THE MULTIPLIERS OF $A_{\omega}^{p}(G)$

Serap ÖZTOP
Prépublication de l'Institut Fourier n ${ }^{\circ} 621$ (2003)
http://www-fourier.ujf-grenoble.fr/prepublications.html

Résumé

Soit G un groupe localement compact abélien, $d x$ sa mesure de Haar et ω un poids de Beurling sur G. Ce travail est l'étude des espaces $A_{\omega}^{p}(G)$ des $A^{p}(G)$-modules, et leurs multiplicateurs.

Abstract

Let G be a locally compact abelian group with Haar measure $d x$ and ω be a Beurling's weight function on G. This study is concerned with the space $A_{\omega}^{p}(G), A^{p}(G)$-modules, and their multipliers.

I. Introduction and Preliminaries

Let G be a locally compact abelian group with Haar measure $d x$ and the dual group \hat{G}. A Banach space $\left(B,\|\cdot\|_{B}\right)$ is called a Banach G-module, if there exists a group representation L of G to the group of isometries of B with $L_{e}=I_{B}$ (identity) and $L_{x+y}=L_{x} \circ L_{y}$.

Let $\left(A,\|\cdot\|_{A}\right)$ be a Banach algebra, A Banach space $\left(B,\|\cdot\|_{B}\right)$ is called a Banach A module if there exists an algebra representation T (continuous) of A to $B L(B)$, the algebra of all continuous linear operators from B to B with

$$
\begin{gathered}
\left\|T_{a}\right\| \leqslant\|a\|_{A} \\
T a_{1} \cdot a_{2}=T a_{1} \circ T a_{2}
\end{gathered}
$$

where \cdot is the multiplication on A. For $b \in B, T_{a}(b)$ is denoted by $a \cdot b$.
Such a module is order free if 0 is the only $b \in B$ for which $a \cdot b=0$ for all $a \in A$
A Banach A-module B is called essential if the closed linear span of $A \cdot B$ coincides with B. If the Banach algebra $\left(A,\|\cdot\|_{A}\right)$ contains bounded approximate identity, i.e. a bounded net

[^0]$\left(u_{\alpha}\right)_{\alpha \in I}$ such that $\lim _{\alpha}\left\|u_{\alpha} \cdot a-a\right\|_{A}=0$ for all $a \in A$ then a Banach A-module B is an essential one, by Cohen's factorization theorem, if and only if $\lim _{\alpha}\left\|u_{\alpha} \cdot b-b\right\|_{B}=0$ for all $b \in B$ (for more details see[4], [10]).

If B is Banach A-module

$$
\operatorname{Hom}_{A}(B)=\{T \in B L(B) \mid \forall a \in A, \forall b \in B, T(a \cdot b)=a \cdot T(b)\}
$$

is the space of all A-module homomorphisms. The elements of $\mathrm{Hom}_{A}(B)$ are traditionally called multipliers from B to B.

If B is a Banach G-module

$$
\operatorname{Hom}_{G}(B)=\left\{T \in B L(B) \mid \forall x \in G, \forall b \in B, T\left(L_{x} b\right)=\left(L_{x} T\right) b\right\}
$$

is the space of all G-module homomorphisms. The elements of $H_{G}(B)$ will be called centralizer. In the most cases, a multiplier is equal to a centralizer, however in the certain spaces, a centralizer need not be a multiplier [3, 16].

In this paper, we introduce the weighted Banach $A_{p}(G)$-modules and discuss some multiplier problems where $A_{p}(G)$ is the p-Fourier algebra. The space $A_{p}(G), 1 \leqslant p<\infty$, was introduced by Figa-Talamanca [7] and proved that the multiplier space of $L^{p}(G)$ (as a centralizer) is isometrically isomorphic to the dual space $A_{p}^{*}(G)$ of $A_{p}(G)$ provided G is abelian. For nonabelian locally compact group G, Eymard [6] studied the Fourier algebra $A_{2}(G)=A(G)$ and for general $p, 1 \leqslant p<\infty$, Herz [9] proved that $A_{p}(G)$ is a Banach algebra under pointwise multiplication.

We are interested in the structure theory of the weighted $A_{p}(G)$, denoted by $A_{\omega}^{p}(G)$. Using by the technical developed by Spector [15] we show that $A_{\omega}^{p}(G)$ is a Banach $A_{p}(G)$-module under pointwise multiplication. Note that $A_{p}(G)$ is a Fourier algebra under pointwise multiplication but it is not an algebra under convolution. Moreover, it is obtained some necessary and sufficients conditions on operator to be an $A_{\omega}^{p}(G)$-multipliers.

II. The $\boldsymbol{A}_{\boldsymbol{\omega}}^{\boldsymbol{p}}(\boldsymbol{G})$ spaces and their convolutors

Let G be a locally compact abelian group with Haar measure $d x$ and ω be a non negative continuous function on G.
$L_{\omega}^{p}(G)=\left\{f \mid f w \in L^{p}(G)\right\}$ denote the Banach space under the natural norm $\|f\|_{p, \omega}=$ $\|f \omega\|_{p, 1} \leqslant p \leqslant \infty$ and for $1 \leqslant p<\infty$ its dual space is $L_{\omega^{-1}}^{p^{\prime}}(G)$ with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
$C_{0, \omega}(G)$ denote the Banach subspace of $L_{\omega}^{\infty}(G)$ such that $f \omega \in C_{0}(G)$, the space of all continuous functions vanishing at infinity of G.

If ω is a weight function, i.e. continuous function satisfying $\omega(x) \geqslant 1, \omega(x+y) \leqslant$ $\omega(x) \omega(y)$ then $L_{\omega}^{1}(G)$ is a Banach algebra under convolution called a Beurling algebra. It follows that $L_{\omega}^{p}(G)$ is an essential Banach $L_{\omega}^{1}(G)$-module with respect to convolution [2].

Throughout it will be assumed that ω is even function, i.e. satisfy $\omega(x)=\omega(-x)$ for all $x \in G$.

As the classical thecnic of harmonic analysis it follows that
Proposition II.1. - Let $f \in L_{\omega}^{p}(G)$ and $g \in L_{\omega^{-1}}^{p^{\prime}}(G)$ where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Then $f * g \in$ $C_{0, \omega^{-1}}(G)$ with

$$
\|f * g\|_{\infty, \omega^{-1}} \leqslant\|f\|_{p, \omega}\|g\|_{p^{\prime}, \omega^{-1}}
$$

Thus by Proposition II. 1 it can be defined a bilinear map from $L_{\omega}^{p}(G) \times L_{\omega^{-1}}^{p^{\prime}}(G)$ into $C_{0, \omega^{-1}}(G)$ by

$$
b(f, g)=\tilde{f} * g, \quad \tilde{f}(x)=f(-x)
$$

and $\|b\| \leqslant 1$. Then b lifts a linear map B from $L_{\omega}^{p}(G)$ and $L_{\omega^{-1}}^{p^{\prime}}(G)$ as a Banach space, into $C_{0, \omega^{-1}}(G)$ and $\|B\| \leqslant 1,[1,5,8]$.

Definition II.2. - It will be denoted by $A_{\omega}^{p}(G)$ the subspace of $C_{0, \omega^{-1}}(G)$ of all functions h satisfying $h=\sum_{i=1}^{\infty} \tilde{f}_{i} * g_{i}, f_{i} \in L_{\omega}^{p}(G), g_{i} \in L_{\omega^{-1}}^{p^{\prime}}(G)$ such that $\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{p, \omega}\left\|g_{i}\right\|_{p^{\prime}, \omega^{-1}}<\infty$ equipped with the norm

$$
\|h\|_{A_{\omega}^{p}}=\inf \left\{\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{p, \omega}\left\|g_{i}\right\|_{p^{\prime}, \omega^{-1}}, \quad h=\sum_{i=1}^{\infty} \tilde{f}_{i} * g_{i}\right\} .
$$

$A_{\omega}^{p}(G)$ is a Banach space under this norm and identifies with the space of the quotient Banach space of $L_{\omega}^{p}(G) \otimes_{\gamma} L_{\omega^{-1}}^{p^{\prime}}(G)$ with K, i.e.

$$
A^{p} \omega(G) \cong L_{\omega}^{p}(G) \otimes_{\gamma} L_{\omega^{-1}}^{p^{\prime}}(G) / K
$$

where K is the kernel of the bilinear form B.
Since $L_{\omega}^{p}(G)$ is the reflexive Banach space, by the general operator theory [5], the algebra of the operators $B L\left(L_{\omega}^{p}(G), L_{\omega}^{p}(G)\right)$ identifies with the dual space $\left(L_{\omega}^{p}(G) \otimes_{\gamma} L_{\omega^{-1}}^{p^{\prime}}(G)\right)^{*}$ and the subspace K is the annihilator of the translations it follows that

$$
\operatorname{Hom}_{G}\left(L_{\omega}^{p}(G), L_{\omega^{-1}}^{p}(G)\right) \cong\left(L_{\omega}^{p}(G) \otimes_{\gamma} L_{\omega^{-1}}^{p(}(G) / K\right)^{*} \cong\left(A_{\omega}^{p}(G)\right)^{*}
$$

Because $L_{\omega}^{p}(G)$ is an essential, order free $L_{\omega}^{1}(G)$-module then K is also the annihilator of the operators acted by $L_{\omega}^{1}(G)$, see for example [3, 10, 14], so

$$
\left(A_{\omega}^{p}(G)\right)^{*} \cong \operatorname{Hom}_{G}\left(L_{\omega}^{p}(G), L_{\omega}^{p}(G)\right) \cong \operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{p}(G), L_{\omega}^{p}(G)\right) .
$$

Since $\overline{C_{c}(G)}=L_{\omega}^{p}(G), \overline{C_{c}(G)}=L_{\omega^{-1}}^{p^{\prime}}(G)$ and the convolution of two support compact functions is support compact it follows that $C_{c}(G) \cap A_{\omega}^{p}(G)$ is dense in $A_{\omega}^{p}(G)$. Also $L_{\omega}^{p}(G)$ is the essential Banach $L_{\omega}^{1}(G)$-module under convolution, $A_{\omega}^{p}(G)$ is an essential Banach $L_{\omega}^{1}(G)$ module [13]. So, for every $u \in A_{\omega}^{p}(G)$ and $x \in G, x \rightarrow f_{x}$ is continuous function where $L_{x} f(y)=f_{x}(y)=f(y-x)$ for all $y \in G$.

Theorem II.3. - Let $T \in B L\left(A_{\omega}^{p}(G), A_{\omega}^{p}(G)\right), f \in L_{\omega}^{p}(G), g \in L_{\omega^{-1}}^{p^{\prime}}(G)$ and $h \in L_{\omega}^{1}(G)$. The following statements are equivalent
(i) $T(h * f * g)=h * T(f * g)$
(ii) $T\left(\left(L_{x} f\right) * g\right)=L_{x} T \cdot(f * g)$
(iii) $\exists \tilde{T} \in B L\left(L_{\omega}^{p}(G), L_{\omega}^{p}(G)\right)$ such that

$$
T(f * g)=(\tilde{T} f) * g
$$

Proof. - $(i) \Leftrightarrow(i i)$: since $A_{\omega}^{p}(G)$ is the essential Banach $L_{\omega}^{1}(G)$-module, it is obtained the equivalence of (i) and $(i i)$.
($\mathrm{i} i \mathrm{i}) \Leftrightarrow(i)$: it is obvious.
$(i i) \Leftrightarrow(i i i)$: let T be in $B L\left(A_{\omega}^{p}(G), A_{\omega}^{p}(G)\right), f \in L_{\omega}^{p}(G)$ the map $g \in L_{\omega^{-1}}^{p^{\prime}}(G) \rightarrow(T(f *$ $g)$) (e) defines a linear, continuous functional. Because of the reflexivity of $L_{\omega}^{p}(G)$ there exists an element $\tilde{T} f$ of $L_{\omega}^{p}(G)$ such that

$$
\langle\tilde{T} f, g\rangle=(T(f * g))(e)
$$

and it is obtained the following equivality

$$
(T(f * g))(x)=\left\langle\tilde{T} f, L_{x}\right\rangle .
$$

Corollary II.4. $-\operatorname{Hom}_{L_{\omega}^{1}}\left(A_{\omega}^{p}(G), A_{\omega}^{p}(G)\right)=\operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{p}(G), L_{\omega}^{p}(G)\right)$.
Proof. - It is an interpretation of the equivalence of (ii) and (iii).

III. The multipliers of $\boldsymbol{A}_{\boldsymbol{\omega}}^{\boldsymbol{p}}(\boldsymbol{G})$

If $\omega=1$, Herz [9] proved that $A_{p}(G)$ is a Banach algebra under pointwise multiplication and $A_{p}(G)$ has a bounded approximate identity, i.e. there exists $\left(\alpha_{i}\right)_{i \in I} \subset A_{p}(G)$ such that $\lim _{i}\left\|u \cdot \alpha_{i}-u\right\|_{A_{p}}=0$ for all $u \in A_{p}(G)$.

Using by the proof of Herz's theorem given by Spector [15] the next result follows.
Theorem III.1. - $A_{\omega}^{p}(G)$ is an essential, order free Banach $A_{p}(G)$-module under pointwise multiplication.

Proof. - Let us consider two functions $u=\tilde{f} * g$ and $v=\tilde{h} * k$ where $f, g, j, k \in C_{c}(G)$. Then

$$
\begin{gathered}
\|u\|_{A_{\omega}^{p}} \leqslant\|f\|_{p, \omega}\|g\|_{p^{\prime}, \omega^{-1}} \\
\|\nu\|_{A_{\omega}^{p}} \leqslant\|h\|_{p, \omega}\|k\|_{p^{\prime}, \omega^{-1}} \\
u(x)=\int_{G} f\left(y^{-1} x^{-1}\right) g\left(y^{-1}\right) d y \text { and } v(x)=\int_{G} h\left(z^{-1} x^{-1}\right) k\left(z^{-1}\right) d z
\end{gathered}
$$

we have

$$
(u v)(x)=\int_{G} f\left(y^{-1} x^{-1}\right) g\left(y^{-1}\right) d y \int_{G} h\left(z^{-1} y^{-1} x^{-1}\right) k\left(z^{-1} y^{-1}\right) d z=\int_{G} A_{z}(x) d z
$$

where $A_{z}=\tilde{a}_{z} * b_{z}, a_{z}, b_{z} \in C_{c}(G)$

$$
\begin{aligned}
& a_{z}(x)=f(x) h\left(z^{-1} x\right) \\
& b_{z}(x)=g(x) k\left(z^{-1} x\right)
\end{aligned}
$$

since the mapping $z \rightarrow A_{z}$ is continuous as the Banach valued integral, it sufficies to show that

$$
\int_{G}\left\|A_{z}\right\|_{A_{\omega}^{p}} d z \leqslant\|f\|_{p, \omega}\|g\|_{p^{\prime}, \omega^{-1}}\|h\|_{p}\|k\|_{p^{\prime}}
$$

But

$$
\begin{aligned}
\int_{G}\left\|A_{z}\right\|_{A_{\omega}^{p}} d z \leqslant & \int_{G}\left\|a_{z}\right\|_{p, \omega}\left\|b_{z}\right\|_{p^{\prime}, \omega^{-1}} d z \\
\leqslant & \left(\int_{G}\left\|a_{z}\right\|_{p, \omega}^{p} d z\right)^{1 / p}\left(\int_{G}\left\|b_{z}\right\|_{p^{\prime}, \omega^{-1}}^{p^{\prime}} d z\right)^{1 / p^{\prime}} \\
= & \left(\int_{G}|f(x) \omega(x)|^{p} d x \int_{G}\left|h\left(z^{-1} x\right)\right|^{p} d z\right)^{1 / p} \\
& \cdot\left(\int_{G}\left|g(x) \omega^{-1}(x)\right|^{p^{\prime}} d x \int_{G}|k(t)|^{p^{\prime}} d t\right)^{1 / p^{\prime}} \\
= & \|f\|_{p, \omega}\|g\|_{p^{\prime}, \omega^{-1}}\|h\|_{p}\|k\|_{p^{\prime}}
\end{aligned}
$$

So, it is obtained that for $u \in A_{p}(G)$ and $v \in A_{\omega}^{p}(G)$

$$
\|u v\|_{A_{\omega}^{p}} \leqslant\|u\|_{A_{p}}\|v\|_{A_{\omega}^{p}} .
$$

Since $C_{c}(G) \cap A_{\omega}^{p}(G)$ is dense in $A_{\omega}^{p}(G)$ and $A_{\omega}^{p}(G)$ is a Banach $A_{p}(G)$-module it is obtained that $A_{\omega}^{p}(G)$ is an essential Banach module and order free, i.e. $u \in A_{p}(G), u v=0$ for all $v \in A_{\omega}^{p}(G)$ then $v=0$.

Remark. - Since $A_{2}(G) \subset A_{r}(G) \subset A_{p}(G)$ for $1<p<r<2$ or $2 \leqslant r<p<\infty, A_{\omega}^{p}(G)$ is also $A_{r}(G)$-module for $1<p<r \leqslant 2$ or $2 \leqslant r<p<\infty$, i.e.

$$
A_{r}(G) \cdot A_{\omega}^{p}(G) \subset A_{\omega}^{p}(G)
$$

In particular, for $r=2$, since $A_{2}(G)$ identifies with $\widehat{L^{1}(\hat{G})}=F\left(L^{1}(\widehat{G})\right), A_{\omega}^{p}(G)$ has a structure of $L^{1}(\hat{G})$-module and the action φ is given by $\hat{\varphi} \cdot h \in A_{\omega}^{p}(G)$ for $\varphi \in L^{1}(\hat{G}), h \in A_{\omega}^{p}(G)$.

Proposition III.2. - $A_{\omega}^{p}(G)$ has a compatible structure \hat{G}-module with the action of $A_{p}(G)$.

Proof. - Since $A_{\omega}^{p}(G)$ is the essential Banach $L^{1}(\hat{G})$-module $A_{\omega}^{p}(G)$ has a unique compatible structure \widehat{G}-module [11]. This action is given by $\gamma \in \widehat{G}, x \in G, u \in A_{\omega}^{p}(G)$,

$$
\left(M_{\gamma} u\right)(x)=\bar{\gamma}(x) u(x) .
$$

Indeed, $\forall \gamma_{1}, \gamma_{2} \in \widehat{G}$

- $\left(M_{\gamma_{1}+\gamma_{2}} u\right)(x)=\left(\overline{\gamma_{1}+\gamma_{2}}\right)(x) u(x)=\bar{\gamma}_{1}(x) \bar{\gamma}_{2}(x) u(x)$

$$
=\left(M_{\gamma_{1}} \cdot M_{\gamma_{2}} u\right)(x)
$$

- $M_{e} u=1 \cdot u=u$
- $\left\|M_{\gamma} u\right\| \leqslant\|u\| \leqslant\left\|M_{-\gamma} M_{\gamma} u\right\| \leqslant\left\|M_{\gamma} u\right\|$.

So M_{γ} is an isometry and also

$$
\widehat{L_{\gamma} \varphi} \cdot u=M_{\gamma} \hat{\varphi} \cdot u=\hat{\varphi}\left(M_{\gamma} u\right) \text { for } \varphi \in L^{1}(\widehat{G}) .
$$

By the density of $A_{2}(G)$ in $A_{p}(G)$ it follows

$$
\left(M_{\gamma} f\right) u=M_{\gamma}(f u)=f \cdot M_{y}(u), \quad f \in L^{1}(\hat{G}) .
$$

Theorem III.3. - Let G be a locally compact abelian group and \hat{G} be a dual group, $1<p<$ ∞ for a continuous linear operator T the following statements are equivalent
(i) For all $f \in L^{1}(\hat{G})$ and $u \in A_{\omega}^{p}(G)$ such that $f u=0$ then $f \cdot T(u)=0$.
(ii) T is $L^{1}(\widehat{G})$-module homomorphism (or multiplier) i.e. $T \in \operatorname{Hom}_{L^{1}(\hat{G})}\left(A_{\omega}^{p}(G), A_{\omega}^{p}(G)\right)$.

Proof. - Since $A_{\omega}^{p}(G)$ is an essential and order free Banach $L^{1}(\hat{G})$-module, it is obtained from [12].

Proposition III.4. - For $1<p \leqslant r \leqslant 2$ or $2 \leqslant r \leqslant p<\infty$,

$$
\operatorname{Hom}_{L^{1}(\hat{G})}\left(A_{\omega}^{p}(G), A_{\omega}^{p}(G)\right)=\operatorname{Hom}_{\hat{G}}\left(A_{\omega}^{p}(G), A_{\omega}^{p}(G)\right)=\operatorname{Hom}_{A_{r}}\left(A_{\omega}^{p}(G), A_{\omega}^{p}(G)\right) .
$$

So we consider that each multiplier on $A_{\omega}^{p}(G)$ as a centralizer.
Acknowledgment. - I would like to thank Prof. Dr. G. Muraz for helpful suggestions regarding this paper.

References

[1] Bonsall F.F., Duncan J., Complete normed algebras, Springer, Berlin, 1973.
[2] Braun W., Feichtinger H.G., Banach spaces of distributions having two module structures, J. Func. Anal., 51 (1983), 174-212.
[3] Datry C., Muraz G., Analyse harmonique dans les modules de Banach, I: propriétés générales, Bull. Sci. Math., 119 (1995), 299-337.
[4] Doran R.S., Wichmann J., Approximate identities and factorization in Banach modules, Lecture Notes Mathematics, 768, Springer, Berlin, 1979.
[5] Dunford N., Schwartz J.T., Linear Operators, I, Interscience Publisher, New York, 1958.
[6] Eymard P., L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math., 92 (1964), 181-236.
[7] Figer-Talamancer A., Multipliers of p-integrable functions, Bull. Amer. Math. Soc., 70 (1964), 666-669.
[8] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, American Mathematical Society, Providence, Rhode Island (1955).
[9] Herz C., The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc., 154 (1971), 69-82.
[10] Hewit E., Ross K.A., Abstract Harmonic Analysis, I, Springer, Berlin, 1963.
[11] Liu T.S., Van Rooij A. \& Wang J.K., Group representations in Banach spaces: orbits and almost periodicity, Studies and essays presented to Yu-Why-Chen, Taipei, Math. Research center (1970), 243-254.
[12] Muraz G., Multiplicateurs sur les $L^{1}(G)$-modules, Groupe de travail d'Analyse harmonique, Institut Fourier, Grenoble, 1981.
[13] Öztop S., Gürkanli A.-T., Multipliers and tensor products of weighted L^{p}-spaces, Acta Math. Sci., 21-B(1) (2001), 41-49.
[14] Rieffel M.A., Multipliers and tensors products of $L^{{ }^{p}}$-spaces of locally compact groups, Studia Math., 33 (1969), 71-82.
[15] Spector R., Sur la structure locale des groupes abéliens localement compacts, Bull. Soc. Math., 24 (1970), 5-94.
[16] Tewari U.B., Dutta \& Vaidya J.P., Multipliers of group algebra of vector-valued functions, Proc. Amer. Math. Soc., 81 (1981), 223-229.

```
Serap ÖZTOP
Istanbul University
Faculty of Sciences
Department of Mathematics,
Vezneciler, ISTANBUL (Turkey)
&
INSTITUT FOURIER
Laboratoire de Mathématiques
UMR5582 (UJF-CNRS)
BP}7
38402 St MARTIN D'HÈRES Cedex (France)
e-mail: serapoz@mozart.ujf-grenoble.fr
    serapoztop@hotmail.com
```


[^0]: 2000 Mathematics Subject Classification: 43A15, 43A20, 43A22.
 Keywords: Multiplier, centralize, homomorphism, weight function, Banach module.

