>_{\partial A}\right)$. It is called the Lagrangian of A.
If A is a \mathbb{Z}-handlebody and if G is a Y-link in the interior $\operatorname{Int}(A)$ of A, then A_{G} is still a \mathbb{Z}-handlebody whose boundary ∂A is canonically identified with ∂A_{G}, so that $\mathcal{L}_{A}=\mathcal{L}_{A_{G}}$. Similarly, if G is a Y-link in a homology sphere M, then M_{G} is still a homology sphere.
Let \mathcal{F} be the abelian group freely generated by the oriented \mathbb{Z}-spheres up to orientationpreserving diffeomorphisms. Let M be a \mathbb{Z}-sphere and let $G \subset M$ be a Y-link with n components indexed by $\{1, \ldots, n\}$. For any subset $J \subset\{1, \ldots, n\}$, let $G(J)$ be the Y-sublink of G made of the components of G whose indices are in J. Set

$$
[M, G]=\sum_{J \subset\{1, \ldots, n\}}(-1)^{\sharp J} M_{G(J)} \in \mathcal{F} .
$$

Let \mathcal{F}_{n} denote the subgroup of \mathcal{F} generated by all the elements $[M, G]$, where G is an n-component Y-link in a \mathbb{Z}-sphere M. This defines a filtration

$$
\mathcal{F}_{0}=\mathcal{F} \supset \mathcal{F}_{1} \supset \ldots \mathcal{F}_{n} \supset \ldots
$$

of \mathcal{F}. It is called the Goussarov-Habiro filtration (see [GGP] and [Hbo]). Set

$$
\mathcal{G}_{n}=\mathcal{F}_{n} / \mathcal{F}_{n+1} .
$$

2.3 Linking Jacobi diagrams to the Goussavov-Habiro filtration

Below, following [GGP], we describe a surjective map from $\oplus_{2 k \leq n} \mathcal{A}_{k}$ to \mathcal{G}_{n}, whose tensor product by $\mathbb{Z}[1 / 2]$ is an isomorphism. Let k and n be integers such that $2 k \leq n$. Let Γ be a degree k oriented Jacobi diagram. Let $\tilde{\Gamma}$ be an arbitrary framed embedding of Γ in S^{3}, where the framing is induced by a regular projection of $\tilde{\Gamma}$ in \mathbb{R}^{2} that induces the counterclockwise orientation of the trivalent vertices of Γ. Insert a Hopk link on each edge of $\tilde{\Gamma}$ as illustrated in Figure 2(a). Let $G(\tilde{\Gamma})$ denote the resulting Y-link in S^{3}. Let $Y_{\text {III }}$ be the framed Y-graph embedded in S^{3} shown in Figure 2(b). Let $\phi_{n}(\Gamma)$ be the disjoint union of $G(\tilde{\Gamma})$ and of $n-2 k$ copies of $Y_{I I I}$.

Theorem 2.1 ([GGP, Theorem 4.13]) The linear map

$$
\begin{array}{rll}
\Psi_{n}: \bigoplus_{2 k \leq n} \mathcal{A}_{k} & \rightarrow & \mathcal{G}_{n} \\
\Gamma & \mapsto & {\left[S^{3}, \phi_{n}(\Gamma)\right]}
\end{array}
$$

(a)

(b)

Figure 2: Turning a Jacobi diagram into a Y-link
does not depend on the choice of ϕ_{n}, is well-defined and is surjective. Moreover, in \mathcal{G}_{n},

$$
2 \Psi_{n}\left(\bigoplus_{2 k<n} \mathcal{A}_{k}\right)=0
$$

That Ψ_{n} is independent of the choice of ϕ_{n}, factors through $A S$ and satisfies $2 \Psi_{n}\left(\oplus_{2 k<n} \mathcal{A}_{k}\right)=0$ is a consequence of Proposition 4.13 proved below. In this article, the class $\overline{[M, G]} \in \mathcal{G}_{n}$ of the bracket $[M, G]$ of any n-component Y-link, will be expressed as an explicit combination of the $\Psi_{n}(\Gamma)$ for oriented Jacobi diagrams Γ with at most n vertices. Therefore, the surjectivity of Ψ_{n} will be reproved. For the sake of completeness, a proof that Ψ_{n} factors through IHX is given in the appendix.

3 Statement of the main result

3.1 LP-surgeries

An n-component LP surgery is a 3 -tuple

$$
D=\left(M ; n ;\left(A_{i}, B_{i}\right)_{i=1, \ldots, n}\right)
$$

where

- M is a homology sphere, $n \in \mathbb{N}$,
- for any $i=1,2, \ldots n, A_{i}$ and B_{i} are \mathbb{Z}-handlebodies whose boundaries are identified by implicit diffeomorphisms (we shall write $\partial B_{i}=\partial A_{i}$), so that $\mathcal{L}_{B_{i}}=$ $\mathcal{L}_{A_{i}}$,
- the disjoint union of the A_{i} is embedded in M. We shall write

$$
\sqcup_{i=1}^{n} A_{i} \subset M
$$

For such an LP-surgery D, and for any subset $J \subset\{1, \ldots, n\}$, set

$$
D(J)=\left(M ; \sharp J ;\left(A_{i}, B_{i}\right)_{i \in J}\right)
$$

Let $M_{D(J)}$ denote the homology sphere obtained by replacing A_{i} by B_{i} for any element i of J.

$$
M_{D(J)}=\left(M \backslash \sqcup_{i \in J} \operatorname{Int}\left(A_{i}\right)\right) \bigcup_{\sqcup_{i \in J} \partial A_{i}}\left(\sqcup_{i \in J} B_{i}\right)
$$

Define

$$
[D]=\sum_{J \subset\{1, \ldots, n\}}(-1)^{\sharp J} M_{D(J)} \in \mathcal{F} .
$$

The following proposition will be proved in Subsection 4.2.
Proposition 3.1 For any n-component LP-surgery D,

$$
[D] \in \mathcal{F}_{n}
$$

Conversely, any n-component Y-link $G=\left(G_{i}\right)_{i \in\{1, \ldots, n\}}$ in a homology sphere M, induces the n-component LP-surgery

$$
(M ; G)=\left(M ; n ;\left(A_{i}, B_{i}\right)_{i=1, \ldots, n}\right)
$$

such that, for any i in $\{1, \ldots, n\}, A_{i}$ is a regular neighbourhood of the Y-component G_{i} of G, and $B_{i}=\left(A_{i}\right)_{G_{i}}$. Then $[(M ; G)]=[M, G]$ and $(M ; G)$ is called the LPsurgery induced by G.

This allows us to give the following alternative definition for the Goussarov-Habiro filtration.

Corollary 3.2 \mathcal{F}_{n} is the subspace of \mathcal{F} generated by the elements $[D]$, where D runs among the n-component LP-surgeries.

In what follows, for any n-component LP-surgery $D, \overline{[D]}$ denotes the class of $[D]$ in \mathcal{G}_{n}. It is called the bracket of D.

3.2 The linking number of an LP-surgery with respect to a Jacobi diagram

This subsection is devoted to the definition of the linking number $\ell(D ; \Gamma)$ of an n component LP-surgery D with respect to a degree k Jacobi diagram Γ, with $2 k \leq n$.

Let Γ be an oriented degree k Jacobi diagram. Define a map

$$
h: H(\Gamma) \longrightarrow\{1,2,3\}
$$

such that, for any vertex w of Γ, the map

$$
h_{w}: v^{-1}(w) \longrightarrow\{1,2,3\}
$$

is a bijection. Set

$$
\operatorname{sign}(h)=\prod_{w \in V(\Gamma)} \operatorname{sgn}\left(h_{w}\right)
$$

where, for any vertex w of $\Gamma, \operatorname{sgn}\left(h_{w}\right)=1$ if the orientation of w is induced by the order of the half-edges given by h_{w}, and $\operatorname{sgn}\left(h_{w}\right)=-1$ otherwise. A coloration of Γ is a bijection $\sigma: V(\Gamma) \longrightarrow\{1, \ldots, 2 k\}$. Below, σ also denotes the induced map $\sigma \circ v: H(\Gamma) \longrightarrow\{1, \ldots, 2 k\}$. Let $D=\left(M ; 2 k ;\left(A_{i}, B_{i}\right)\right)$ be a $2 k$-component LPsurgery. Let us define the linking number $\ell(D ; \Gamma ; \sigma)$ of D with respect to Γ and σ.
The boundary of an oriented manifold is always oriented with the outward normal first convention. The Mayer-Vietoris boundary map

$$
\partial_{i, M V}: H_{2}\left(A_{i} \cup_{\partial A_{i}}-B_{i}\right) \longrightarrow \mathcal{L}_{A_{i}}
$$

that maps the homology class of an oriented surface to the oriented boundary of its intersection with A_{i}, is an isomorphism. This isomorphism carries the intersection form of the closed 3-manifold $\left(A_{i} \cup_{\partial A_{i}}-B_{i}\right)$ on $\bigotimes^{3} H_{2}\left(A_{i} \cup_{\partial A_{i}}-B_{i}\right)$ to a linear form $\mathcal{I}\left(A_{i}, B_{i}\right)$ on $\bigotimes_{j=1}^{3} \mathcal{L}_{A_{i}}^{(j)}$ which is antisymmetric with respect to the permutation of two factors, where $\mathcal{L}_{A_{i}}^{(j)}$ denotes the $j^{\text {th }}$ copy of $\mathcal{L}_{A_{i}}$. Then the linear form $\mathcal{I}\left(A_{i}, B_{i}\right)$ is an element of $\bigotimes_{j=1}^{3}\left(\mathcal{L}_{A_{i}}^{(j)}\right)^{*}$ where $\left(\mathcal{L}_{A_{i}}^{(j)}\right)^{*}$ denotes the dual $\operatorname{Hom}\left(\mathcal{L}_{A_{i}}^{(j)} ; \mathbb{Z}\right)$ of $\mathcal{L}_{A_{i}}^{(j)}$. Let $c \in H(\Gamma)$. Define

$$
X(c)=\left(\mathcal{L}_{A_{\sigma(c)}}^{(h(c))}\right)^{*}
$$

The linear form $\mathcal{I}\left(A_{i}, B_{i}\right)$ belongs to

$$
\bigotimes_{\{c \in H(\Gamma) ; \sigma(c)=i\}} X(c) .
$$

Then define

$$
T(D ; \Gamma ; \sigma)=\operatorname{sign}(h) \bigotimes_{w \in V(\Gamma)} \mathcal{I}\left(A_{\sigma(w)}, B_{\sigma(w)}\right) \in \bigotimes_{c \in H(\Gamma)} X(c) .
$$

Note that $T(D ; \Gamma ; \sigma)$ is independent of h.
Notation 3.3 Let A be a \mathbb{Z}-handlebody. Then $H_{1}(A)$ is canonically isomorphic to $\frac{H_{1}(\partial A)}{\mathcal{L}_{A}}$. Furthermore, the intersection form $<,>_{\partial A}$ induces the map

$$
\begin{array}{llll}
<, .>: & H_{1}(\partial A) & \longrightarrow & \mathcal{L}_{A}^{*} \\
x & \mapsto & <., x>
\end{array}
$$

that in turn induces an isomorphism from $\frac{H_{1}(\partial A)}{\mathcal{L}_{A}}$ to \mathcal{L}_{A}^{*}. Then

$$
\varphi_{A}: H_{1}(A) \longrightarrow \mathcal{L}_{A}^{*}
$$

will denote the composition of these two isomorphisms.
For $\{i, j\} \subset\{1,2, \ldots, 2 k\}$, the linking number in M induces a bilinear form on $H_{1}\left(A_{i}\right) \times H_{1}\left(A_{j}\right)$ that is viewed as a linear form on $\mathcal{L}_{A_{i}}^{*} \otimes \mathcal{L}_{A_{j}}^{*}$ via $\varphi_{A_{i}}^{-1} \otimes \varphi_{A_{j}}^{-1}$. Therefore, for each edge $f \in E(\Gamma)$ made of two half-edges c and d (such that $e^{-1}(f)=\{c, d\}$), the linking number yields a contraction

$$
\ell_{f}: X(c) \otimes X(d) \longrightarrow \mathbb{Z}
$$

Applying all these contractions to the tensor $T(D ; \Gamma ; \sigma)$ maps $T(D ; \Gamma ; \sigma)$ to the integral linking number $\ell(D ; \Gamma ; \sigma)$ of D with respect to Γ and σ.
For any automorphism ϕ in $\operatorname{Aut}(\Gamma)$, let

$$
\phi_{v}: V(\Gamma) \longrightarrow V(\Gamma)
$$

denote the bijection such that $v \circ \phi=\phi_{v} \circ v$. Let $\operatorname{Bij}(\Gamma)$ denote the set of colorations of Γ. Then $\operatorname{Aut}(\Gamma)$ acts on $\operatorname{Bij}(\Gamma)$ by the action

$$
\phi \cdot \sigma=\sigma \circ\left(\phi_{v}\right)^{-1}
$$

Let $\operatorname{Bij}(\Gamma) / \operatorname{Aut}(\Gamma)$ denote the quotient of $\operatorname{Bij}(\Gamma)$ under this action. Note that, for any automorphism ϕ of Γ,

$$
\ell(D ; \Gamma ; \sigma)=\operatorname{sign}(\phi) \cdot \ell(D ; \Gamma ; \phi \cdot \sigma) .
$$

The following lemma is proved at the end of the next subsection.
Lemma 3.4 There exists an integer $\ell_{0}(D ; \Gamma ; \sigma)$ such that

$$
\ell(D ; \Gamma ; \sigma)=\sharp \operatorname{Aut}_{V}(\Gamma) \cdot \ell_{0}(D ; \Gamma ; \sigma) .
$$

In what follows, for any \mathbb{Z}-sphere $M, \mu(M) \in \mathbb{Z} / 2 \mathbb{Z}$ will denote the Rohlin invariant of M that is the reduction mod 2 of the Casson invariant (see [GM, Proposition 1.3, Definition 1.6]).

For any n-component LP-surgery $D=\left(M ; n ;\left(A_{i}, B_{i}\right)\right)$ and for any subset $J \subset$ $\{1, \ldots, n\}$, set

$$
\mathcal{L}(D(\bar{J}))=\prod_{i \in(\{1, \ldots, n\} \backslash J)}\left(\mu\left(\left(M \backslash \operatorname{Int}\left(A_{i}\right)\right) \cup B_{i}\right)-\mu(M)\right)
$$

Let Γ be an oriented degree k Jacobi diagram. Let $D=\left(M ; n ;\left(A_{i}, B_{i}\right)\right)$ be an n-component LP-surgery with $2 k \leq n$. Here, we define the linking number $\ell(D ; \Gamma)$ of D with respect to Γ.

- If $2 k=n$ and if Γ is not reversible, then set

$$
\ell(D ; \Gamma)=\sum_{\sigma \in \operatorname{Bij}(\Gamma)} \frac{\ell(D ; \Gamma ; \sigma)}{\sharp \operatorname{Aut}(\Gamma)} \in \mathbb{Z} .
$$

Note that

$$
\ell(D ; \Gamma)=\sum_{\bar{\sigma} \in \operatorname{Bij}(\Gamma) / \operatorname{Aut}(\Gamma)} \ell_{0}(D ; \Gamma ; \sigma) .
$$

- If $2 k=n$ and if Γ is reversible, then set

$$
\ell(D ; \Gamma)=\sum_{\bar{\sigma} \in \operatorname{Bij}(\Gamma) / \operatorname{Aut}(\Gamma)} \overline{\ell_{0}(D ; \Gamma ; \sigma)} \in \mathbb{Z} / 2 \mathbb{Z}
$$

where $\overline{\ell_{0}(D ; \Gamma ; \sigma)} \in \mathbb{Z} / 2 \mathbb{Z}$ denotes the mod 2 reduction of $\ell_{0}(D ; \Gamma ; \sigma)$.

- If $2 k<n$, then set

$$
\ell(D ; \Gamma)=\sum_{\{J \subset\{1, \ldots, n\} ; \sharp J=2 k\}} \ell(D(J) ; \Gamma) \cdot \mathcal{L}(D(\bar{J})) \in \mathbb{Z} / 2 \mathbb{Z} .
$$

3.3 Expression of brackets of LP-surgeries in terms of Jacobi diagrams

Let $n \in \mathbb{N}$. Let \mathcal{J}_{n} be a set of oriented Jacobi diagrams of degree at most $n / 2$ that contains one Jacobi diagram in each isomorphism class of non-oriented Jacobi diagrams of degree at most $n / 2$. The main goal of this paper is to show the following result.

Theorem 3.5 Let D be an n-component LP-surgery. Then

$$
\overline{[D]}=\sum_{\Gamma \in \mathcal{J}_{n}} \ell(D ; \Gamma) \cdot \Psi_{n}(\Gamma) \in \mathcal{G}_{n}
$$

Proof of Lemma 3.4: For any $i \in\{1, \ldots, 2 k\}$, let $\left(a_{j}^{i}\right)_{j \in J_{i}}$ be a basis of $\mathcal{L}_{A_{i}}$, where $J_{i}=\left\{1, \ldots, g_{i}\right\}$ and g_{i} is the genus of ∂A_{i}. Let $\left(z_{j}^{i}\right)_{j \in J_{i}}$ be the basis of $H_{1}\left(A_{i}\right)$ such that, for any k and l in $J_{i},\left(\varphi_{A_{i}}\left(z_{k}^{i}\right)\right)\left(a_{l}^{i}\right)=\delta_{k l}$. Let c_{1}, c_{2} and c_{3} be the three half-edges of Γ such that $\sigma\left(c_{k}\right)=i$ and $h\left(c_{k}\right)=k$. Then

$$
\begin{aligned}
\mathcal{I}\left(A_{i}, B_{i}\right) & =\sum_{\substack{\left(j_{1}, j_{2}, j_{3}\right) \in J_{i}^{3}}} \mathcal{I}\left(A_{i}, B_{i}\right)\left(a_{j_{1}}^{i}, a_{j_{2}}^{i}, a_{j_{3}}^{i}\right) \varphi_{A_{i}}\left(z_{j_{1}}^{i}\right) \otimes \varphi_{A_{i}}\left(z_{j_{2}}^{i}\right) \otimes \varphi_{A_{i}}\left(z_{j_{3}}^{i}\right) \\
& =\sum_{\substack{\left(j_{1}, j_{2}, j_{3}\right) \in J_{3}^{3} \\
j_{1}<j_{2}<j_{3}}}\left(\mathcal{I}\left(A_{i}, B_{i}\right)\left(a_{j_{1}}^{i}, a_{j_{2}}^{i}, a_{j_{3}}^{i}\right) \sum_{\tau \in \mathcal{S}_{3}}\left(\operatorname{sgn}(\tau) \bigotimes_{k=1,2,3} \varphi_{A_{i}}\left(z_{j_{\tau(k)}}^{i}\right)\right)\right)
\end{aligned}
$$

where $\varphi_{A_{i}}\left(z_{j_{\tau(k)}}^{i}\right) \in X\left(c_{k}\right), \mathcal{S}_{3}$ denotes the set of the permutations of $\{1,2,3\}$ and $\operatorname{sgn}(\tau)$ denotes the signature of the permutation τ.
Let $\mathcal{H}(\Gamma)$ denote the set of the maps $h^{\prime}: H(\Gamma) \longrightarrow\{1,2,3\}$ such that $h^{\prime}\left(v^{-1}(w)\right)=$ $\{1,2,3\}$ for any $w \in V(\Gamma)$. Set

$$
J=\left\{\left(j_{1}^{1}, j_{2}^{1}, j_{3}^{1}, \ldots, j_{1}^{2 k}, j_{2}^{2 k}, j_{3}^{2 k}\right) \in \prod_{i=1}^{2 k}\left(J_{i}\right)^{3} ; \forall i \in\{1, \ldots, 2 k\}, j_{1}^{i}<j_{2}^{i}<j_{3}^{i}\right\}
$$

For any $j \in J$, set $\mathcal{J}(j)=\prod_{i=1}^{2 k} \mathcal{I}\left(A_{i}, B_{i}\right)\left(a_{j_{1}}^{i}, a_{j_{2}}^{i}, a_{j_{3}}^{i}\right)$. Then

$$
T(D ; \Gamma ; \sigma)=\sum_{j \in J} \mathcal{J}(j)\left(\sum_{h^{\prime} \in \mathcal{H}(\Gamma)} \operatorname{sign}\left(h^{\prime}\right) \bigotimes_{c \in H(\Gamma)} \varphi_{A_{\sigma(c)}}\left(z_{j_{h^{\prime}(c)}^{\sigma(c)}}^{\sigma(c)}\right)\right)
$$

Then $\ell(D ; \Gamma ; \sigma)=\sum_{h^{\prime} \in \mathcal{H}(\Gamma)} \ell\left(D ; \Gamma ; \sigma ; h^{\prime}\right)$ where

$$
\ell\left(D ; \Gamma ; \sigma ; h^{\prime}\right)=\operatorname{sign}\left(h^{\prime}\right) \sum_{j \in J} \mathcal{J}(j)\left(\prod_{e=\left(c_{1}, c_{2}\right) \in E(\Gamma)} \ell k\left(z_{\substack{\sigma\left(c_{h^{\prime}}\left(c_{1}\right)\right.}}^{\sigma\left(c_{1}\right)}, z_{j_{h^{\prime}\left(c_{2}\right)}^{\sigma\left(c_{2}\right)}}^{\sigma\left(c_{2}\right)}\right)\right) .
$$

For any automorphism $\zeta \in \operatorname{Aut}_{V}(\Gamma), \ell\left(D ; \Gamma ; \sigma ; h^{\prime} \circ \zeta\right)=\ell\left(D ; \Gamma ; \sigma ; h^{\prime}\right)$. Then $\ell_{0}(D ; \Gamma ; \sigma)$ is the sum of the integers $\ell\left(D ; \Gamma ; \sigma ; h^{\prime}\right)$ running over all classes $\overline{h^{\prime}}$ of $\mathcal{H}(\Gamma) / \operatorname{Aut}_{V}(\Gamma)$.

4 Proof of the theorem

4.1 Proof of Theorem 3.5 for LP-surgeries induced by Jacobi diagrams

Here we prove Theorem 3.5 when $D=\left(S^{3} ; \phi_{n}\left(\Gamma_{Y}\right)\right)$, where the Y-link $\phi_{n}\left(\Gamma_{Y}\right)$ is the image of a Jacobi diagram Γ_{Y} under the map ϕ_{n} of Subsection 2.3. It is a direct corollary of the proposition below.

Proposition 4.1 Let Γ be an oriented degree k Jacobi diagram. Let Γ_{Y} be an oriented degree k^{\prime} Jacobi diagram. Let n be an integer such that $n \geq \max \left(2 k, 2 k^{\prime}\right)$. Then

$$
\ell\left(\phi_{n}\left(\Gamma_{Y}\right) ; \Gamma\right)= \begin{cases}1 & \text { if } \Gamma_{Y} \cong \Gamma \\ -1 & \text { if } \Gamma_{Y} \cong-\Gamma \\ 0 & \text { if } \Gamma_{Y} \nsupseteq \pm \Gamma\end{cases}
$$

where $\Gamma \cong \Gamma^{\prime}$ iff Γ and Γ^{\prime} are isomorphic as oriented Jacobi diagrams.
Lemma 4.2 Let G be a framed Y-graph embedded in the interior of a 3-handlebody A as in Figure 3. Let B be the \mathbb{Z}-handlebody obtained by Y-surgery on A along G. Let $\left(a_{1}, a_{2}, a_{3}\right) \subset \partial A$ be the oriented curves represented in Figure 3. Then $\left(a_{1}, a_{2}, a_{3}\right)$ is a basis of $\mathcal{L}_{A}=\mathcal{L}_{B}$ and

$$
\left|(\mathcal{I}(A, B))\left(a_{1} \otimes a_{2} \otimes a_{3}\right)\right|=1
$$

Figure 3

Proof: This can be computed directly, or we can use that

$$
A \cup_{\partial A}(-B)=S^{1} \times S^{1} \times S^{1}
$$

$\left(A \cup(-B)\right.$ is the manifold obtained by surgery on the 0 -framed Borromean link in S^{3} that is $\left(S^{1}\right)^{3}$, see [Thu, 13.1.5]). Let S_{1}, S_{2} and S_{3} be the three following surfaces in $\left(S^{1}\right)^{3}$.

$$
\begin{aligned}
& S_{1}=\{\star\} \times S^{1} \times S^{1} \\
& S_{2}=S^{1} \times\{\star\} \times S^{1} \\
& S_{3}=S^{1} \times S^{1} \times\{\star\} .
\end{aligned}
$$

Let $\mathcal{I} \in\left(\otimes^{3} H_{2}\left(\left(S^{1}\right)^{3}\right)\right)^{*}$ be the intersection form of $A \cup_{\partial A}(-B)=\left(S^{1}\right)^{3}$. Since $S_{1} \cap S_{2} \cap S_{3}=\{\star\} \times\{\star\} \times\{\star\}$ is a single transverse intersection point, then

$$
\left|\mathcal{I}\left(S_{1} \otimes S_{2} \otimes S_{3}\right)\right|=1
$$

By the isomorphism from $H_{2}\left(\left(S^{1}\right)^{3}\right)$ to \mathcal{L}_{A} induced by the Mayer-Vietoris boundary map, $\left(a_{1}, a_{2}, a_{3}\right)$ can be seen as a basis of $H_{2}\left(\left(S^{1}\right)^{3}\right)$. Therefore, $\mathcal{I}\left(S_{1} \otimes S_{2} \otimes S_{3}\right)$ is a multiple of $(\mathcal{I}(A, B))\left(a_{1} \otimes a_{2} \otimes a_{3}\right)$. Then

$$
\left|(\mathcal{I}(A, B))\left(a_{1} \otimes a_{2} \otimes a_{3}\right)\right|=1 .
$$

Lemma 4.3

$$
\mu\left(S_{Y_{I I I}}^{3}\right)=1
$$

This lemma is a direct consequence of Corollary 4.21 that is proved in Subsection 4.4. It relies on the results of Subsections 4.2 and 4.3 that are logically independent of the proof below that illustrates our formulae.

Proof of Proposition 4.1:

- First assume that $2 k=2 k^{\prime}=n$.

Let σ be a coloration of Γ. Let $D=\left(S^{3} ; \phi_{n}\left(\Gamma_{Y}\right)\right)=\left(M ; n ;\left(A_{i}, B_{i}\right)\right)$ be the LPsurgery induced by the Y-link $\phi_{n}\left(\Gamma_{Y}\right)$. Each pair $\left(A_{i}, B_{i}\right)$ is a copy of the pair (A, B) presented in Lemma 4.2. Let $i \in\{1, \ldots, n\}$. Let $\left(a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right)$ be the basis of $\mathcal{L}_{A_{i}}$ that corresponds to the curves $\left(a_{1}, a_{2}, a_{3}\right)$ in Figure 3. Let $\left(z_{1}^{i}, z_{2}^{i}, z_{3}^{i}\right)$ be the basis of $H_{1}\left(A_{i}\right)$ that corresponds to the curves $\left(z_{1}, z_{2}, z_{3}\right)$ in Figure 3. Under the (implicit from now on) isomorphism

$$
\varphi_{A_{i}}: H_{1}\left(A_{i}\right) \longrightarrow \mathcal{L}_{A_{i}}^{*}
$$

presented in Notation 3.3, $\left(z_{1}^{i}, z_{2}^{i}, z_{3}^{i}\right)$ is the dual basis to $\left(a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right)$, i.e.

$$
\left(\varphi_{A_{i}}\left(z_{k}^{i}\right)\right)\left(a_{l}^{i}\right)=\delta_{k l} .
$$

Then

$$
\mathcal{I}\left(A_{i}, B_{i}\right)=\sum_{\tau} \operatorname{sgn}(\tau) \mathcal{I}(A, B)\left(a_{1} \otimes a_{2} \otimes a_{3}\right) z_{\tau(1)}^{i} \otimes z_{\tau(2)}^{i} \otimes z_{\tau(3)}^{i}
$$

Since $\left|(\mathcal{I}(A, B))\left(a_{1} \otimes a_{2} \otimes a_{3}\right)\right|=1$ by Lemma 4.2 ,

$$
T(D ; \Gamma ; \sigma)=\operatorname{sign}(h) \sum_{\left(\tau_{i}\right) \in\left(\mathcal{S}_{3}\right)^{n}}\left(\left(\prod_{i=1}^{n} \operatorname{sgn}\left(\tau_{i}\right)\right) \bigotimes_{c \in H(\Gamma)} z_{\tau_{\sigma(c)}(h(c))}^{\sigma(c)}\right)
$$

where h is as in Subsection 3.2. For any $\tau=\left(\tau_{i}\right)_{i=1, \ldots, n} \in\left(\mathcal{S}_{3}\right)^{n}$, let $\zeta(\sigma ; \tau)$ denote the map

$$
\begin{array}{rlll}
\zeta(\sigma ; \tau): H(\Gamma) & \longrightarrow & \{1, \ldots, n\} \times\{1,2,3\} \\
c & \mapsto & \left(\sigma(c), \tau_{\sigma(c)}(h(c))\right)
\end{array}
$$

Let

$$
\begin{aligned}
\xi: \quad H\left(\Gamma_{Y}\right) & \longrightarrow\{1, \ldots, n\} \times\{1,2,3\} \\
c & \mapsto
\end{aligned}
$$

be the bijection such that, for any half-edge c of $\Gamma_{Y}, z_{\xi_{2}(c)}^{\xi_{1}(c)}$ is the core of the leaf corresponding to c. Set $\phi(\sigma ; \tau)=\xi^{-1} \circ \zeta(\sigma ; \tau)$. Then $\phi(\sigma ; \tau)$ is a bijection from $H(\Gamma)$ to $H\left(\Gamma_{Y}\right)$ such that

- for any c, c^{\prime} in $H(\Gamma), v(\phi(\sigma ; \tau)(c))=v\left(\phi(\sigma ; \tau)\left(c^{\prime}\right)\right)$ if and only if $v(c)=v\left(c^{\prime}\right)$
- for any edge $e=\left(c, c^{\prime}\right)$ of $H(\Gamma)$,

$$
\ell k\left(z_{\tau_{\sigma(c)}(h(c))}^{\sigma(c)}, z_{\tau_{\sigma\left(c^{\prime}\right)}\left(h\left(c^{\prime}\right)\right)}^{\sigma\left(c^{\prime}\right)}\right)= \begin{cases}1 & \text { if } \phi(\sigma ; \tau)(c) \text { and } \phi(\sigma ; \tau)\left(c^{\prime}\right) \\ & \text { belong to the same edge of } \Gamma_{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Therefore

$$
\ell(D ; \Gamma ; \sigma)=\sum_{\left\{\tau ; \tau \in\left(\mathcal{S}_{3}\right)^{n}, \phi(\sigma ; \tau) \text { is an isomorphism }\right\}} \operatorname{sign}(\phi(\sigma ; \tau))
$$

where

$$
\operatorname{sign}(\phi(\sigma ; \tau))=\operatorname{sign}(h)\left(\prod_{i=1}^{n} \operatorname{sgn}\left(\tau_{i}\right)\right) .
$$

Hence, if $\Gamma \nsubseteq \pm \Gamma_{Y}$, then, for any coloration σ of $\Gamma, \ell(D ; \Gamma ; \sigma)=0$, and $\ell(D ; \Gamma)=0$. Otherwise, there exists a coloration σ of Γ and a map $\tau \in\left(\mathcal{S}^{3}\right)^{n}$ such that $\phi(\sigma ; \tau)$ is an orientation-preserving isomorphism from Γ to $\operatorname{sign}(\phi(\sigma ; \tau)) \Gamma_{Y}$. For any map $\tau^{\prime} \in$ $\left(\mathcal{S}^{3}\right)^{n}$ such that $\phi\left(\sigma ; \tau^{\prime}\right)$ is an isomorphism, $\left(\phi\left(\sigma ; \tau^{\prime}\right)\right)^{-1} \circ \phi(\sigma ; \tau)$ is an automorphism of Γ that preserves the vertices. Then $\operatorname{sign}(\phi(\sigma ; \tau))=\operatorname{sign}\left(\phi\left(\sigma ; \tau^{\prime}\right)\right)$. Conversely, any automorphism of $\operatorname{Aut}_{V}(\Gamma)$ provides such a map τ^{\prime}. Then

$$
\ell(D ; \Gamma ; \sigma)=\operatorname{sign}(\phi(\sigma ; \tau)) \sharp \operatorname{Aut}_{V}(\Gamma) .
$$

For any other pair $\left(\sigma^{\prime} ; \tau^{\prime}\right)$ such that $\phi\left(\sigma^{\prime} ; \tau^{\prime}\right)$ is an isomorphism from Γ to $\Gamma_{Y}, \sigma^{\prime}$ is obtained from σ by composition by an automorphism of Γ. Then $\ell(D ; \Gamma)=\ell_{0}(D ; \Gamma ; \sigma)=$ $\operatorname{sign}(\phi(\sigma ; \tau))$ and Proposition 4.1 is proved in this case.

- If $2 k^{\prime}<2 k=n$, then $\ell\left(\phi_{2 k}\left(\Gamma_{Y}\right) ; \Gamma\right)=0$ because when A is the regular neighbourhood of $Y_{I I I}$, the elements of $H_{1}(A)$ do not link any element of the other $H_{1}\left(A_{i}\right)$'s.
- When $2 k<n$, let $J \subset\{1, \ldots, n\}$ and let $\bar{J}=\{1, \ldots, n\} \backslash J$. Let J_{Y} be the set of indices of the $2 k^{\prime}$-component Y-link $G\left(\tilde{\Gamma}_{Y}\right)$. See Subsection 2.3. $\sharp J_{Y}=2 k^{\prime}$. $\overline{J_{Y}}=\{1, \ldots, n\} \backslash J_{Y}$.
If $J_{Y} \cap \bar{J} \neq \emptyset$, then $\mathcal{L}(D(\bar{J}))=0$ since $S_{Y_{0}}^{3}=S^{3}$ when Y_{0} is a Y-graph in S^{3} with a trivial leaf.
If $\overline{J_{Y}} \cap J \neq \emptyset$, then $\ell(D(J) ; \Gamma)=0$ as in the previous case. Then

$$
\ell(D ; \Gamma)= \begin{cases}0 & \text { if } k \neq k^{\prime} \\ \ell\left(D\left(J_{Y}\right) ; \Gamma\right) \cdot \mathcal{L}\left(D\left(\overline{J_{Y}}\right)\right) & \text { if } k=k^{\prime}\end{cases}
$$

Then $\mathcal{L}\left(D\left(\overline{J_{Y}}\right)\right)=1$ by Lemma 4.3 and $\ell\left(D\left(J_{Y}\right) ; \Gamma\right)=\ell\left(\phi_{2 k}\left(\Gamma_{Y}\right) ; \Gamma\right)$. Then the result follows from the first case.

4.2 Decomposition of LP-surgeries into surgeries on Y-links

In this subsection, we remind known facts and state useful lemmas about the theory of Borromeo surgeries [Mat, GGP]. We shall see all these facts as consequences of the following single lemma 4.4. As an application of the theory of Borromeo surgeries, we shall prove Proposition 3.1.

Lemma 4.4 ([GGP, Lemma 2.1]) Let M be an oriented 3-manifold (with possible boundary). Let G be a Y-graph in M with a trivial leaf that bounds a disc D in $M \backslash G$. Then

- for any framed graph T_{0} in $M \backslash G$ that does not meet D, the pair $\left(M_{G}, T_{0}\right)$ is diffeomorphic to the pair $\left(M, T_{0}\right)$.
- If T is a framed graph in $M \backslash G$ that meets $\operatorname{Int}(D)$ at exactly one point, then the pair $\left(M_{G}, T\right)$ is diffeomorphic to the pair $\left(M, T_{G}\right)$, where T_{G} is the framed graph in M presented in Figure 4.

Figure 4

Corollary 4.5 Let M be an oriented 3-manifold. Let Σ denote a genus 1 surface in M. Let I_{1} and I_{2} be two intervals such that

- $\partial \Sigma=I_{1} \cup I_{2}$
- $I_{1} \cap I_{2}=\partial I_{1}=\partial I_{2}$
- I_{1} and I_{2} are framed by the normal to the surface Σ.

Let T be a framed graph such that $I_{1}=T \cap \Sigma$. Then there exists a Y-graph G in $M \backslash T$ with a trivial leaf that is a meridian curve of I_{1} such that $M_{G}=M$ and, after Y-surgery along G, the framed graph T is isotopic to $\left(T \backslash \operatorname{Int}\left(I_{1}\right)\right) \cup I_{2}$.

Lemma 4.6 ([GGP, Theorem 3.2]) Let Λ be the Y-graph in the 3-handlebody $(N=\Sigma(\Lambda) \times[-1,1])$ presented in Figure 1(a). Then there exists a Y-graph Λ^{-1} in $N \backslash \Lambda$ such that the Y-surgery along $\Lambda \cup \Lambda^{-1}$ does not change N. In particular, if M is a 3-manifold then, for any Y-graph G in M, there exists a Y-graph G^{-1} in a regular neighbourhood of G such that $M_{G \cup G^{-1}}=M$.

Figure 5: Trivializing a leaf

Proof: Let L be the framed link in $N \backslash \Lambda$ made of the two framed knots presented in Figure 5 , such that $N_{L}=N$ and such that Λ is isotopic to a Y-graph Λ_{0} with a trivial leaf in N_{L}. Let L^{-1} denote a framed link in $N \backslash(\Lambda \cup L)$ such that the surgery along $L \cup L^{-1}$ is trivial in $N \backslash \Lambda$. Then L^{-1} corresponds to a framed $\operatorname{link} L^{\prime}$ in N_{L}. Then

$$
N_{\Lambda}=N_{\Lambda \cup L \cup L^{-1}}=\left(N_{L}\right)_{\Lambda_{0} \cup L^{\prime}}
$$

The Y-surgery along Λ_{0} is fully determined by Lemma 4.4. It takes the tube piercing the trivial leaf and makes it describe its complement in the boundary of a genus one surface. By Corollary 4.5, there exists a Y-graph Λ_{0}^{-1} in $N_{L} \backslash\left(\Lambda_{0} \cup L^{\prime}\right)$ that undoes it.

$$
N=\left(\left(N_{L}\right)_{\Lambda_{0} \cup \Lambda_{0}^{-1}}\right)_{L^{\prime}}
$$

After surgery on L^{\prime}, that does not change N since the surgery on L did not change N, Λ_{0}^{-1} corresponds to a Y-graph Λ^{-1} in $N \backslash \Lambda$ such that the Y-surgery along $\Lambda \cup \Lambda^{-1}$ is trivial.

Remark 4.7 What is used in the above proof and will be used again is the following principle. Up to surgery along links, one leaf of a Y-graph can be assumed to bound a disk D (pierced by surgery arcs). Then surgery along that Y-graph amounts to move the pack T of framed surgery arcs piercing D as indicated in Lemma 4.4, that therefore fully determines the effect of the surgery along the Y-graph.

Lemma 4.8 Let ϕ be an embedding of the genus g handlebody H_{g} into S^{3}. Let z_{1}, \ldots, z_{g} denote the curves in ∂H_{g} presented in Figure 6.

Figure 6
If each curve $\phi\left(z_{i}\right)$ bounds an embedded surface in $S^{3} \backslash \operatorname{Int}\left(\phi\left(H_{g}\right)\right)$, then there exists a Y-link G in $S^{3} \backslash \phi\left(H_{g}\right)$ such that $S_{G}^{3}=S^{3}$ and the curves $\phi\left(z_{i}\right)$ bound embedded discs in $S_{G}^{3} \backslash \operatorname{Int}\left(\phi\left(H_{g}\right)\right)$.

Proof: Thanks to Corollary 4.5 and to the fact that any orientable surface is a connected sum of genus one surfaces, there exists a Y-link G_{1} in $S^{3} \backslash \phi\left(H_{g}\right)$ such that $S_{G_{1}}^{3}=S^{3}$ and $\phi\left(z_{1}\right)$ bounds an embedded disc D_{1} in $S^{3} \backslash \phi\left(H_{g}\right)$ after Y-surgery on G_{1}. In particular the lemma is true for $g=1$. Assume that the lemma is true for handlebodies of genus $g-1$. We shall use this induction hypothesis for a regular neighbourhood N of $\phi\left(H_{g}\right) \cup D_{1}$ equipped with the curves $\phi\left(z_{2}\right), \ldots, \phi\left(z_{g}\right)$ that are still homologically trivial in $S^{3} \backslash N$. Let $\hat{G}_{1} \subset S_{G_{1}}^{3}$ be the union of the 3-handlebodies reglued during the Y-surgery on G_{1}. By induction hypothesis, there exists a Y-link G_{2} in $S_{G_{1}}^{3} \backslash N$ such that $\left(S_{G_{1}}^{3}\right)_{G_{2}}=S^{3}$ and the curves $\phi\left(z_{2}\right), \ldots, \phi\left(z_{g}\right)$ bound embedded discs in $S^{3} \backslash N$ after Y-surgery on G_{2}. After a possible isotopy in $S_{G_{1}}^{3}, G_{2}$ avoids $\hat{G_{1}}$. Then G_{2} corresponds to a Y-link G_{2}^{\prime} in $S^{3} \backslash\left(\phi\left(H_{g}\right) \cup G_{1}\right)$ such that $G_{1} \cup G_{2}^{\prime}$ satisfies the conclusion of the lemma.

Let M be a \mathbb{Z}-sphere. Let ℓk denote the linking number in M. Let $L \subset M$ be a link, and let L_{1}, \ldots, L_{n} be the components of L. Then L is algebraically split if and only if

$$
(i \neq j) \Rightarrow\left(\ell k\left(L_{i}, L_{j}\right)=0\right)
$$

Then Lemma 4.8 induces the following corollary.
Corollary 4.9 ([Mat, Lemma 2] or [MN, Lemma 1.2]) Let L be an algebraically split link in S^{3}. Then there exists a Y-link G in $S^{3} \backslash L$ such that $S_{G}^{3}=S^{3}$ and L is trivially embedded in S_{G}^{3}.

Proof: Embed H_{g} in S^{3} so that the curves z_{i} are the components of L.

Theorem 4.10 ([Mat, Theorem 2]) If M and M^{\prime} are homology spheres, then there exists a Y-link G in M such that $M_{G}=M^{\prime}$.

Proof: Since any \mathbb{Z}-sphere can be obtained by surgery on S^{3} along an algebraically split link framed by ± 1 (see [GM, Lemma 2.1]), and since the surgery on the trivial knot in S^{3} framed by ± 1 gives S^{3}, Theorem 4.10 is an easy corollary of Lemma 4.6 and Corollary 4.9.

Then we can prove the following useful lemma (see [Hbg, Theorem 2.5], too).
Lemma 4.11 Let A and B be two \mathbb{Z}-handlebodies with the same genus, whose boundaries are identified so that $\mathcal{L}_{A}=\mathcal{L}_{B}$. Then there exists a Y-link G embedded in the interior of A such that $A_{G}=B$, where the identification of ∂A with ∂B is induced by the natural identification of ∂A with ∂A_{G}.

Proof: Let us first prove the lemma when $B=H_{g}$ is the standard g-handlebody with the boundary of A identified with the boundary Σ_{g} of H_{g} so that $\mathcal{L}_{A}=\mathcal{L}_{H_{g}}$. Embed H_{g} trivially in S^{3} so that

$$
\tilde{H}_{g}=S^{3} \backslash \operatorname{Int}\left(H_{g}\right)
$$

is a standard g-handlebody. Let z_{1}, \ldots, z_{g} be the meridian curves of H_{g} on Σ_{g} presented in Figure 7. Let

Figure 7

$$
M=\left(S^{3} \backslash \operatorname{Int}\left(H_{g}\right)\right) \cup_{\Sigma_{g}} A=\tilde{H}_{g} \cup_{\Sigma_{g}} A .
$$

Then M is a \mathbb{Z}-sphere. Thus, by Theorem 4.10, there exists a Y-link $G \subset M$ such that $M_{G}=S^{3}$. By isotopy, G can avoid \tilde{H}_{g}. Then

$$
S^{3}=A_{G} \cup_{\Sigma_{g}} \tilde{H}_{g}
$$

Now A_{G} is the complement in S^{3} of a possibly knotted g-handlebody \tilde{H}_{g}. Thanks to Lemma 4.8, there exists a Y-link $G^{\prime} \subset \operatorname{Int}\left(A_{G}\right)$ such that $S_{G^{\prime}}^{3}=S^{3}$ and \tilde{H}_{g} is embedded in $S_{G^{\prime}}^{3}$, so that the curves z_{i} bound embedded discs in $A_{G \cup G^{\prime}}$. Thus $A_{G \cup G^{\prime}}=H_{g}$ with the expected boundary identification. The general case follows easily with the help of Lemma 4.6.

We have the following obvious lemma.
Lemma 4.12 Let $D=\left(M ; n ;\left(A_{i}, B_{i}\right)\right)$ be an n-component LP-surgery. Let A_{1}^{\prime} be a \mathbb{Z}-handlebody such that ∂A_{1}^{\prime} and ∂A_{1} are identified so that $\mathcal{L}_{A_{1}^{\prime}}=\mathcal{L}_{A_{1}}$. Let

$$
M_{A_{1}^{\prime} / A_{1}}=\left(M \backslash \operatorname{Int}\left(A_{1}\right)\right) \cup_{\partial A_{1}} A_{1}^{\prime}
$$

denote the manifold obtained by surgery on M along the pair $\left(A_{1}, A_{1}^{\prime}\right)$. Set

$$
\begin{aligned}
D^{\prime} & =\left(M ; n ;\left(A_{1}, A_{1}^{\prime}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{n}, B_{n}\right)\right) \\
D^{\prime \prime} & =\left(M_{A_{1}^{\prime} / A_{1}} ; n ;\left(A_{1}^{\prime}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{n}, B_{n}\right)\right)
\end{aligned}
$$

Then

$$
[D]=\left[D^{\prime}\right]+\left[D^{\prime \prime}\right] .
$$

Proof of Proposition 3.1: Let $D=\left(M ; n ;\left(A_{i}, B_{i}\right)\right)$ be an n-component LP-surgery. Thanks to Lemma 4.11, for any $i \in\{1, \ldots, n\}$, there exists a Y-link $G^{i} \subset \operatorname{Int}\left(A_{i}\right)$ such that $\left(A_{i}\right)_{G^{i}}=B_{i}$. Let k_{i} denote the minimal number of components for such a G_{i}. Consider the sum $k=\sum_{i} k_{i}$.
If there exists $i \in\{1, \ldots, n\}$ such that $k_{i}=0$, then $[D]=0 \in \mathcal{F}_{n}$. If, for all $i, k_{i}=1$, then $[D] \in \mathcal{F}_{n}$ by definition. Therefore $[D] \in \mathcal{F}_{n}$ if $k \leq n$.
If $k>n$, assume that $k_{1}>1$, without loss of generality. Then there exists a \mathbb{Z} handlebody A_{1}^{\prime} verifying the hypotheses of Lemma 4.12 such that A_{1}^{\prime} can be obtained
from A_{1} by Y-surgery along a Y-graph in $\operatorname{Int}\left(A_{1}\right)$, and B_{1} can be obtained from A_{1}^{\prime} by Y-surgery along a Y-link in $\operatorname{Int}\left(A_{1}^{\prime}\right)$ with $k_{1}-1$ components. Thus, with the notation of Lemma 4.12, $\left[D^{\prime}\right] \in \mathcal{F}_{n}$ and $\left[D^{\prime \prime}\right] \in \mathcal{F}_{n}$ by induction on k. Then $[D] \in \mathcal{F}_{n}$ thanks to Lemma 4.12. The proposition follows.

4.3 Review of the clover calculus

In this section, we review the clover calculus following [GGP]. However we produce alternative proofs in the spirit of the present paper only based on Lemma 4.4. Furthermore, we summarize what we shall use about the clover calculus in Proposition 4.13. A Y-graph Λ is oriented if its framing surface $\Sigma(\Lambda)$ is equipped with an orientation. Such an orientation provides an orientation for every leaf and (a cyclic order) for the set of leaves of Λ. Figure 8 shows the induced orientations when $\Sigma(\Lambda)$ is given the standard orientation of \mathbb{R}^{2}. Reversing the orientation of $\Sigma(\Lambda)$ reverses these four orientations.

Figure 8: oriented Y-graph

The goal of this subsection is to prove the following proposition.
Proposition 4.13 Let G be an oriented n-component Y-link in a \mathbb{Z}-sphere M.
(i) The bracket $\overline{[(M ; G)]}$ (in \mathcal{G}_{n}) is a function independent of M of

- the linking numbers $\ell k\left(l, l^{\prime}\right)$ where l and l^{\prime} are leaves in two distinct Y components of G
- the products $\bar{f}\left(l_{1}\right) \bar{f}\left(l_{2}\right) \bar{f}\left(l_{3}\right)$ where l_{1}, l_{2} and l_{3} are leaves of a same Y component, and where $\bar{f}(l)$ is the framing of l in $\mathbb{Z} / 2 \mathbb{Z}$.
(ii) Fix G except for a leaf l in the complement of the other parts of G. Let $[l]$ denote the class of l in $H_{1}\left(M \backslash \cup_{l^{\prime} \neq l} l^{\prime}\right)$, where the union runs over all leaves l^{\prime} distinct of l. Then the bracket $\left(\overline{[(M ; G)]} \in \mathcal{G}_{n}\right)$ of G is a linear map of $([l], \bar{f}(l)) \in$ $H_{1}\left(M \backslash \cup_{l^{\prime} \neq l} l^{\prime}\right) \times \mathbb{Z} / 2 \mathbb{Z}$.

Lemma 4.14 Let G be an oriented n-component Y-link in a \mathbb{Z}-sphere M. The bracket $\overline{[(M ; G)]}$ is a function independent of M of

- the linking numbers $\ell k\left(l, l^{\prime}\right)$ where l and l^{\prime} are leaves of G
- the framings $f(l)$ where l runs over the leaves of G.

Proof: Let Υ be the diagram composed with n copies of the diagram Λ connected by an additional edge from the internal vertex of Λ to a common n-valent vertex p. Embed Υ in \mathbb{R}^{3}. Let A be a regular neighbourhood of Υ in \mathbb{R}^{3}. Then A is a union of a ball B with n copies of the genus 3 handlebody N that are glued on ∂B along n disjoint discs. Let ϕ be an embedding of A in a \mathbb{Z}-sphere M. The restriction of ϕ on $A \backslash \operatorname{Int}(B)$ determines an n-component Y-link in M. Let $G \subset M$ and $G^{\prime} \subset M^{\prime}$ be two oriented n-component Y-links such that the linking numbers and the framings of their leaves correspond one to each other. Let $\phi_{G}: A \longrightarrow M$ and $\phi_{G^{\prime}}: A \longrightarrow M^{\prime}$ be embeddings of A that induce G and G^{\prime}. Set $Z=M \backslash \operatorname{Int}(A)$ and set $Z^{\prime}=M^{\prime} \backslash \operatorname{Int}(A)$. Thanks to the Mayer-Vietoris sequence, Z and Z^{\prime} are genus $3 n$ homology handlebodies. Their Lagrangians \mathcal{L}_{Z} and $\mathcal{L}_{Z^{\prime}}$ are fully determined by the framings and by the linking numbers of the leaves of G and of G^{\prime}, respectively. Then $\mathcal{L}_{Z}=\mathcal{L}_{Z^{\prime}}$ in $H_{1}(\partial A)$. By Lemma 4.11 , there exists a Y-link $G^{\prime \prime} \subset \operatorname{Int}(Z)$ such that $Z_{G^{\prime \prime}}=Z^{\prime}$. Then $\left[\left(M^{\prime} ; G^{\prime}\right)\right]=\left[\left(M_{G^{\prime \prime}} ; G\right)\right]$. If $G^{\prime \prime}$ is a one-component Y-link, then $\left[\left(M ; G \cup G^{\prime \prime}\right)\right]=[(M ; G)]-\left[\left(M_{G^{\prime \prime}} ; G\right)\right]$, and $\overline{[(M ; G)]}=\overline{\left[\left(M_{G^{\prime \prime}} ; G\right]\right.}$. By induction on the number of components of $G^{\prime \prime}, \overline{[(M ; G)]}=\overline{\left[\left(M_{G^{\prime \prime}} ; G\right]\right.}$. Then $\overline{[M, G]}=\overline{\left[M^{\prime}, G^{\prime}\right]} . \diamond$

A framed knot $K_{1} \not \sharp_{b} K_{2}$ is a band sum of two framed oriented knots K_{1} and K_{2} if there exists an embedding of a 2-hole disk

- that factors the three knot embeddings by the embeddings of the three curves pictured in Figure 9 representing the disk, and
- that induces the three framings.

Note that

$$
f\left(K_{1} \not \sharp_{b} K_{2}\right)=f\left(K_{1}\right)+f\left(K_{2}\right)+2 \ell k\left(K_{1}, K_{2}\right) .
$$

Figure 9: Band sum of two knots

Lemma 4.15 ([GGP, Theorem 3.1]) Let G be an oriented framed Y-graph with leaves K_{1}, K_{2}, K_{3} in a \mathbb{Z}-sphere M. Assume that K_{3} is a band sum of two framed knots K_{3}^{2} and K_{3}^{3}. For $k=1$ and 2, let K_{k}^{2} and K_{k}^{3} be two parallels of K_{k} equipped with the framing $f\left(K_{k}\right)$ of K_{k}, and such that $\ell k\left(K_{k}^{2}, K_{k}^{3}\right)=f\left(K_{k}\right)$.

Figure 10: Splitting a leaf

Then

(i) There exist two oriented disjoint framed Y-graphs G^{2} and G^{3} in M whose framed leaves are $K_{1}^{2}, K_{2}^{2}, K_{3}^{2}$ and $K_{1}^{3}, K_{2}^{3}, K_{3}^{3}$, respectively, such that the surgery along G is equivalent to the surgery along $G^{2} \cup G^{3}$.
(ii) For any $(n-1)$-component Y-link L in the complement in M of the embedded neighbourhood H of G represented in Figure 10,

$$
\overline{[(M ; L \cup G)]}=\overline{\left[\left(M ; L \cup G^{2}\right)\right]}+\overline{\left[\left(M ; L \cup G^{3}\right)\right]}
$$

Proof: The surgery operation on G is thought of as the move of two packs P_{2} and P_{3} of arcs of surgery components that go through the two holes on the right hand-side of N in Figure 10 as in Remark 4.7. Then Lemma 4.4 says that the surgery along G moves these two framed packs of arcs by adding the boundary of a genus 1 surface Σ. This operation can be made in two steps. Move P_{3} first, which means do the surgery along a Y-graph G^{3} whose leaves are K_{1}^{3}, K_{2}^{3} and K_{3}^{3}. Then move P_{2} so that it is parallel to $\partial \Sigma$ inside Σ. It can be done by a surgery along a Y-graph $G^{2} \subset N \backslash G^{3}$ whose leaves are K_{1}^{2}, K_{2}^{2} and K_{3}^{2}. Then $M_{G^{2} \cup G^{3}}=M_{G}$. Therefore

$$
\left[\left(M ; L \cup G^{2} \cup G^{3}\right)\right]=-[(M ; L \cup G)]+\left[\left(M ; L \cup G^{2}\right)\right]+\left[\left(M ; L \cup G^{3}\right)\right]
$$

and

$$
\overline{[(M ; L \cup G)]}=\overline{\left[\left(M ; L \cup G^{2}\right)\right]}+\overline{\left[\left(M ; L \cup G^{3}\right)\right]}
$$

Lemma 4.16 ([GGP, Lemma 4.8]) Let $G \subset M$ be an n-component Y-link. Suppose that a Y-component of G contains a 2-framed leaf l that bounds an embedded disc in $M \backslash G$. Then $\overline{[M, G]}=0$.

Proof: If l is a 2 -framed leaf that bounds an embedded disc in $M \backslash G$, then l is a band sum of two knots K^{2} and K^{3} that form a trivial Hopf link (see Figure 11) in $M \backslash G$. Thanks to Lemma 4.15, there exist two n-components Y-links G^{2} and G^{3} with a trivial leaf such that

$$
\overline{[(M ; G)]}=\overline{\left[\left(M ; G^{2}\right)\right]}+\overline{\left[\left(M ; G^{3}\right)\right]}=0
$$

Proof of the part (ii) of Proposition 4.13: Consider the bracket of G as a function of a leaf l of G by fixing $G \backslash l$. According to Lemma 4.14, the bracket of G only depends on $[l] \in H_{1}\left(M \backslash \cup_{l^{\prime} \neq l^{\prime}} l^{\prime}\right)$ and on $f(l)$. Applying Lemmas 4.15 and 4.16 when adding a disjoint 2 -framed trivial knot to l shows that this function of l only depends on $[l]$ and on $f(l) \bmod 2$. Then Lemma 4.15 implies (ii).

Lemma 4.17 ([GGP, Lemma 2.3]) Let $G \subset M$ be an n-component Y-link. Suppose that G contains a Y-component with two leaves l and l^{\prime} that form the trivial Hopf link of Figure 11. Then $\overline{[(M ; G)]}=0$.

Figure 11: Trivial Hopf link

Proof: The surgery along a Y-graph with this trivial Hopf link is trivial: Think of this surgery as the move of surgery arcs along the boundary of the surface corresponding to these two leaves as in Lemma 4.4. It implies that the bracket of G vanishes.

Definition 4.18 Let c be a curve in a surface Σ that is the image of $S^{1} \times\{\pi\}$ under an orientation-preserving embedding $\phi: S^{1} \times[0,2 \pi] \longrightarrow \Sigma$. A left-handed Dehn twist of Σ along c is the homeomorphism of Σ that is the identity outside $\phi\left(S^{1} \times\right] 0,2 \pi[)$ and that maps $\phi(z, t)$ to $\phi\left(z e^{-i t}, t\right)$.

Lemma 4.19 ([GGP, Theorem 3.1]) Let H be an oriented Y-graph in a \mathbb{Z}-sphere M. Let l^{-}and l^{\prime} be two oriented leaves of H, and let Σ be the genus one surface presented in Figure 12. Let l be an oriented parallel of l^{-}in Σ equipped with the framing induced by Σ. Let $l^{\prime \prime}$ be obtained from l^{\prime} by a left-handed Dehn twist along l, and equipped with the framing induced by the surface Σ, that is $f\left(l^{\prime \prime}\right)=f(l)+f\left(l^{\prime}\right)+$ $2 \ell k\left(l^{-}, l^{\prime}\right)-1$. Let H^{\prime} be the Y-graph obtained from H by changing l^{\prime} into $l^{\prime \prime}$. Then

Figure 12
$M_{H}=M_{H^{\prime}}$ and, for any Y-link L in the complement in M of a neightbourhood of H,

$$
\left[\left(M ; L \cup H^{\prime}\right)\right]=[(M ; L \cup H)] .
$$

Proof: Thanks to Lemma 4.4, the surgery on H is uniquely determined by Σ that is unchanged by a Dehn twist of Σ. It implies that $M_{H}=M_{H^{\prime}}$ and that, for any sublink $L(J)$ of $L, M_{L(J) \cup H}=M_{L(J) \cup H^{\prime}}$. The equality of the brackets follows.

End of proof of Proposition 4.13:

- Let l be a leaf of an oriented Y-component H of G. Let l^{\prime} be the next leaf of H (with respect to the cyclic order). We prove that increasing $\ell k\left(l, l^{\prime}\right)$ does not change $\overline{[(M ; G)]}$. By Lemma 4.15, adding a 0 -framed meridian $m_{0}\left(l^{\prime}\right)$ of l^{\prime} to l adds $\overline{\left[\left(M ; G\left(m_{0}\left(l^{\prime}\right) / l\right)\right)\right]}$ to $\overline{[(M ; G)]}$, where $G\left(m_{0}\left(l^{\prime}\right) / l\right)$ is obtained from G by changing l into $m_{0}\left(l^{\prime}\right)$. Now, $l^{\prime}=m^{\prime}+l_{0}^{\prime}$, where l_{0}^{\prime} does not intersect a disk bounded by $m_{0}\left(l^{\prime}\right)$, and m^{\prime} is a meridian of $m_{0}\left(l^{\prime}\right)$. Then

$$
\overline{\left[\left(M ; G\left(m_{0}\left(l^{\prime}\right) / l\right)\right)\right]}=\overline{\left[\left(M ; G\left(m_{0}\left(l^{\prime}\right), m^{\prime} / l, l^{\prime}\right)\right)\right]}+\overline{\left[\left(M ; G\left(m_{0}\left(l^{\prime}\right), l_{0}^{\prime} / l, l^{\prime}\right)\right)\right]}=0
$$

since $G\left(m_{0}\left(l^{\prime}\right), m^{\prime} / l, l^{\prime}\right)$ is a Y-link with a trivial Hopf link and $G\left(m_{0}\left(l^{\prime}\right), l_{0}^{\prime} / l, l^{\prime}\right)$ has a trivial leaf.

- To conclude, it is enough to show that if l^{-}is a 0 -framed leaf of G, if l^{\prime} is the previous leaf in the component of l^{-}in G (w.r.t. the cyclic order), and if l^{\prime} is 1 -framed, then changing the framing of l^{\prime} into 0 does not change $\overline{[(M ; G)]}$. By linearity, we may assume that l^{\prime} is a trivial knot, and then it is enough to show that $\overline{[(M ; G)]}=0$. By linearity on l^{-}, we can assume that l^{-}is a 0 framed meridian of some leaf l_{0} in another Y-component of G. Let G^{\prime} be the Y-link obtained from G by changing l^{\prime} into the twisted curve $l^{\prime \prime}=l+l^{\prime}$ as in Lemma 4.19 so that $\bar{f}\left(l^{\prime \prime}\right)=\bar{f}\left(l^{\prime}\right)+1=0$. Then l^{-}and $l^{\prime \prime}$ are 0 -framed meridians of l_{0}. By linearity with respect to $l_{0}, \overline{\left[\left(M ; G^{\prime}\right)\right]}$ is the sum of brackets of two Y-links with a trivial leaf. Then $\overline{\left[\left(M ; G^{\prime}\right)\right]}=\overline{[(M ; G)]}=0$.

4.4 Proof of Theorem 3.5 for LP-surgeries induced by Y-links

Here we prove Theorem 3.5 when $D=(M ; G)$ is an LP-surgery induced by a Y-link G.

Lemma 4.20 Let A and A^{\prime} be two \mathbb{Z}-handlebodies whose boundaries are identified so that $\mathcal{L}_{A}=\mathcal{L}_{A^{\prime}}$. Let Z and Z^{\prime} be two other \mathbb{Z}-handlebodies whose boundaries are identified so that $\mathcal{L}_{Z}=\mathcal{L}_{Z^{\prime}}$. Assume that ∂A and $(-\partial Z)$ are identified so that $A \cup_{\partial A} Z$ is a \mathbb{Z}-sphere. Then

$$
\mu\left(A \cup_{\partial A} Z\right)-\mu\left(A^{\prime} \cup_{\partial A} Z\right)=\mu\left(A \cup_{\partial A} Z^{\prime}\right)-\mu\left(A^{\prime} \cup_{\partial A} Z^{\prime}\right)
$$

Proof: For any \mathbb{Z}-sphere M, let $\lambda(M)$ be the Casson invariant of M. Then $\mu(M) \equiv$ $\lambda(M) \bmod 2$. Thanks to [Les, Theorem 1.3],

$$
\lambda\left(A \cup_{\partial A} Z\right)-\lambda\left(A^{\prime} \cup_{\partial A} Z\right)-\left(\lambda\left(A \cup_{\partial A} Z^{\prime}\right)-\lambda\left(A^{\prime} \cup_{\partial A} Z^{\prime}\right)\right)
$$

is an even number. It implies the result.

Together with Proposition 4.13, it implies
Corollary 4.21 Let H be a Y-graph in a \mathbb{Z}-sphere M. Let $p=\bar{f}\left(l_{1}\right) \bar{f}\left(l_{2}\right) \bar{f}\left(l_{3}\right)$ be the product of the framings of the three leaves of H in $\mathbb{Z} / 2 \mathbb{Z}$. Then

$$
\mu\left(M_{H}\right)-\mu(M)=p
$$

Proof: First, we prove that μ vanishes on \mathcal{F}_{2}. Let $G=G_{1} \cup G_{2}$ be a 2-component Y-link in a \mathbb{Z}-sphere M. Let A be a regular neighbourhood of G_{1}. Let Z be the complement of $\operatorname{Int}(A)$ in M. Set $A^{\prime}=A_{G_{1}}$ and set $Z^{\prime}=Z_{G_{2}}$. Then A, A^{\prime}, Z and Z^{\prime} satisfy the assumptions of Lemma 4.20 and
$\mu\left(M_{G}\right)-\mu\left(M_{G_{1}}\right)-\mu\left(M_{G_{2}}\right)+\mu(M)=\mu\left(A^{\prime} \cup Z^{\prime}\right)-\mu\left(A^{\prime} \cup Z\right)-\mu\left(A \cup Z^{\prime}\right)+\mu(A \cup Z)=0$. Then $\mu\left(M_{H}\right)-\mu(M)$ only depends on $\overline{[(M ; H)]} \in \mathcal{G}_{1}$, and then only depends on the product p thanks to Proposition 4.13.
Then $\mu\left(M_{H}\right)-\mu(M)=p$ since μ is a non-trivial invariant on \mathcal{F}.
Lemma 4.22 Let $\tilde{D}=\left(M ; 2 k-1 ;\left(A_{i}, B_{i}\right)_{i=2, \ldots, 2 k}\right)$ be a $(2 k-1)$-component LPsurgery. Let N be a \mathbb{Z}-handlebody in $M \backslash\left(\cup_{i=2}^{2 k} A_{i}\right)$. Let $\left(A_{1}, B_{1}\right)$ be a pair of \mathbb{Z} handlebodies such that $A_{1} \subset \operatorname{Int}(N)$ and ∂A_{1} and ∂B_{1} are identified so that $\mathcal{L}_{A_{1}}=$ $\mathcal{L}_{B_{1}}$. Set $D\left(A_{1}, B_{1}\right)=\left(M ; 2 k ;\left(A_{i}, B_{i}\right)\right)$. Let

$$
i_{*}: H_{1}\left(A_{1}\right) \longrightarrow H_{1}(N)
$$

denote the homomorphism induced by the inclusion map of A_{1} into N. Set

$$
\mathcal{J}_{1}\left(A_{1}, B_{1}\right)=\left(\otimes^{3}\left(i_{*} \circ \varphi_{A_{1}}^{-1}\right)\right)\left(\mathcal{I}\left(A_{1}, B_{1}\right)\right) \in \bigotimes_{i=1}^{3} H_{1}(N)^{(i)}
$$

where $\varphi_{A_{1}}$ has been defined in Notation 3.3. Then, for any oriented degree k Jacobi diagram Γ, there exists a linear form $\ell_{N}(\tilde{D} ; \Gamma)$ in $\left(\bigotimes^{3} H_{1}(N)\right)^{*}$ such that, for any pair $\left(A_{1}, B_{1}\right)$ as above,

$$
\ell\left(D\left(A_{1}, B_{1}\right) ; \Gamma\right)=<\mathcal{J}_{1}\left(A_{1}, B_{1}\right), \ell_{N}(\tilde{D} ; \Gamma)>
$$

Proof: Let σ be a coloration of Γ. Set

$$
T^{\prime}(\tilde{D} ; \Gamma ; \sigma)=\operatorname{sign}(h) \bigotimes_{i=2}^{2 k} \mathcal{I}\left(A_{i}, B_{i}\right) \in \otimes_{\{c \in H(\Gamma) ; \sigma(c)>1\}} X(c) .
$$

Apply all the contractions corresponding to the edges that do not contain any halfedge c in $(\sigma \circ v)^{-1}(1)$, and apply $\bigotimes_{\{c \in H(\Gamma) ; \sigma(c)=1\}} \varphi_{A_{j(c)}}^{-1}$ in order to obtain the tensor

$$
\ell^{\prime}(\tilde{D} ; \Gamma ; \sigma) \in \bigotimes_{\{c \in H(\Gamma) ; \sigma(c)=1\}} H_{1}\left(A_{j(c)}\right)
$$

where $\sigma^{-1}(j(c))$ is the vertex distinct of $\sigma^{-1}(1)$ contained in the edge that contains c. The linking number maps $H_{1}\left(A_{j(c)}\right)$ to $\left(H_{1}(N)\right)^{*}$ and therefore maps $\ell^{\prime}(\tilde{D} ; \Gamma ; \sigma)$ to an element

$$
\ell_{N}(\tilde{D} ; \Gamma ; \sigma) \in \bigotimes_{i=1}^{3}\left(H_{1}(N)^{*}\right)^{(i)}
$$

By definition, $\ell(\tilde{D} ; \Gamma ; \sigma)$ is the contraction of $\ell_{N}(\tilde{D} ; \Gamma ; \sigma) \otimes \mathcal{J}_{1}\left(A_{1}, B_{1}\right)$. Then

$$
\ell(D ; \Gamma)=<\mathcal{J}_{1}\left(A_{1}, B_{1}\right), \sum_{\sigma \in \operatorname{Bij}(\Gamma) / \operatorname{Aut}(\Gamma)} \frac{\ell_{N}(\tilde{D} ; \Gamma ; \sigma)}{\sharp \operatorname{Aut}_{V}(\Gamma)}>.
$$

Proposition 4.23 Let $n \in \mathbb{N}$. Let M be a \mathbb{Z}-sphere. Let Γ be an oriented degree k Jacobi diagram with $2 k \leq n$. Consider $\ell((M ; G) ; \Gamma)$ as a function of oriented n component Y-links G in M. Then

- The linking number $\ell((M ; G) ; \Gamma)$ only depends on
- the linking numbers $\ell k\left(l, l^{\prime}\right)$, where l and l^{\prime} are leaves in two distinct Y components of G
- the products $\bar{f}\left(l_{1}\right) \bar{f}\left(l_{2}\right) \bar{f}\left(l_{3}\right)$, where l_{1}, l_{2} and l_{3} are leaves in a same Y component.
- Considered as a map of a leaf l of $G, \ell((M ; G) ; \Gamma)$ is a linear map in $([l], \bar{f}(l)) \in$ $H_{1}\left(M \backslash \cup_{l^{\prime} \neq l} l^{\prime}\right) \times \mathbb{Z} / 2 \mathbb{Z}$.

Proof: Assume $n=2 k$. Lemma 4.22 and the expression of $\mathcal{I}\left(A_{1}, B_{1}\right)$ given in Subsection 3.3 show that $\ell((M ; G) ; \Gamma)$ does not depend on the framing of the leaves of G and that $\ell((M ; G) ; \Gamma)$, seen as a map of a leaf l of a component H of G, linearly depends on the homology class of l in $M \backslash(G \backslash H)$. It implies the result. If $2 k<n$, the result follows from Corollary 4.21 and from the previous case.

Proposition 4.24 Let G be an n-component Y-link in $a \mathbb{Z}$-sphere M. Then Theorem 3.5 is true when $D=(M ; G)$.

Proof: The simultaneous multilinearities of the bracket in Proposition 4.13 and of the linking number of LP-surgeries induced by Y-links in Proposition 4.23 allow us to cut the leaves of G and to reduce the proof in the case where

- The non-zero-framed leaves are ± 1-framed and bound discs disjoint from G.
- Any 0-framed leaf is a meridian of another leaf.

If a ± 1-framed leaf is in a component with a 0 -framed leaf, its framing can be changed without changing either side of the equality. Then we can assume than the only ± 1 framed leaves are parts of components like $Y_{I I I}$. Similarly, we can assume that any 0 -framed leaf is a meridian of one leaf in another component of G. Then, up to orientation changes of leaves, we can assume that G is a Y-link induced by a Jacobi diagram. Since Theorem 3.5 is true for LP-surgeries induced by Jacobi diagrams, the result follows.

4.5 Proof of Theorem 3.5 in the general case

Let (A, B) be a pair of \mathbb{Z}-handlebodies whose boundaries ∂A and ∂B are identified so that $\mathcal{L}_{A}=\mathcal{L}_{B}$. In what follows, $\mathcal{I}(A, B)$ denotes the linear form on $\otimes^{3} \mathcal{L}_{A}$ induced by the intersection form on $\bigotimes^{3} H_{2}(A \cup(-B))$, and

$$
\varphi_{A}: H_{1}(A) \longrightarrow \mathcal{L}_{A}^{*}
$$

denotes the isomorphism presented in Notation 3.3.
Lemma 4.25 Let A, B and C be three \mathbb{Z}-handlebodies with the same genus. Assume that $\partial A, \partial B$ and ∂C are identified so that $\mathcal{L}_{A}=\mathcal{L}_{B}=\mathcal{L}_{C}$. Then

$$
\mathcal{I}(A, B)=\mathcal{I}(A, C)+\mathcal{I}(C, B)
$$

Proof: Let a_{1}, a_{2} and a_{3} be three oriented curves in ∂A that represent elements of \mathcal{L}_{A} still denoted by a_{1}, a_{2} and a_{3} such that the curves a_{i} do not intersect each other. Let $M=A \cup(-B)$. For any $i \in\{1,2,3\}$, let S_{A}^{i} and S_{B}^{i} be oriented surfaces in A and in B, respectively, such that a_{i} bounds S_{A}^{i} in A and a_{i} bounds S_{B}^{i} in B. Assume that all the surfaces are transverse to each other and to ∂A. Set

$$
\Sigma_{M}^{i}=S_{A}^{i} \cup_{a_{i}}\left(-S_{B}^{i}\right) \subset M
$$

The orientation of Σ_{M}^{i} and the orientation of M induce a positive normal vector field n_{i} on Σ_{M}^{i}. The algebraic intersection $<\Sigma_{M}^{1}, \Sigma_{M}^{2}, \Sigma_{M}^{3}>_{M}$ is the sum of the signs of the intersection points, where the sign is defined as follows. For any intersection point x, the sign is +1 if $\left(n_{1}(x), n_{2}(x), n_{3}(x)\right)$ is a direct basis of $T_{x} M$ according to the orientation of M, and -1 otherwise. By definition,

$$
(\mathcal{I}(A, B))\left(a_{1} \otimes a_{2} \otimes a_{3}\right)=<\Sigma_{M}^{1}, \Sigma_{M}^{2}, \Sigma_{M}^{3}>_{M}
$$

Then

$$
\begin{aligned}
(\mathcal{I}(A, B))\left(a_{1} \otimes a_{2} \otimes a_{3}\right) & =<\Sigma_{M}^{1}, \Sigma_{M}^{2}, \Sigma_{M}^{3}>_{M} \\
= & <S_{A}^{1}, S_{A}^{2}, S_{A}^{3}>_{M}+<\left(-S_{B}^{1}\right),\left(-S_{B}^{2}\right),\left(-S_{B}^{3}\right)>_{M} \\
= & <S_{A}^{1}, S_{A}^{2}, S_{A}^{3}>_{A}+<\left(-S_{B}^{1}\right),\left(-S_{B}^{2}\right),\left(-S_{B}^{3}\right)>_{(-B)} .
\end{aligned}
$$

Note that the normal vector field n_{B}^{i} to S_{B}^{i} induced by the orientation of S_{B}^{i} and by the orientation of B is equal to the normal vector field to $\left(-S_{B}^{i}\right)$ induced by
the orientation of $\left(-S_{B}^{i}\right)$ and by the orientation of $(-B)$. Now, for each point of $S_{B}^{1} \cap S_{B}^{2} \cap S_{B}^{3},\left(n_{B}^{1}, n_{B}^{2}, n_{B}^{3}\right)$ is direct according to the orientation of B if and only if it is not direct according to the orientation of $(-B)$. It implies that

$$
(\mathcal{I}(A, B))\left(a_{1} \otimes a_{2} \otimes a_{3}\right)=<S_{A}^{1}, S_{A}^{2}, S_{A}^{3}>_{A}-<S_{B}^{1}, S_{B}^{2}, S_{B}^{3}>_{B}
$$

and the lemma follows.

Lemma 4.26 Under the hypotheses of Lemma 4.12, for any Jacobi diagram Γ,

$$
\ell(D ; \Gamma)=\ell\left(D^{\prime} ; \Gamma\right)+\ell\left(D^{\prime \prime} ; \Gamma\right)
$$

Proof: The result follows from the equality $\mathcal{I}\left(A_{1}, B_{1}\right)=\mathcal{I}\left(A_{1}, A_{1}^{\prime}\right)+\mathcal{I}\left(A_{1}^{\prime}, B_{1}\right)$ given by Lemma 4.25 and from the equality

$$
\mathcal{L}(D(\{1\}))=\mathcal{L}\left(D^{\prime}(\{1\})\right)+\mathcal{L}\left(D^{\prime \prime}(\{1\})\right) .
$$

Lemma 4.27 Let $D=\left(M ; n ;\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots\left(A_{n}, B_{n}\right)\right)$ be an n-component LP-surgery. Let A_{1}^{\prime} and B_{1}^{\prime} be two \mathbb{Z}-handlebodies such that

- $A_{1}^{\prime} \subset \operatorname{Int}\left(A_{1}\right)$
- ∂A_{1}^{\prime} and ∂B_{1}^{\prime} are identified so that $\mathcal{L}_{A_{1}^{\prime}}=\mathcal{L}_{B_{1}^{\prime}}$
- $B_{1}=\left(A_{1}\right)_{B_{1}^{\prime} / A_{1}^{\prime}}$ is the \mathbb{Z}-handlebody obtained from A_{1} by replacing A_{1}^{\prime} by B_{1}^{\prime}.

Set $D^{\prime}=\left(M ; n ;\left(A_{1}^{\prime}, B_{1}^{\prime}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{n}, B_{n}\right)\right)$. Then $\left[D^{\prime}\right]=[D]$ while, for any Jacobi diagram Γ,

$$
\ell\left(D^{\prime} ; \Gamma\right)=\ell(D ; \Gamma) .
$$

Sublemma 4.28 Under the hypotheses of Lemma 4.27, let

$$
\begin{array}{lll}
\partial_{A_{1}}: & H_{2}\left(A_{1}, \partial A_{1}\right) & \rightarrow \mathcal{L}_{A_{1}} \\
\partial_{A_{1}^{\prime}}: & H_{2}\left(A_{1}^{\prime}, \partial A_{1}^{\prime}\right) & \rightarrow \mathcal{L}_{A_{1}^{\prime}}
\end{array}
$$

denote the isomorphisms induced by the long exact homology sequences. Let

$$
\begin{array}{cccc}
i_{A_{1}}: & H_{2}\left(A_{1}, \partial A_{1}\right) & \rightarrow & H_{2}\left(A_{1}, A_{1} \backslash \operatorname{Int}\left(A_{1}^{\prime}\right)\right) \\
i_{A_{1}^{\prime}}: & H_{2}\left(A_{1}^{\prime}, \partial A_{1}^{\prime}\right) & \rightarrow & H_{2}\left(A_{1}, A_{1} \backslash \operatorname{Int}\left(A_{1}^{\prime}\right)\right)
\end{array}
$$

be the homomorphisms induced by the inclusion maps. Then $i_{A_{1}^{\prime}}$ is an isomorphism by the excision axiom. Set

$$
\Phi=\partial_{A_{1}^{\prime}} \circ i_{A_{1}^{\prime}}^{-1} \circ i_{A_{1}} \circ \partial_{A_{1}}^{-1}: \mathcal{L}_{A_{1}} \rightarrow \mathcal{L}_{A_{1}^{\prime}}
$$

Then

$$
\left(\mathcal{I}\left(A_{1}^{\prime}, B_{1}^{\prime}\right)\right) \circ\left(\otimes^{3} \Phi\right)=\mathcal{I}\left(A_{1}, B_{1}\right)
$$

Proof of Lemma 4.27 assuming Sublemma 4.28: The assertion $\left[D^{\prime}\right]=[D]$ is obvious. Since $\mu\left(M_{B_{1} / A_{1}}\right)=\mu\left(M_{B_{1}^{\prime} / A_{1}^{\prime}}\right)$, it suffices to prove that $\ell(D ; \Gamma)=\ell\left(D^{\prime} ; \Gamma\right)$ when $n=2 k$ is even and when Γ is a degree k Jacobi diagram. Set $\tilde{D}=(M ; 2 k-$ $\left.1 ;\left(A_{i}, B_{i}\right)_{i=2, \ldots, 2 k}\right)$. Let

$$
i_{*}: H_{1}\left(A_{1}^{\prime}\right) \longrightarrow H_{1}\left(A_{1}\right)
$$

be the map induced by the inclusion map of A_{1}^{\prime} into A_{1}. By Lemma 4.22 , there exists a linear form

$$
\ell_{A_{1}}(\tilde{D} ; \Gamma) \in\left(\bigotimes_{\bigotimes}^{3} H_{1}\left(A_{1}\right)\right)^{*}
$$

such that

$$
\begin{aligned}
& \ell(D ; \Gamma)=<\left(\otimes^{3} \varphi_{A_{1}}^{-1}\right)\left(\mathcal{I}\left(A_{1}, B_{1}\right)\right), \ell_{A_{1}}(\tilde{D} ; \Gamma)> \\
& \ell\left(D^{\prime} ; \Gamma\right)=<\left(\otimes^{3}\left(i_{*} \circ \varphi_{A_{1}^{\prime}}^{-1}\right)\right)\left(\mathcal{I}\left(A_{1}^{\prime}, B_{1}^{\prime}\right)\right), \ell_{A_{1}}(\tilde{D} ; \Gamma)>.
\end{aligned}
$$

The following diagram is commutative

$$
\begin{array}{cll}
H_{1}\left(A_{1}^{\prime}\right) & \xrightarrow{\varphi_{A_{1}^{\prime}}} & \mathcal{L}_{A_{1}^{\prime}}^{*} \\
i_{*} \downarrow & & \downarrow \Phi^{*} \\
H_{1}\left(A_{1}\right) & \xrightarrow{\varphi_{A_{1}}} & \mathcal{L}_{A_{1}}^{*} .
\end{array}
$$

Indeed both compositions, seen as elements of $\left(H_{1}\left(A_{1}^{\prime}\right) \otimes \mathcal{L}_{A_{1}}\right)^{*}$, map $([b],[a]) \in$ $H_{1}\left(A_{1}^{\prime}\right) \times \mathcal{L}_{A_{1}}$ to the algebraic intersection in A_{1} of a surface bounded by a and of the curve b. Thus,

$$
\left(\otimes^{3}\left(i_{*} \circ \varphi_{A_{1}^{\prime}}^{-1}\right)\right)\left(\mathcal{I}\left(A_{1}^{\prime}, B_{1}^{\prime}\right)\right)=\left(\otimes^{3} \varphi_{A_{1}}^{-1}\right)\left(\mathcal{I}\left(A_{1}^{\prime}, B_{1}^{\prime}\right) \circ\left(\otimes^{3} \Phi\right)\right)
$$

By Sublemma 4.28, the lemma follows.

Proof of Sublemma 4.28: Let a_{1}, a_{2} and a_{3} be three oriented curves in ∂A_{1} that represent elements of $\mathcal{L}_{A_{1}}$ still denoted by a_{1}, a_{2} and a_{3} such that the curves a_{i} do not intersect each other. Let $a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}$ be oriented curves in ∂A_{1}^{\prime} that represent the elements $\Phi\left(a_{i}\right)$ of $\mathcal{L}_{A_{1}^{\prime}}$ such that the curves a_{i}^{\prime} do not intersect each other. For any $i \in\{1,2,3\}$, the curves a_{i} and a_{i}^{\prime} cobound an oriented surface Σ^{i} in $A_{1} \backslash \operatorname{Int}\left(A_{1}^{\prime}\right)$. The curve a_{i}^{\prime} bounds an oriented surface $\sigma_{A_{1}^{\prime}}^{i}$ in A_{1}^{\prime} and bounds an oriented surface $\sigma_{B_{1}^{\prime}}^{i}$ in B_{1}^{\prime}. Set

$$
\begin{array}{cccc}
S_{i} & =\left(\sigma_{A_{1}^{\prime}}^{i} \cup \Sigma^{i}\right) \cup\left(-\left(\Sigma^{i} \cup \sigma_{B_{1}^{\prime}}^{i}\right)\right) & \subset & A_{1} \cup\left(-B_{1}\right) \\
S_{i}^{\prime}= & \sigma_{A_{1}^{\prime}}^{i} \cup\left(-\sigma_{B_{1}^{\prime}}^{i}\right) & \subset & A_{1}^{\prime} \cup\left(-B_{1}^{\prime}\right) .
\end{array}
$$

Set

$$
\begin{array}{cc}
\mathcal{J}_{A_{1}^{\prime} B_{1}^{\prime}} & =\left(\mathcal{I}\left(A_{1}^{\prime}, B_{1}^{\prime}\right)\right)\left(\Phi\left(a_{1}\right) \otimes \Phi\left(a_{2}\right) \otimes \Phi\left(a_{3}\right)\right) \\
\mathcal{J}_{A_{1} B_{1}} & =\left(\mathcal{I}\left(A_{1}, B_{1}\right)\right)\left(a_{1} \otimes a_{2} \otimes a_{3}\right) .
\end{array}
$$

By definition, $\mathcal{J}_{A_{1} B_{1}}$ is the intersection in $A_{1} \cup\left(-B_{1}\right)$ of the oriented surfaces S_{i} and $\mathcal{J}_{A_{1}^{\prime} B_{1}^{\prime}}$ is the intersection in $A_{1}^{\prime} \cup\left(-B_{1}^{\prime}\right)$ of the oriented surfaces S_{i}^{\prime}. Then $\left(\mathcal{J}_{A_{1} B_{1}}-\mathcal{J}_{A_{1}^{\prime} B_{1}^{\prime}}\right)$ is the contribution of the intersection of the surfaces $\Sigma^{i} \cup\left(-\Sigma^{i}\right)$. This contribution
vanishes when $A_{1}^{\prime}=B_{1}^{\prime}$ because $\mathcal{I}\left(A_{1}, A_{1}\right)=\mathcal{I}\left(A_{1}^{\prime}, A_{1}^{\prime}\right)=0$ by Lemma 4.25. Hence it always vanishes.

Proof of Theorem 3.5: Lemmas 4.11, 4.12 and 4.26 allow us to reduce the proof to the case of an LP-surgery $D=\left(M ; n ;\left(A_{i}, B_{i}\right)\right)$ where B_{i} is obtained from A_{i} by a surgery on a Y-graph embedded in A_{i}. By Lemma 4.27, D can next be considered as a generalized clover induced by an n-component Y-link in M. Then Theorem 3.5 follows from Proposition 4.24.

A The IHX relation

For self-containedness, we finish the proof of Theorem 2.1 by proving that Ψ_{n} factors through the IHX relation. This is a consequence of the following proposition.

Proposition A. 1 Let G_{1} be an oriented Y link in a \mathbb{Z}-sphere M that admits the following two-component sublink I_{1}. For $i=2,3$, let G_{i} be obtained from G_{1} by changing I_{1} into I_{i}. The four leaves a, b, c and d are identical.

Then

$$
\overline{\left[\left(M ; G_{1}\right)\right]}+\overline{\left[\left(M ; G_{2}\right)\right]}+\overline{\left[\left(M ; G_{3}\right)\right]}=0 .
$$

Proof: Let $H_{i}=H_{i}(a(i), b(i), c(i))$ be obtained from G_{i} by changing I_{i} into $J_{i}=$ $J_{i}(a(i), b(i), c(i))$ where J_{i} is obtained from I_{i} by changing the leaves a, b and c by leaves $a(i), b(i)$ and $c(i)$ that are homologous to $\alpha(i) a, \beta(i) b$ and $\gamma(i) c$ in $\left(M \backslash\left(G_{1} \backslash I_{1}\right)\right)$, respectively, where $\alpha(i), \beta(i), \gamma(i) \in\{-1,1\}$. By Proposition 4.13,

$$
\overline{\left[\left(M ; G_{i}\right)\right]}=\alpha(i) \beta(i) \gamma(i) \overline{\left[\left(M ; H_{i}\right)\right]} .
$$

As in Lemma 4.4, surgery on

changes f^{-1} to the commuta-
tor $\left[c(1)^{-1}, b(1)\right]=c(1)^{-1} b(1) c(1) b(1)^{-1}$, and surgery on J_{1} makes a pack T of surgery arcs in a surgered disk bounded by d describe $\left[\left[c(1)^{-1}, b(1)\right], a(1)\right]$.

By cyclic permutation, surgery on J_{2} makes T describe $\left[\left[a(2)^{-1}, c(2)\right], b(2)\right]$ and surgery on J_{3} makes T describe $\left[\left[b(3)^{-1}, a(3)\right], c(3)\right]$.

Recall the following identity in the free group generated by a, b and c from [MKS]. Its verification is straightforward.

$$
\left[[c, b], b a b^{-1}\right]\left[[b, a], a c a^{-1}\right]\left[[a, c], c b c^{-1}\right]=1 .
$$

It allows us to choose the knots $a(i), b(i)$ and $c(i)$ so that the surgery along $J_{1} \cup J_{3} \cup J_{2}$ is trivial and $\alpha(i) \beta(i) \gamma(i)=-1$ for $i=1,2,3$. Then it is enough to prove that

$$
\sum_{i=1}^{3} \overline{\left[M, H_{i}\right]}=\overline{\left[M_{J_{1} \cup J_{2}}, H_{3}\right]}+\overline{\left[M_{J_{1}}, H_{2}\right]}+\overline{\left[M, H_{1}\right]}=0 .
$$

By definition,

$$
\left[M, H_{i}\right]=\sum_{J \subset H_{i}}(-1)^{\sharp J} M_{J}=\sum_{J \subset\left(G_{1} \backslash I_{1}\right)}(-1)^{\sharp J}\left(M_{J \cup J_{i}}-M_{J}\right)
$$

because the surgery on one component of J_{i} is trivial when the surgery on the other component is forgotten.

Therefore,

$$
\begin{aligned}
& {\left[M_{J_{1} \cup J_{2}}, H_{3}\right]+\left[M_{J_{1}}, H_{2}\right]+\left[M, H_{1}\right]} \\
& =\sum_{J \subset\left(G_{1} \backslash I_{1}\right)}(-1)^{\sharp J}\left(\begin{array}{l}
M_{J \cup J_{1} \cup J_{2} \cup J_{3}}-M_{J \cup J_{1} \cup J_{2}} \\
+M_{J \cup J_{1} \cup J_{2}}-M_{J \cup J_{1}} \\
+M_{J \cup J_{1}}-M_{J}
\end{array}\right) \\
& =0 .
\end{aligned}
$$

This proof shows how the Jacobi IHX relation comes from the Lie algebra structure on the graded space associated to the lower central series of a free group. See [MKS].

References

[GGP] S. Garoufalidis, M. Goussarov, M. Polyak, Calculus of clovers and finite type invariants of 3-manifolds. Geom. Topol. 5 (2001), 75-108.
[GM] L. Guillou, A. Marin, Notes sur l'invariant de Casson des sphères d'homologie de dimension trois. Enseign. Math. (2) 38 (1992), no. 3-4, 233-290.
[Hbg] N. Habegger, Milnor, Johnson, and Tree Level Perturbative Invariants. Preprint, March 10, 2000, available at http://www.math.sciences.univ-nantes.fr/~habegger.
[Hbo] K. Habiro, Claspers and finite type invariants of links. Geom. Topol. 4 (2000), 1-83.
[KT] G. Kuperberg and D. P. Thurston, Perturbative 3-manifold invariants by cut-and-paste topology, preprint, math.GT/9912167
[Le] T. T. Q. Le, An invariant of integral homology 3-spheres which is universal for all finite type invariants. Solitons, geometry, and topology: on the crossroad, 75-100, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997.
[Les] C. Lescop, A sum formula for the Casson-Walker invariant. Invent. Math. 133 (1998), no. 3, 613-681.
[L2] C. Lescop, Splitting formulae for the Kontsevich-Kuperberg-Thurston invariant of rational homology 3-spheres, in preparation
[Lic] W. B. R. Lickorish, An Introduction to Knot Theory. Graduate Texts in Mathematics 175. Springer-Verlag, New York, 1997. ISBN:0-387-98254-X
[MKS] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations. Second revised edition. Dover Publications, Inc., New York, 1976.
[Mat] S. V. Matveev, Generalized Surgery of Three-Dimensional Manifolds and Representations of Homology Spheres. (Russian) Mat. Zametki 42 (1987) no. 2, 268-278, 345. English translation: Math. Notes 42 (1987), no. 1-2, 651-656.
[MN] H. Murakami, Y. Nakanishi, On a certain move generating link-homology. Math. Ann. 284 (1989), no. 1, 75-89.
[Oht] T. Ohtsuki, Finite type invariants of integral homology 3-spheres. J. Knot Theory Ramifications 5 (1996), no. 1, 101-115.
[Rol] D. Rolfsen, Knots and Links. Mathematics Lecture Series, No.7. Publish or Perish, Inc., Berkeley, Calif., 1976.
[Thu] W. P. Thurston, The Geometry and Topology of 3-manifolds. Chapter 13. Princeton University, 1978.

[^0]: *Institut Fourier (UMR 5582 du CNRS), B.P. 74, 38402 Saint-Martin d'Hères cedex, France

