WEIGHTED ALMOST PERIODICITY

Gilbert MURAZ and Serap ÖZTOP

Prépublication de l'Institut Fourier n° 628 (2003) http://www-fourier.ujf-grenoble.fr/prepublications.html

Résumé

Soit *G* un groupe abélien localement compact et ω un poids défini sur *G*; le but de ce travail est l'étude des éléments presque périodiques à poids dans les *G*-modules et $L^1_{\omega}(G)$ -modules.

Abstract

Let *G* be a locally compact abelian group and ω be a weight function on *G*; this study is concerned with the weighted almost periodic elements of *G*-modules and $L^1_{\omega}(G)$ -modules and the relationship between the various definitions.

1. INTRODUCTION

In the study of almost periodic functions the translation is generally an isometry ([1], [2], [5], [9]). But in the weighted normed space it is impossible to obtain an isometry by the translation operators.

Let *G* be a locally compact abelian group, a Banach space *E* is said to be a *G*-module if *G* acts on *E i.e.* there exists a map L_x from *G* into the invertible bounded operators of *E* such that L_0 = Identity and $L_{x+y} = L_x \circ L_y$. Whenever $||L_x|| = 1$ for every $x \in G$, in the study of the almost periodicity, $L^1(G)$ -modules are the natural spaces ([4], [9], [10]).

In the present work, L_x is not necessarily to be an isometry and the correspondent spaces are the $L^1_{\omega}(G)$ -modules where $L^1_{\omega}(G)$ is a Banach algebra under the convolution and ω is a weight function, for example, $\omega(x) = \max\{1, ||L_x||\}$, ([11], [13]). First the fundamental definitions and the properties of the *G*-modules and the $L^1_{\omega}(G)$ -modules are presented, then the definition of weighted almost periodicity is given. The relationships between various definitions in *G*-modules of $L^1_{\omega}(G)$ -modules are studied.

As an application, it is shown that if *G* is not compact and $\overline{\lim}_{x\to\infty} \omega(x) = +\infty$ there is no non-null weighted almost periodic function in $L^p_{\omega}(G)$, $1 \leq p \leq \infty$.

²⁰⁰⁰ Mathematics Subject Classification: 43A20, 43A22, 43A60.

Keywords: Weight function, Banach module, almost periodicity, multiplier.

2. NOTATIONS AND GENERAL FRAMEWORK

2.1. G-module

A Banach space *E* is called a *G*-module if there exists a group representation *L* of *G* into the group of the invertible operators of *E* with $L_0 = I$ (identity) and $L_{x+y} = L_x \circ L_y$.

Given such a *G*-module *E*, denote by

$$E_b = \{e \in E \mid \sup\{\|L_x e\|, x \in G\} < \infty\}$$
$$E_c = \{e \in E \mid x \to L_x e \text{ is continuous}\}$$
$$E_{uc} = \{e \in E \mid x \to L_x e \text{ is uniformly continuous}\}$$

$$E_{cb} = E_c \cap E_b$$
, $E_{ucb} = E_{uc} \cap E_b$

All these spaces are Banach sub-G-modules of E.

Let ω be a (continuous, measurable) nonnegative function defined on *G*; by Proposition 1 of Spector ([13]) ω can be continuous without loss of generality. Denote by $L^p_{\omega}(G) = \{f \mid f \omega \in L^p(G)\}$, $1 \leq p \leq \infty$, with the natural norm $||f||_{p,\omega} = ||f\omega||_p$, $L^p_{\omega}(G)$ is a Banach space. Its dual space is $L^{p'}_{\omega^{-1}}(G)$ with $\frac{1}{p} + \frac{1}{p'} = 1$ and $1 \leq p < \infty$.

Let ω be a weight (continuous, measurable) function on *G*, *i.e.*

$$\omega(x) \ge 1$$
, $\forall x \in G$

$$\omega(x+y) \leq \omega(x)\omega(y)$$
, $\forall x,y \in G$.

In this case $L_{\omega}^{p}(G) \subset L^{p}(G)$ and $L_{\omega}^{p}(G)$ is a *G*-module, $1 \leq p < \infty$, for $(L_{x}f)(y) = f(y-x)$ with $||L_{x}|| \leq \omega(x)$. For p = 1, $L_{\omega}^{1}(G)$ is a Banach algebra under the convolution.

Throughout this paper, ω always denotes a weight function.

2.2. $L^{1}_{w}(G)$ -module

A Banach space *E* is called a $L^1_{\omega}(G)$ -module if there exists an algebra representation *T* (continuous) of $L^1_{\omega}(G)$ into L(E,E) the algebra of bounded operators of *E* into itself with

$$\|Tf\| \leq \|f\|_{1,\omega}$$

 $T_{f*g} = T_f T_g$ where * is the convolution product in $L^1_{\omega}(G)$. For e in E, $(T_f)(e)$ is denoted f*e.

A $L^{1}_{\omega}(G)$ -module *E* is order free if for each $e \in E$, $e \neq 0$ there exists $f \in L^{1}_{\omega}(G)$ such that $f * e \neq 0$. The subspace $E_{\text{deg}} = \{e \in E, f * e = 0, \forall f \in L^{1}_{\omega}(G)\}$ is called the degenerate part of *E*.

For an $L^1_{\omega}(G)$ -module *E* its essential part is defined by

$$E_{\text{ess}} = \left\{ f \ast e , \ f \in L^{1}_{\omega}(G) , e \in E \right\}$$
$$= \left\{ e \in E , \ \lim_{\alpha} \mu_{\alpha} \ast e = e \right\} ,$$

where $\{\mu_{\alpha}\}_{\alpha}$ is a bounded approximate identity (b.a.i.) of $L^{1}_{\omega}(G)$. For the existence of a b.a.i. see Gaudry ([8, Lemma 3]).

 E_{ess} is a Banach subspace of E and the precedent equivalence is obtained by Cohen's factorization theorem. A $L^1_{\omega}(G)$ -module E is called "essential" if $E_{\text{ess}} = E$. The subspace E_{ess} is an order free $L^1_{\omega}(G)$ -module.

2.3. Compatible translation

A $L^1_{\omega}(G)$ -module *E* has a *G*-action if *E* is also a *G*-module with $L_x T_f = T_f L_x = T(f_x)$ where $f_x(y) = f(y - x) = L_x f$, $\forall x, y \in G$, $\forall f \in L^1_{\omega}(G)$.

Let us remark that if *E* is a *G*-module then

$$\omega(x) = \max\{1, \|L_x\|\}$$

is a weight (measurable) function, E_c is a $L^1_{\omega}(G)$ -module with *G*-action, the $L^1_{\omega}(G)$ -action is given by

$$f \in L^1_{\omega}(G) \to f * e = \int_G L_x e(f(x) dx)$$

with

$$\|f * e\|_{E} \leq \int_{G} \|L_{x}e\| \|f(x)\| dx$$

$$\leq \|e\| \int_{G} \|f(x)\| \|L_{x}\| dx$$

$$\leq \|e\| \int_{G} \|f(x)\| \omega(x) dx = \|f\|_{1,\omega} \|e\|$$

And also if *E* is a *G*-module and ω is a weight function such that $||L_x|| \leq \omega(x)$ then E_c is a $L^1_{\omega}(G)$ -module with *G*-action.

In the same way an essential $L^1_{\omega}(G)$ -module has a *G*-action defined by if $e = f_1 * e_1$, $f_1 \in L^1_{\omega}(G), e_1 \in E$ then:

$$L_x e = (L_x f_1) * e_1 = \lim_{\alpha} (L_x \mu_{\alpha}) * e_1$$

where $(\mu_{\alpha})_{\alpha}$ is a b.a.i. of $L^{1}_{\omega}(G)$.

In this case it follows $||L_x|| \leq \omega(x)$.

Comparison between E_c and E_{ess} :

LEMMA 2.3.1. — Let E be an order free $L^1_{\omega}(G)$ -module with a G-action then:

i) If e_1 is a cluster point of $\{\mu_{\alpha} * e\}_{\alpha}$ where $\{\mu_{\alpha}\}_{\alpha}$ is a b.a.i. then $e_1 = e$ and $e \in E_{ess}$.

ii) If e_1 is a cluster point of $\{L_x e_1\}$ when $x \to 0$ then $e_1 = e$ and $e \in E_c$.

Proof. — (*i*) Let $f \in L^1_{\omega}(G)$. There exists a subnet μ_{β} such that $\lim_{\beta} f * \mu_{\beta} * e = f * e_1 = \lim_{\beta \neq 0} (\mu_{\beta} * f) * e = f * e$. It follows that $f * (e - e_1) = 0$ *i.e.* $e - e_1 = E_{\text{deg}} = \{0\}$.

(*ii*) can be deduced in the same way.

3

DEFINITION 2.3.2. — A *G*-action and a $L^1_{\omega}(G)$ -action are said to be compatible if there exist $a, b \in \mathbb{R}^{+*}$ such that

i)
$$L_x(f * e) = f_x * e = f * L_x e, x \in G, e \in E, f \in L^1_{\omega}(G).$$

ii) $a \|L_x\| \leq \omega(x) \leq b \|L_x\|, x \in G.$

THEOREM 2.3.3. — Assume that $x \to ||L_x||$ is locally bounded on *G*, then E_c is an essential $L^1_{\omega}(G)$ -module with a compatible *G*-action for the weight $\omega(x) = \max\{1, \{L_x\|\}\}$.

Proof. — It is clear that E_c is a $L^1_{\omega}(G)$ -module with a compatible *G*-action. Let us show that E_c is essential. It suffices, by Cohen's factorization theorem, to show that for a b.a.i. $\{\mu_{\alpha}\}_{\alpha}$ of $L^1_{\omega}(G)$, every $e \in E_c$ satisfies

$$\lim_{\alpha}\|\mu_{\alpha}-e-e\|=0.$$

Let *V* be a compact (symmetric) neighborhood of zero in *G*. There exists a non-negative (continuous) function f_V with compact support *V* such that $f_V(0) = 1$ and $||f_V||_1 = 1$; the family $\{\mu_V = f_V, V \subset K\}$ where *K* is a fixed compact neighborhood is a b.a.i. with $\|\mu_V\|_{1,\omega} \leq \sup\{\omega(x), x \in K\}$. It follows that:

$$\|\mu_V * e - e\| = \| \int_G L_x e \, d\mu_V - e\| = \| \int_G (L_x e - e) \, d\mu_V \|$$

$$\leqslant \|\mu_V\|_{1,\omega} \sup\{\|L_x e - e\|, x \in V\}$$

$$\leqslant \sup\{\omega(x), x \in V\} \sup\{\|L_x e - e\|, x \in V\}.$$

Since $x \to ||L_x||$ is locally bounded and $e \in E_c$,

$$\lim_V \|\mu_\alpha * e - e\| = 0.$$

COROLLARY 2.3.4. — Let ω be a measurable, locally bounded weight function and E be a $L^1_{\omega}(G)$ -module with a compatible G-action. Then the equality $E_{ess} = E_c$ holds.

Proof. — Since ω is a locally bounded weight function then $x \in G \to L_x f \in L^1_{\omega}(G)$ is a continuous map and then $E_{ess} \subset E_c$.

Conversely, since the *G*-action is compatible then the function $x \to ||L_x||$ is locally bounded, so that $E_c \subset E_{ess}$.

2.4. Dual module

The dual E' of a $L^1_{\omega}(G)$ -module E is also on $L^1_{\omega}(G)$ -module for the action defined by:

$$\langle f * e', e \rangle = \langle e', f * e \rangle, f \in L^1_{\omega}(G), e' \in E', e \in E.$$

It is the same for a *G*-module.

The degenerate part $(E')_{\text{deg}}$ in E' is the orthogonal of E_{ess} and E' is order free if and only if E is essential.

2.5. Examples

- $L^p_{\omega}(G) = \{ f \in L^1_{\text{loc}}, f \omega \in L^p_{\omega}(G), \| f \|_{p,\omega} = \| f \omega \|_p \}, 1 \leq p < \infty$ is an essential-module and the translation is a compatible *G*-action, here ω is a locally bounded measurable weight function.
- $L^r_{\omega}(G) = \{ f \in L^1_{\text{loc}}, \frac{f}{\omega} \in L^r(G), \|f\|_{r,\omega^{-1}} = \|\frac{f}{\omega}\|_r \}, 1 \leq r \leq \infty$ is an order free $L^1_{\omega}(G)$ -module and the translation is a compatible *G*-action.
- For $1 \leq r < \infty$, $L^r_{\omega^{-1}}$ is an essential $L^1_{\omega}(G)$ -module.
- If $\omega(x)$ is continuous then $\{f \text{ bounded and uniformly continuous }\} \subset (L_{\omega^{-1}}^{\infty})_{ess}$.
- If $\omega(x)$ is continuous and $\lim_{x\to 0} \omega(x) = \infty$ then $\{f \text{ bounded and continuous }\} \subset (L^{\infty}_{\omega^{-1}})_{\text{ess.}}$
- Let *E* be a Banach space and *T* is an invertible, bounded operator of *E*, then *E* is an essential $\ell^1_{\omega}(\mathbb{Z})$ -module with compatible *G*-action where $\omega(x) = \max\{||T^n||, ||T^{-n}||\}$ and the $\ell^1_{\omega}(G)$ -action is given by $a = a_n \in \ell^1_{\omega}(\mathbb{Z}), a * e = \sum_{n \in \mathbb{Z}} a_n T^n e$, the *G*-action is given by $L_n a = T^n e$.

3. HOMOMORPHISMS

3.1. General case

Because of the two structures on the essential part of a Banach $L^1_{\omega}(G)$ -module there exist also two homomorphism notions for an operator: Let *E* be a $L^1_{\omega}(G)$ -module; a bounded linear operator *T* from *E* into *E* is:

- invariant if *T* commutes with the "translation operators", $TL_x = L_xT$, $\forall x \in G$, that is $T \in \text{Hom}_G(E,E)$;
- multiplier if *T* commutes with the "convolution operators" T * f = f * T $(TT_f = T_f T)$, $\forall f \in L^1_{\omega}(G)$, that is $T \in \text{Hom}_{L^1\omega}(E, E)$.

The equivalence of this two notions in the general case is a classical problem of harmonic analysis.

THEOREM 3.1.1. — Let E and F be two $L^1_{\omega}(G)$ -modules with G-compatible translation then

$$\operatorname{Hom}_{L^{1}_{\omega}}(E,F) \subset \operatorname{Hom}_{G}(E,F).$$

If F is an order free $L^1_{\omega}(G)$ -module then

$$\operatorname{Hom}_{I^1}(E,F) = \operatorname{Hom}_G(E,F).$$

Proof. — The proof may be found, for example in [4].

3.2. Particular case

The following statement is important for the definition of the weighted almost periodic function.

Let *B* be an order free $L^1_{\omega}(G)$ -module with compatible *G*-action. Throughout this part the space

$$\operatorname{Hom}_{G}(L^{1}_{\omega}(G), E) = \operatorname{Hom}_{L^{1}\omega}(L^{1}_{\omega}(G), E)$$

is denoted by $(L^1_{\omega}(G), E)$. It is obvious that $(L^1_{\omega}(G), E)$ is a $L^1_{\omega}(G)$ -module with a compatible *G*-action and since $L^1_{\omega}(G) * L^1_{\omega}(G) = L^1_{\omega}(G), (L^1_{\omega}(G), E)$ is order free.

Since *E* is an order free $L^1_{\omega}(G)$ -module, the natural continuous homomorphism $j : E \to (L^1_{\omega}(G), E)$, with j(e)(f) = f * e is injective.

In the general case j(E) is different from $(L^1_{\omega}(G), E)$ (for example $(L^1_{\omega}(G), L^1_{\omega}(G)) \cong M_{\omega}(G)$, where $M_{\omega}(G)$ is the space of measures μ such that $\mu \omega$ is bounded), ([8]).

LEMMA 3.2.2. j(E) is dense in $(L^1_{\omega}(G), E)$ for the strong operator topology with

$$(L^1_{\omega}(G), E) \subset (L^1_{\omega}(G), E_{\text{ess}})$$

Proof. — Let *T* be in $(L^1_{\omega}(G), E)$, $(\mu_{\alpha})_{\alpha}$ be a b.a.i. of $L^1_{\omega}(G)$ then

$$(Tf) = \lim_{\alpha} T(\mu_{\alpha} * f) = \lim_{\alpha} f * (T\mu_{\alpha})$$

since $(T\mu_{\alpha}) \in E$ and $(T\mu_{\alpha}) * f \in E_{ess}$ the result follows.

THEOREM 3.2.3. — Let *E* be a $L^1_{\omega}(G)$ -module, the $L^1_{\omega}(G)$ -module isomorphisms follow:

- $i) (L^{1}_{\omega}(G), E) \cong (L^{1}_{\omega}(G), E_{ess})$ $ii) (L^{1}_{\omega}(G), E)_{ess} \cong E_{ess}$
- *iii*) $(L^{1}_{\omega}(G), (L^{1}_{\omega}(G), E)) \cong (L^{1}_{\omega}(G), E)$
- $i\nu$) $(L^1_{\omega}(G), E') \cong (E_{\text{ess}})'.$

Proof. — By the Lemma 2.3.1, (i) and (ii) are obvious. From (i) and (ii) it follows

$$(L^{1}_{\omega}(G), (L^{1}_{\omega}(G), E)) \cong (L^{1}_{\omega}(G), (L^{1}_{\omega}(G), E)_{\mathrm{ess}}) \cong (L^{1}_{\omega}(G), E_{\mathrm{ess}}) \cong (L^{1}_{\omega}(G), E).$$

The classical result $H_A(X,Y') \cong (X \otimes_A Y)'$, (see, for example [11]) gives here:

$$\operatorname{Hom}_{L^{1}_{\omega}}(L^{1}_{\omega}(G), E') \cong (L^{1}_{\omega}(G) \otimes_{L^{1}_{\omega}} E)' \cong (L^{1}_{\omega} * E)' = (E_{\operatorname{ess}})'.$$

COROLLARY 3.2.4. — If E is an essential $L^1_{\omega}(G)$ -module, then $(L^1_{\omega}(G), E') \cong E'$. If E is an order free and reflexive $L^1_{\omega}(G)$ -module then E is essential with $(L^1_{\omega}(G), E) \cong E$.

Proof.

$$- (L^{1}_{\omega}(G), E') \cong (E_{ess})' \cong E' - (L^{1}_{\omega}(G), E) \cong (L^{1}_{\omega}, (E')') = ((E')_{ess})' = (E') = E.$$

3.3. Examples

(i) $(L^1_{\omega}(G), L^p_{\omega}(G)) \cong L^p_{\omega}(G), 1 \leq p < \infty.$ (ii) $(L^{1}_{\omega}(G), L^{\infty}_{\omega^{-1}}(G)) \cong (L^{1}_{\omega}(G))' = L^{\infty}_{\omega^{-1}}(G).$

4. WEIGHTED ALMOST PERIODICITY

The classical concept of the Bochner almost periodicity (normal function, [1]) for $e \in E_c^{\omega}$ is defined for a *G*-module as *e* is almost periodic if $\{L_x e, x \in G\}$ is relatively compact. But when the *G*-action L_x is not an isometry, it will be defined as the following:

DEFINITION 4.1. — Let *E* be a *G*-module and $e \in E_c$, *e* is called weighted *G*-almost periodic element if $\{\frac{L_x e}{\|L_x\|}, x \in G\}$ is relatively compact in *E*.

Denote by E_{ap}^{ω} is the set of all the weighted *G*-almost periodic elements. It is clear that E_{ap}^{ω} is a *G*-submodule of *E*. The definition of E_{ap}^{ω} can be defined in the frame of the $L_{\omega}^{1}(G)$ with a compatible G-action by the following equivalent conditions

- (i) $\left\{\frac{L_{x}e}{\|L_{x}\|}, x \in G\right\}$ is relatively compact; (ii) $\left\{\frac{L_{x}e}{\omega(x)}, x \in G\right\}$ is relatively compact.

Indeed, (i) and (ii) are equivalent to (respectively)

$$\left\{\lambda \frac{L_{x}e}{\|L_{x}\|}, x \in G, \lambda \in I \text{ compact interval of } \mathbb{R}\right\},\$$
$$\left\{\lambda \frac{L_{x}e}{\omega(x)}, x \in G, \lambda \in I \text{ compact interval of } \mathbb{R}\right\}$$

are relatively compact. Since the G-action is compatible it follows

$$\left\{\lambda \frac{L_x e}{\omega(x)}, x \in G, \lambda \in [0,a]\right\} \subset \left\{\frac{L_x e}{\|L_x\|}, x \in G\right\} \subset \left\{\lambda \frac{L_x e}{\omega(x)}, x \in G, \lambda \in [0,b]\right\}$$

by the $a \|L_x\| \leq \omega(x) \leq b \|L_x\|$.

REMARK 4.2. — Note that if $\{L_x e, x \in G\}$ is relatively compact than $\{\frac{L_x e}{\omega(x)}, x \in G\}$ is also relatively compact.

As the case $\omega = 1$, the following classical result is obtained ([5], [9]):

THEOREM 4.3. — Let E be an order free $L^1_{\omega}(G)$ -module with a compatible G-action where ω is a continuous weight function, for $e \in E$ the following statements are equivalent:

(i)
$$e \in E$$
 satisfies $\left\{\frac{L_x e}{\omega(x)}, x \in G\right\}$ is relatively compact;
(ii) $j(e): f \in L^1_{\omega}(G) \to f * e \in E$ is a compact multiplier.

REMARK 4.4. — Note that the condition (i) implies that e is in E_c by Lemma 2.3.1 and (ii) that e is in Eess, by the Theorem 2.3.3 and Corollary 2.3.4, the existence of a compatible G-action in the hypothesis is redundant.

Clearly, E_{ap} is an essential $L^1_{\omega}(G)$ -module with a compactible *G*-action contained in E_{cb} .

COROLLARY 4.5. — Let *E* be an $L^1_{\omega}(G)$ -module with the compatible *G*-action and *T* be a compact multiplier from $L^1_{\omega}(G)$ into *E*, then there exists $e \in E_{ap}$ such that T = f(e).

Proof of the corollary. — Let $\{\mu_{\alpha}\}_{\alpha}$ be a b.a.i. of $L^{1}_{\omega}(G)$, then for every α , $T(\mu_{\alpha}) = e_{\alpha}$ is in E_{ap} and

$$T(\mu_{\alpha} * f) = f * e_{\alpha} = j(e_{\alpha})(f).$$

Since $\{\mu_{\alpha}\}_{\alpha}$ is bounded then $\{T(\mu_{\alpha})\}_{\alpha}$ is contained in a compact of *E* and let *e* be an adherent element of $\{e_{\alpha}\}$, so

$$\lim_{\alpha} f * e_{\alpha} = \lim_{\alpha} T(\mu_{\alpha} * f) = Tf = f * e.$$

Since E_{ap} is essential, it is order free and *e* is unique.

Proof of the theorem. — The condition *(i)* is equivalent to the convex hull $\left\{\sum_{i} a_{i} \frac{L_{x_{i}}e}{\omega(x_{i})}, \sum |a_{i}| \leq 1\right\}$ is relatively compact or $\left\{\sum_{i} a_{i} L_{x_{i}}e, \sum |a_{i}| \omega(x_{i}) \leq 1\right\}$ is relatively compact.

To show the theorem it is sufficient to prove that $A = \left\{ \sum_{i} a_i L_{x_i} e, \sum |a_i| \omega(x_i) \leq 1 \right\}$ and $B = \left\{ f * e, f \in L^1_{\omega}(G), \|f\|_{1,\omega} \leq 1 \right\}$ have the same closure in *E*. This statement is classic for the case $\omega(x) = 1$ (see [5], [9], [12]).

 $(i) \Rightarrow (ii)$: Let f be in $L^1_{\omega}(G)$ with $|| f ||_{1,\omega} \leq 1$, without lost of generality, f can be chosen with support compact K.

Note that by the remark, e is in $E_{ess} = E_c$ and on the compact K, the maps $x \to L_x e$ and $x \to \omega(x)$ are uniformly continuous then for all $\varepsilon > 0$ there exists a finite family of $x_i \in K$, i = 1, 2, ..., n, K_i Borel sets, i = 1, ..., n such that:

$$\begin{aligned} &-x_i + K_i \cap x_j + K_j = \emptyset, \ i \neq j \\ &- \bigcup_{i=1}^n x_i + K_i = K \\ &- |\omega(x_i + h) - \omega(x_i)| \leq \varepsilon, \ h \in K_i \\ &- ||L_{x_i + h}e - L_{x_i}e|| \leq \varepsilon, \ h \in K_i. \end{aligned}$$

Let us start to show

$$\left\| f \ast e - \sum_{i=1}^{n} \int_{x_{i}+K_{i}} L_{x_{i}} e f(x) dx \right\| = \left\| \sum_{i=1}^{n} \int_{x_{i}+K_{i}} (L_{x}e - L_{x_{i}}e) f(x) dx \right\|$$
$$\leqslant \varepsilon \cdot \sum_{i=1}^{n} \int_{x_{i}+K_{i}} |f(x)| dx \leqslant \varepsilon \|f\|_{1} \leqslant \varepsilon \cdot \|f\|_{1,\omega} \leqslant \varepsilon.$$

Denote $\alpha_i = \int_{x_i+K_i} f(x) dx$, it follows:

$$\sum_{i=1}^{n} |\alpha_{i}| \omega(x_{i}) \leqslant \sum_{i} \int_{x_{i}+K_{i}} |f(x)| \omega(x_{i}) dx$$
$$\leqslant \sum_{i} \int_{x_{i}+K_{i}} |f(x)| |\omega(x_{i}) - \omega(x)| dx + \int_{x+K} |f(x)| \omega(x) dx$$
$$\leqslant ||f||_{1,\omega} + \varepsilon ||f||_{1} \leqslant ||f||_{1,\omega} (1+\varepsilon).$$

Denote $a_i = \frac{\alpha_i}{1+\varepsilon}$, it follows:

$$\sum |a_i|\omega(x_i) \leqslant \sum \frac{|\alpha_i|\omega(x_i)}{1+\varepsilon} \leqslant \|f\|_{1,\omega} \leqslant 1.$$

$$\begin{split} \|f * e - \sum a_i L_{x_i} e\| &\leq \|f * e - \sum \alpha_i L_{x_i} e\| + \|\sum \alpha_i L_{x_i} e - \frac{\alpha_i}{1 + \varepsilon} L_{x_i} e\| \\ &\leq \varepsilon + \|\sum \alpha_i L_{x_i} e\| \left(1 - \frac{1}{1 + \varepsilon}\right) \\ &\leq \varepsilon + \sum_i |\alpha_i| \omega(x_i) \frac{\|L_{x_i} e\|}{\omega(x_i)} \left(\frac{\varepsilon}{1 + \varepsilon}\right) \\ &\leq \varepsilon + \frac{1 + \varepsilon}{1 + \varepsilon} \varepsilon \|e\| \sup_x \frac{\|L_x\|}{\omega(x)}. \end{split}$$

Since the action is compatible there exist *a* and *b* such that $0 < a \leq \frac{\|L_x\|}{\omega(x)} \leq b$ and so $\|f * e - \sum a_i L_{x_i} e\| \leq \varepsilon (1 + b \|e\|)$ and then the closure of *A* contains *B*.

As the same way, mutadis mutandis

 $(ii) \Rightarrow (i)$: Let $\sum a_i L_{x_i} e$ be an element of A with $\sum |a_i| \omega(x_i) \leq 1$, without loss generality, it is accepted that the sum is finite. As the precedent there exists a finite family x_i , 1 = 1, 2, ..., n and K_i open, relatively compact set i = 1, 2, ..., n such that:

$$- x_i + K_i \cap x_j + K_j = \emptyset - |\omega(x_i + h) - \omega(x_i)| \leq \varepsilon, \quad h \in K_i - ||L_{x_i+h}e - L_{x_i}|| \leq \varepsilon, \quad h \in K_i.$$

Hence

$$\begin{split} \left\|\sum_{i=1}^{n}a_{i}L_{x_{i}}e - \sum_{i=1}^{n}a_{i}\int_{x_{i}+K_{i}}L_{x}e\frac{\chi_{x_{i}+K_{i}}(x)}{|K_{i}|}\left[dx\right]\right\| &\leq \sum_{i=1}^{n}|a_{i}|\int_{x_{i}+K_{i}}\|L_{x_{i}}e - L_{x}e\|\frac{\chi_{x_{i}+K_{i}}(x)}{|K_{i}|} dx \\ &\leq \varepsilon \sum_{i=1}^{n}|a_{i}| \leq \varepsilon \sum_{i=1}^{n}|a_{i}|\omega(x_{i}) \leq \varepsilon. \end{split}$$

Denote $g(x) = \sum_{i=1}^{n} a_i \frac{\chi_{x_i+K_i}(x)}{|K_i|}$, it follows:

$$\begin{split} \int |g(x)|\omega(x) \, dx &= \sum_{i=1}^n |a_i| \int_{x_i+K_i} \frac{\chi_{x_i+K_i}(x)}{|K_i|} (\omega(x) - \omega(x_i)) \, dx + \sum_{i=1}^n |a_i|\omega(x_i) \\ &\leqslant \varepsilon \sum_{i=1}^n |a_i| + 1 \leqslant \sum_{i=1}^n |a_i| \omega(x_i) (\varepsilon + 1) \leqslant 1 + \varepsilon. \end{split}$$

Denote $f(x) = \frac{g(x)}{1+\varepsilon}$, it follows with $||f||_{1,\omega} \leq 1$:

$$\left\|\sum a_{i}L_{x_{i}}e - f * e\right\| \leq \left\|\sum_{i=1}^{n} a_{i}L_{x_{i}}e - g * e\right\| + \left\|g * e - f * e\right\|$$
$$\leq \varepsilon + \left\|g\right\|_{1,\omega}(1 - \frac{1}{1+\varepsilon}) \cdot \left\|e\right\|$$
$$\leq \varepsilon(1+\varepsilon) - \frac{\varepsilon}{1+\varepsilon} = \varepsilon(1+\left\|e\right\|),$$

so the closure of *B* contains *A*.

5. BOHR WEIGHTED ALMOST PERIODIC ELEMENT

The classical definition of Bohr almost periodic function is based on the notion of "almost period" ([1], [2]).

It is known that Bohr and Bocher continuous almost periodic functions are the same ([5], [6]). The notation of Furshtenberg ([6]) for the uniformly recurrent function motivates the following definition :

DEFINITION 5.1. — An element e of a G-module is said "weighted uniformly recurrent" if for every $\varepsilon > 0$ there exists a compact set K of G such that for every $x \in G$ there exists $k \in K$ such that

$$\left\|\frac{L_x e}{\|L_x\|} - \frac{L_k e}{\|L_k\|}\right\| < \varepsilon$$

Denote the set of these elements by E_{ur}^{ω} .

THEOREM 5.2. — Let E be a G-module. Then

$$E^{\omega}_{ap} = E^{\omega}_{ur} \cap E_c$$

Proof. — Let us show the inclusion $E_{ap}^{\omega} \subset E_{ur} \cap E_c$. First, by Remark 4.4 E_{ap}^{ω} is contained in E_c . Now, let $e \in E_{ap}^{\omega}$. Since $\left\{\frac{L_x e}{\|L_x\|}, x \in G\right\}$ is relatively compact, then, for every ε there exists a finite family $\{x_i \in E, i = 1, ..., n\}$ such that for every $x \in G$ there exists *i* with

$$\left\|\frac{L_x e}{\|L_x\|} - \frac{L_{x_i} e}{\|L_{x_i}\|}\right\| < \varepsilon$$

and take $K = \{x_i, i = 1, ..., n\}$.

To show that $E_{ur}^{\omega} \cap E_c \subset E_{ap}^{\omega}$, let $e \in E_{ur}^{\omega} \cap E_c$, and $\varepsilon > 0$, there exists a compact set K such that for every $x \in G$ there exists $k \in K$ with

$$\left\|\frac{L_x e}{\|L_x\|} - \frac{L_k e}{\|L_k\|}\right\| < \varepsilon;$$

since $e \in E_c$ the map $x \to L_x e$ is continuous then $A = \{\lambda L_x e, x \in K, \lambda \in [0,1]\}$ is a compact set. So for every $\varepsilon > 0$ there exists a compact set A such that

$$\left\{\frac{L_x e}{\|L_x\|}, x \in G\right\} \subset \left\{\frac{L_x e}{\|L_x\|}, x \in K\right\} + B(0,\varepsilon) \subset A + \varepsilon$$

where $B(0,\varepsilon) = \{e_1 \in E, \|e_1\| \leq \varepsilon\}$ it follows that $\{\frac{L_x e}{\|L_x\|}, x \in G\}$ is paracompact, *i.e.* it is relatively compact.

REMARK 5.3. — Note that if $\left\{\frac{L_x e_1}{\|L_x\|}, x \in G\right\}$ and $\left\{\frac{L_x e_2}{\|L_x\|}, x \in G\right\}$ are relatively compact then $\left\{\frac{L_x (e_1+e_2)}{\|L_x\|}, x \in G\right\}$ is also relatively compact but if $e_1, e_2 \in E_{ur}$ perhaps $e_1 + e_2$ may not be in E_{ur} .

REMARK 5.4. — Let *E* be a $L^1_{\omega}(G)$ -module with compatible *G*-action, if $e \in E_{ur}$ and $f \in L^1_{\omega}(G)$ then f * e is in $E_{ur} \cap E_c = E^{\omega}_{ap}$. It follows $E^{\omega}_{ap} \subseteq E^{\omega}_{ur} \subseteq (L^1_{\omega}, E^{\omega}_{ap})$.

6. APPLICATION

Let $E = L_{\omega}^p$, $1 \leq p \leq +\infty$, it is known that $L_{\omega}^p(G)$ is a $L_{\omega}^1(G)$ -module with compatible *G*-action. If $\omega = 1$, it is shown that $L_{\omega}^p(G)$, $(1 \leq p < \infty)$ have no non null almost periodic element if and only if *G* is compact ([3], [5], [14]). Now it will be denoted that:

THEOREM 6.1. — Let G be locally compact, non-compact, abelian group and ω be a (continuous) weight function with

$$\overline{\lim}_{x \to \infty} \omega(x) = +\infty$$

then $(L^p_{\omega})^{\omega}_{ap} = \{0\}, 1 \leq p \leq \infty$.

REMARK 6.2. — Note that in the case $\omega = 1$, $(L^{\infty}(G))_{ap} \neq \{0\}$. The condition $\overline{\lim}_{x \to \infty} \omega(x) = \infty$ is essential.

Proof. — Let f be in $(L^p_{\omega})^{\omega}_{ap}$, $1 \leq p < \infty$, since $\left\{\frac{L_x f}{\omega(x)}, x \in G\right\}$ is relatively compact in $L^p_{\omega}(G)$ then the set

$$\left\{h(x,y) = \left|\frac{f(x-y)}{\omega(x)}\right|^p, x \in G\right\}$$

is relatively compact in $L^1(G)$ and also by the Fourier transform the set $\{\hat{h}(x,y), x \in G\}$ is also relatively compact in $C_0(\hat{G})$. It follows

$$\hat{h}(x,y) = \int_{G} \left(\frac{|f(y-x)|}{\omega(x)} \right)^{p} (\overline{y,y}) \, dy$$
$$= \int_{G} \frac{|f(u)|}{\omega^{p}(x)} \langle \overline{y,u} \rangle \langle \overline{y,x} \rangle \, du.$$
$$\hat{h}(x,y) = \frac{\langle \overline{y,x} \rangle}{\omega^{p}(x)} (\widehat{|f|^{p}})(y).$$

If $g = \lim_{x_n \to \infty} \frac{L_{x_n} f}{\omega(x_n)}$ with $\lim_{x_n \to \infty} \omega(x_n) = +\infty$ then $|g|^p$ is in $L^1(G)$ and $\left| \widehat{|g|^p(\gamma)} \right| = \lim_{x_n \to \infty} |\hat{h}(x_n, \gamma)| \leq |||f|^p ||_1 \lim_{x_n \to \infty} \frac{1}{\omega^p(x_n)} = 0.$

i.e. $g \equiv 0$.

On the other hand it will be shown that $\underline{\lim}_{x_n \to \infty} \left\| \frac{L_{x_n} f}{\omega(x_n)} \right\|_{p,\omega} \neq 0$. It follows:

$$\int \left(\frac{|L_x f|}{\omega(x)}\right)^p \omega^p(y) \, dy = \left(\int \frac{f(u)\omega(u+x)}{\omega(x)} |^p du\right)^{1/p} \ge \left(\int \left(\frac{1}{\omega(-u)}\right)^p |f(u)|^p \, du\right)^{1/p}$$

and for every compact K of G:

$$\left\|\frac{L_x f}{\omega(x)}\right\|_{p,\omega} \ge \frac{1}{\sup\{\omega(-k), k \in K\}} \left(\int_K |f(u)|^p du\right)^{1/p}$$

It is easy to choose *K* such that the second side is not zero. By the hypothesis $\overline{\lim}_{x\in G}\omega(x) = +\infty$ there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $\lim_{x_n\to\infty}\omega(x_n) = +\infty$ and the sequence $\{\frac{L_{x_n}f}{\omega(x_n)}, n\in\mathbb{N}\}$ have not limit point.

So the only weight almost periodic function in $L^p_{\omega}(G)$ is the null function.

Case $p = +\infty$, let f be in $(L_{\omega}^{\infty})_{ap}^{\omega}$ and $\varphi \in L_{\omega}^{1} \subset L^{1}$ the Fourier transform of $h(x,y) = \varphi(y)\omega(y)\frac{f(y-x)}{\omega(x)}$ satisfies

$$\hat{h}(x,y) = \int \frac{\varphi(y) f(y-x) \langle \overline{y,y} \rangle \omega(y)}{\omega(x)} \, dy = \langle \overline{y,x} \rangle \int \varphi(u+x) f(u) \frac{\omega(u+x)}{\omega(x)} \overline{\langle y,u \rangle} \, du.$$
$$|\hat{h}(x,y)| \leqslant \frac{1}{\omega(x)} \int |\varphi(u+x)|| f(u) |\omega(u+x) \, du$$
$$||\hat{h}(x,y)||_{\infty} \leqslant \frac{1}{\omega(x)} ||f||_{\infty} ||\varphi||_{1,\omega}.$$

Let x_n a sequence such that $\lim_{x_n \to \infty} \omega(x_n) = +\infty$ then the only possible limit of $h(x_n, y)$ is zero.

If $g = \lim_{x_n \to \infty} \frac{L_{x_n} f}{\omega(x_n)}$ it follows for every $\varphi \in L^1_{\omega}(G)$ $0 = \lim_{x_n \to \infty} \varphi \omega \frac{L_{x_n} f}{\omega(x_n)} = \varphi \omega g$ *i.e.* g = 0. On the other hand

$$\frac{|f(u)|}{\omega(u)} \leqslant \left| \frac{f(y-x)}{\omega(x)} \omega(y) \right| = \left| f(u) \frac{\omega(u+x)}{\omega(x)} \right| \leqslant \left\| \frac{L_x f}{\omega(x)} \right\|_{\infty,\omega}$$

and if $f \neq 0$ then it is not possible that

$$\lim_{x_n \to \infty} \frac{\|L_{x_n} f\|}{\omega(x_n)} = 0$$

So the only weight almost periodic function in $L^{\infty}_{\omega}(G)$ is the null function.

References

- [1] A.S. BESICOVITCH, Almost Periodic Functions, Cambridge Univer. Press Dover Pub. 1954.
- [2] H. BOHR, Almost Periodic Functions, J. Springer, 1933.
- [3] G. CROMBEZ, Compactness and Almost periodicity of Multipliers, Canad. Math. Bull., 26-1 (1983), 58-62.
- [4] C. DATRY, G. MURAZ, Analyse harmonique dans les modules de Banach, I: propriétés générales, Bull. Sci. Math., 119 (1995), 299–337.
- [5] C. DATRY, G. MURAZ, Analyse harmonique dans les modules de Banach, II : presque périodicité et ergodicité, Bull. Sci. Math., 120 (1996), 493–536.
- [6] H. FURSTENBERG, *Recurrence in Ergodic Theory and Combinatorial Number Theory*, Princeton Univ. Press. Princeton, 1981.
- [7] G. I. GAUDRY, Quasimeasures and Operators commuting with convolution, Pacific J. Math., 18 (1966), 461–476.
- [8] G. I. GAUDRY, Multipliers of Weighted Lebesgue and Measure Spaces, Proc. Lond. Math. Soc., 19 (1969), 327-340.
- [9] J. KITCHEN, Normed Modules and almost periodicity, Mh. Math., 70 (1966), 232–243.
- [10] T. S. LIU, A. van RAOOIJ and J. K. WANG, Group Representation in Banach Spaces: Orbits and Almost Periodicity, Studies and Essays presented to Yu-Why-Chen, Taïpeï, Math. Research Center (1970), 243–254.

- [11] H. REITER, Classical Harmonic Analysis and Locally Compact Groups, Owford Univ. Press, London/NY, 1968.
- [12] M. A. RIEFFEL, *Induced Banach Representation of Banach Algebras and Locally Compact Groups*, J. Funct. Anal. 1 (1967), 443–491.
- [13] R. SPECTOR, *Groupes localement isomorphes et transformation de Fourier avec poids*, Annales de l'Institut Fourier, 19-1 (1969), 195–217.
- [14] U. B. REWARI, Multipliers of Segal Algebras, Proc. Amer. Math. Soc., 54 (1976), 157–161.

Gilbert MURAZ INSTITUT FOURIER Laboratoire de Mathématiques UMR5582 (UJF-CNRS) BP 74 38402 St MARTIN D'HÈRES Cedex (France) Gilbert.Muraz@ujf-grenoble.fr & Serap ÖZTOP Istanbul University Faculty of Sciences Department of Mathematics VEZNICELER, ISTANBUL (Turkey) serapoztop@hotmail.com oztops@istanbul.edu.tr