WEIGHTED ALMOST PERIODICITY

Gilbert MURAZ and Serap ÖZTOP
Prépublication de l'Institut Fourier n ${ }^{\circ} 628$ (2003)
http://www-fourier.ujf-grenoble.fr/prepublications.html

Résumé

Soit G un groupe abélien localement compact et ω un poids défini sur G; le but de ce travail est l'étude des éléments presque périodiques à poids dans les G-modules et $L_{\omega}^{1}(G)$ modules.

Abstract

Let G be a locally compact abelian group and ω be a weight function on G; this study is concerned with the weighted almost periodic elements of G-modules and $L_{\omega}^{1}(G)$-modules and the relationship between the various definitions.

1. INTRODUCTION

In the study of almost periodic functions the translation is generally an isometry ([1], [2], [5], [9]). But in the weighted normed space it is impossible to obtain an isometry by the translation operators.

Let G be a locally compact abelian group, a Banach space E is said to be a G-module if G acts on E i.e. there exists a map L_{x} from G into the invertible bounded operators of E such that $L_{0}=$ Identity and $L_{x+y}=L_{x} \circ L_{y}$. Whenever $\left\|L_{x}\right\|=1$ for every $x \in G$, in the study of the almost periodicity, $L^{1}(G)$-modules are the natural spaces ([4], [9], [10]).

In the present work, L_{x} is not necessarily to be an isometry and the correspondent spaces are the $L_{\omega}^{1}(G)$-modules where $L_{\omega}^{1}(G)$ is a Banach algebra under the convolution and ω is a weight function, for example, $\omega(x)=\max \left\{1,\left\|L_{x}\right\|\right\}$, ([11], [13]). First the fundamental definitions and the properties of the G-modules and the $L_{\omega}^{1}(G)$-modules are presented, then the definition of weighted almost periodicity is given. The relationships between various definitions in G-modules of $L_{\omega}^{1}(G)$-modules are studied.

As an application, it is shown that if G is not compact and $\overline{\lim }_{x \rightarrow \infty} \omega(x)=+\infty$ there is no non-null weighted almost periodic function in $L_{\omega}^{p}(G), 1 \leqslant p \leqslant \infty$.

2. NOTATIONS AND GENERAL FRAMEWORK

2.1. G-module

A Banach space E is called a G-module if there exists a group representation L of G into the group of the invertible operators of E with $L_{0}=I$ (identity) and $L_{x+y}=L_{x} \circ L_{y}$.

Given such a G-module E, denote by

$$
\begin{aligned}
E_{b}= & \left\{e \in E \mid \sup \left\{\left\|L_{x} e\right\|, x \in G\right\}<\infty\right\} \\
E_{c}= & \left\{e \in E \mid x \rightarrow L_{x} e \text { is continuous }\right\} \\
E_{u c}= & \left\{e \in E \mid x \rightarrow L_{x} e \text { is uniformly continuous }\right\} \\
& E_{c b}=E_{c} \cap E_{b}, E_{u c b}=E_{u c} \cap E_{b} .
\end{aligned}
$$

All these spaces are Banach sub- G-modules of E.
Let ω be a (continuous, measurable) nonnegative function defined on G; by Proposition 1 of Spector ([13]) ω can be continuous without loss of generality. Denote by $L_{\omega}^{p}(G)=\{f \mid$ $\left.f \omega \in L^{p}(G)\right\}, 1 \leqslant p \leqslant \infty$, with the natural norm $\|f\|_{p, \omega}=\|f \omega\|_{p}, L_{\omega}^{p}(G)$ is a Banach space. Its dual space is $L_{\omega^{-1}}^{p^{\prime}}(G)$ with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $1 \leqslant p<\infty$.

Let ω be a weight (continuous, measurable) function on G, i.e.

$$
\begin{gathered}
\omega(x) \geqslant 1, \forall x \in G \\
\omega(x+y) \leqslant \omega(x) \omega(y), \forall x, y \in G .
\end{gathered}
$$

In this case $L_{\omega}^{p}(G) \subset L^{p}(G)$ and $L_{\omega}^{p}(G)$ is a G-module, $1 \leqslant p<\infty$, for $\left(L_{x} f\right)(y)=f(y-x)$ with $\left\|L_{x}\right\| \leqslant \omega(x)$. For $p=1, L_{\omega}^{1}(G)$ is a Banach algebra under the convolution.

Throughout this paper, ω always denotes a weight function.

2.2. $L_{\omega}^{1}(G)$-module

A Banach space E is called a $L_{\omega}^{1}(G)$-module if there exists an algebra representation T (continuous) of $L_{\omega}^{1}(G)$ into $L(E, E)$ the algebra of bounded operators of E into itself with

$$
\|T f\| \leqslant\|f\|_{1, \omega}
$$

$T_{f * g}=T_{f} T_{g}$ where $*$ is the convolution product in $L_{\omega}^{1}(G)$. For e in $E,\left(T_{f}\right)(e)$ is denoted $f * e$.
A $L_{\omega}^{1}(G)$-module E is order free if for each $e \in E, e \neq 0$ there exists $f \in L_{\omega}^{1}(G)$ such that $f * e \neq 0$. The subspace $E_{\mathrm{deg}}=\left\{e \in E, f * e=0, \forall f \in L_{\omega}^{1}(G)\right\}$ is called the degenerate part of E.

For an $L_{\omega}^{1}(G)$-module E its essential part is defined by

$$
\begin{aligned}
E_{\mathrm{ess}} & =\left\{f * e, f \in L_{\omega}^{1}(G), e \in E\right\} \\
& =\left\{e \in E, \lim _{\alpha} \mu_{\alpha} * e=e\right\},
\end{aligned}
$$

where $\left\{\mu_{\alpha}\right\}_{\alpha}$ is a bounded approximate identity (b.a.i.) of $L_{\omega}^{1}(G)$. For the existence of a b.a.i. see Gaudry ([8, Lemma 3]).
$E_{\text {ess }}$ is a Banach subspace of E and the precedent equivalence is obtained by Cohen's factorization theorem. A $L_{\omega}^{1}(G)$-module E is called "essential" if $E_{\text {ess }}=E$. The subspace $E_{\text {ess }}$ is an order free $L_{\omega}^{1}(G)$-module.

2.3. Compatible translation

A $L_{\omega}^{1}(G)$-module E has a G-action if E is also a G-module with $L_{x} T_{f}=T_{f} L_{x}=T\left(f_{x}\right)$ where $f_{x}(y)=f(y-x)=L_{x} f, \forall x, y \in G, \forall f \in L_{\omega}^{1}(G)$.

Let us remark that if E is a G-module then

$$
\omega(x)=\max \left\{1,\left\|L_{x}\right\|\right\}
$$

is a weight (measurable) function, E_{c} is a $L_{\omega}^{1}(G)$-module with G-action, the $L_{\omega}^{1}(G)$-action is given by

$$
f \in L_{\omega}^{1}(G) \rightarrow f * e=\int_{G} L_{x} e(f(x) d x
$$

with

$$
\begin{aligned}
\|f * e\|_{E} & \leqslant \int_{G}\left\|L_{x} e\right\||f(x)| d x \\
& \leqslant\|e\| \int_{G}|f(x)|\left\|L_{x}\right\| d x \\
& \leqslant\|e\| \int_{G}|f(x)| \omega(x) d x=\|f\|_{1, \omega}\|e\| .
\end{aligned}
$$

And also if E is a G-module and ω is a weight function such that $\left\|L_{x}\right\| \leqslant \omega(x)$ then E_{c} is a $L_{\omega}^{1}(G)$-module with G-action.

In the same way an essential $L_{\omega}^{1}(G)$-module has a G-action defined by if $e=f_{1} * e_{1}$, $f_{1} \in L_{\omega}^{1}(G), e_{1} \in E$ then :

$$
L_{x} e=\left(L_{x} f_{1}\right) * e_{1}=\lim _{\alpha}\left(L_{x} \mu_{\alpha}\right) * e
$$

where $\left(\mu_{\alpha}\right)_{\alpha}$ is a b.a.i. of $L_{\omega}^{1}(G)$.
In this case it follows $\left\|L_{x}\right\| \leqslant \omega(x)$.
Comparison between E_{c} and $E_{\text {ess }}$:
Lemma 2.3.1. - Let E be an order free $L_{\omega}^{1}(G)$-module with a G-action then:
i) If e_{1} is a cluster point of $\left\{\mu_{\alpha} * e\right\}_{\alpha}$ where $\left\{\mu_{\alpha}\right\}_{\alpha}$ is a b.a.i. then $e_{1}=e$ and $e \in E_{\text {ess }}$.
ii) If e_{1} is a cluster point of $\left\{L_{x} e_{1}\right\}$ when $x \rightarrow 0$ then $e_{1}=e$ and $e \in E_{c}$.

Proof. - (i) Let $f \in L_{\omega}^{1}(G)$. There exists a subnet μ_{β} such that $\lim _{\beta} f * \mu_{\beta} * e=f * e_{1}=$ $\lim _{\beta}\left(\mu_{\beta} * f\right) * e=f * e$. It follows that $f *\left(e-e_{1}\right)=0$ i.e. $e-e_{1}=E_{\operatorname{deg}}=\{0\}$.
(ii) can be deduced in the same way.

Definition 2.3.2. - A G-action and a $L_{\omega}^{1}(G)$-action are said to be compatible if there exist $a, b \in \mathbb{R}^{+*}$ such that
i) $L_{x}(f * e)=f_{x} * e=f * L_{x} e, x \in G, e \in E, f \in L_{\omega}^{1}(G)$.
ii) $a\left\|L_{x}\right\| \leqslant \omega(x) \leqslant b\left\|L_{x}\right\|, x \in G$.

Theorem 2.3.3. - Assume that $x \rightarrow\left\|L_{x}\right\|$ is locally bounded on G, then E_{c} is an essential $L_{\omega}^{1}(G)$-module with a compatible G-action for the weight $\omega(x)=\max \left\{1,\left\{L_{x} \|\right\}\right.$.

Proof. - It is clear that E_{c} is a $L_{\omega}^{1}(G)$-module with a compatible G-action. Let us show that E_{C} is essential. It suffices, by Cohen's factorization theorem, to show that for a b.a.i. $\left\{\mu_{\alpha}\right\}_{\alpha}$ of $L_{\omega}^{1}(G)$, every $e \in E_{c}$ satisfies

$$
\lim _{\alpha}\left\|\mu_{\alpha}-e-e\right\|=0 .
$$

Let V be a compact (symmetric) neighborhood of zero in G. There exists a non-negative (continuous) function f_{V} with compact support V such that $f_{V}(0)=1$ and $\left\|f_{V}\right\|_{1}=1$; the family $\left\{\mu_{V}=f_{V}, V \subset K\right\}$ where K is a fixed compact neighborhood is a b.a.i. with $\left\|\mu_{V}\right\|_{1, \omega} \leqslant$ $\sup \{\omega(x), x \in K\}$. It follows that:

$$
\begin{aligned}
\left\|\mu_{V} * e-e\right\| & =\left\|\int_{G} L_{x} e d \mu_{V}-e\right\|=\left\|\int_{G}\left(L_{x} e-e\right) d \mu_{V}\right\| \\
& \leqslant\left\|\mu_{V}\right\|_{1, \omega} \sup \left\{\left\|L_{x} e-e\right\|, x \in V\right\} \\
& \leqslant \sup \{\omega(x), x \in V\} \sup \left\{\left\|L_{x} e-e\right\|, x \in V\right\} .
\end{aligned}
$$

Since $x \rightarrow\left\|L_{x}\right\|$ is locally bounded and $e \in E_{c}$,

$$
\lim _{V}\left\|\mu_{\alpha} * e-e\right\|=0
$$

Corollary 2.3.4. - Let ω be a measurable, locally bounded weight function and E be a $L_{\omega}^{1}(G)$-module with a compatible G-action. Then the equality $E_{\mathrm{ess}}=E_{c}$ holds.

Proof. - Since ω is a locally bounded weight function then $x \in G \rightarrow L_{x} f \in L_{\omega}^{1}(G)$ is a continuous map and then $E_{\text {ess }} \subset E_{C}$.

Conversely, since the G-action is compatible then the function $x \rightarrow\left\|L_{x}\right\|$ is locally bounded, so that $E_{c} \subset E_{\text {ess }}$.

2.4. Dual module

The dual E^{\prime} of a $L_{\omega}^{1}(G)$-module E is also on $L_{\omega}^{1}(G)$-module for the action defined by:

$$
\left\langle f * e^{\prime}, e\right\rangle=\left\langle e^{\prime}, f * e\right\rangle, f \in L_{\omega}^{1}(G), e^{\prime} \in E^{\prime}, e \in E .
$$

It is the same for a G-module.
The degenerate part $\left(E^{\prime}\right)_{\operatorname{deg}}$ in E^{\prime} is the orthogonal of $E_{\text {ess }}$ and E^{\prime} is order free if and only if E is essential.

2.5. Examples

- $L_{\omega}^{p}(G)=\left\{f \in L_{\text {loc }}^{1}, f \omega \in L_{\omega}^{p}(G),\|f\|_{p, \omega}=\|f \omega\|_{p}\right\}, 1 \leqslant p<\infty$ is an essentialmodule and the translation is a compatible G-action, here ω is a locally bounded measurable weight function.
$-L_{\omega}^{r}(G)=\left\{f \in L_{\text {loc }}^{1}, \frac{f}{\omega} \in L^{r}(G),\|f\|_{r, \omega^{-1}}=\left\|\frac{f}{\omega}\right\|_{r}\right\}, 1 \leqslant r \leqslant \infty$ is an order free $L_{\omega}^{1}(G)$-module and the translation is a compatible G-action.
- For $1 \leqslant r<\infty, L_{\omega^{-1}}^{r}$ is an essential $L_{\omega}^{1}(G)$-module.
- If $\omega(x)$ is continuous then $\{f$ bounded and uniformly continuous $\} \subset\left(L_{\omega^{-1}}^{\infty}\right)_{\text {ess }}$.
- If $\omega(x)$ is continuous and $\lim _{x \rightarrow 0} \omega(x)=\infty$ then $\{f$ bounded and continuous $\} \subset$ $\left(L_{\omega^{-1}}^{\infty}\right)_{\text {ess }}$.
- Let E be a Banach space and T is an invertible, bounded operator of E, then E is an essential $\ell_{\omega}^{1}(\mathbb{Z})$-module with compatible G-action where $\omega(x)=\max \left\{\left\|T^{n}\right\|,\left\|T^{-n}\right\|\right\}$ and the $\ell_{\omega}^{1}(G)$-action is given by $a=a_{n} \in \ell_{\omega}^{1}(\mathbb{Z}), a * e=\sum_{n \in \mathbb{Z}} a_{n} T^{n} e$, the G-action is given by $L_{n} a=T^{n} e$.

3. HOMOMORPHISMS

3.1. General case

Because of the two structures on the essential part of a Banach $L_{\omega}^{1}(G)$-module there exist also two homomorphism notions for an operator: Let E be a $L_{\omega}^{1}(G)$-module; a bounded linear operator T from E into E is:

- invariant if T commutes with the "translation operators", $T L_{x}=L_{x} T, \forall x \in G$, that is $T \in \operatorname{Hom}_{G}(E, E)$;
- multiplier if T commutes with the "convolution operators" $T * f=f * T \quad\left(T T_{f}=T_{f} T\right)$, $\forall f \in L_{\omega}^{1}(G)$, that is $T \in \operatorname{Hom}_{L^{1} \omega}(E, E)$.

The equivalence of this two notions in the general case is a classical problem of harmonic analysis.

Theorem 3.1.1. - Let E and F be two $L_{\omega}^{1}(G)$-modules with G-compatible translation then

$$
\operatorname{Hom}_{L_{\omega}^{1}}(E, F) \subset \operatorname{Hom}_{G}(E, F) .
$$

If F is an order free $L_{\omega}^{1}(G)$-module then

$$
\operatorname{Hom}_{L_{\omega}^{1}}(E, F)=\operatorname{Hom}_{G}(E, F) .
$$

Proof. - The proof may be found, for example in [4].

3.2. Particular case

The following statement is important for the definition of the weighted almost periodic function.

Let B be an order free $L_{\omega}^{1}(G)$-module with compatible G-action. Throughout this part the space

$$
\operatorname{Hom}_{G}\left(L_{\omega}^{1}(G), E\right)=\operatorname{Hom}_{L^{1} \omega}\left(L_{\omega}^{1}(G), E\right)
$$

is denoted by $\left(L_{\omega}^{1}(G), E\right)$. It is obvious that $\left(L_{\omega}^{1}(G), E\right)$ is a $L_{\omega}^{1}(G)$-module with a compatible G-action and since $L_{\omega}^{1}(G) * L_{\omega}^{1}(G)=L_{\omega}^{1}(G),\left(L_{\omega}^{1}(G), E\right)$ is order free.

Since E is an order free $L_{\omega}^{1}(G)$-module, the natural continuous homomorphism $j: E \rightarrow$ $\left(L_{\omega}^{1}(G), E\right)$, with $j(e)(f)=f * e$ is injective.

In the general case $j(E)$ is different from $\left(L_{\omega}^{1}(G), E\right)$ (for example $\left(L_{\omega}^{1}(G), L_{\omega}^{1}(G)\right) \cong$ $M_{\omega}(G)$, where $M_{\omega}(G)$ is the space of measures μ such that $\mu \omega$ is bounded), ([8]).

Lemma 3.2.2. $-j(E)$ is dense in $\left(L_{\omega}^{1}(G), E\right)$ for the strong operator topology with

$$
\left(L_{\omega}^{1}(G), E\right) \subset\left(L_{\omega}^{1}(G), E_{\mathrm{ess}}\right)
$$

Proof. - Let T be in $\left(L_{\omega}^{1}(G), E\right),\left(\mu_{\alpha}\right)_{\alpha}$ be a b.a.i. of $L_{\omega}^{1}(G)$ then

$$
(T f)=\lim _{\alpha} T\left(\mu_{\alpha} * f\right)=\lim _{\alpha} f *\left(T \mu_{\alpha}\right),
$$

since $\left(T \mu_{\alpha}\right) \in E$ and $\left(T \mu_{\alpha}\right) * f \in E_{\text {ess }}$ the result follows.
Theorem 3.2.3. - Let E be a $L_{\omega}^{1}(G)$-module, the $L_{\omega}^{1}(G)$-module isomorphisms follow:
i) $\left(L_{\omega}^{1}(G), E\right) \cong\left(L_{\omega}^{1}(G), E_{\text {ess }}\right)$
ii) $\left(L_{\omega}^{1}(G), E\right)_{\mathrm{ess}} \cong E_{\mathrm{ess}}$
iii) $\left(L_{\omega}^{1}(G),\left(L_{\omega}^{1}(G), E\right)\right) \cong\left(L_{\omega}^{1}(G), E\right)$
iv) $\left(L_{\omega}^{1}(G), E^{\prime}\right) \cong\left(E_{\text {ess }}\right)^{\prime}$.

Proof. - By the Lemma 2.3.1, (i) and (ii) are obvious. From (i) and (ii) it follows

$$
\left(L_{\omega}^{1}(G),\left(L_{\omega}^{1}(G), E\right)\right) \cong\left(L_{\omega}^{1}(G),\left(L_{\omega}^{1}(G), E\right)_{\mathrm{ess}}\right) \cong\left(L_{\omega}^{1}(G), E_{\mathrm{ess}}\right) \cong\left(L_{\omega}^{1}(G), E\right) .
$$

The classical result $H_{A}\left(X, Y^{\prime}\right) \cong\left(X \otimes_{A} Y\right)^{\prime}$, (see, for example [11]) gives here:

$$
\operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{1}(G), E^{\prime}\right) \cong\left(L_{\omega}^{1}(G) \otimes_{L_{\omega}^{1}} E\right)^{\prime} \cong\left(L_{\omega}^{1} * E\right)^{\prime}=\left(E_{\mathrm{ess}}\right)^{\prime}
$$

Corollary 3.2.4. - If E is an essential $L_{\omega}^{1}(G)$-module, then $\left(L_{\omega}^{1}(G), E^{\prime}\right) \cong E^{\prime}$.
If E is an order free and reflexive $L_{\omega}^{1}(G)$-module then E is essential with $\left(L_{\omega}^{1}(G), E\right) \cong E$.

Proof.

- $\left(L_{\omega}^{1}(G), E^{\prime}\right) \cong\left(E_{\mathrm{ess}}\right)^{\prime} \cong E^{\prime}$
$-\left(L_{\omega}^{1}(G), E\right) \cong\left(L_{\omega}^{1},\left(E^{\prime}\right)^{\prime}\right)=\left(\left(E^{\prime}\right)_{\mathrm{ess}}\right)^{\prime}=\left(E^{\prime}\right)=E$.

3.3. Examples

(i) $\left(L_{\omega}^{1}(G), L_{\omega}^{p}(G)\right) \cong L_{\omega}^{p}(G), 1 \leqslant p<\infty$.
(ii) $\left(L_{\omega}^{1}(G), L_{\omega^{-1}}^{\infty}(G)\right) \cong\left(L_{\omega}^{1}(G)\right)^{\prime}=L_{\omega^{-1}}^{\infty}(G)$.

4. WEIGHTED ALMOST PERIODICITY

The classical concept of the Bochner almost periodicity (normal function, [1]) for $e \in E_{c}^{\omega}$ is defined for a G-module as e is almost periodic if $\left\{L_{x} e, x \in G\right\}$ is relatively compact. But when the G-action L_{x} is not an isometry, it will be defined as the following:

Definition 4.1. - Let E be a G-module and $e \in E_{c}$, e is called weighted G-almost periodic element if $\left\{\frac{L_{x} e}{\left\|L_{x}\right\|}, x \in G\right\}$ is relatively compact in E.

Denote by $E_{a p}^{\omega}$ is the set of all the weighted G-almost periodic elements. It is clear that $E_{a p}^{\omega}$ is a G-submodule of E. The definition of $E_{a p}^{\omega}$ can be defined in the frame of the $L_{\omega}^{1}(G)$ with a compatible G-action by the following equivalent conditions
(i) $\left\{\frac{L_{x} e}{\left\|L_{x}\right\|}, x \in G\right\}$ is relatively compact;
(ii) $\left\{\frac{L_{x} e}{\omega(x)}, x \in G\right\}$ is relatively compact.

Indeed, (i) and (ii) are equivalent to (respectively)

$$
\begin{aligned}
& \left\{\lambda \frac{L_{x} e}{\left\|L_{x}\right\|}, x \in G, \lambda \in I \text { compact interval of } \mathbb{R}\right\} \\
& \left\{\lambda \frac{L_{x} e}{\omega(x)}, x \in G, \lambda \in I \text { compact interval of } \mathbb{R}\right\}
\end{aligned}
$$

are relatively compact. Since the G-action is compatible it follows

$$
\left\{\lambda \frac{L_{x} e}{\omega(x)}, x \in G, \lambda \in[0, a]\right\} \subset\left\{\frac{L_{x} e}{\left\|L_{x}\right\|}, x \in G\right\} \subset\left\{\lambda \frac{L_{x} e}{\omega(x)}, x \in G, \lambda \in[0, b]\right\}
$$

by the $a\left\|L_{x}\right\| \leqslant \omega(x) \leqslant b\left\|L_{x}\right\|$.
Remark 4.2. - Note that if $\left\{L_{x} e, x \in G\right\}$ is relatively compact than $\left\{\frac{L_{x} e}{\omega(x)}, x \in G\right\}$ is also relatively compact.

As the case $\omega=1$, the following classical result is obtained ([5], [9]):

Theorem 4.3. - Let E be an order free $L_{\omega}^{1}(G)$-module with a compatible G-action where ω is a continuous weight function, for $e \in E$ the following statements are equivalent:
(i) $e \in E$ satisfies $\left\{\frac{L_{x} e}{\omega(x)}, x \in G\right\}$ is relatively compact;
(ii) $j(e): f \in L_{\omega}^{1}(G) \rightarrow f * e \in E$ is a compact multiplier.

Remark 4.4. - Note that the condition (i) implies that e is in E_{c} by Lemma 2.3.1 and (ii) that e is in $E_{\text {ess }}$, by the Theorem 2.3.3 and Corollary 2.3.4, the existence of a compatible G-action in the hypothesis is redundant.

Clearly, $E_{a p}$ is an essential $L_{\omega}^{1}(G)$-module with a compactible G-action contained in $E_{c b}$.

Corollary 4.5. - Let E be an $L_{\omega}^{1}(G)$-module with the compatible G-action and T be a compact multiplier from $L_{\omega}^{1}(G)$ into E, then there exists $e \in E_{\text {ap }}$ such that $T=f(e)$.

Proof of the corollary. - Let $\left\{\mu_{\alpha}\right\}_{\alpha}$ be a b.a.i. of $L_{\omega}^{1}(G)$, then for every $\alpha, T\left(\mu_{\alpha}\right)=e_{\alpha}$ is in $E_{a p}$ and

$$
T\left(\mu_{\alpha} * f\right)=f * e_{\alpha}=j\left(e_{\alpha}\right)(f)
$$

Since $\left\{\mu_{\alpha}\right\}_{\alpha}$ is bounded then $\left\{T\left(\mu_{\alpha}\right)\right\}_{\alpha}$ is contained in a compact of E and let e be an adherent element of $\left\{e_{\alpha}\right\}$, so

$$
\lim _{\alpha} f * e_{\alpha}=\lim _{\alpha} T\left(\mu_{\alpha} * f\right)=T f=f * e
$$

Since $E_{a p}$ is essential, it is order free and e is unique.

Proof of the theorem. - The condition (i) is equivalent to the convex hull $\left\{\sum_{i} a_{i} \frac{L_{x_{i}} e}{\omega\left(x_{i}\right)}\right.$, $\left.\sum\left|a_{i}\right| \leqslant 1\right\}$ is relatively compact or $\left\{\sum_{i} a_{i} L_{x_{i}} e, \sum\left|a_{i}\right| \omega\left(x_{i}\right) \leqslant 1\right\}$ is relatively compact.

To show the theorem it is sufficient to prove that $A=\left\{\sum_{i} a_{i} L_{x_{i}} e, \sum\left|a_{i}\right| \omega\left(x_{i}\right) \leqslant 1\right\}$ and $B=\left\{f * e, f \in L_{\omega}^{1}(G),\|f\|_{1, \omega} \leqslant 1\right\}$ have the same closure in E. This statement is classic for the case $\omega(x)=1$ (see [5], [9], [12]).
(i) \Rightarrow (ii): Let f be in $L_{\omega}^{1}(G)$ with $\|f\|_{1, \omega} \leqslant 1$, without lost of generality, f can be chosen with support compact K.

Note that by the remark, e is in $E_{\text {ess }}=E_{c}$ and on the compact K, the maps $x \rightarrow L_{x} e$ and $x \rightarrow \omega(x)$ are uniformly continuous then for all $\varepsilon>0$ there exists a finite family of $x_{i} \in K$, $i=1,2, \ldots, n, K_{i}$ Borel sets, $i=1, \ldots, n$ such that:
$-x_{i}+K_{i} \cap x_{j}+K_{j}=\varnothing, i \neq j$
$-\bigcup_{i=1}^{n} x_{i}+K_{i}=K$

- $\left|\omega\left(x_{i}+h\right)-\omega\left(x_{i}\right)\right| \leqslant \varepsilon, \quad h \in K_{i}$
- $\left\|L_{x_{i}+h} e-L_{x_{i}} e\right\| \leqslant \varepsilon, \quad h \in K_{i}$.

Let us start to show

$$
\begin{aligned}
\left\|f * e-\sum_{i=1}^{n} \int_{x_{i}+K_{i}} L_{x_{i}} e f(x) d x\right\| & =\left\|\sum_{i=1}^{n} \int_{x_{i}+K_{i}}\left(L_{x} e-L_{x_{i}} e\right) f(x) d x\right\| \\
& \leqslant \varepsilon \cdot \sum_{i=1}^{n} \int_{x_{i}+K_{i}}|f(x)| d x \leqslant \varepsilon\|f\|_{1} \leqslant \varepsilon \cdot\|f\|_{1, \omega} \leqslant \varepsilon .
\end{aligned}
$$

Denote $\alpha_{i}=\int_{x_{i}+K_{i}} f(x) d x$, it follows:

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\alpha_{i}\right| \omega\left(x_{i}\right) & \leqslant \sum_{i} \int_{x_{i}+K_{i}}|f(x)| \omega\left(x_{i}\right) d x \\
& \leqslant \sum_{i} \int_{x_{i}+K_{i}}|f(x)|\left|\omega\left(x_{i}\right)-\omega(x)\right| d x+\int_{x+K}|f(x)| \omega(x) d x \\
& \leqslant\|f\|_{1, \omega}+\varepsilon\|f\|_{1} \leqslant\|f\|_{1, \omega}(1+\varepsilon)
\end{aligned}
$$

Denote $a_{i}=\frac{\alpha_{i}}{1+\varepsilon}$, it follows:

$$
\begin{aligned}
\sum\left|a_{i}\right| & \omega\left(x_{i}\right) \leqslant \sum \frac{\left|\alpha_{i}\right| \omega\left(x_{i}\right)}{1+\varepsilon} \leqslant\|f\|_{1, \omega} \leqslant 1 \\
\left\|f * e-\sum a_{i} L_{x_{i}} e\right\| & \leqslant\left\|f * e-\sum \alpha_{i} L_{x_{i}} e\right\|+\left\|\sum \alpha_{i} L_{x_{i}} e-\frac{\alpha_{i}}{1+\varepsilon} L_{x_{i}} e\right\| \\
& \leqslant \varepsilon+\left\|\sum \alpha_{i} L_{x_{i}} e\right\|\left(1-\frac{1}{1+\varepsilon}\right) \\
& \leqslant \varepsilon+\sum_{i}\left|\alpha_{i}\right| \omega\left(x_{i}\right) \frac{\left\|L_{x_{i}} e\right\|}{\omega\left(x_{i}\right)}\left(\frac{\varepsilon}{1+\varepsilon}\right) \\
& \leqslant \varepsilon+\frac{1+\varepsilon}{1+\varepsilon} \varepsilon\|e\| \sup _{x} \frac{\left\|L_{x}\right\|}{\omega(x)}
\end{aligned}
$$

Since the action is compatible there exist a and b such that $0<a \leqslant \frac{\left\|L_{x}\right\|}{\omega(x)} \leqslant b$ and so $\| f * e-$ $\sum a_{i} L_{x_{i}} e \| \leqslant \varepsilon(1+b\|e\|)$ and then the closure of A contains B.

As the same way, mutadis mutandis
(ii) \Rightarrow (i): Let $\sum a_{i} L_{x_{i}} e$ be an element of A with $\sum\left|a_{i}\right| \omega\left(x_{i}\right) \leqslant 1$, without loss generality, it is accepted that the sum is finite. As the precedent there exists a finite family $x_{i}, 1=1,2, \ldots, n$ and K_{i} open, relatively compact set $i=1,2, \ldots, n$ such that:
$-x_{i}+K_{i} \cap x_{j}+K_{j}=\varnothing$

- $\left|\omega\left(x_{i}+h\right)-\omega\left(x_{i}\right)\right| \leqslant \varepsilon, \quad h \in K_{i}$
- $\left\|L_{x_{i}+h} e-L_{x_{i}}\right\| \leqslant \varepsilon, \quad h \in K_{i}$.

Hence

$$
\begin{aligned}
\| \sum_{i=1}^{n} a_{i} L_{x_{i}} e-\sum_{i=1}^{n} a_{i} \int_{x_{i}+K_{i}} L_{x} e \frac{\chi_{x_{i}+K_{i}}(x)}{\left|K_{i}\right|}[d x \| & \leqslant \sum_{i=1}^{n}\left|a_{i}\right| \int_{x_{i}+K_{i}}\left\|L_{x_{i}} e-L_{x} e\right\| \frac{\chi_{x_{i}+K_{i}}(x)}{\left|K_{i}\right|} d x \\
& \leqslant \varepsilon \sum_{i=1}^{n}\left|a_{i}\right| \leqslant \varepsilon \sum_{i=1}^{n}\left|a_{i}\right| \omega\left(x_{i}\right) \leqslant \varepsilon
\end{aligned}
$$

Denote $g(x)=\sum_{i=1}^{n} a_{i} \frac{\chi_{x_{i}+K_{i}}(x)}{\left|K_{i}\right|}$, it follows:

$$
\begin{aligned}
\int|g(x)| \omega(x) d x & =\sum_{i=1}^{n}\left|a_{i}\right| \int_{x_{i}+K_{i}} \frac{\chi_{x_{i}+K_{i}}(x)}{\left|K_{i}\right|}\left(\omega(x)-\omega\left(x_{i}\right)\right) d x+\sum_{i=1}^{n}\left|a_{i}\right| \omega\left(x_{i}\right) \\
& \leqslant \varepsilon \sum_{i=1}^{n}\left|a_{i}\right|+1 \leqslant \sum_{i=1}^{n}\left|a_{i}\right| \omega\left(x_{i}\right)(\varepsilon+1) \leqslant 1+\varepsilon
\end{aligned}
$$

Denote $f(x)=\frac{g(x)}{1+\varepsilon}$, it follows with $\|f\|_{1, \omega} \leqslant 1$:

$$
\begin{aligned}
\left\|\sum a_{i} L_{x_{i}} e-f * e\right\| & \leqslant\left\|\sum_{i=1}^{n} a_{i} L_{x_{i}} e-g * e\right\|+\|g * e-f * e\| \\
& \leqslant \varepsilon+\|g\|_{1, \omega}\left(1-\frac{1}{1+\varepsilon}\right) \cdot\|e\| \\
& \leqslant \varepsilon(1+\varepsilon)-\frac{\varepsilon}{1+\varepsilon}=\varepsilon(1+\|e\|)
\end{aligned}
$$

so the closure of B contains A.

5. BOHR WEIGHTED ALMOST PERIODIC ELEMENT

The classical definition of Bohr almost periodic function is based on the notion of "almost period" ([1], [2]).

It is known that Bohr and Bocher continuous almost periodic functions are the same ([5], [6]). The notation of Furshtenberg ([6]) for the uniformly recurrent function motivates the following definition :

Definition 5.1. - An element e of a G-module is said "weighted uniformly recurrent" iffor every $\varepsilon>0$ there exists a compact set K of G such that for every $x \in G$ there exists $k \in K$ such that

$$
\left\|\frac{L_{x} e}{\left\|L_{x}\right\|}-\frac{L_{k} e}{\left\|L_{k}\right\|}\right\|<\varepsilon
$$

Denote the set of these elements by $E_{u r}^{\omega}$.
Theorem 5.2. - Let E be a G-module. Then

$$
E_{a p}^{\omega}=E_{u r}^{\omega} \cap E_{c}
$$

Proof. - Let us show the inclusion $E_{a p}^{\omega} \subset E_{u r} \cap E_{c}$. First, by Remark 4.4 $E_{a p}^{\omega}$ is contained in E_{c}. Now, let $e \in E_{a p}^{\omega}$. Since $\left\{\frac{L_{x} e}{\left\|L_{x}\right\|}, x \in G\right\}$ is relatively compact, then, for every ε there exists a finite family $\left\{x_{i} \in E, i=1, \ldots, n\right\}$ such that for every $x \in G$ there exists i with

$$
\left\|\frac{L_{x} e}{\left\|L_{x}\right\|}-\frac{L_{x_{i}} e}{\left\|L_{x_{i}}\right\|}\right\|<\varepsilon
$$

and take $K=\left\{x_{i}, i=1, \ldots, n\right\}$.
To show that $E_{u r}^{\omega} \cap E_{c} \subset E_{a p}^{\omega}$, let $e \in E_{u r}^{\omega} \cap E_{c}$, and $\varepsilon>0$, there exists a compact set K such that for every $x \in G$ there exists $k \in K$ with

$$
\left\|\frac{L_{x} e}{\left\|L_{x}\right\|}-\frac{L_{k} e}{\left\|L_{k}\right\|}\right\|<\varepsilon
$$

since $e \in E_{c}$ the map $x \rightarrow L_{x} e$ is continuous then $A=\left\{\lambda L_{x} e, x \in K, \lambda \in[0,1]\right\}$ is a compact set. So for every $\varepsilon>0$ there exists a compact set A such that

$$
\left\{\frac{L_{x} e}{\left\|L_{x}\right\|}, x \in G\right\} \subset\left\{\frac{L_{x} e}{\left\|L_{x}\right\|}, x \in K\right\}+B(0, \varepsilon) \subset A+\varepsilon
$$

where $B(0, \varepsilon)=\left\{e_{1} \in E,\left\|e_{1}\right\| \leqslant \varepsilon\right\}$ it follows that $\left\{\frac{L_{x} e}{\left\|L_{x}\right\|}, x \in G\right\}$ is paracompact, i.e. it is relatively compact.

Remark 5.3. - Note that if $\left\{\frac{L_{x} e_{1}}{\left\|L_{x}\right\|}, x \in G\right\}$ and $\left\{\frac{L_{x} e_{2}}{\left\|L_{x}\right\|}, x \in G\right\}$ are relatively compact then $\left\{\frac{L_{x}\left(e_{1}+e_{2}\right)}{\left\|L_{x}\right\|}, x \in G\right\}$ is also relatively compact but if $e_{1}, e_{2} \in E_{u r}$ perhaps $e_{1}+e_{2}$ may not be in $E_{u r}$.

Remark 5.4. - Let E be a $L_{\omega}^{1}(G)$-module with compatible G-action, if $e \in E_{\text {ur }}$ and $f \in$ $L_{\omega}^{1}(G)$ then $f * e$ is in $E_{u r} \cap E_{c}=E_{a p}^{\omega}$. It follows $E_{a p}^{\omega} \subsetneq E_{u r}^{\omega} \subsetneq\left(L_{\omega}^{1}, E_{a p}^{\omega}\right)$.

6. APPLICATION

Let $E=L_{\omega}^{p}, 1 \leqslant p \leqslant+\infty$, it is known that $L_{\omega}^{p}(G)$ is a $L_{\omega}^{1}(G)$-module with compatible G-action. If $\omega=1$, it is shown that $L_{\omega}^{p}(G),(1 \leqslant p<\infty)$ have no non null almost periodic element if and only if G is compact ([3], [5], [14]). Now it will be denoted that:

Theorem 6.1. - Let G be locally compact, non-compact, abelian group and ω be a (continuous) weight function with

$$
\overline{\lim }_{x \rightarrow \infty} \omega(x)=+\infty
$$

then $\left(L_{\omega}^{p}\right)_{a p}^{\omega}=\{0\}, 1 \leqslant p \leqslant \infty$.
Remark 6.2. - Note that in the case $\omega=1,\left(L^{\infty}(G)\right)_{a p} \neq\{0\}$. The condition $\overline{\lim }_{x \rightarrow \infty} \omega(x)=$ ∞ is essential.

Proof. - Let f be in $\left(L_{\omega}^{p}\right)_{a p}^{\omega}, 1 \leqslant p<\infty$, since $\left\{\frac{L_{x} f}{\omega(x)}, x \in G\right\}$ is relatively compact in $L_{\omega}^{p}(G)$ then the set

$$
\left\{h(x, y)=\left|\frac{f(x-y)}{\omega(x)}\right|^{p}, x \in G\right\}
$$

is relatively compact in $L^{1}(G)$ and also by the Fourier transform the set $\{\hat{h}(x, y), x \in G\}$ is also relatively compact in $C_{0}(\widehat{G})$. It follows

$$
\begin{gathered}
\hat{h}(x, \gamma)=\int_{G}\left(\frac{|f(y-x)|}{\omega(x)}\right)^{p}(\overline{\gamma, y)}) d y \\
=\int_{G} \frac{|f(u)|}{\omega^{p}(x)}\langle\overline{\gamma, u}\rangle\langle\overline{\gamma, x}\rangle d u . \\
\hat{h}(x, \gamma)=\frac{\langle\overline{\gamma, x}\rangle}{\omega^{p}(x)}\left(\widehat{|f|^{p}}\right)(\gamma) .
\end{gathered}
$$

If $g=\lim _{x_{n} \rightarrow \infty} \frac{L_{x_{n}} f}{\omega\left(x_{n}\right)}$ with $\lim _{x_{n} \rightarrow \infty} \omega\left(x_{n}\right)=+\infty$ then $|g|^{p}$ is in $L^{1}(G)$ and

$$
\left|\widehat{|g|^{p}(\gamma)}\right|=\lim _{x_{n} \rightarrow \infty}\left|\hat{h}\left(x_{n}, \gamma\right)\right| \leqslant\left\||f|^{p}\right\|_{1} \lim _{x_{n} \rightarrow \infty} \frac{1}{\omega^{p}\left(x_{n}\right)}=0
$$

i.e. $g \equiv 0$.

On the other hand it will be shown that $\underline{\lim }_{x_{n} \rightarrow \infty}\left\|\frac{L_{x_{n}} f}{\omega\left(x_{n}\right)}\right\|_{p, \omega} \neq 0$. It follows:

$$
\int\left(\frac{\left|L_{x} f\right|}{\omega(x)}\right)^{p} \omega^{p}(y) d y=\left(\left.\int \frac{f(u) \omega(u+x)}{\omega(x)}\right|^{p} d u\right)^{1 / p} \geqslant\left(\int\left(\frac{1}{\omega(-u)}\right)^{p}|f(u)|^{p} d u\right)^{1 / p}
$$

and for every compact K of G :

$$
\left\|\frac{L_{x} f}{\omega(x)}\right\|_{p, \omega} \geqslant \frac{1}{\sup \{\omega(-k), k \in K\}}\left(\int_{K}|f(u)|^{p} d u\right)^{1 / p}
$$

It is easy to choose K such that the second side is not zero. By the hypothesis $\varlimsup_{x \in G} \omega(x)=$ $+\infty$ there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim _{x_{n} \rightarrow \infty} \omega\left(x_{n}\right)=+\infty$ and the sequence $\left\{\frac{L_{x_{n}} f}{\omega\left(x_{n}\right)}\right.$, $n \in \mathbb{N}\}$ have not limit point.

So the only weight almost periodic function in $L_{\omega}^{p}(G)$ is the null function.
Case $p=+\infty$, let f be in $\left(L_{\omega}^{\infty}\right)_{a p}^{\omega}$ and $\varphi \in L_{\omega}^{1} \subset L^{1}$ the Fourier transform of $h(x, y)=$ $\varphi(y) \omega(y) \frac{f(y-x)}{\omega(x)}$ satisfies

$$
\begin{gathered}
\hat{h}(x, \gamma)=\int \frac{\varphi(y) f(y-x)\langle\overline{\gamma, y}\rangle \omega(y)}{\omega(x)} d y=\langle\overline{\gamma, x}\rangle \int \varphi(u+x) f(u) \frac{\omega(u+x)}{\omega(x)} \overline{\langle\gamma, u\rangle} d u . \\
|\hat{h}(x, \gamma)| \leqslant \frac{1}{\omega(x)} \int|\varphi(u+x) \| f(u)| \omega(u+x) d u \\
\|\hat{h}(x, \gamma)\|_{\infty} \leqslant \frac{1}{\omega(x)}\|f\|_{\infty}\|\varphi\|_{1, \omega} .
\end{gathered}
$$

Let x_{n} a sequence such that $\lim _{x_{n} \rightarrow \infty} \omega\left(x_{n}\right)=+\infty$ then the only possible limit of $h\left(x_{n}, y\right)$ is zero.

If $g=\lim _{x_{n} \rightarrow \infty} \frac{L_{x_{n}} f}{\omega\left(x_{n}\right)}$ it follows for every $\varphi \in L_{\omega}^{1}(G) 0=\lim _{x_{n} \rightarrow \infty} \varphi \omega \frac{L_{x_{n} f}}{\omega\left(x_{n}\right)}=\varphi \omega g$ i.e. $g=0$. On the other hand

$$
\frac{|f(u)|}{\omega(u)} \leqslant\left|\frac{f(y-x)}{\omega(x)} \omega(y)\right|=\left|f(u) \frac{\omega(u+x)}{\omega(x)}\right| \leqslant\left\|\frac{L_{x} f}{\omega(x)}\right\|_{\infty, \omega}
$$

and if $f \neq 0$ then it is not possible that

$$
\lim _{x_{n} \rightarrow \infty} \frac{\left\|L_{x_{n}} f\right\|}{\omega\left(x_{n}\right)}=0
$$

So the only weight almost periodic function in $L_{\omega}^{\infty}(G)$ is the null function.

References

[1] A.S. Besicovitch, Almost Periodic Functions, Cambridge Univer. Press Dover Pub. 1954.
[2] H. Bонr, Almost Periodic Functions, J. Springer, 1933.
[3] G. Crombez, Compactness and Almost periodicity of Multipliers, Canad. Math. Bull., 26-1 (1983), 58-62.
[4] C. Datry, G. Muraz, Analyse harmonique dans les modules de Banach, I: propriétés générales, Bull. Sci. Math." 119 (1995), 299-337.
[5] C. Datry, G. Muraz, Analyse harmonique dans les modules de Banach, II : presque périodicité et ergodicité, Bull. Sci. Math., 120 (1996), 493-536.
[6] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press. Princeton, 1981.
[7] G. I. Gaudry, Quasimeasures and Operators commuting with convolution, Pacific J. Math., 18 (1966), 461-476.
[8] G. I. Gaudry, Multipliers of Weighted Lebesgue and Measure Spaces, Proc. Lond. Math. Soc., 19 (1969), 327-340.
[9] J. Kitchen, Normed Modules and almost periodicity, Mh. Math., 70 (1966), 232-243.
[10] T. S. Liu, A. van Raooij and J. K. Wang, Group Representation in Banach Spaces: Orbits and Almost Periodicity, Studies and Essays presented to Yu-Why-Chen, Taïpeï, Math. Research Center (1970), 243-254.
[11] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Owford Univ. Press, London/NY, 1968.
[12] M. A. Rieffel, Induced Banach Representation of Banach Algebras and Locally Compact Groups, J. Funct. Anal. 1 (1967), 443-491.
[13] R. Spector, Groupes localement isomorphes et transformation de Fourier avec poids, Annales de l'Institut Fourier, 19-1 (1969), 195-217.
[14] U. B. Rewari, Multipliers of Segal Algebras, Proc. Amer. Math. Soc., 54 (1976), 157-161.

Gilbert MURAZ
INSTITUT FOURIER
Laboratoire de Mathématiques
UMR5582 (UJF-CNRS)
BP 74
38402 St MARTIN D'HÈRES Cedex (France)
Gilbert.Muraz@ujf-grenoble.fr

\&

Serap ÖZTOP
Istanbul University
Faculty of Sciences
Department of Mathematics
VEZNICELER, ISTANBUL (Turkey)
serapoztop@hotmail.com
oztops@istanbul.edu.tr

