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Abstract

We give the construction of a metric, invariant by the group of rigid motions of Rn,

on the set of uniformly discrete point sets of Rn, n > 1, of given constant, i.e. having

the property that their minimal interpoint distance is greater than a given strictly positive

real number. The corresponding metric space is complete and locally compact. As a con-

sequence, we prove in a non-effective way the existence of at least one system of equal

spheres of Rn , called extreme, of density equal to the packing constant. By reduction to

the space of lattices of Rn , it implies the existence of extreme lattices, without invoking

any theory of reduction for lattices.

1. Introduction

Sets of points sets, in particular sets of lattices, of Rn have been extensively studied for

many problems of packing of spheres [Ca] [CS] [GL] [Ma] [Zo]. The recent extension by Muraz

and Verger-Gaugry [MVG] of the classical selection theorem of Mahler [Mh] to the sets of uni-

formly discrete sets of given strictly positive constants of Rn offers new challenging questions,

beyond the classical questions and conjectures concerning lattices. It is the purpose of this

note, first to recall the construction of a metric on the space UDr of uniformly discrete sets of

Rn of minimum r > 0 (theorem 1.1) so that UDr is compact, second to answer positively

to the question whether there exists a metric on UDr which is invariant by the group of rigid

motions of Rn (theorem 1.2), then to give the important application of this result as for the

existence of packings of equal spheres of maximal density in Rn (theorem 1.3).

Let r > 0. A uniformly discrete set Λ of Rn of constant r will be a discrete subset of

Rn such that ‖x − y‖ > r as soon as x ≠ y, x, y ∈ Λ. Hence, Λ may be either the ”empty

set” element ∅ or a 1-point set {x}, with x ∈ Rn arbitrary, or any two distinct points of

Λ satisfy the above inequality if Λ contains at least two points. We will denote by UDr the
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set of uniformly discrete sets of constant r > 0 and by UD the union
⋃

r>0 UDr . An element

of UD will be called a uniformly discrete set of Rn. For all Λ ∈ UD having at least two

distinct points, let us denote by m(Λ) > 0 its minimal interpoint distance which will be called

minimum of Λ (so that Λ ∈ UDm(Λ)). Denote by O(n,R) the n-dimensional orthogonal

group of n×n matrices M such that M−1 = t M . Let us define a rigid motion (or an Euclidean

displacement) by an ordered pair (ρ, t ) with ρ ∈ O(n,R) and t ∈ Rn [Chp]. The composition

of two rigid motions is given by (ρ, t )(ρ′, t ′) = (ρρ′, ρ(t ′) + t ) and the group of rigid motions

is the split extension of O(n,R) by Rn. It is endowed with the usual topology. In section 2 we

will give the proof of the following result, generalizing [MVG], which will open the way to the

theorem 1.2, i.e. we will give the construction of the two metrics d (r) and D(r), noticing that,

restricted to UDr \ {∅}, the metric D(r) is equivalent to the Hausdorffmetric.

T 1.1. — Let r > 0. There exists a metric d (r) on UDr such that: i) the space

(UDr , d(r)) is compact, ii) d (r)(Λ,Λ′) = d (r)(ρ(Λ), ρ(Λ′)) for all ρ ∈ O(n,R) and Λ,Λ′ ∈

UDr .

T 1.2. — Let r > 0. There exists a metric D(r) on UDr such that: i) D(r)(Λ1,Λ2) =

D(r)(ρ(Λ1) +t , ρ(Λ2) + t ) for all t ∈ Rn, ρ ∈ O(n,Rn) and all Λ1,Λ2 ∈ UDr , ii) the space

(UDr , D(r)) is complete and locally compact, iii) (pointwise pairing property) for all non-

empty Λ,Λ′ ∈ UDr such that D(r)(Λ,Λ′) < ε, each point λ ∈ Λ is associated with a unique

point λ′ ∈ Λ′ such that ‖λ − λ′‖ < min{r, 1}ε/2, iv) the action of the group of rigid motions

O(n,R) n Rn on (UDr , D(r)) : ((ρ, t ),Λ) → (ρ, t ) · Λ = ρ(Λ) + t is such that its subgroup of

translations Rn acts continuously on UDr .

Let us turn to sphere packings [CS] [GL] [Oe] [Ro] [Zo] and let us denote by B(c, r) the

(generic) closed ball of Rn of centre c and of radius r > 0. For all Λ ∈ UD having at least

two distinct points, let us denote by B(Λ) the system of balls Λ + B(0, m(Λ)/2). This sys-

tem of balls forms a packing whose density is defined by δ(B(Λ)) = lim supR→+∞ vol(B(Λ)∩

B(0, R))/vol(B(0, R)). The supremum δ = supΛ∈UD
δ(B(Λ)) will be called the packing con-

stant. It depends only upon n. As a consequence of the theorems 1.1 and 1.2, we will prove the

following result in section 3.

T 1.3. — There exists an element Λ ∈ UD such that the following equality holds:

δ(B(Λ)) = δ.

By restricting the density function Λ → δ(B(Λ)) to the subspace of lattices of Rn, we

obtain the existence of extreme lattices, without invoking any theory of reduction for lattices

[Ma] [Oe].

C 1.4. — Let Ln the locally compact topological space of lattices of Rn . Let δL :=

supΛ∈Ln
δ(B(Λ)). Then, there exists Λ ∈ Ln such that the following equality holds: δ(B(Λ)) = δL .
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2. Metrics on UDr , r > 0

2.1. Proof of the theorem 1.1

In [MVG], in the scope of generalizing the selection theorem of Mahler and its proof by Chabauty

[Chy], the space UD1 was endowed with a metric d (1) so that it is compact. Now, for all r > 1,

the subspace UDr = {Λ ∈ UD1 | m(Λ) > r} of UD1 is obviously closed, hence compact.

Hence, for all r > 1, it suffices to take for d (r) the restriction of d (1) to UDr to obtain the

metric we are looking for and the compactness of (UDr , d(r)) as claimed. Therefore we will

only consider that 0 < r < 1 below and we will proceed by constructing exlicitely d (r) on

UDr . We will construct d (r) as a kind of counting system normalized by a suitable distance

function.

Since anyΛ ∈ UDr is countable, we denote by Λi its i-th element. Let E = {(D, E ) | D count-

able point set in Rn, E countable point set in (0, 1/2)} and f : Rn → [0, 1] a continuous

function with compact support in B(0, 1) which satisfies: i) f (0) = 1, ii) f (ρ(t )) = f (t ) for

all t ∈ Rn and all ρ ∈ O(n,R) and iii) f (t ) 6
1/2+‖λ−t /2‖

1/2+‖λ‖ for all t ∈ B(0, 1) and λ ∈ Rn (for

technical reasons [MVG]). Recall that a pseudo-metric δ on a space satisfies all the axioms of

a distance except that δ(u, v) = 0 does not necessarily imply u = v.

With each element (D, E ) ∈ E and origin α of the affine euclidean space Rn we associate a

real-valued function d
(r)
α,(D,E ) on UDr × UDr in the following way (denoting by

o
B(c, v) the

interior of the closed ball B(c, v) of centre c and radius v > 0). Let B(D,E ) = {B
(r)
m } denote

the countable set of all possible finite collections B
(r)
m = {

o
B(c

(m)
1 , ε

(m)
1 ),

o
B(c

(m)
2 , ε

(m)
2 ), . . . ,

o
B(c

(m)
im

, ε
(m)
im
)} (with im the number of elements #Bm of Bm) of open balls such that c

(m)
q ∈

D and ε
(m)
q ∈ E for all q ∈ {1, 2, . . . , im}, and such that for all m and any two distinct balls

in B
(r)
m of respective centers c

(m)
q and c

(m)
k , we have ‖c

(m)
q − c

(m)
k ‖ > r . Then we define the

following function, with Λ,Λ′ ∈ UDr ,

d
(r)
α,(D,E )(Λ,Λ′

) := sup

B
(r)
m ∈B(D,E )

∣

∣

∣

∣

φ
(r)

B
(r)
m

(Λ)− φ
(r)

B
(r)
m

(Λ′)

∣

∣

∣

∣

(r/2 + ‖α‖ + ‖α− c
(m)
1 ‖ + ‖α− c

(m)
2 ‖ + · · · + ‖α− c

(m)
im

‖)
(1)

where the real-valued function φ
(r)

B
(r)
m

is given by φ(r)
B
(r)
m

(Λ) :=
∑

o
B(c,ε)∈B

(r)
m

∑
i rε f

(

Λi−c
rε

)

. By

convention we put φ(r)
B
(r)
m

(∅) = 0 for all B
(r)
m ∈ B(D,E ) and all (D, E ) ∈ E . It is clear that, for

all m and Λ ∈ UDr , inside each ball
o
B (c, rε), where

o
B (c, ε) ∈ B

(r)
m , there is at most one

point of Λ and therefore the summation
∑

i rε f
(

Λi−c
rε

)

is reduced to at most one non-zero

term. Therefore the sum φ
(r)

B
(r)
m

(Λ) is finite.

L 2.1. — For all (α, (D, E )) in Rn × E , d
(r)
α,(D,E ) is a pseudo-metric on UDr , valued in

[0, 1].

Proof. — Let r > 0,α ∈ Rn and (D, E ) ∈ E . It is easy to check that d
(r)
α,(D,E ) is a pseudo-

metric on UDr . Let us show that it is valued in [0, 1]. Let us consider B
(r)
m ∈ B(D,E ) for
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which the centers of its constitutive balls are denoted by c1, c2, . . . , cim . Then imr
2

6 r/2 +‖α‖+

‖α − c1‖ + ‖α − c2‖ + · · · + ‖α − cim‖. Indeed, if there exists j ∈ {1, 2, . . . , im} such that

‖c j − α‖ 6 r/2, then for all k ≠ j , ‖ck − α‖ > r/2. Hence r/2 + ‖α‖ + ‖α − c1‖ + ‖α −

c2‖ + · · · + ‖α− cim‖ > r/2 + ‖α‖ + (im−1)r
2

>
imr

2
. If ‖ck − α‖ > r/2 for all k ∈ {1, 2, . . . , im},

then r/2 + ‖α‖ + ‖α − c1‖ + ‖α − c2‖ + · · · + ‖α − cim‖ > r/2 + ‖α‖ + imr
2

>
imr

2
. On the

other hand, since the radii of the balls
o
B (c j , ε j ) ∈ B

(r)
m are less than 1/2 by construction, we

have 0 6 φ
(r)

B
(r)
m

(Λ) 6
imr

2
for all Λ ∈ UDr . Therefore

∣

∣

∣

∣

φ
(r)

B
(r)
m

(Λ)− φ
(r)

B
(r)
m

(Λ′)

∣

∣

∣

∣

6
imr

2
6

r/2 + ‖α‖ + ‖α− c1‖ + ‖α− c2‖ + · · · + ‖α− cim‖, for all B
(r)
m ∈ B(D,E ) and all Λ,Λ′ ∈ UDr .

We deduce the claim.

L 2.2. — The supremum d (r) := sup
α∈Rn

(D,E )∈E

d
(r)
α,(D,E ) is a metric on UDr , valued in [0, 1].

Proof. — The supremum of the family of pseudo-metrics d
(r)
α,(D,E ) is obviously a pseudo-

metric which takes its values in [0, 1]. We have only to show that d (r) is a metric. Let us assume

that Λ,Λ′ ∈ UDr are are not empty, such that d (r)(Λ,Λ′) = 0, and let us show that Λ = Λ′.

We will show that Λ 6⊂ Λ′ and Λ′ 6⊂ Λ are impossible. Assume that Λ ≠ Λ′ and that Λ 6⊂ Λ′.

Then there exists λ ∈ Λ such that λ 6∈ Λ′. Denote by ε := 1
2

min{ 1
2

, min{‖λ − u‖ | u ∈ Λ′}}.

We have ε > 0. The ball
o
B (λ, ε) contains no point of Λ′ and only the point λ of Λ. Take α = λ,

D = {λ}, E = {ε}. Then d
(r)
λ,(D,E )(Λ,Λ′) = rε

r/2+‖λ‖ > 0. Hence d (r)(Λ,Λ′) would be strictly

positive. Contradiction. Therefore Λ ⊂ Λ′. Then, exchanging Λ and Λ′, we have Λ′ ⊂ Λ. We

deduce the equality Λ = Λ′. If we assume that one of the sets Λ or Λ′ is the empty set, we see

that the above proof is still valid.

L 2.3. — For all 0 < r 6 1, (D, E ) ∈ E ,α ∈ Rn and Λ,Λ′ ∈ UDr , the following equality

holds: d
(r)
α,(D,E )(Λ,Λ′) = d

(1)
α
r

,(D
r

,E )
(
Λ
r

, Λ
′

r
).

Proof. — Let r ∈ (0, 1]. For all (D, E ) ∈ E and B
(r)
m ∈ B(D,E ) with B

(r)
m = {

o
B(c

(m)
1 , ε

(m)
1 ),

o
B (c

(m)
2 , ε

(m)
2 ), . . . ,

o
B (c

(m)
im

, ε
(m)
im
)}, the following inequalities hold: ‖c

(m)
q − c

(m)
k ‖ > r for all

1 6 q, k 6 im with q ≠ k. The collection B
(r)
m is in one-to-one correspondance, by the

dilation of fixed point the origin and scalar factor r , with the collection of open balls B
(r),1
m :=

{
o
B(c

(m)
1 /r, ε

(m)
1 ),

o
B(c

(m)
2 /r, ε

(m)
2 ), . . . ,

o
B(c

(m)
im

/r, ε
(m)
im
)} ∈ B(D/r,E ) , where now ‖c

(m)
q /r−c

(m)
k /r‖ >

1. Since, for a given α ∈ Rn,
∣

∣

∣

∣

φ
(r)

B
(r)
m

(Λ)− φ
(r)

B
(r)
m

(Λ′)

∣

∣

∣

∣

r
2

+ ‖α‖ + ‖α− c
(m)
1 ‖ + . . . + ‖α− c

(m)
im

‖
=

∣

∣

∣

∣

φ
(1)

B
(r),1
m

(Λ/r)− φ
(1)

B
(r),1
m

(Λ′/r)

∣

∣

∣

∣

1
2

+ ‖α
r
‖ + ‖α

r
−

c(m)1
r

‖ + . . . + ‖α
r
−

c(m)im
r
‖

we deduce, by taking the supremum over all the collections B
(r)
m ∈ B(D,E ), the claimed equal-

ity.

From the above lemma 2.3, by taking the supremum over all α ∈ Rn and all (D, E ) ∈ E , we

deduce the following fundamental identity:

d(r)(Λ,Λ′
) = d (1)(Λ/r,Λ′

/r), for all 0 < r 6 1 and Λ,Λ′ ∈ UDr .
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This identity can be used as a definition of d (r) on UDr , when r < 1, since d (1) was already

constructed in [MVG]. However, we have prefered to give a direct construction of d (r). The

properties of d (1) on UD1 can now be invoked to deduce the completeness and the precom-

pactness of the metric space (UDr , d(r)) (see [MVG]), hence its compactness, as claimed.

Let us show that d (r) is invariant by the action of the orthogonal group O(n,R).

L 2.4. — For all r > 0, (D, E ) ∈ E ,α ∈ Rn, ρ ∈ O(n,R), and Λ,Λ′ ∈ UDr , the following

equality holds: d
(r)
α,(D,E )(Λ,Λ′) = d

(r)
ρ(α),(ρ(D),E )(ρ(Λ), ρ(Λ

′)).

Proof. — Let r > 0. For all (D, E ) ∈ E and B
(r)
m ∈ B(D,E ) with B

(r)
m = {

o
B (c

(m)
1 , ε

(m)
1 ),

o
B (c

(m)
2 , ε

(m)
2 ), . . . ,

o
B (c

(m)
im

, ε
(m)
im
)}, the following inequalities hold: ‖c

(m)
q − c

(m)
k ‖ > r for all

1 6 q, k 6 im with q ≠ k. The collection B
(r)
m is in one-to-one correspondance, by a given

isometry ρ ∈ O(n,R), with the collection of open balls B
(r),(ρ)
m := {

o
B(ρ(c

(m)
1 ), ε

(m)
1 ),

o
B(ρ(c

(m)
2 ), ε

(m)
2 ), . . . ,

o
B(ρ(c

(m)
im

), ε
(m)
im
)} ∈ B(ρ(D),E ) , where the following inequalities ‖ρ(c(m)q )−

ρ(c
(m)
k )‖ > r are still true. Since the function f is invariant by construction by the action of

ρ, the following equalities hold: φ
(r)

B
(r)
m

(Λ) = φ
(r)

B
(r),(ρ)
m

(ρ(Λ)). Hence, for a given α ∈ Rn, by

taking the supremum over all the collections B
(r)
m ∈ B(D,E ) of the following identity:

∣

∣

∣

∣

φ
(r)

B
(r)
m

(Λ)− φ
(r)

B
(r)
m

(Λ′)

∣

∣

∣

∣

r
2

+ ‖α‖ + ‖α− c
(m)
1 ‖ + . . . + ‖α− c

(m)
im

‖
=

∣

∣

∣

∣

φ
(r)

B
(r),(ρ)
m

(ρ(Λ))− φ
(r)

B
(r),(ρ)
m

(ρ(Λ′)

∣

∣

∣

∣

1
2

+ ‖ρ(α)‖ + ‖ρ(α)− ρ(c
(m)
1 )‖ + . . . + ‖ρ(α)− ρ(c

(m)
im

)‖

we deduce the claimed equality.

Taking now the supremum of d
(r)
α,(D,E )(Λ,Λ′) over all α ∈ Rn and (D, E ) ∈ E , we deduce

from the above lemma 2.4 that d (r)(Λ,Λ′) = d (r)(ρ(Λ), ρ(Λ′)) for all Λ,Λ′ ∈ UDr and

ρ ∈ O(n,R), as claimed.

2.2. Proof of the theorem 1.2

For all r > 0, the metric d (r) on UDr has the advantage to make compact the metric space

(UDr , d(r)) but, by the way it is constructed, the disadvantage to specify a point (the origin)

in the ambiant space Rn. We will remove this disadvantage but the counterpart will be that we

will loose the precompactness of the metric space UDr . In order to do this, let us first define,

for all x ∈ Rn, the new metric d (r)x on UDr by

d(r)x (Λ,Λ′
) = d (r)(Λ− x,Λ′ − x), Λ,Λ′ ∈ UDr .

Let us remark that the metric spaces (UDr , d(r)x ), x ∈ Rn, are also compact (by the theorem

1.1).

D 2.5. — Let r > 0. Let D(r) the metric on UDr , taking its values in [0, 1], defined

by D(r)(Λ,Λ′) := supx∈Rn d(r)x (Λ,Λ′), for all Λ,Λ′ ∈ UDr . The metric D(r) will be called the

metric of the proximity of points, or pp-metric.
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Let us show i), i.e. that D(r) is invariant by the group of rigid motions of Rn. First, by construc-

tion, D(r) is invariant by the translations of Rn. Therefore, we will just focus below on the proof

of its invariance by the elements of the orthogonal group O(n,R). For all Λ,Λ′ ∈ UDr and

all x ∈ Rn , ρ ∈ O(n,R), since d (r)(Λ,Λ′) = d (r)(ρ(Λ), ρ(Λ′)) by the lemma 2.4, we deduce

that d (r)x (Λ,Λ′) = d (r)(Λ− x,Λ′ − x) = d (r)(ρ(Λ)− ρ(x), ρ(Λ′)− ρ(x)) = d
(r)
ρ(x)(ρ(Λ), ρ(Λ

′)).

Hence, supx∈Rn d(r)x (Λ,Λ′) = supx∈Rn d
(r)
ρ(x)(ρ(Λ), ρ(Λ

′)), meaning exactly that D(r)(Λ,Λ′) =

D(r)(ρ(Λ), ρ(Λ′)) as claimed.

Let us show that (UDr , D(r)) is complete in ii). It is obvious that any Cauchy sequence for

the pp-metric D(r) will be a Cauchy sequence for all the metrics d (r)x for all x ∈ Qn in

particular. But Qn is countable. Therefore, we can extract from the initial Cauchy sequence,

by a diagonalisation process over all x ∈ Qn , a subsequence which converges for all the

metrics d (r)x , x ∈ Qn . Since Qn is dense in the ambiant space Rn, that supx∈Qn d(r)x (Λ,Λ′) =

supx∈Rn d(r)x (Λ,Λ′) for all Λ,Λ′ ∈ UDr by continuity of the function f , this subsequence,

extracted by diagonalization, also converges for the metric D(r). This prove the completeness

of the metric space (UDr , D(r)).

Let us prove the pointwise pairing property iii) (for D(r)) for the uniformly discrete sets of

UDr (from the lemma 2.6 for r > 1 and from the lemma 2.7 for 0 < r < 1).

L 2.6. — Let r > 1 and x ∈ Rn. Let Λ,Λ′ ∈ UDr assumed non-empty and define

lx := infλ∈Λ ‖λ− x‖ < +∞. Let ε ∈ (0, 1
1+2lx

) and let us assume that d (r)x (Λ,Λ′) < ε. Then, for

all λ ∈ Λ such that ‖λ− x‖ < 1−ε
2ε

, (i) there exists a unique λ′ ∈ Λ′ such that ‖λ′ − λ‖ < 1/2,

(ii) this pairing satisfies the inequality ‖λ′ − λ‖ 6 (1/2 + ‖λ− x‖)ε.

Proof. — This property comes from the pointwise pairing property (for the metric d (r)) for

the elements of UDr [MVG]. (i) Let us assume that for all λ′ ∈ Λ′ and all λ ∈ Λ such that

‖λ − x‖ < 1−ε
2ε

the inequality ‖λ′ − λ‖ > 1/2 holds. This will lead to a contradiction. Assume

the existence of an element λ ∈ Λ such that ‖λ − x‖ < 1−ε
2ε

and take D = {λ − x} and let

E be a countable dense subset in (0, 1/2). Each Bm in B(D,E ) is a set constituted by only one

element: the ball (say)
o
B (λ − x, em) with em ∈ E . We deduce that φBm(Λ − x) = em and

φBm(Λ
′) = 0. Hence

dλ−x,(D,E )(Λ− x,Λ′ − x) = sup
m

em

1/2 + ‖λ− x‖
=

1/2

1/2 + ‖λ− x‖
6 d (r)x (Λ,Λ′

).

But ε < 1
1+2‖λ−x‖ is equivalent to ‖λ − x‖ < 1−ε

2ε
. Since we have assumed d (r)x (Λ,Λ′) < ε, we

should obtain ε < dλ−x,(D,E )(Λ− x,Λ′− x) 6 d (r)x (Λ,Λ′) < ε. Contradiction. The uniqueness

of λ′ comes from the fact thatΛ′ is a uniformly discrete set of constant r > 1 allowing only one

element λ′ close to λ within distance 1/2. (ii) Let us assume that λ ≠ λ′ for all λ ∈ Λ such

that ‖λ − x‖ < 1−ε
2ε

, with λ′ ∈ Λ′ that satisfies ‖λ′ − λ‖ < 1/2 (if the equality λ = λ′ holds,

there is nothing to prove). Then, for all λ ∈ Λ such that ‖λ− x‖ < 1−ε
2ε

, let us takeα = λ− x as

base point, D = {λ − x} and E a dense subset in (0, ‖λ − λ′‖] ⊂ (0, 1/2). Then φBm(Λ −

x) − φBm(Λ
′ − x) = em

(

1 − f
(

λ′−λ
em

))

. The restriction of the function z → z(1 − f ( λ
′−λ
z
))

to (0, ‖λ − λ′‖] is the identity function and is bounded above by ‖λ′ − λ‖, by continuity of the

function f . Therefore, dλ−x,(D,E )(Λ− x,Λ′− x) = sup
Bm

|φBm (Λ−x)−φBm (Λ
′−x)|

1/2+‖λ−x‖ =
‖λ′−λ‖

1/2+‖λ−x‖ .
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Since dλ−x,(D,E )(Λ− x,Λ′ − x) 6 d (r)x (Λ,Λ′) < ε, we obtain ‖λ′ − λ‖ 6 (1/2 + ‖λ− x‖)ε as

claimed.

Let 0 < ε < 1 and let us now suppose that Λ,Λ′ ∈ UDr are non-empty and satisfy

D(r)(Λ,Λ′) < ε. This means that for all x ∈ Rn, in particular for all λ ∈ Λ, the inequality

d(r)x (Λ,Λ′) < ε holds. We deduce from the above lemma 2.6, restricting x to all the elements

λ of Λ, that, for all λ ∈ Λ, there exists a unique λ′ ∈ Λ′ such that ‖λ− λ′‖ < ε/2 as claimed.

Let us now consider the case 0 < r < 1. Since, for all Λ,Λ′ ∈ UDr , we have the identity

d(r)(Λ,Λ′) = d (1)(Λ
r

, Λ
′

r
), the following lemma is a reformulation of lemma 2.6.

L 2.7. — Let 0 < r < 1 and x ∈ Rn. Let Λ,Λ′ ∈ UDr assumed non-empty and define

lx := infλ∈Λ ‖
λ
r
− x‖ < +∞. Let ε ∈ (0, 1

1+2lx
) and let us assume that d (1)x (

Λ
r

, Λ
′

r
) < ε. Then, for

all λ ∈ Λ such that ‖λ
r
− x‖ < 1−ε

2ε
, (i) there exists a unique λ′ ∈ Λ′ such that ‖λ

′

r
− λ

r
‖ < 1/2,

(ii) this pairing satisfies the inequality ‖ λ
′

r
− λ

r
‖ 6 (1/2 + ‖λ

r
− x‖)ε.

As a consequence, the assumption D(r)(Λ,Λ′) < ε for all 0 < ε < 1 and all non-empty

Λ,Λ′ ∈ UDr ensures, as above with x restricted now to the point set Λ/r , the existence of the

pointwise pairings of the points of Λ and Λ′ with now ‖λ − λ′‖ < rε
2

. We deduce the result

(iii)).

Let us prove iv), i.e. that the subgroup of translations Rn acts continuously on UDr for

all r > 0. First, let us remark that, for all Λ0 ∈ UDr , limt→0 D(r)(Λ0 + t ,Λ0) = 0 for the

above point iii). Then, given an arbitrary (t0,Λ0) ∈ Rn × UDr , let us prove the continuity of

this action at the element (t0,Λ0). Let us take 0 < ε < 1. Then, there exists η > 0 such

that |t − t0| < η implies D(r)(Λ0 + (t − t0),Λ0) < ε/2. Hence, for all Λ ∈ UDr such

that D(r)(Λ,Λ0) < ε/2 and t ∈ Rn such that |t − t0| < η, we obtain: D(r)(Λ + t ,Λ0 +

t0) = D(r)(Λ + (t − t0),Λ0) 6 D(r)(Λ + (t − t0),Λ0 + (t − t0)) + D(r)(Λ0 + (t − t0),Λ0)

= D(r)(Λ,Λ0) + D(r)(Λ0 + (t − t0),Λ0) 6 ε/2 + ε/2 = ε. We deduce the claim.

Let us prove that UDr is locally compact (ii)). Let r > 0. Recall that the Hausdorffmetric ∆ is

classically defined on the set F (Rn) of the non-empty closed subsets of Rn. If Λ,Λ′ ∈ UDr \

{∅}, then we define the metric h on UDr\{∅} (it is in fact the restriction of the Hausdorffmet-

ric ∆ to UDr\{∅}) by h(Λ,Λ′) := max { inf {ε | Λ′ ⊂ Λ + B(0, ε)}, inf {ε | Λ ⊂ Λ′ + B(0, ε)}}.

Obviously, UDr \ {∅} is closed in the complete space (F (Rn),∆). Then UDr \ {∅} is com-

plete for h. On the space UDr \ {∅}, the two metrics D(r) and h are obviously equivalent.

The element ∅ is isolated in UDr for D(r). Hence, it possesses a neighbourhood (reduced to

itself) whose closure is compact. Now, if Λ ∈ UDr \ {∅} and 0 < ε < 1, the open neighbour-

hood {Λ′ ∈ UDr | Λ
′ ⊂ Λ+

o
B (0, ε)} of Λ admits {Λ′ ∈ UDr | Λ

′ ⊂ Λ + B(0, ε)} as closure

which is obviously precompact, hence compact, for D(r) or h. We deduce the claim.

3. Proof of the theorem 1.3 and of its corollary 1.4

We will say that Λ ∈ UDr is extreme if the density δ(B(Λ)) of the system of balls Λ +

B(0, r/2) is equal to the packing constant δ.
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In this section, we will show the existence of extreme packings of balls. Since the packing con-

stant is defined by δ = supΛ∈UD δ(B(Λ)) > 0 and that any non-singular affine transformation

on the system of balls B(Λ) (theorem 1.7 in [Ro]) leaves it invariant, it suffices to restrict our-

selves to systems of balls whose centres constitute a uniformly discrete set belonging to one of

the spaces UDr , r > 0, to investigate the highest possible densities. Let us choose UD1. Then

let us prove that there exists Λ ∈ UD1 such that the claim holds. This will prove theorem 1.3.

Assume that it is not the case and this will lead to a contradiction. Then, by definition, there

exists a sequence (Λi)i>1 such that Λi ∈ UD1, m(Λi) = 1 and limi→+∞ δ(B(Λi)) = δ (as a

sequence of real numbers). We will prove that we can extract a subsequence from the sequence

(Λi)i>1 which will converge for D(1).

Indeed, this sequence (Λi)i>1 may be viewed as a sequence in the compact space (UD1, d(1)x )

for all x ∈ Qn. Therefore, for all x ∈ Qn, we can extract a subsequence from it which converges

for the metric d (1)x . Iterating this extraction by a diagonalization process over all x ∈ Qn ,

since Qn is countable, shows that we obtain a subsequence which converges for all the metrics

d(1)x . Since Qn is dense in Rn, we obtain a convergent sequence (Λi j
) j>1 for D(1) since

supx∈Rn d(1)x = supx∈Qn d(1)x , by continuity of the function f .

L 3.1. — Let r > 0. The density function Λ→ δ(B(Λ)) is continuous on (UDr , D(r)) and

locally constant.

Proof. — Let r > 0, Λ0 ∈ UDr , T > 0 large enough and 0 < ε < 1. By the lemmas

2.6, 2.7 and the pointwise pairing property iii) in the theorem 1.2, any Λ ∈ UDr such that

D(r)(Λ,Λ0) < ε is such that the number of elements #{λ ∈ Λ | λ ∈ B(0, T )} of Λ within

B(0, T ) satisfies the following inequalities: #{λ ∈ Λ0 | λ ∈ B(0, T − min{r, 1}ε/2)} 6 #{λ ∈

Λ | λ ∈ B(0, T )} 6 #{λ ∈ Λ0 | λ ∈ B(0, T + min{r, 1}ε/2)}. The density of the system of

balls B(Λ) is equal to δ(B(Λ)) = lim supT →+∞ #{λ ∈ Λ | λ ∈ B(0, T )}
(

r
2T

)n
. Since the

contribution - to the calculation of the density - of the points of Λ0 which lie in the annulus

B(0, T + min{r, 1}ε/2) \ B(0, T − min{r, 1}ε/2) tends to zero when T tends to infinity by the

theorem 1.8 in Rogers [Ro], we deduce that δ(B(Λ)) = δ(B(Λ0)), hence the lemma.

Let us finish the proof of theorem 1.3. Since the metric space (UD1, D(1)) is complete, the

subsequence (Λi j
) j>1 is such that, by the lemma 3.1, there exists a limit point set Λ =

lim j→+∞ Λi j
∈ UD1 that satisfies δ = lim j→+∞ δ(B(Λi j

)) = δ(Λ). This gives the conclusion.

R.– Let us make a comment about saturation, linked to the possible filling of holes of

uniformly discrete sets of UDr [MVG1]. We will say that Λ ∈ UDr is saturated, or maximal,

if it is impossible to add a sphere of radius r/2 to B(Λ) without destroying the fact that it is a

packing of spheres, i.e. without creating an overlap of spheres. The set SSr of systems of balls

of radius r/2, is partially ordered by the relation ≺ defined by

Λ1,Λ2 ∈ UDr , B(Λ1) ≺ B(Λ2) ⇐⇒ Λ1 ⊂ Λ2.

By Zorn’s lemma, maximal sphere packings exist. The saturation operation of a sphere packing

consists in adding spheres to obtain a maximal sphere packing. It is fairly arbitrary and may

be finite or infinite. It is not because a sphere packing is maximal (saturated) that its density is

equal to δ.
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In the proof of the theorem 1.3, we did not need assume that the elements Λi j
are saturated.

If the limit point set Λ ∈ UD1 is such that δ = δ(B(Λ)), then any (partial or total) saturation

process of Λ obtained by adding balls of radius 1/2 to Λ leads to new systems of spheres

of SS1 which are of the same density δ, but whose centres constitute uniformly discrete sets

which do not lie in a small neighbourhood of Λ in the metric space (UD1, D(1)).

Let us prove the corollary 1.4. Since the subspace Ln ∩ UD1 is closed in the compact space

(UD1, d(1)) after [MVG], it is also closed in (UD1, d(1)x ) for all x ∈ Rn. Therefore, it is closed

in (UD1, D(1)). The proof of the corollary 1.4 comes now readily from the lemma 3.1 where the

density function is restricted to the space of lattices which are uniform discrete sets of constant

r > 0.
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