NEW EXAMPLES OF HYPERBOLIC OCTIC SURFACES IN \mathbb{P}^{3}

BERNARD SHIFFMAN AND MIKHAIL ZAIDENBERG

Prépublication de l'Institut Fourier n ${ }^{0} 613$ (2003) http://www-fourier.ujf-grenoble.fr/prepublications.html

Abstract

We show that a general small deformation of the union of two general cones in \mathbb{P}^{3} of degree ≥ 4 is Kobayashi hyperbolic. Hence we obtain new examples of hyperbolic surfaces in \mathbb{P}^{3} of any given degree $d \geq 8$.

It was shown by Clemens [2] that a very general surface X_{d} of degree $d \geq 5$ in \mathbb{P}^{3} has no rational curves; G. Xu [11] showed that X_{d} also has no elliptic curves (and in fact has no curves of genus ≤ 2), i.e. X_{d} is algebraically hyperbolic. According to the Kobayashi Conjecture, X_{d} must even be Kobayashi hyperbolic, and hence does not possess non-constant entire curves $\mathbb{C} \rightarrow X_{d}$. The latter property is known to be open in the Hausdorff topology on the projective space of degree d surfaces [12], and it does hold for a very general surface of degree at least $15[3,5,7]$.

Examples of hyperbolic surfaces in \mathbb{P}^{3} have been given by many authors; see the references in our previous papers [9,10], where more examples are given. So far, the minimal degree of known examples is 8 ; the first family of examples of degree 8 hyperbolic surfaces in \mathbb{P}^{3} was found by Fujimoto [6] and independently by Duval [4]. In [10], we introduced a deformation method, which we used to construct a new degree 8 hyperbolic surface. In this note, we use a simple form of our deformation method to construct another degree 8 example, which is a deformation of the union of two quartic cones. Actually, our construction provides examples in any degree $d \geq 8$.

It follows from an observation by Mumford and Bogomolov, proved in [8], that every surface in \mathbb{P}^{3} of degree at most 4 contains rational or elliptic curves. However, it remains unknown whether there exist hyperbolic surfaces in \mathbb{P}^{3} in the remaining degrees $d=5,6,7$.

To describe our examples, we consider an algebraic curve C in a plane $H \subset \mathbb{P}^{3}$. We let $\langle C, p\rangle$ denote the cone formed by the union of lines through a fixed point $p \in \mathbb{P}^{3} \backslash H$ and points of C. By a cone in \mathbb{P}^{3}, we mean a cone of the form $X=\langle C, p\rangle$. If $C^{\prime}=X \cap H^{\prime}$, where H^{\prime} is an arbitrary plane not passing through p, then we also have $X=\left\langle C^{\prime}, p\right\rangle$. We observe that $\operatorname{deg} X=\operatorname{deg} C$.

Theorem. For $m, n \geq 4$, a general small deformation of the union $X=X^{\prime} \cup X^{\prime \prime}$ of two general cones in \mathbb{P}^{3} of degrees m and n, respectively, is a hyperbolic surface of degree $m+n$.

Proof. Let $X=X^{\prime} \cup X^{\prime \prime} \subset \mathbb{P}^{3}$ be the union of two general cones of respective degrees $m, n \geq 4$. We choose coordinates $\left(z_{1}: z_{2}: z_{3}: z_{4}\right) \in \mathbb{P}^{3}$ so that $X^{\prime}, X^{\prime \prime}$ are cones through

[^0]the points $a=(0: 0: 0: 1)$ and $b=(0: 0: 1: 0)$ respectively. We consider the planes $H^{\prime}=\left\{z_{4}=0\right\}, H^{\prime \prime}=\left\{z_{3}=0\right\}$ in \mathbb{P}^{3}, and we write
\[

$$
\begin{aligned}
& F_{1}=X^{\prime} \cap H^{\prime}=\left\{f_{1}\left(z_{1}, z_{2}, z_{3}\right)=0, z_{4}=0\right\}, \\
& F_{2}=X^{\prime \prime} \cap H^{\prime \prime}=\left\{f_{2}\left(z_{1}, z_{2}, z_{4}\right)=0, z_{3}=0\right\}
\end{aligned}
$$
\]

where f_{1}, f_{2} are general homogeneous polynomials of degree m, n respectively. As we noted above, we have $X^{\prime}=\left\langle F_{1}, a\right\rangle, X^{\prime \prime}=\left\langle F_{2}, b\right\rangle$; hence, X is the surface of degree $m+n$ with equation

$$
f_{1}\left(z_{1}, z_{2}, z_{3}\right) f_{2}\left(z_{1}, z_{2}, z_{4}\right)=0, \quad\left(z_{1}: z_{2}: z_{3}: z_{4}\right) \in \mathbb{P}^{3}
$$

We assume that $a \notin X^{\prime \prime}$ and $b \notin X^{\prime}$, i.e. $f_{1}(0,0,1) \neq 0$ and $f_{2}(0,0,1) \neq 0$. Let

$$
\pi_{0}: \mathbb{P}^{3} \longrightarrow \mathbb{P}^{1}, \quad\left(z_{1}: z_{2}: z_{3}: z_{4}\right) \mapsto\left(z_{1}: z_{2}\right)
$$

be the projection from the line $z_{1}=z_{2}=0$. We further assume that F_{1} and F_{2} are smooth and that each fiber of $\pi_{0} \mid F_{1}$ and of $\pi_{0} \mid F_{2}$ has at least 3 distinct points. For example, if $m=n=4$, this will be the case whenever $(0: 0: 1)$ does not lie on any of the bitangents or inflection tangent lines of $\left\{f_{1}=0\right\}$ or $\left\{f_{2}=0\right\}$.

We follow the deformation method of our paper [10]. Let $X_{\infty}=\left\{f_{\infty}=0\right\}$ be a general surface of degree $m+n$ in \mathbb{P}^{3}, and let

$$
X_{t}=\left\{f_{1}\left(z_{1}, z_{2}, z_{3}\right) f_{2}\left(z_{1}, z_{2}, z_{4}\right)+t f_{\infty}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=0\right\} \quad(t \in \mathbb{C})
$$

We claim that X_{t} is hyperbolic for sufficiently small $t \neq 0$. Suppose on the contrary that $X_{t_{n}}$ is not hyperbolic for a sequence $t_{n} \rightarrow 0$. Then by Brody's Theorem [1], there exists a sequence $\varphi_{n}: \mathbb{C} \rightarrow X_{t_{n}}$ of entire holomorphic curves such that

$$
\left\|\varphi_{n}^{\prime}(0)\right\|=\sup _{w \in \mathbb{C}}\left\|\varphi_{n}^{\prime}(w)\right\|=1, \quad n=1,2, \ldots
$$

where the norm is measured with respect to the Fubini-Study metric in \mathbb{P}^{3}. Hence after passing to a subsequence, we can assume that φ_{n} converges to a nonconstant entire curve $\varphi: \mathbb{C} \rightarrow X$.

Since $X=X^{\prime} \cup X^{\prime \prime}$, we may suppose without loss of generality that $\varphi(\mathbb{C}) \subset X^{\prime}$. Consider the projection from a,

$$
\pi_{a}: \mathbb{P}^{3} \longrightarrow \mathbb{P}^{2}, \quad\left(z_{1}: z_{2}: z_{3}: z_{4}\right) \mapsto\left(z_{1}: z_{2}: z_{3}\right)
$$

Then $f_{1} \circ \pi_{a} \circ \varphi=0$; i.e, $\pi_{a} \circ \varphi(\mathbb{C}) \subset\left\{f_{1}=0\right\} \approx F_{1}$. Since F_{1} is hyperbolic (it has genus ≥ 3), it follows that $\pi_{a} \circ \varphi$ is constant, and hence $\varphi(\mathbb{C})$ is contained in a projective line of the form

$$
\langle p, a\rangle=\left\{\left(p_{1} s_{0}: p_{2} s_{0}: p_{3} s_{0}: s_{1}\right) \in \mathbb{P}^{3} \mid\left(s_{0}: s_{1}\right) \in \mathbb{P}^{1}\right\}
$$

where $p=\left(p_{1}: p_{2}: p_{3}: 0\right) \in F_{1}$. We notice that $\left(p_{1}, p_{2}\right) \neq(0,0)$ by the hypothesis that $f_{1}(0,0,1) \neq 0$.

Let $\Gamma=X^{\prime} \cap X^{\prime \prime}$ denote the double curve of X, and suppose that $q \in \Gamma \cap\langle p, a\rangle=$ $X^{\prime \prime} \cap\langle p, a\rangle$. Recalling that $b \notin X^{\prime}$, we see that q is of the form $q=\left(p_{1}: p_{2}: p_{3}: s\right)$ where $f_{2}\left(p_{1}: p_{2}: s\right)=0$. Thus we have a bijection

$$
\Gamma \cap\langle p, a\rangle \stackrel{\approx}{\rightrightarrows} \pi_{0}^{-1}\left(p_{1}: p_{2}\right) \cap F_{2}, \quad\left(p_{1}: p_{2}: p_{3}: s\right) \mapsto\left(p_{1}: p_{2}: 0: s\right)
$$

For general $x=\left(p_{1}: p_{2}\right)$ the set $\pi_{0}^{-1}(x) \cap F_{2}$ contains $n \geq 4$ distinct points, and by our assumption, it contains at least 3 distinct points for all $x \in \mathbb{P}^{1}$. Hence $\Gamma \cap\langle p, a\rangle$ contains at least 3 distinct points for all $p \in F_{1}$, and contains n points for general $p \in F_{1}$.
Claim: $\varphi(\mathbb{C}) \subset\langle p, a\rangle \backslash\left(\Gamma \backslash X_{\infty}\right)$.
Proof of the claim: Suppose on the contrary that

$$
\varphi\left(w_{0}\right)=\left(\zeta_{1}: \zeta_{2}: \zeta_{3}: \zeta_{4}\right) \in \Gamma \backslash X_{\infty}
$$

for some $w_{0} \in \mathbb{C}$. Let Δ be a small disk about w_{0} such that $\varphi(\bar{\Delta}) \cap X_{\infty}=\emptyset$. After shrinking Δ if necessary, we can lift the maps $\varphi_{n} \mid \bar{\Delta}$ via the projection $\pi: \mathbb{C}^{4} \backslash\{0\} \rightarrow \mathbb{P}^{3}$ to maps $\widetilde{\varphi}_{n}: \bar{\Delta} \rightarrow \mathbb{C}^{4}$ such that

$$
\widetilde{\varphi}_{n} \rightarrow \widetilde{\varphi}, \quad \pi \circ \widetilde{\varphi}=\varphi \mid \bar{\Delta}
$$

(Simply choose j with $\zeta_{j} \neq 0$ and let $\left(\widetilde{\varphi}_{n}\right)_{j} \equiv 1$. Note that by our hypothesis that $a, b \notin \Gamma$, we can choose $j=1$ or 2 .)

Let n be sufficiently large so that $\varphi_{n}(\bar{\Delta})$ does not meet X_{∞}. Then $f_{\infty} \circ \widetilde{\varphi}_{n}$ does not vanish on $\bar{\Delta}$. Since $\varphi_{n}(\bar{\Delta}) \subset X_{t}$, it then follows from the equation for X_{t} that $f_{2} \circ \widetilde{\varphi}_{n}$ cannot vanish on $\bar{\Delta}$ (where we write $f_{2}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=f_{2}\left(z_{1}, z_{2}, z_{4}\right)$). On the other hand, since $\varphi\left(w_{0}\right) \in X^{\prime \prime}$, we have $f_{2} \circ \widetilde{\varphi}\left(w_{0}\right)=0$. It then follows from Hurwitz's Theorem that $f_{2} \circ \widetilde{\varphi} \equiv 0$, i.e. $\varphi(\Delta) \subset X^{\prime \prime}$. Then φ is constant since $\varphi(\Delta)$ lies in the finite set $X^{\prime \prime} \cap\langle p, a\rangle$, a contradiction. This verifies the claim.

We now assume that, for all $p \in F_{1}$, the set $\langle p, a\rangle \cap\left(\Gamma \backslash X_{\infty}\right)$ contains at least 3 points, or in other words, the finite set $X_{\infty} \cap \Gamma$ does not contain 2 distinct points of $\langle p, a\rangle$, and does not contain any of the points $\Gamma \cap\langle p, a\rangle$ for the special values of p where $\Gamma \cap\langle p, a\rangle$ consists of only 3 points. Similarly, we make the same assumption for F_{2}. To show that this assumption holds for general X_{∞}, we consider the branched cover

$$
\pi_{\Gamma}:=\pi_{0} \mid \Gamma: \Gamma \rightarrow \mathbb{P}^{1}
$$

General fibers of π_{Γ} contain $m n$ distinct points. It suffices to show that a general X_{∞}
i) does not contain 2 distinct points of any fiber of π_{Γ} (i.e. $\pi_{0} \mid\left(\Gamma \cap X_{\infty}\right)$ is injective), and
ii) does not contain any of the points of the special fibers with fewer than $m n$ points.

Since the totality of points in (ii) is finite, (ii) certainly holds for general X_{∞}. It then suffices to show (i) for the nonspecial fibers. Since π_{Γ} is nonbranched at the points of the nonspecial fibers, these points are smooth points of Γ, and hence by Bertini's theorem, a general divisor X_{∞} intersects Γ transversally at these points. Now suppose that $X_{\infty}=\left\{f_{\infty}=0\right\}$ intersects Γ transversally and does not intersect the special fibers, and furthermore $\pi_{0}\left(\Gamma \cap X_{\infty}\right)$ has maximal cardinality among such X_{∞}. If (i) does not hold, then we can write $\Gamma \cap X_{\infty}=$ $\left\{q^{1}, q^{2}, \ldots, q^{(m+n) m n}\right\}$, where $\pi_{0}\left(q^{1}\right)=\pi_{0}\left(q^{2}\right)$. Choose a divisor $Y=\{h=0\}$ of degree $m+n$ containing the point q^{1} but not q^{2}, and let $X_{\infty}^{\varepsilon}=\left\{f_{\infty}+\varepsilon h=0\right\}$. For small ε, we let q_{ε}^{j} denote the point of $\Gamma \cap X_{\infty}^{\varepsilon}$ close to q^{j}. (These points are well defined and the maps $\varepsilon \mapsto q_{\varepsilon}^{j}$ are continuous for small ε, since by the transversality assumption, $f_{\infty} \mid \Gamma$ has only simple zeros.) Then $q_{\varepsilon}^{1}=q^{1}$ and $q_{\varepsilon}^{2} \neq q^{2}$ for small $\varepsilon \neq 0$. Hence for ε sufficiently small, $\pi_{0}\left(q_{\varepsilon}^{2}\right) \neq \pi_{0}\left(q^{2}\right)=\pi_{0}\left(q_{\varepsilon}^{1}\right)$ and $\#\left[\pi_{0}\left(\Gamma \cap X_{\infty}^{\varepsilon}\right)\right]>\#\left[\pi_{0}\left(\Gamma \cap X_{\infty}\right)\right]$, a contradiction.

Thus, $\langle p, a\rangle \cap\left(\Gamma \backslash X_{\infty}\right)$ contains at least 3 points, for all $p \in F_{1}$ (for general X_{∞}). Since $\varphi(\mathbb{C}) \subset\langle p, a\rangle \backslash\left(\Gamma \backslash X_{\infty}\right), \varphi$ is constant by Picard's Theorem, which is a contradiction.

Remark: For an alternative construction of surfaces with hyperbolic deformations, we let $F=\{f=0\}$ and $G=\{g=0\}$ be two general plane curves of degrees $m \geq 4$ and $n \geq 2$, respectively. We suppose that the projective line $z_{0}=0$ meets F (G, respectively) transversally at m (n, respectively) distinct points $\left\{a_{1}, \ldots, a_{m}\right\}\left(\left\{b_{1}, \ldots, b_{n}\right\}\right.$, respectively). We then consider the following cones in \mathbb{P}^{4} (with coordinates $\left.\left(z_{0}: \ldots: z_{4}\right)\right)$ over these curves:

$$
Y_{1}:=\langle F, u\rangle=\left\{f\left(z_{0}, z_{1}, z_{2}\right)=0\right\} \quad \text { and } \quad Y_{2}:=\langle G, v\rangle=\left\{g\left(z_{0}, z_{3}, z_{4}\right)=0\right\}
$$

where the vertex sets are the skew projective lines

$$
u:=\left\{z_{0}=z_{1}=z_{2}=0\right\} \quad \text { and } \quad v:=\left\{z_{0}=z_{3}=z_{4}=0\right\}
$$

We let $Y:=Y_{1} \cap Y_{2}$. Thus Y is an irreducible complete intersection surface in \mathbb{P}^{4} of degree $m n$. It has $m+n$ singular points $\left\{A_{1}, \ldots, A_{m}\right\}=v \cap X$ of multiplicity n and $\left\{B_{1}, \ldots, B_{n}\right\}=u \cap Y$ of multiplicity m and no further singularities. Indeed, the hyperplane section $Y \cap H_{\infty}$, where $H_{\infty}:=\left\{z_{0}=0\right\} \simeq \mathbb{P}^{3}$, is the union of $m n$ distinct projective lines $l_{j k}:=\left\langle A_{j} B_{k}\right\rangle(j=$ $1, \ldots, m, k=1, \ldots, n), n$ lines through each point A_{j} and m through each point B_{k}.

Then Y is birational to the direct product $F \times G$. Indeed, it is obtained by blowing up the $m n$ points $c_{j k}:=a_{j} \times b_{k} \in F \times G(j=1, \ldots, m, k=1, \ldots, n)$, and then blowing down the proper transforms of m vertical generators $a_{j} \times G$ and n horizontal generators $F \times b_{k}$ to the singular points $A_{j} \in X$ and $B_{k} \in X, j=1, \ldots, m, k=1, \ldots, n$, respectively.

We let now $\pi: \mathbb{P}^{4} \rightarrow H_{\infty} \simeq \mathbb{P}^{3}$ be a general projection with center $P_{0}=(1: 0: 0: 0) \notin$ $Y \cup H_{\infty}$, and we let $Z:=\pi(Y) \subset \mathbb{P}^{3}$ (with the coordinates $\left(z_{1}: z_{2}: z_{3}: z_{4}\right)$). Then Z is given by the resultant $r:=\operatorname{res}_{z_{0}}\left(f\left(z_{0}, z_{1}, z_{2}\right), g\left(z_{0}, z_{3}, z_{4}\right)\right)$.

One can easily check in the same way as above that a general small deformation of Z is a hyperbolic surface in \mathbb{P}^{3} of degree $m n \geq 8$.

The degenerate case $g=\left(z_{0}-z_{3}\right)\left(z_{0}-z_{4}\right)$ gives again the union of two cones $X=X^{\prime} \cup X^{\prime \prime}$ as in the above theorem for the case $f_{1}=f_{2}=f$.

References

[1] Brody R. Compact manifolds and hyperbolicity. Trans. Amer. Math. Soc. 235 (1978), 213-219.
[2] Clemens H. Curves in generic hypersurfaces, Ann. Sci. Ecole Norm. Sup. 19 (1986), 629-636.
[3] Demailly J.-P., El Goul J. Hyperbolicity of generic surfaces of high degree in projective 3-space. Amer. J. Math. 122 (2000), 515-546.
[4] Duval J. Letter to J.-P. Demailly, October 30, 1999 (unpublished).
[5] El Goul J. Logarithmic jets and hyperbolicity (preprint 2001, arxiv.org/math.AG/0102128).
[6] Fujimoto H. A family of hyperbolic hypersurfaces in the complex projective space. The Chuang special issue. Complex Variables Theory Appl. 43 (2001), 273-283.
[7] McQuillan M. Holomorphic curves on hyperplane sections of 3-folds. Geom. Funct. Anal. 9 (1999), 370-392.
[8] Mori S., Mukai S. The uniruledness of the moduli space of curves of genus 11. Algebraic geometry (Tokyo/Kyoto, 1982), 334-353, Lecture Notes in Math., 1016, Springer, Berlin, 1983.
[9] Shiffman B., Zaidenberg M. Two classes of hyperbolic surfaces in \mathbf{P}^{3}. Intern. J. Math. 11 (2000), 65-101.
[10] Shiffman B., Zaidenberg M. Constructing low degree hyperbolic surfaces in \mathbf{P}^{3}. Special issue for S. S. Chern. Houston J. Math. 28 (2002), 377-388.
[11] Xu G. Subvarieties of general hypersurfaces in projective space. J. Differential Geom. 39 (1994), 139-172.
[12] Zaidenberg M. Stability of hyperbolic imbeddedness and construction of examples. Math. USSR Sbornik 63 (1989), 351-361.

Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA E-mail address: shiffman@math.jhu.edu

Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin D'Hères cédex, France

E-mail address: zaidenbe@ujf-grenoble.fr

[^0]: 2000 Mathematics Subject Classification. 32Q45,32H25,14J70.
 Key words and phrases. Projective surfaces, Kobayashi hyperbolic, deformations.

