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Abstract. Homogeneous spaces of algebraic groups naturally arise in
various problems of geometry and representation theory. The same rea-
sons that motivate considering projective spaces instead of affine spaces
(e.g. solutions “at infinity” of systems of algebraic equations) stimulate
the study of compactifications or, more generally, equivariant embed-
dings of homogeneous spaces.

The embedding theory of a homogeneous space is governed by a cer-
tain numerical invariant called complexity. We discuss the geometric
and representation-theoretic meaning and methods to compute this in-
variant.

Homogeneous spaces of complexity zero are called spherical. They
can be characterized by a number of remarkable equivalent conditions
and have an elegant and well controlled theory of equivariant embed-
dings. We consider various applications of this theory. As a particular
case, we study equivariant embeddings of reductive groups.

The embedding theory of spherical spaces is deduced from general re-
sults of Luna and Vust on embeddings of arbitrary homogeneous spaces
and can be generalized to homogeneous spaces of the “next level of
complexity”—complexity one.

Introduction

Homogeneous spaces of algebraic groups play an important rôle in various
aspects of geometry and representation theory. We restrict our attention to
linear, and even reductive, algebraic groups, because the most interesting
interplay between geometric and representation-theoretic aspects occurs for
this class of algebraic groups.

Classical examples of algebraic homogeneous spaces:

(1) The affine space An is homogeneous under GAn, the general affine
group;

(2) The projective space Pn is homogeneous under GLn+1;
(3) The sphere Sn−1 = SOn/SOn−1;
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(4) Grassmannians Grk(P
n) (k ≤ n) and flag varieties are homogeneous

under GLn+1.
(5) The space of non-degenerate quadrics Qn = PGLn+1/POn+1;

(6) The space Mat
(r)
m,n of (m × n)-matrices of rank r is homogeneous

under GLm ×GLn.

The relations of algebraic homogeneous spaces to representation theory
have their origin in the Borel–Weil theorem, realizing all simple modules
of reductive groups as spaces of sections of line bundles on (generalized)
flag varieties. This geometric approach to representation theory by realizing
representations in spaces of sections of line bundles on homogeneous spaces
(or on their embeddings) is rather fruitful, and it also raises an interesting
problem of describing higher cohomology groups of line bundles (generalizing
the Borel–Weil–Bott theorem).

As another motivation for studying embeddings of homogeneous spaces,
consider enumerative geometry.

A classical enumerative problem: How many plane conic curves are
tangent to five given conics in general position?

The natural approach is to compactify Q2 by degenerate conics, and con-
sider the compact embedding space P5, where each tangency condition deter-
mines a hypersurface of degree 6. However, the answer 65 = 7776 suggested
by the Bézout theorem is wrong! The reason is that these hypersurfaces do
not intersect the boundary of Q2 properly: each of them contains all double
lines.

Approach of Halphen–De Concini–Procesi. More generally, consider
a number of closed subvarieties Z1, . . . , Zs of a homogeneous space G/H
(typically, varieties of geometric objects satisfying certain conditions) such
that

∑
codimZi = dimG/H. If Zi are in sufficiently general position w.r.t.

each other, then it is natural to expect that Z1 ∩ · · · ∩ Zs is finite. By
Kleiman’s transversality theorem [Har, Thm. III.10.8], the translates giZi are
in general position for generic g1, . . . , gs ∈ G, and the number (Z1, . . . , Zs) =
|g1Z1∩· · ·∩gsZs|, called the intersection number, does not depend on the gi.

To compute the intersection number, one tries to embed G/H as an
open orbit in a compact G-variety X with finitely many orbits, so that
codimY (Zi∩Y ) = codimZi for any G-orbit Y ⊆ X. If such an X exists, then
g1Z1 ∩ · · · ∩ gsZs ⊂ G/H for generic gi, whence (Z1, . . . , Zs) = [Z1] · · · [Zs],
the product in H∗(X). It is now clear that in order to solve enumerative
problems on homogeneous spaces, one needs to have a good control on their
compactifications or, more generally, equivariant embeddings.

The geometry of embeddings of a homogeneous space G/H under a re-
ductive group G is governed by its complexity, which is the codimension
of generic orbits of a Borel subgroup B ⊆ G. The complexity has also a
representation-theoretic meaning: it characterizes the growth of multiplici-
ties of simple G-modules in the spaces of sections of line bundles on G/H,
see 1.5. Another important numerical invariant is the rank of a homogeneous
space. Complexity and rank are discussed in Section 1.
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A method for computing complexity and rank was developed by Knop
and Panyushev. It involves equivariant symplectic geometry of the cotan-
gent bundle T ∗(G/H) and gives formulæ for these numbers in terms of the
coisotropy representation, see 1.3. Panyushev showed that the computa-
tions can be reduced to representations of reductive groups, see 1.4. Other
contribution of Panyushev are formulæ for complexity and rank of double
flag varieties, which are considered in 1.6. Double flag varieties arise in the
problem of decomposing tensor products of simple G-modules, cf. 3.6.

There are two distinct approaches to embedding theory of homogeneous
spaces. The first one is based on explicit constructions of embeddings in
ambient spaces (determinantal varieties, complete quadrics, wonderful com-
pactifications of de Concini–Procesi, projective compactifications of reduc-
tive groups, see 3.4, etc.) In Section 2, we discuss the second, intrinsic,
approach to equivariant embeddings of arbitrary homogeneous spaces, due
to Luna, Vust, and the author. An important rôle in the local description of
embeddings is played by B-stable divisors and respective discrete valuations
of C(G/H). However, the Luna–Vust theory provides a complete and trans-
parent description of equivariant embeddings only for homogeneous spaces
of complexity ≤ 1.

Homogeneous spaces of complexity 0 are called spherical. They are char-
acterized by a number of particularly nice properties (Theorem 18). Many
classical homogeneous varieties are in fact spherical: for instance, all above
examples, except the first one, are spherical. Normal embeddings of spheri-
cal homogeneous spaces are called spherical varieties. For spherical varieties,
the Luna–Vust theory provides an elegant description in terms of certain
objects of combinatorial convex geometry (coloured cones and fans). The
well-known theory of toric varieties is in fact a particular case. We study
spherical varieties in Section 3.

The group G itself may be considered as a spherical homogeneous space
(G × G)/diag G. We study its embeddings in 3.3–3.4. As an application,
we obtain a classification of reductive algebraic semigroups due to Vinberg
and Rittatore. We also study natural projective compactifications of G
obtained by closing the image of G in the space of operators of a projective
representation of G.

Divisors and line bundles on spherical varieties are discussed in 3.5. Fol-
lowing Brion, we describe the Picard group of a spherical variety and give
criteria for a divisor to be Cartier, base point free, or ample. We also de-
scribe the G-module structure for the space of sections of a line bundle on
a spherical variety in terms of lattice points of certain polytopes.

An interesting application of the divisor theory on spherical varieties is
a geometric way to decompose certain tensor products of simple G-modules
considered in 3.6. The idea is to view these simple modules as spaces of
sections of line bundles on flag varieties. Then their tensor product is the
space of sections of a line bundle on a double flag variety, cf. 1.6, and the
above description of its G-module structure enters the game.

Another application is a formula for the degree of an ample divisor on a
projective spherical variety, which leads to an intersection theory of divisors
and to the “Bézout theorem” on spherical homogeneous spaces, see 3.7.
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Finally, we discuss the embedding theory for homogeneous spaces of com-
plexity 1, due to the author. It is developed from the general Luna–Vust
theory in a way parallel to the spherical case. However, the description of
embeddings is more complicated. We try to emphasize the common features
and the distinctions from the spherical case.

The aim of this survey is to introduce a reader to equivariant embeddings
of homogeneous spaces under reductive groups, and to show how this sub-
ject links together algebra, geometry, and representation theory. There are
several excellent monographs and surveys devoted to some of the topics dis-
cussed in these notes, see e.g. [Kn2], [Bri5] for spherical varieties, and [Pan5]
for complexity and rank. However, in this paper we hope to gather some
useful results, which are scattered in the literature and never appeared in
survey papers before, paying special attention to practical computation of
important invariants of homogeneous spaces and to the general embedding
theory.

For its introductory character, this survey does not cover all topics in this
area, and some results are not considered in full generality, as well as the
list of references is by no means complete. Also we tried to avoid long and
complicated proofs, so that Proof in the text often means rather Sketch of
a proof, or even Hints to a proof.

Acknowledgements. These notes were written on the base of a mini-
course which I gave in November 2002 at the Manchester University. Thanks
are due to this institution for hospitality, to Prof. A. Premet for invitation
and organization of this visit, and to the London Mathematical Society for
financial support. The paper was finished during my stay at Institut Fourier
in spring 2003, and I would like to express my gratitude to this institution
and to Prof. M. Brion for the invitation, and for numerous remarks and
suggestions, which helped to improve the original text. Thanks are also due
to I. V. Arzhantsev for some helpful remarks.

Notation and terminology. All algebraic varieties and groups are con-
sidered over the base field C of complex numbers. Lowercase gothic letters
always denote Lie algebras of respective “uppercase” algebraic groups.

The unipotent radical of an algebraic group H is denoted by UH . The
centralizer in H or h of an element or subset of H or h is denoted by Z(·)
or z(·), respectively. The character group Λ(H) consists of homomorphisms
χ : H → C× and is written additively. It is a finitely generated abelian
group, and even a lattice if H is connected. Any action of H on a set M is
denoted by H : M , and MH is the set of H-fixed points. If H : M is a linear

representation, then M
(H)
χ denotes the set of H-eigenvectors of eigenweight

χ ∈ Λ(H).
Throughout the paper, G is a connected reductive group. We often fix

a Borel subgroup B ⊆ G and a maximal torus T ⊆ B. U ⊆ B is the
maximal unipotent subgroup, and B− is the opposite Borel subgroup (i.e.,
such that B−∩B = T ), with the maximal unipotent radical U−. Denote by
Vλ the simple G-module of B-dominant highest weight λ. If G is semisimple
simply connected, then the character lattice Λ(B) = Λ(T ) is generated by
the fundamental weights ωi, i = 1, . . . , rkG, dual to the simple coroots
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w.r.t. B, and the dominant weights are the positive linear combinations of
the ωi.

C[X] is the coordinate algebra of a quasiaffine variety X, and C(X) is the
field of rational functions on any variety X. The line bundle associated with
a Cartier divisor δ on X is denoted by O(δ). The divisor of a rational section
s of O(δ) is denoted by divX s, and sδ is the canonical rational section with
divX sδ = δ.

An H-line bundle on an H-variety X is a line bundle equipped with a
fiberwise linear H-action compatible with the projection onto the base. If X

is normal and H is connected, then any line bundle on X can be H̃-linearized

for some finite cover H̃ → H [KKLV]. Hence a sufficiently big power of any
line bundle can be H-linearized.

If H ⊂ G is a closed subgroup, then G ×H X denotes the homogeneous
fibration over G/H with fiber X, i.e., the quotient variety (G×X)/H modulo
the action h(g, x) = (gh−1, hx), ∀g ∈ G, h ∈ H, x ∈ X. The image of (g, x)
in G×H X is denoted by g ∗ x.

We shall frequently speak of generic points (or orbits) in X assuming
thereby that we consider points (orbits) from a certain (sufficiently small
for our purposes) dense open subset of X.

We use the notation conv C, int C for the convex hull and the relative
interior of a subset C in a vector spece E over Q or R. If C ⊆ E is a convex
polyhedral cone, then C∨ ⊆ E∗ denotes the dual cone.

Our general references are: [Har] for algebraic geometry, [Hum], [Jan] for
linear algebraic groups, and [Kr], [PV] for algebraic transformation groups
and Invariant Theory.

1. Complexity and rank

There are two numerical invariants of a homogeneous space G/H, which
proved their importance in its embedding theory as well as in other geo-
metric, representation-theoretic and invariant-theoretic problems on G/H.
Roughly speaking, the first one, the complexity, says whether the geometry
and embedding theory of G/H can be well controlled. The second invariant,
the rank (or more subtly, the weight lattice) of G/H provides an environ-
ment for certain combinatorial objects used in the description of equivariant
embeddings and in the representation theory related to G/H.

Actually, these invariants can be defined for an arbitrary G-variety.

Definition 1. Let X be an (irreducible) algebraic variety equipped with a
G-action. The complexity c(X) is by definition the codimension of a generic
B-orbit in X, or equivalently, tr.deg C(X)B .

If we denote by dH(X) the generic modality of X under an action of an
algebraic group H, i.e., the codimension of generic H-orbits, then c(X) =
dB(X).

The set of all weights of rational B-eigenfunctions on X forms the weight
lattice Λ(X) ⊆ Λ(B). The rank of X is r(X) = rkΛ(X).

If X is quasiaffine, then we have the isotypic decomposition of its coor-
dinate algebra C[X] =

⊕
λ∈Λ+(X) C[X](λ), where C[X](λ) is the sum of all

simple G-submodules of highest weight λ (w.r.t. B), and Λ+(X) = {λ |
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C[X](λ) 6= 0} is the weight semigroup of X. Every rational B-eigenfunction
can be represented as a ratio of two regular B-eigenfunctions, whence Λ+(X)
generates Λ(X).

1.1. Local structure. The complexity, rank, and weight lattice are visible
in terms of the “local structure” of the action G : X described by Brion,
Luna, and Vust [BLV].

We start with the following simple situation. Let G : V be a rational
finite-dimensional representation, v ∈ V a lowest weight vector, and v∗ ∈ V ∗

a highest weight vector such that 〈v, v∗〉 6= 0. Let P ⊇ B be the projective
stabilizer of v∗ with a Levi decomposition P = L · UP , so that the opposite
parabolic subgroup P− = L · U−P is the projective stabilizer of v. Put

V̊ = V \ 〈v∗〉⊥, W = (u−P v∗)⊥, and W̊ = W ∩ V̊ . (Here ⊥ denotes the
annihilator in the dual space.)

Theorem 1 ([BLV]). There is a natural P -equivariant isomorphism V̊ '

UP × W̊ ' P ×L W̊ .

Proof. First note that V = uP v⊕W . Indeed, by dimension count it suffices
to prove uP v ∩W = 0. Otherwise there would exist a root vector eα ∈ uP

such that eαv ∈ W , in particular, 〈eαv, e−αv∗〉 = 〈[eα, e−α]v, v∗〉 = 0, hence
[eα, e−α]v = 0 and α is a root of L, a contradiction.

Also note that W = 〈v〉 ⊕ W0, where W0 = (gv∗)⊥. The hyperplanes
Vc = {x ∈ V | 〈x, v∗〉 = c} = uPv + cv + W0 as well as W0 are UP -stable.
Now it suffices to prove that UP acts on Vc/W0 transitively and freely, ∀c 6= 0.

Clearly, cv mod W0 has a dense UP -orbit in Vc/W0 and trivial stabilizer.
Being an affine space, this orbit cannot be embedded into another affine
space as a proper open subset. (Otherwise the boundary is a hypersur-
face, and its equation yields an invertible regular function on the orbit, a
contradiction.) This proves the required assertion. �

This theorem applies to describing the structure of an open subset of
sufficiently general points in any G-variety X.

Theorem 2 ([BLV]). There exist a parabolic subgroup P = L · UP ⊇ B, an

intermediate subgroup [L,L] ⊆ L0 ⊆ L, an open P -stable subset X̊ ⊆ X,

and a closed subset C ⊆ X̊L0 such that X̊ ' UP ×A×C ' P ×L0 C, where
A = L/L0 is the quotient torus.

Proof. Replace X by a birationally isomorphic projective G-variety in P(V ).

In the notation of Theorem 1, put X̊ = P(V̊ ) ∩ X, Z = P(W̊ ) ∩ X, then

X̊ ' UP ×Z ' P ×L Z. If the kernel L0 of the action L : Z contains [L,L],
then the effectively acting group is the torus A = L/L0, and we may replace

X̊ and Z by open subsets such that Z ' A× C.
In order to arrive to this situation, take a B-stable hypersurface D ⊂ X

such that the parabolic subgroup P (D) = {g ∈ G | gD = D} is the smallest
possible one. Adding new components if necessary, we may assume that D
is given by one equation in projective coordinates. Applying the Veronese
embedding, we may assume that D = P(〈v∗〉⊥)∩X is a hyperplane section,

where v∗ ∈ V ∗ is a highest weight vector. Then X̊ = X \ D, P = P (D),
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and each (B ∩ L)-stable hypersurface in Z is L-stable. Thus each (B ∩ L)-
eigenvector in C[Z] is an L-eigenvector, whence L-isotypic components of
C[Z] are 1-dimensional, and [L,L] acts trivially on C[Z] and on Z. �

Corollary. In the notation of Theorem 2, we have c(X) = dimC, r(X) =
dimA, and Λ(X) = Λ(A).

1.2. Horospherical varieties. The local structure theorems of Brion–Luna–
Vust describe the action of a certain parabolic P ⊆ G on a certain open
subset of X. There is a remarkable class of G-varieties, which in particular
admit a local description of the G-action itself and have a number of other
nice properties.

Definition 2. A subgroup of G containing a maximal unipotent subgroup
is called horospherical. A G-variety X is horospherical if the stabilizers of
all points of X are horospherical.

The terminology, due to Knop [Kn1], is explained by the following

Example 1. Let Ln be the Lobachevsky space modelled as the upper pole
of the hyperboloid {x ∈ Rn+1 | (x, x) = 1} in an (n + 1)-dimensional
pseudoeuclidean space of signature (1, n). A horosphere in Ln (i.e., a hy-
persurface perpendicular to a pencil of parallel lines) is defined by the
equation (x, y) = 1, where y ∈ Rn+1 is a nonzero isotropic vector. The
space of horospheres is homogeneous under the connected isometry group
SO+

1,n of Ln and is isomorphic to the upper pole of the isotropic cone

{y ∈ Rn+1 | (y, y) = 0}. Its complexification is the space of highest weight
vectors for SOn+1(C) : Cn+1, which is a horospherical variety in the sense
of the above definition.

Horospherical subgroups have an explicit description. Up to conjugacy,
we may assume that a horospherical subgroup S ⊆ G contains the “lower”
maximal unipotent subgroup U−. By the Chevalley theorem, S is the sta-
bilizer of a line 〈v〉 in a representation G : V . Then v = vλ1

+ · · · + vλm
is

the sum of lowest weight vectors vλi
of weights λi. Let P−(λi) be the pro-

jective stabilizer of vλi
, P− =

⋂
i P−(λi) = L · U−P (a Levi decomposition),

T0 =
⋂

i,j Ker(λi − λj) ⊆ T , and L0 = [L,L]T0. Then S = L0 · U
−
P (a Levi

decomposition).
The local structure of horospherical varieties is quite simple.

Theorem 3. Each horospherical G-variety X contains an open G-stable
subset X̊ ' (G/S) × C, where S ⊆ G is horospherical and G acts on X̊ via
the first factor.

Proof. We have X = GXU−

. By the structure of horospherical subgroups,

for each x ∈ XU−

there exists a parabolic P− = L · U−P ⊇ Gx ⊇ [L,L]U−P .

There are finitely many choices for P−, hence XU−

is covered by finitely
many closed subsets of [L,L]U−P -fixed points. It follows that there exists the

smallest P− and a dense open subset X̊U−

⊆ XU−

such that P− ⊇ Gx ⊇
[L,L]U−P , ∀x ∈ X̊U−

. Then X̊ = GX̊U−

' G×P−

X̊U−

, and the P−-action

on X̊S factors through the effective action of the torus A = L/L0 = P−/S,

L ⊇ L0 ⊇ [L,L], S = L0 · U
−
P . Shrinking X̊ if necessary, we may assume

that X̊U−

' (P−/S)× C, whence the desired assertion. �
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Affine (or quasiaffine) horospherical varieties are characterized in terms
of the multiplication law in their coordinate algebras.

Theorem 4 ([Po]). A quasiaffine G-variety X is horospherical iff the iso-
typic decomposition of C[X] is in fact an algebra grading, i.e., C[X](λ) ·
C[X](µ) ⊆ C[X](λ+µ), ∀λ, µ ∈ Λ+(X).

Proof. Assume that X is horospherical. In the notation of Theorem 3,
C[X] ⊆ C[X̊] = C[G/S] ⊗ C[C], hence it suffices to consider X = G/S.
The torus A = P−/S acts on G/S by G-automorphisms (“translations
from the right”), so that C[G/S](λ) is the eigenspace of weight −λ. In-
deed, for any highest weight vector fλ ∈ C[G/S](λ) which is an eigenvector
of A, we have fλ(eS) 6= 0 (because the U -orbit of eS is dense in G/S)
and fλ(eS · t) = fλ(tS) = λ(t−1)fλ(eS), ∀t ∈ T . Therefore the isotypic
decomposition respects the multiplication.

Conversely, suppose that the isotypic decomposition is an algebra grading.

We may assume that X is affine. It suffices to show that GXU−

is dense
in X, because it is closed being the image of the natural proper morphism

G ×B−

XU−

↪→ G ×B−

X ' (G/B−) ×X → X. In other words, the ideal

I of XU−

in C[X] may not contain nonzero G-submodules or, equivalently,
may not contain highest weight vectors fλ ∈ C[X], λ ∈ Λ+(X) (because the
orbit U−fλ spans a G-submodule).

But I is generated by gf − f , g ∈ U−, f ∈ C[X]. (It even suffices to take
for f the restrictions of the coordinate functions in an affine embedding
of X.) If I 3 fλ =

∑
i pi(gifi − fi), pi ∈ C[X](λi), fi ∈ C[X](µi), gi ∈ U−,

then λ = λi + µi and pi, gifi− fi must be highest weight vectors of weights
λi, µi, which never occurs for gifi − fi, a contradiction. �

The above theorems provide an evidence that horospherical varieties have
relatively simple structure. Remarkably, every G-variety degenerates to a
horospherical one.

Theorem 5 ([Po], [Kn1]). Given a G-variety X, there exists a smooth
(G×C×)-variety E and a smooth (G×C×)-equivariant morphism π : E →
A1 (here G acts on A1 trivially and C× acts by homotheties) such that Xt =
π−1(t) is G-isomorphic to an open smooth G-stable subset of X whenever
t 6= 0, X0 is a smooth horospherical variety, and all fields C(Xt)

U are B-
isomorphic. In particular, all Xt have the same complexity, rank, and weight
lattice as X.

Proof. By the standard techniques of passing to an open G-stable subset
and taking the affine cone over a projective variety, the theorem is reduced
to the affine case handled by Popov [Po]. So we may assume X to be affine.

We define the height of any weight λ by decomposing λ =
∑

i ciαi + λ0,
where αi are the simple roots and λ0 ⊥ αi, ∀i, and by putting ht λ =
2
∑

i ci. (The multiplier 2 forces ht to take integer values. Namely, htλ is
the inner product of λ with the sum of the positive coroots.) It follows from
the structure of T -weights of simple G-modules that C[X](λ) · C[X](µ) ⊆
C[X](λ+µ) ⊕

⊕
i C[X](νi), where ht νi < ht λ + ht µ.

Now R =
⊕

ht λ≤k C[X](λ)t
k is a (G×C×)-algebra of finite type generated

by f1t
ht λ1 , . . . , fmtht λm , t, where fi ∈ C[X](λi) are generators of C[X]. Then
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R = C[E] is the coordinate algebra of an affine (G×C×)-variety E, and the
morphism π : E → A1 corresponds to the inclusion R ⊇ C[t].

It is easy to see that all C[Xt] are canonically isomorphic to C[X] as G-
modules. In fact, all algebras C[Xt]

U are canonically isomorphic to C[X]U ,
and C[Xt] ' C[X] whenever t 6= 0. But the multiplication law in C[X0]
is obtained from that in C[X] by “forgetting” isotypic components of lower
height. Hence, by Theorem 4, X0 is horospherical. By [Kr, III.3] all fibers
Xt are reduced and irreducible, hence the smooth locus of E meets Xt.
Passing to open subsets completes the proof. �

Example 2. In Example 1, the “horospherical contraction” X0 of the
Lobachevsky space X = Ln is the space of horospheres, the total space
of deformation E being given by the “upper pole” of {(x, t) ∈ Rn+1 × R |
(x, x) = t}. More precisely, we have to complexify the whole picture, so that
X is a sphere in Cn+1 and X0 is the isotropic cone.

1.3. Relation to symplectic geometry. There is a deep connection be-
tween the geometry of G/H and the equivariant symplectic geometry of its
cotangent bundle.

Recall that the cotangent bundle T ∗X of any smooth variety X is equipped
with a natural symplectic structure given by the 2-form ω = d`, where ` is
the action 1-form defined by `α(ξ) = 〈α, dπ(ξ)〉, ∀α ∈ T ∗X, ξ ∈ Tα(T ∗X),
and π : T ∗X → X is the canonical projection. In local coordinates q1, . . . , qn

on X, which determine the dual coordinates p1, . . . , pn in cotangent spaces,
one has ` =

∑
pi dqi and ω =

∑
dpi ∧ dqi.

If X is a G-variety, then G acts on T ∗X by symplectomorphisms, and the
velocity fields α 7→ ξα of ∀ξ ∈ g have global Hamiltonians Hξ(α) = `α(ξα).
Furthermore, the action G : T ∗X is Poisson, i.e., the map ξ 7→ Hξ is a
homomorphism of g to the algebra of functions on T ∗X equipped with the
Poisson bracket. The dual morphism Φ : T ∗X → g∗ given by 〈Φ(α), ξ〉 =
Hξ(α) = 〈α, ξx〉, ∀α ∈ T ∗xX, ξ ∈ g, is called the moment map.

It is easy to see that the moment map is G-equivariant, and 〈dαΦ(ν), ξ〉 =
ωα(ν, ξα), ∀ν ∈ Tα(T ∗X), ξ ∈ g. It follows that Ker dαΦ = (gα)∠, ImdαΦ =
(gα)⊥, where ∠ and ⊥ denote the skew-orthocomplement and the annihilator
in g∗, respectively. Let MX = ImΦ be the closure of the image of the
moment map. It follows that dimMX = dimGα for generic α ∈ T ∗X.

For X = G/H we have T ∗(G/H) ' G ×H h⊥, where h⊥ = (g/h)∗ is the
annihilator of h in g∗. The moment map is given by Φ(g ∗α) = gα (with the
coadjoint g-action on the r.h.s.). Indeed, the formula is true for g = e since
〈Φ(α), ξ〉 = 〈α, ξ(eH)〉 and ξ(eH) identifies with ξ mod h, and we conclude
by G-equivariance. Moreover, for any G-variety X, the moment map of its
cotangent bundle restricted to an orbit Gx ⊆ X factors through the moment
map of T ∗Gx.

Remark. We may (and will) identify g∗ with g via a G-invariant inner
product (given, e.g., by the trace form for any faithful representation of G).
Then h⊥ identifies with the orthocomplement of h.

The algebra homomorphism dual to Φ can be defined both in the commu-
tative and in the non-commutative setting. Let U(g) denote the universal en-
veloping algebra of g, and D(X) be the algebra of differential operators on X.
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Each ξ ∈ g determines a vector field on X, i.e., a differential operator of or-
der 1, and this assignment extends to a homomorphism Φ∗ : U(g)→ D(X).
The map Φ∗ preserves the natural filtrations, and the associated graded map

gr Φ∗ : grU(g) ' C[g∗] −→ grD(X) ⊆ C[T ∗X], ξ 7→ Hξ, ∀ξ ∈ g

is the pull-back of functions w.r.t. Φ. Here the isomorphism grU(g) ' C[g∗]
is provided by the Poincaré–Birkhoff–Witt theorem, and the embedding
grD(X) ⊆ C[T ∗X] is the symbol map.

We have already seen that the complexity, rank and weight lattice are
preserved by the “horospherical contraction”. The same is true for the
closure of the image of the moment map.

Theorem 6 ([Kn1]). In the notation of Theorem 5, MX = MX0
.

Proof. The assertion can be reformulated in algebraic terms: put IX =
Ker grΦ∗, then IX = IX0

. We deduce this equality from its non-commutative
analogue: put IX = KerΦ∗, then IX = IX0

.
The latter equality is obvious in the affine case, because IX depends only

on the G-module structure of C[X]. The general case is reduced to the affine
one by standard techniques [Kn1, 5.1].

Put MX = ImΦ∗X ⊆ D(X). By the above, MX ' MX0
, but the fil-

trations by the order of differential operators on X and on X0 are apriori
different. It suffices to show that in fact they coincide.

There is even a third filtration, the quotient one induced from U(g). Let
ordX ∂, ord ∂ denote the order of ∂ ∈ MX as a differential operator on X
and w.r.t. the quotient filtration, respectively. It is clear that ord ≥ ordX .

First note that, in the notation of Theorem 5, there are obvious isomorphic
restriction maps ME → MXt , which do not rise the order of differential
operators and even preserve it whenever t 6= 0, because then E \ X0 '
Xt × (A1 \ {0}). Thus ordX ≥ ordX0

.
Secondly, grMX0

is a finite C[g∗]-module. To prove this, we may assume
by Theorem 3 that X0 = (G/S) × C. Hence MX0

' MG/S and ordX0
=

ordG/S . We use the notation of 1.2. The torus A = P−/S acts on G/S

by G-automorphisms, whence MG/S ⊆ D(G/S)A. Therefore grMG/S ⊆

C[T ∗(G/S)]A = C[G ×P−

s⊥]. But the natural morphism G ×P−

s⊥ →
g∗ is proper with finite generic fibres by Lemma 1 below. It follows that

C[G×P−

s⊥], and hence grMG/S , is a finite C[g∗]-module.
Now let ∂1, . . . , ∂m ∈ MX0

represent generators of grMX0
over C[g∗],

di = ordX0
∂i, and d = maxi ord ∂i. If ordX0

∂ = n, then ∂ =
∑

i ui∂i for
some ui ∈ U(g), ordui ≤ n−di, hence ord∂ ≤ n+d. But if ord ∂ > ordX0

∂,
then ord ∂d+1 > ordX0

∂d+1 + d, a contradiction. Therefore ord = ordX =
ordX0

, and we are done. �

Thus in the study of the image of the moment map, we may assume that
X is horospherical and even X = G/S, where S is a horospherical subgroup
containing U−. In the sequel, we use the notation of 1.2. The moment map

Φ : T ∗(G/S) ' G ×S s⊥ → g∗ ' g factors through Φ : G ×P−

s⊥ → g. We
have the decomposition g = uP ⊕ a⊕ l0 ⊕ u−P , where a embeds into l as the

orthocomplement of l0, so that s⊥ = a⊕ u−P . The following helpful result is
essentially due to Richardson:
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Lemma 1 ([Kn1, 4.1]). The morphism Φ : G ×P−

s⊥ → g is proper with
finite generic fibres.

Another nice consequence of “horospherical contraction” is the conjugacy
of the stabilizers of generic points in cotangent bundles [Kn1, §8]. We con-
sider only the quasiaffine case.

Theorem 7 ([Kn1]). In the notation of Theorem 2, suppose X is quasi-
affine; then the stabilizers in G of generic points in T ∗X are all conjugate
to L0.

Corollary. We have Λ(X) = Λ(T/(T ∩ Gα)) for some sufficiently general
point α ∈ T ∗X such that Gα is an intermediate subgroup between a standard
Levi subgroup and its commutator subgroup.

Remark. Intermediate subgroups between standard Levi subgroups and
their commutator subgroups, as well as embeddings onto such subgroups
in G, will be called standard. Thus corollary says that a standard embed-
ding of Gα for generic α ∈ T ∗X yields the weight lattice of X. However,
in applying this corollary for computing the weight lattice, one should be
cautious, because Gα might have different conjugate standard embeddings
into G. Some additional argument may be required to specify the weight
lattice, see Example 5.

Proof. We prove the theorem for horospherical varieties. The general case
can be deduced with the aid of “horospherical contraction” using some ad-
ditional reasoning [Kn1, 8.1].

We may assume X = G/S. As X is quasiaffine, G/S ' Gv is an orbit in
a representation G : V . Then v = vλ1

+ · · ·+vλm
is the sum of lowest weight

vectors, P− =
⋂

i P
−(λi) = L · U−P , and S = L0 · U

−
P , where L0 = [L,L]T0,

T0 =
⋂

i Kerλi ⊆ T .
Note that Z(a) = L. Indeed, β is a root of Z(a) iff β|a = 0 iff β ⊥

λ1, . . . , λm iff β is a root of L.
We have T ∗(G/S) ' G×S s⊥, whence the stabilizers in G of generic points

in T ∗(G/S) are, up to conjugacy, the stabilizers in S of generic points in
s⊥ = a ⊕ u−P . If ξ ∈ a is a sufficiently general point (it suffices to have
β(ξ) 6= 0 for all roots β of G that are not roots of L), then z(a) = l yields
[s, ξ] = u−P . Since the projection map π : s⊥ → a is S-invariant, Sξ is dense

in (in fact, coincides with) π−1(ξ) = ξ + u−P . Therefore the stabilizers of

generic points in s⊥ are conjugate to Sξ = L0. �

The following fundamental result of Knop interprets complexity and rank
in terms of equivariant symplectic geometry.

Theorem 8 ([Kn1]). Let X be a G-variety with dimX = n, c(X) = c,
r(X) = r. Then

dimMX = 2n− 2c− r(1)

dG(T ∗X) = 2c + r(2)

dG(MX) = r(3)

Proof. We may assume that X is horospherical and even X = G/S×C. By

Lemma 1, dimMX = dim(G×P−

s⊥) = dimG/P−+ dim s⊥ = 2dimG/S −
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dimA = 2(n − c) − r and dG(MX) = dG(G ×P−

s⊥) = dP−(s⊥). The
projection map π : s⊥ → a is P−-invariant, and P− has a dense orbit in
π−1(0) = u−P (the Richardson orbit). By semicontinuity of orbit and fibre
dimensions, generic (in fact, all) fibres of π contain dense P −-orbits, whence
dP−(s⊥) = dim a = r. Thus we have proved (1) and (3), and (2) stems from
(1) and from dG(T ∗X) = 2n− dimMX . �

In particular, for X = G/H we obtain formulæ for complexity and rank
in terms of the coisotropy representation (H : h⊥):

Theorem 9 (Knop [Kn1], Panyushev [Pan1]).

2c(G/H) + r(G/H) = codimh⊥ Hα = dimG− 2 dim H + dimHα(4)

r(G/H) = dimGα − dimHα(5)

where α ∈ h⊥ is a generic point. For reductive H, Formula (5) amounts to

r(G/H) = rkG− rkHα(6)

and also

Λ(G/H) = Λ(T/(T ∩Hα))(7)

Proof. The isomorphism T ∗(G/H) ' G×Hh⊥ yields dG(T ∗(G/H)) = dH(h⊥),
whence (4). Further, dG(MG/H) = dimMG/H − dimGα = dim(G ∗ α) −
dimGα = dimGα − dimHα implies (5). Finally, if H is reductive, then
G/H is affine, and (6)–(7) stem from Theorem 7 and its corollary. �

Examples:

3. Consider the space of quadrics Qn = PGLn+1/POn+1. Here the coisotropy
representation identifies with the natural representation of POn+1 in the
space S2

0Cn+1 of traceless symmetric matrices. The stabilizer of a generic
point is Zn

2 = {diag(±1, . . . ,±1)}/{±E}. The weight lattice of the (stan-
dard, diagonal) maximal torus T ⊂ PGLn+1 is the root lattice Λad of
PGLn+1, whence Λ(Qn) = 2Λad, and r(Qn) = n. Finally, 2c(Qn) + r(Qn) =
(n + 1)(n + 2)/2− 1− n(n + 1)/2 = n yields c(Qn) = 0. The latter equality
can be seen directly since B ·POn+1 is open in PGLn+1, where B ⊆ PGLn+1

is the standard Borel subgroup of upper-triangular matrices. (The Gram–
Schmidt orthogonalization.)

4. Let G/H = Spn/Spn−2. As the adjoint representation G : g identifies
with Spn : S2Cn, the symmetric square of the standard representation, and
similarly for H : h, we have h⊥ ' Cn−2 ⊕ Cn−2 ⊕ C3, where Spn−2 : Cn−2

is the standard representation, and Spn−2 : C3 a trivial one. It follows that
Hα = Spn−4. There exists a unique standard embedding Spn−4 ↪→ Spn as a
subgroup generated by all the simple roots except the first two. Therefore
Λ = 〈ω1, ω2〉, where ωi are the fundamental weights, and r = 2. We also
have 2c+ r = 2(n− 2)+3− (n− 2)(n− 1)/2+ (n− 4)(n− 3)/2 = 4, whence
c = 1.

5. Let G/H = GLn/(GL1×GLn−1). Here h⊥ '
(
C1⊗ (Cn−1)∗

)
⊕

(
(C1)∗⊗

Cn−1
)
, where Ck is the standard representation of GLk (k = 1, n − 1). It
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is easy to find that Hα = {diag(t, A, t) | t ∈ C×, A ∈ GLn−2}. Therefore
r = 1, and 2c+ r = 2(n− 1)− 1− (n− 1)2 +1+ (n− 2)2 = 1, whence c = 0.

However Hα has three different standard embeddings into G obtained
by permuting the diagonal blocks. To choose the right one, note that sln
contains a vector with stabilizer GL1 ×GLn−1. Hence G/H ↪→ sln and the
restriction of the highest weight covector yields a highest weight function in
C[G/H] of highest weight ω1 + ωn−1 (the highest root). Thus Λ = 〈ω1 +
ωn−1〉, and Hα indeed embeds into G as above. (The simple roots of Hα are
the simple roots of G except the first and the last one.)

6. The space of twisted (i.e., irreducible non-planar) cubic curves in P2 is
isomorphic to G/H = PGL4/PGL2, where GL2 ↪→ GL4 is given by the
representation GL2 : V3. Here Vd denotes the space of binary d-forms.
Indeed, each twisted cubic is the image of a Veronese embedding P1 ↪→ P3.

From the H-isomorphisms gl2 ' V1⊗V ∗1 , gl4 ' V3⊗V ∗3 , and the Clebsch–
Gordan formula, it is easy to deduce that h⊥ ' (V6⊗det−3)⊕ (V4⊗ det−2).
It follows that Hα = {E}, r = 3, 2c + r = 7 + 5− 3 = 9, whence c = 3.

If we replace G by PSp4 in the above computations, then h⊥ ' V6⊗det−3,
still Hα = {E}, but r = 2, 2c + r = 7− 3 = 4, whence c = 1.

On the other hand, replacing H by PSp4 yields h⊥ '
∧2

0 C4, the space
of bivectors having zero contraction with the symplectic form. We obtain
Hα = P(SL2 × SL2), whence Λ = 〈2ω2〉, r = 1, 2c + r = 5− 10 + 6 = 1, and
c = 0.

In the notation of Theorem 2, there is an open embedding UP × A ↪→
PGL4/PSp4. Since Λ(A) ⊂ Λ(T ) is generated by an indivisible vector,
A embeds in T as a subtorus, and UP ·A ↪→ PGL4. This yields an open em-
bedding PGL4/PGL2 ' PGL4×

PSp4 PSp4/PGL2 ←↩ UP ×A×PSp4/PGL2.
Applying Theorem 2 to PSp4/PGL2 this time, we obtain open embeddings
PSp4/PGL2 ←↩ UP0

×A0×C, PGL4/PGL2 ←↩ UP ×A×UP0
×A0×C, where

P0 is a parabolic in PSp4, A0 is its quotient torus, and C is a rational curve
by the Lüroth theorem. This proves the theorem of Piene–Schlessinger on
rationality of the space of twisted cubics. (See [Bri3, §3] for another proof
using homogeneous spaces.)

1.4. Reduction to representations. Theorem 9 yields computable for-
mulæ for complexity and rank of affine homogeneous spaces reducing ev-
erything to computing stabilizers of general position for representations of
reductive groups, which is an accessible problem. Panyushev [Pan4] per-
formed a similar reduction for arbitrary G/H. The idea is to consider a
regular embedding H ⊆ Q into a parabolic Q ⊆ G, i.e., such that there is
also the inclusion of the unipotent radicals UH ⊆ UQ. The existence of a
regular embedding into a parabolic subgroup was first proved by Weisfeiler,
see e.g. [Hum, 30.3].

Let H = K · UH , Q = M · UQ be Levi decompositions. We may assume
K ⊆ M . The space G/H ' G ×Q Q/H is a homogeneous fibre space with
generic fibre Q/H ' M ×K (UQ/UH) ' M ×K (uQ/uH) a homogeneous

vector bundle with affine base. The K-isomorphism uQ/uH
∼
→ UQ/UH is

proved in [Mon] essentially in the same way as in the non-equivariant setting,



14 DMITRI A. TIMASHEV

using a normal K-stable series UQ = U0 B · · · B Um = UH , considering K-
stable decompositions ui−1 = ui ⊕ mi, and mapping x = x1 + · · · + xm 7→
(expx1) · · · (exp xm), ∀xi ∈ mi. Up to conjugacy, we may assume Q ⊇ B−,
M ⊇ T . Let K0 denote the stabilizer of a generic point in the coisotropy
representation K : k⊥, with its standard embedding into M .

Theorem 10 ([Pan4]).

c(G/H) = c(M/K) + c(uQ/uH)(8)

r(G/H) = r(M/K) + r(uQ/uH)(9)

and there is an exact sequence of weight lattices

(10) 0 −→ Λ(M/K) −→ Λ(G/H) −→ Λ(uQ/uH) −→ 0

Here complexities, ranks, and weight lattices are considered for the homoge-
neous spaces G/H, M/K, and for the linear representation K0 : uQ/uH .

Proof. As U(eQ) is dense in G/Q and B ∩M is a Borel subgroup of M , the
complexities and the weight lattices of G/H and of M : Q/H coincide. We
may assume that eK ∈ M/K is a generic point w.r.t the (B ∩ H)-action.
Then by Theorems 2,7, B ∩ K = B ∩ K0 is a Borel subgroup of K0, and
the stabilizers in B ∩M of generic points in M/K are conjugate to B ∩K0.
Now an easy computation of orbit dimensions implies (8).

By Theorem 2, the stabilizers of generic points for the actions B : G/H,
(B ∩M) : Q/H, (B ∩K0) : uQ/uH are conjugate to B ∩ L0. It follows that
Λ(G/H) = Λ(T/(T ∩ L0)), Λ(M/K) = Λ(T/(T ∩ K0)), and Λ(uQ/uH) =
Λ((T ∩K0)/(T ∩ L0)). This yields (10), and (9) stems from (10). �

Example 7. Let G = Spn and H be the stabilizer of three ordered generic
vectors in the symplectic space Cn. Without loss of generality, we may
assume that these vectors are e1, en−1, en, where e1, . . . , en is a symplectic
basis of Cn such that the symplectic form has an antidiagonal matrix in
this basis. Take for Q the stabilizer in Spn of the isotropic plane 〈en−1, en〉.
Then M ' GL2 × Spn−4 consists of symplectic operators preserving the
decomposition Cn = 〈e1, e2〉 ⊕ 〈e3, . . . , en−2〉 ⊕ 〈en−1, en〉, K ' Spn−4,
uQ consists of skew-symmetric (w.r.t. the symplectic form) operators map-
ping Cn → 〈e3, . . . , en〉 → 〈en−1, en〉 → 0, and uH is the annihilator of e1

in uQ.

For M/K we have: k⊥ ' C4 is a trivial representation of K, whence
K0 = K = Spn−4, Λ = 〈ω1, ω2〉, r = 2, 2c + r = 4, c = 1.

Further, uQ ' Cn−4 ⊕ Cn−4 ⊕ C3, and uH ' Cn−4 ⊕ C1, where Cn−4 is
the standard representation of Spn−4 and C3, C1 are trivial ones. Therefore
uQ/uH ' Cn−4 ⊕ C2. One easily finds that the stabilizers of generic points
in T ∗(uQ/uH) = uQ/uH ⊕ (uQ/uH)∗ ' uQ/uH ⊕uQ/uH (i.e., of generic pairs
of vectors) are conjugate to Spn−6. It follows that Λ = 〈ω3〉 is generated by
the 1-st fundamental weight of Spn−4, which is the restriction of the 3-rd one
for Spn. Hence r = 1, 2c+r = 2(n−3+2)−(n−4)(n−3)/2+(n−6)(n−5)/2 =
5, c = 2.

By Theorem 10, we conclude that c(G/H) = r(G/H) = 3 and Λ(G/H) =
〈ω1, ω2, ω3〉.
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1.5. Complexity and growth of multiplicities. The complexity of a
homogeneous space has a nice representation-theoretic meaning: it provides
asymptotics of the growth of multiplicities of simple G-modules in represen-
tation spaces of regular functions or global sections of line bundles.

For any G-module M , let multλ M denote the multiplicity of a simple
G-module of highest weight λ in M . Equivalently, multλ M = dimMU

(λ),

where M(λ) is the respective isotypic component of M .

Theorem 11. The complexity c(G/H) is the minimal integer c such that
multnλ H0(G/H,L⊗n) = O(nc) over all dominant weights λ and all G-line
bundles L → G/H. If G/H is quasiaffine, then it suffices to consider
multnλ C[G/H].

Proof. We may identify L with G×H Cχ, where H acts on Cχ = C by the
character χ. Then H0(G/H,L) is the H-eigenspace of C[G] of weight −χ,
where H acts on G from the right. From the structure of C[G] as a (G×G)-
module (see 3.3) we see that multλ H0(G/H,L) = dimV ∗λ,−χ, where V ∗λ,−χ ⊆
V ∗λ is the H-eigenspace of weight −χ.

Put c = c(G/H). Replacing H by a conjugate, we may assume that
codimB(eH) = c. If c > 0, then there exists a minimal parabolic P1 ⊇ B

which does not stabilize B(eH). Therefore codimP1(eH) = c − 1. Con-
tinuing in the same way, we construct a sequence of minimal parabolics
P1, . . . , Pc ⊃ B such that Pc · · ·P1(eH) = G/H, i.e., Pc · · ·P1H is dense in G.
It follows that dimP1 · · ·Pc/B = c, whence Sw = BwB/B = P1 . . . Pc/B ⊆
G/B is the Schubert variety corresponding to an element w of the Weyl
group W with reduced decomposition w = s1 · · · sc, where si ∈ W are the
simple reflections corresponding to Pi.

The B-submodule Vλ,w ⊆ Vλ generated by wvλ is called a Demazure mod-

ule. We have Vλ,w = 〈P1 · · ·Pcvλ〉 = H0(Sw,L−λ)∗, where L−λ = G×B C−λ

[Jan].

Lemma 2. The pairing between V ∗λ and Vλ provides an embedding V ∗λ,−χ ↪→

(Vλ,w)∗. Consequently multλ H0(G/H,L) ≤ dimVλ,w.

Proof of the Lemma. If a nonzero v∗ ∈ V ∗λ,−χ vanishes on Vλ,w, then it van-

ishes on P1 · · ·Pcvλ, i.e., 〈Pc · · ·P1v
∗〉 = 〈Gv∗〉 = V ∗λ vanishes on vλ, a

contradiction. �

Replacing λ by nλ and L by L⊗n means that we replace Vλ,w by Vnλ,w =

H0(Sw,L⊗n
−λ)∗. As Sw is a projective variety of dimension c, the dimension

of the r.h.s. space of sections grows as O(nc).
On the other hand, let f1, . . . , fc be a transcendence base of C(G/H)B .

There exists a line bundle L and B-eigenvectors s0, . . . , sc ∈ H0(G/H,L) of
the same weight λ such that fi = si/s0, ∀i = 1, . . . , c. (Indeed, L and
s0 may be determined by any B-stable effective divisor dominating the
poles of all fi.) These s0, . . . , sc are algebraically independent in R =⊕

n≥0 H0(G/H,L⊗n)U(nλ), hence multnλ H0(G/H,L⊗n) = dimRn ≥
(n+c

c

)
∼

nc. Therefore the exponent c in the estimate for the multiplicity cannot be
made smaller.

Finally, if G/H is quasiaffine, then there even exist s0, . . . , sc ∈ C[G/H]
with the same properties. �
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For homogeneous spaces of small complexity much more precise informa-
tion can be obtained.

Theorem 12. In the above notation,

(1) If c(G/H) = 0, then multλ H0(G/H,L) ≤ 1 for all λ and L.
(2) If c(G/H) = 1, then there exists a G-line bundle L0 and a dom-

inant weight λ0 such that multλ H0(G/H,L) = n + 1, where n
is the maximal integer such that L = Ln

0 ⊗ M, λ = nλ0 + µ,
H0(G/H,M)(µ) 6= 0.

Proof. In the case c = 0, assuming the contrary yields two non-proportional
B-eigenvectors s0, s1 ∈ H0(G/H,L) of the same weight. Hence f = s1/s0 ∈
C(G/H)B , f 6= const, a contradiction.

In the case c = 1, we have c(G/H)B ' C(P1) by the Lüroth theorem.
Consider the respective rational map π : G/H 99K P1, whose generic fibres
are (the closures of) generic B-orbits. In a standard way, π is given by two
B-eigenvectors s0, s1 ∈ H0(G/H,L0) of the same weight λ0 for a certain
line bundle L0. Moreover, s0, s1 are algebraically independent, and each
f ∈ C(G/H)B can be represented as a homogeneous rational fraction in
s0, s1 of degree 0.

Now fix sµ ∈ H0(G/H,M)U
(µ) and take any sλ ∈ H0(G/H,L)U

(λ). Then

f = sλ/sn
0sµ ∈ C(G/H)B , whence f = F1/F0 for some m-forms F0, F1 in

s0, s1. We may assume the fraction to be reduced and decompose F1 =
L1 . . . Lm, F0 = M1 . . . Mm, as products of linear forms, with all Li distinct
from all Mj . Then sλM1 . . . Mm = sµsn

0L1 . . . Lm. Being fibres of π, the
divisors of s0, Li, Mj on G/H either coincide or have no common compo-
nents. By the definition ofM, the divisor of sµ does not dominate any one
of Mj. Therefore M1 = · · · = Mm = s0, m ≤ n, and sλ/sµ is an n-form in
s0, s1. The assertion follows. �

Remark. The algebraic interpretation of complexity in terms of growth of
multiplicities is well-known, see versions of Theorem 11 in [Pan2] (multi-
plicities in C[G/H] for G/H quasiaffine and C[G/H] finitely generated) and
[Bri5, 1.3] (multiplicities in coordinate algebras for affine varieties and in sec-
tion spaces of line bundles for projective varieties). Part 1 of Theorem 12 is
due to Vinberg and Kimelfeld [VK], and Part 2 for finitely generated coordi-
nate algebras of quasiaffine homogeneous spaces was handled by Panyushev
[Pan2].

1.6. Double flag varieties. We illustrate the method of computing com-
plexity and rank at double flag varieties, which are of importance in repre-
sentation theory (cf. 3.6).

Let P,Q ⊆ G be two parabolics. The product X = G/P × G/Q of the
two respective (generalized) flag varieties is called a double flag variety. We
may assume that P,Q are the projective stabilizers of lowest weight vectors
v, w in G-modules V,W , respectively. Consider the Levi decompositions
P = L ·UP , Q = M ·UQ such that L,M ⊇ T . The following theorem is due
to Panyushev.
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Theorem 13 ([Pan3]). Let S be the stabilizer in L ∩M of a generic point
in (l + m)⊥ ' (uP ∩ uQ)⊕ (uP ∩ uQ)∗. Then

2c(X) + r(X) = 2 dim(UP ∩ UQ)− dim(L ∩M) + dimS(11)

= dimG− dimL− dimM + dimS

r(X) = rkG− rkS(12)

and also

Λ(X) = Λ(T/(T ∩ S))(13)

provided S ↪→ L ∩M is the standard embedding.

Proof. Let U+
P , U+

Q , U+
P∩Q be the unipotent radicals of the parabolics oppo-

site to P,Q, P ∩Q. We have a decomposition U+
P∩Q = (U+

P ∩U+
Q ) · (L∩U+

Q ) ·

(U+
P ∩M).
Consider the Segre embedding X ' G〈v〉 × G〈w〉 ⊆ P(V ) × P(W ) ↪→

P(V ⊗W ). Choose highest weight covectors v∗ ∈ V ∗, w∗ ∈ W ∗ such that

〈v, v∗〉, 〈w,w∗〉 6= 0. By 1.1, we may restrict our attention to X̊ = X \
P(〈v∗ ⊗ w∗〉⊥) = U+

P 〈v〉 × U+
Q 〈w〉.

By the above decomposition, X̊ ' U+
P∩Q×(U+

P ∩U+
Q )〈v⊗w〉 is an (L∩M)-

equivariant isomorphism. (This is nothing else but the local structure of X
provided by Theorem 1.) Therefore the complexity, rank and weight lattice
for the actions G : X and (L ∩M) : (U+

P ∩ U+
Q ) are the same. The latter

action is isomorphic to the linear representation of L∩M in (uP ∩uQ)∗, and
we may apply Theorems 2,7, and their corollaries. This yields (12), (13),
and the first equality in (11), whereupon the second equality is derived by
a simple dimension count. �

Examples:

8. Let G = GLn(C), P = Q = the stabilizer of a line in Cn; we may
assume this line to be spanned by en, the last vector of the standard basis.
Then X = Pn−1 × Pn−1. Here L = M = GLn−1 × C×, and (l + m)⊥ '
(Cn−1)∗ ⊕ Cn−1, where GLn−1 acts on Cn−1 in the standard way and C×

acts by homotheties.
One easily finds S = {diag(A, t, t) | A ∈ GLn−2, t ∈ C×}. (We choose

one of the two possible standard embeddings S ↪→ L ∩M by observing the
existence of a highest weight linear function on (uP ∩uQ)∗ ' Cn−1 of weight
−εn−1 + εn, where εi are the T -weights of the standard basic vectors ei.)
It follows that Λ(X) = 〈εn−1 − εn〉 is generated by the last simple root,
r(X) = 1, and 2c(X) + r(X) = n2 − 2((n − 1)2 + 1) + (n − 2)2 + 1 = 1,
whence c(X) = 0.

9. Let G = Spn(C), P be the stabilizer of a line in Cn, and Q be the stabilizer
of a Lagrangian subspace in Cn. Choose a symplectic basis e1, . . . , en such
that (ei, ej) = sgn(j − i) whenever i + j = n + 1, and 0, otherwise. We
may assume that the above line is 〈en〉, and the Lagrangian subspace is
〈el+1, . . . , en〉, n = 2l. Then X = Pn−1 × LGr(Cn), where LGr denotes the
Lagrangian Grassmannian. Here L ∩M = GL1 × GLl−1, and (l + m)⊥ '(
(C1⊗Cl−1)⊕ (C1)⊗2

)∗
⊕

(
(C1⊗Cl−1)⊕ (C1)⊗2

)
, where Ck is the standard

representation of GLk (k = 1, l − 1).
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Now the same reasoning as in Example 5 shows that S = {±diag(1, A, 1) |
A ∈ GLl−2} ⊂ M = GLl. It follows that Λ(X) = 〈ε1 + εl, ε1 − εl〉, where εi

are the eigenweights of ei, i = 1, . . . , l, w.r.t. the standard diagonal maximal
torus T ⊂ Spn. Therefore r(X) = 2, and 2c(X) + r(X) = 2l− (l− 1)2− 1 +
(l − 2)2 = 2, whence c(X) = 0.

2. Embedding theory

The general theory of equivariant embeddings of homogeneous spaces was
constructed by Luna and Vust in the seminal paper [LV]. It is rather ab-
stract, and we present here only the most important results, required in the
sequel, skipping complicated and/or technical proofs. In our exposition, we
follow [Tim1], where the Luna–Vust theory is presented in a more compact
way (and generalized to non-homogeneous varieties).

Further on, a (G-equivariant) embedding of G/H is a normal algebraic
variety X equipped with a G-action and containing an open dense orbit
isomorphic to G/H. More precisely, we fix an open embedding G/H ↪→ X.

2.1. Uniform study of embeddings. The first thing to do is to patch
together all embeddings of G/H in a huge prevariety X. Geometrically, we
patch any two embeddings X1, X2 of G/H along their largest isomorphic G-

stable open subsets X̊1 ' X̊2. Algebraically, we consider the collection of all
local rings (O,m) that are localizations at maximal ideals of g-stable finitely
generated subalgebras R ⊂ C(G/H) with QuotR = C(G/H). We identify
these local rings with points of X. The Zariski topology is given by basic
affine open subsets formed by all (O,m) that are localizations of a given R,
with the obvious structure sheaf. From this point of view, an embedding of
G/H is just a Noetherian separated G-stable open subset X ⊂ X.

Next important thing is to observe that an embedding X ←↩ G/H is
uniquely determined by the collection of germs of G-stable subvarieties in X.
To make this assertion precise, introduce a natural equivalence relation on
the set of G-stable subvarieties in X: Y1 ∼ Y2 if Y1 = Y2. Considering a
subvariety up to equivalence means that we are interested only in its generic
points. Equivalence classes are called G-germs (of embeddings along subva-
rieties). G-germs (of embeddings X along subvarieties Y ) are determined by
the local rings OX,Y , which are just G- and g-stable local rings of finite type
in C(G/H). It is clear that X is determined by the collection of G-germs
along subvarieties intersecting X.

2.2. Invariant valuations and colours. Germs along G-stable prime di-
visors D ⊂ X are of particular importance. The respective local rings
OX,D = Ov are discrete valuation rings corresponding to G-invariant discrete
geometric valuations v of C(G/H). (A valuation is said to be geometric if
its valuation ring is the local ring of a prime divisor.) For v = ordD the
value group is Z, but sometimes it is convenient to multiply v by a positive
rational constant. The set of G-valuations (= G-invariant discrete Q-valued
geometric valuations) of C(G/H) is denoted by V.

B-stable prime divisors of G/H are also called colours. The set of colours
is denoted by D. We say that the pair (V,D) is the coloured data of G/H.
It is in terms of coloured data that embeddings of G/H are described.
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Lemma 3. G-valuations are uniquely determined by restriction to B-semi-
invariant functions.

Proof. We prove it in the quasiaffine case. The general case is more or
less reduced to the quasiaffine one, cf. [LV, 7.4]. For quasiaffine G/H, any
v ∈ V is determined by a G-stable decreasing filtration C[G/H]v≥c = {f ∈
C[G/H] | v(f) ≥ c}, c ∈ Q, of the coordinate algebra.

Take any w ∈ V, w 6= v. Without loss of generality we may assume that
C[G/H]v≥c 6⊆ C[G/H]w≥c for a certain c. Consider a G-stable decomposi-
tion C[G/H]v≥c = C[G/H]v,w≥c ⊕M , M 6= 0, and choose a highest weight
vector f ∈M . Then v(f) ≥ c > w(f), q.e.d. �

Clearly, the value v(f) of a geometric valuation at a function does not
change if we multiply f by a constant. Thus G-valuations are determined by
their restrictions to the multiplicative group A of B-semiinvariant rational
functions on G/H regarded up to a scalar multiple.

Similarly, colours are mapped (by restriction of the respective valuation)
to additive functions on A, but this map is no longer injective in general.

It is natural to think of G-valuations and (the images of) colours as el-
ements of the “linear dual” of A. We shall see evidences of this principle
in Sections 3,4, and reflect it in the notation by writing 〈v, f〉 = v(f),
〈D, f〉 = ordD(f), ∀v ∈ V, D ∈ D, f ∈ A.

The following result of Knop is helpful in studying properties of G-valu-
ations and colours by restricting to A.

Lemma 4 ([Kn3]). Fix v ∈ V. For any f ∈ C(G/H) having B-stable divisor

of poles, there exists f̃ ∈ A such that:




〈v, f̃ 〉 = v(f)

〈w, f̃ 〉 ≥ w(f), ∀w ∈ V

〈D, f̃〉 ≥ ordD(f), ∀D ∈ D

2.3. B-charts. In the study of manifolds it is natural to utilize coverings by
“simple” local charts. In our situation, this principle leads to the following

Definition 3. A B-chart is a B-stable affine open subvariety X̊ ⊂ X. An
embedding X ←↩ G/H is said to be simple if X = GX̊ .

The ubiquity of B-charts is justified by the following

Lemma 5. Given a normal G-variety X and a G-stable subvariety Y ⊆ X,
there exists a B-stable affine open subvariety X̊ ⊆ X meeting Y .

Proof. By Sumihiro’s theorem (see e.g. [KKLV]), Y intersects a G-stable
quasiprojective open subset of X. Shrinking X if necessary, we may assume
it to be quasiprojective. Passing to the projective closure, we may assume
without loss of generality that X ⊆ P(V ) is a projective variety and Y =
G〈v〉 is the (closed) projectivized orbit of a lowest weight vector. Now in

the notation of 1.1, it suffices to take X̊ = X ∩ P(V̊ ). �

Theorem 14.

(1) Any B-chart X̊ determines a simple embedding X = GX̊ ⊂ X.
(2) Any embedding is covered by finitely many simple embeddings.
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Proof. For (1) it suffices to verify that X is Noetherian and separated. Being

the image of G× X̊ under the action morphism, X is Noetherian. Assuming
X is not separated, i.e., diag X is not closed in X ×X, we take a G-orbit in
Y ⊆ diag X \ diag X. Then Y intersects the two open subsets X̊ ×X and

X × X̊ of X ×X. But Y ∩ (X̊ ×X)∩ (X × X̊) = Y ∩ (X̊ × X̊) = ∅ since X̊
is separated, a contradiction.

For (2) it suffices to note that any G-stable subvariety Y ⊂ X intersects a
certain B-chart, whence X is covered by simple embeddings, and it remains
to choose a finite subcover. �

Being a normal affine variety, a B-chart X̊ is determined by its coordinate
algebra R = C[X̊ ], so that

(14) R =
⋂

D, BD 6=D

OD ∩
⋂

D∈F

OD ∩
⋂

w∈W

Ow

is a finitely generated Krull ring with QuotR = C(G/H). Here W is the

set of G-valuations corresponding to G-stable prime divisors intersecting X̊,
F is the set of colours intersecting X̊, and the first intersection runs over
all non-B-stable prime divisors in G/H. The pair (W,F) is said to be the

coloured data of X̊.
Conversely, consider arbitrary subsets W ⊆ V, F ⊆ D, and introduce an

equivalence relation on the set of pairs: (W,F) ∼ (W ′,F ′) ifW differs from
W ′ and F from F ′ by finitely many elements. Clearly, the coloured data of
all B-charts lie in a distinguished equivalence class, denoted by CD.

Theorem 15. Suppose (W,F) ∈ CD; then:

(1) The algebra R defined by Formula (14) is a Krull ring.
(2) QuotR = C(G/H) iff

(C) ∀W0 ⊆ W, F0 ⊆ F , W0,F0 finite,

∃f ∈ A, 〈W, f〉 ≥ 0, 〈F , f〉 ≥ 0, 〈W0, f〉 > 0, 〈F0, f〉 > 0

(3) R is finitely generated iff

(F) RU is finitely generated

(4) A valuation v ∈ W is essential for R iff

(W) ∃f ∈ A, 〈W \ {v}, f〉 ≥ 0, 〈F , f〉 ≥ 0, 〈v, f〉 < 0

(5) All the valuations ordD corresponding to D ∈ F are essential for R.

Corollary. (W,F) is the coloured data of a B-chart iff the conditions (C),
(F), (W) are satisfied.

Proof. Claim (1) stems from the simple observation that the set of defining

valuations for R differs from that of C[X̊] by finitely many elements, where

X̊ is any B-chart.

(2) If QuotR = C(G/H), then there exists f ∈ R such that w(f) > 0,

ordD(f) > 0, ∀w ∈ W0, D ∈ F0. Replacing f by f̃ from Lemma 4 yields (C).
Conversely, suppose that (C) holds, and take any h ∈ C(G/H). We have

h = h1/h0 for some hi ∈ C[X̊ ], where X̊ is an arbitrary B-chart. Let W0
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be the set of valuations that are negative at h0, and F0 given by the poles
of h0. Then h0f

N ∈ R for N � 0; similarly for h1. Thus h ∈ QuotR.

Claim (3) is well known in the case F = D, i.e., whenever R is G-stable
[Kr, III.3.1–2]. The general case is reduced to this one by a tricky argument
[Tim1, 1.4].

(4) If v is essential, then there exists f ∈ C(G/H) with B-stable poles such
that v(f) < 0, w(f) ≥ 0, ordD f ≥ 0, ∀w ∈ W \ {v}, D ∈ F . Replacing f

by f̃ from Lemma 4 yields (W).
Conversely, if (W) holds, then obviously v cannot be removed from the

l.h.s. of Formula (14), i.e., it is essential for R.

(5) Take a G-line bundle L → G/H and a section s ∈ H 0(G/H,L), whose
divisor is a multiple of D. Put f = gs/s, where g ∈ G, gD 6= D. Then
ordD′ f ≥ 0, ∀D′ ⊂ G/H, D′ 6= D, and v(f) = 0, ∀v ∈ V (because v can be
extended G-invariantly to sections of line bundles [LV, 3.2], [Kn3, §3]), but
ordD f < 0. Thus D cannot be removed from Formula (14). �

2.4. G-germs. Now we study G-germs of a simple embedding X = GX̊,
i.e., G-germs intersecting the B-chart X̊. Let (W,F) be the coloured data

of X̊ .

Definition 4. The support SY of a G-germ along Y is the set of G-valuations
having centre Y .

The support is nonempty, which can be seen by blowing up Y , normal-
izing, and taking the valuation corresponding to a component of the excep-
tional divisor. Each G-subvariety Y ⊂ X intersects a certain simple embed-
ding X, and any valuation has at most one centre in X by the separation
axiom, hence the G-germ along Y is determined by the triple (W,F ,SY ).

There is also an intrinsic way to characterize G-germs regardless of simple
embeddings. Let VY be the set of G-valuations corresponding to G-stable
divisors containing Y , and DY = {D ∈ D | D ⊃ Y }. The pair (VY ,DY ) is
said to be the coloured data of the G-germ. Clearly, VY ⊆ W, DY ⊆ F .

Theorem 16. (1) A G-valuation v ∈ SY for some Y ⊆ X iff

(V) 〈W, f〉 ≥ 0, 〈F , f〉 ≥ 0 =⇒ 〈v, f〉 ≥ 0, ∀f ∈ A

(2) Suppose v ∈ SY , w ∈ W, D ∈ F ; then:
• D ∈ DY iff

(D′) 〈W, f〉 ≥ 0, 〈F , f〉 ≥ 0, 〈v, f〉 = 0 =⇒ 〈D, f〉 = 0, ∀f ∈ A

• w ∈ VY iff

(V′) 〈W, f〉 ≥ 0, 〈F , f〉 ≥ 0, 〈v, f〉 = 0 =⇒ 〈w, f〉 = 0, ∀f ∈ A

(3) v ∈ SY iff

〈VY , f〉 ≥ 0, 〈DY , f〉 ≥ 0 =⇒ 〈v, f〉 ≥ 0, ∀f ∈ A

and 〈v, f〉 > 0 whenever some of the l.h.s. inequalities are stirct
(S)

(4) G-germs are uniquely determined by their coloured data.
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Proof. (1) A G-valuation v has a centre in X iff it has a centre in X̊ iff

it is nonnegative on C[X̊ ], which implies (V). Conversely, if there exists

f ∈ C[X̊], v(f) < 0, then replacing f by f̃ from Lemma 4 we see that (V)
fails.

(2) By assumption, Ov dominates OY . Assume D ⊃ Y , and take f ∈ A
satisfying the l.h.s. of (D′). Then f is invertible in Ov, whence in OY , and
in OD as well. This implies (D′).

On the other hand, if D 6⊃ Y , then ∃f ∈ C[X̊], f = 0|D, f 6= 0|Y , hence
v(f) = 0. Applying Lemma 4, we see that (D′) fails.

A similar reasoning proves the second equivalence.

(3) Assume v ∈ SY . If the l.h.s. inequalities hold, then the poles of f do
not contain Y , whence f ∈ OY and 〈v, f〉 ≥ 0. If one of these inequalities is
strict, then the zeroes of f contain Y , whence 〈v, f〉 > 0. This implies (S).

Conversely, if v /∈ SY , then there exists f ∈ OY such that either v(f) < 0
or f |Y = 0, v(f) = 0. Applying Lemma 4 again, we see that (S) fails.

(4) Consider the algebra R defined by Formula (14) withW = VY , F = DY .
Then OY is the localization of R at the ideal given by the condition v > 0,
∀v ∈ SY . But SY is determined by (VY ,DY ). �

2.5. Résumé. Summing up, we can construct all embeddings X ←↩ G/H
in the following way:

• Take a finite collection of coloured data (Wi,Fi) satisfying (C), (F),

(W). These coloured data determine B-charts X̊i and simple embed-

dings Xi = GX̊i.
• Compute the coloured data (VY ,DY ) of G-germs Y ⊆ Xi using the

conditions (V), (V′), (D′).
• Compute the supports SY using (S).
• Finally, simple embeddings Xi can be pasted together in an embed-

ding X iff the supports SY are all disjoint, which stems from the
following version of the valuative criterion of separation.

Theorem 17. An open G-stable subset X ⊂ X is separated iff each G-
valuation has at most one centre in X.

Proof. If X is not separated, and Y ⊆ diag X \ diag X is a G-orbit, then
the projections Yi of Y to the copies of X (i = 1, 2) are disjoint. Now
any G-valuation having centre Y in diag X has at least two centres Y1, Y2

in X. The converse implication stems from the usual valuative criterion of
separation (involving all valuations). �

The above “combinatorial” description of embeddings looks rather cum-
bersome and inaccessible for practical use. However, we shall see in the
sequel, that for homogeneous spaces of small complexity, this theory looks
much nicer.

3. Spherical varieties

3.1. Spherical homogeneous spaces. The most elegant and deep the-
ory can be developed for spherical homogeneous spaces, namely those of
complexity 0. A homogeneous space G/H is spherical iff B has an open
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orbit in G/H. It should be noted that a number of classical varieties are in
fact spherical: e.g. all examples in the introduction (except the first one),
flag varieties, varieties of matrices of given rank, of complexes, symmetric
spaces etc. Also the class of spherical homogeneous spaces is stable under
degeneration.

The importance of this class of homogeneous spaces is also justified by a
number of particularly nice properties characterizing them. Some of these
properties are listed in

Theorem 18. The following conditions are equivalent:

(1) B acts on G/H with an open orbit.
(2) C(G/H)B = C

(3) ∃g ∈ G : g = b + Ad(g)h
(4) For any G-line bundle L → G/H, the representation G : H 0(G/H,L)

is multiplicity free.
(5) (For quasiaffine G/H) The representation G : C[G/H] is multiplicity

free.

Proof. (1)⇐⇒ (2) This holds by Rosenlicht’s theorem.

(1)⇐⇒ (3) b+Ad(g)h is the tangent space at e of BgHg−1 ⊆ G, the latter
being a translate of the preimage of B(gH) ⊆ G/H.

(2)⇐⇒ (4) ⇐⇒ (5) This follows from Theorems 11,12(1). �

3.2. Embedding theory [LV, 8.10], [Kn2], [Bri5], [Tim1, 1.7].

Definition 5. A spherical variety is an algebraic variety G-isomorphic to an
embedding of a spherical homogeneous space G/H, i.e., a normal algebraic
G-variety X containing an open orbit isomorphic to G/H.

We are going to apply the theory of Section 2 to spherical varieties.
As C(G/H)B = C, any B-semiinvariant rational function of G/H is de-

termined by its weight uniquely up to a scalar multiple. Therefore A =
Λ(G/H), and G-valuations v ∈ V may be regarded as vectors in Λ∗Q =

Hom(Λ, Q) given by 〈v, λ〉 = v(fλ), ∀λ ∈ Λ, where fλ is a function of
weight λ. Colours D ∈ D are also mapped to vectors vD ∈ Λ∗ = Hom(Λ, Z)
given by 〈vD, λ〉 = ordD(fλ). Colours are just the components of the com-
plement of the open B-orbit in G/H, whence D is finite.

Theorem 19. G-valuations form a solid convex polyhedral cone V ⊆ Λ∗Q
(valuation cone).

Proof. We consider the quasiaffine case, the general case being reduced to
this one. Since the G-module C[G/H] is multiplicity free, there is a unique
G-stable complement of each G-stable subspace. Thus for ∀v ∈ V, the
filtration C[G/H]v≥c comes from a unique G-stable grading of C[G/H], the
latter being given by the vector v ∈ Λ∗Q, so that v(C[G/H](λ)) = 〈v, λ〉,
∀λ ∈ Λ+.

Conversely, each v ∈ Λ∗Q determines a G-stable grading and a decreasing

filtration of C[G/H], and v ∈ V iff this filtration respects the multiplica-
tion. We have C[G/H](λ) ·C[G/H](µ) = C[G/H](λ+µ)⊕

⊕
i C[G/H](λ+µ−βi),
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∀λ, µ ∈ Λ+(G/H), where βi are positive linear combinations of positive
roots. Thus v ∈ V iff 〈v, βi〉 ≤ 0, ∀λ, µ, βi.

These inequalities define a convex cone containing the image of the an-
tidominant Weyl chamber. Brion and Pauer proved that V is polyhedral
by constructing a projective “colourless” embedding, i.e., X ←↩ G/H such
that DY = ∅, ∀Y ⊂ X, see e.g. [Kn2, 5], [Bri5, 2.4]. (Then V is generated
by finitely many vectors corresponding to G-stable divisors in X by Theo-
rem 21(3) below.) Brion [Bri2] proved that V is even cosimplicial and is in
fact a fundamental chamber of a certain crystallographic reflection group,
called the little Weyl group of G/H. A nice geometric interpretation for this
group in the spirit of 1.3 was found by Knop [Kn4]. �

Example 10. If G/H is horospherical, then V = Λ∗Q. In particular, this is
the case if G = T is a torus. In the toric case, there are no colours, and we
may also assume H = {e} without loss of generality.

Now we reorganize coloured data in a more convenient way.
The class CD consists of the pairs of finite subsets. Take (W,F) ∈ CD

and consider the polyhedral cone C generated by W and (the image of) F .
Condition (C) means that C is strictly convex, and no D ∈ F maps to 0.
Condition (F) is automatically satisfied, because RU is just the semigroup

algebra of C∨ ∩Λ, the semigroup of lattice points in the dual cone, which is
finitely generated by Gordan’s lemma.

Condition (W) says that W is recovered from (C,F) as the set of gener-
ators of those edges of C which do not intersect F .

Definition 6. A coloured cone is a pair (C,F), where C is a strictly convex
cone generated by F ⊆ D and by finitely many vectors of V, and F 63 0.
The coloured cone is said to be supported if (int C) ∩ V 6= ∅.

Thus B-charts are in bijection with coloured cones. Let us consider G-
germs of the simple embedding X spanned by the B-chart X̊ given by a
coloured cone (C,F).

Condition (V) means simply that v ∈ C.
Conditions (V′) and (D′) say that VY , DY consist of those elements ofW,

F , respectively, which lie in the face CY ⊆ C such that v ∈ int CY .
Condition (S) means that v ∈ V ∩ int CY .
Thus G-germs are in bijection with supported coloured cones.

Definition 7. A face of a coloured cone (C,F) is a coloured cone (C ′,F ′)
such that C ′ is a face of C, and F ′ = F ∩ C′.

A coloured fan is a finite collection of supported coloured cones which
is closed under passing to supported faces and such that different cones
intersect along faces inside V.

The arguments of 2.5 yield

Theorem 20. Spherical embeddings are in bijection with coloured fans.

Amazingly, a lot of geometry of a spherical variety can be read off its
coloured fan. We illustrate this principle by the following result.

Theorem 21. Let X be a spherical variety.
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(1) The G-orbits Y ⊆ X are in bijection with the coloured cones in the
respective coloured fan. Moreover, Y ⊂ Y ′ iff (CY ′ ,DY ′) is a face of
(CY ,DY ).

(2) X is affine iff its fan is formed by all supported faces of a coloured
cone (C,D).

(3) X is complete iff its fan covers the valuation cone.

Proof. (1) It follows from the above that there are finitely many germs
along G-subvarieties in X, whence each G-subvariety contains a dense orbit.
If Y ⊂ Y ′, then VY ⊇ VY ′ , DY ⊇ DY ′ , hence (CY ′ ,DY ′) is a face of (CY ,DY ).

Conversely, suppose Y 6⊂ Y ′, and take v ∈ SY = (int CY ) ∩ V. There

exists f ∈ C[X̊] such that f |Y ′ = 0, f |Y 6= 0, whence v(f) = 0. Applying
Lemma 4, we replace f by a B-eigenfunction fλ, and obtain 〈v, λ〉 = 0,
whence 〈CY , λ〉 = 0, but 〈v′, λ〉 > 0, ∀v′ ∈ (int CY ′)∩V. Therefore CY ′ is not
a face of CY .

(2) X is affine iff X is a G-stable B-chart, i.e., D is the set of colours of X.

(3) If the fan of X does not cover V, then it is easy to construct an open
embedding X ↪→ X by adding more coloured cones (e.g. one ray in V) to the
fan. Conversely, if X is non-complete, we choose a G-equivariant completion
X ↪→ X and take any orbit Y ⊆ X \X. Then SY is not covered by the fan
of X. �

Corollary (Servedio). Any spherical variety has finitely many orbits.

It is instructive to deduce this assertion directly from the multiplicity-free
property, see e.g. [Bri5, 2.1].

Examples:

• The (well-known) toric varieties [Dan], [Ful] are nothing else but spher-
ical embeddings of algebraic tori. Since there are no colours in this case,
toric varieties are classified by usual fans, i.e., collections of strictly con-
vex rational polyhedral cones intersecting along faces, which are closed
under passing to faces.
• Complete symmetric varieties [CP1], [CP2] are certain compact embed-

dings of homogeneous symmetric spaces.
• Determinantal varieties are affine embeddings of spaces of matrices with

given rank.

Example 11. Consider the space of plane conics Q2 acted on by G = PGL3.
The smooth conics in P2 are represented by non-degenerate symmetric (3×
3)-matrices of the respective quadratic forms: a matrix q determines a conic
by the equation x>qx = 0 (x is a vector of projective coordinates). Let
∆i(q) be the upper-left corner i-minor of q (i = 1, 2, 3).

We have seen in Example 3 that Q2 is spherical and Λ = 2Λad = 〈2α1, 2α2〉,
where αi are the simple roots. We may take f2α1

= ∆2
1/∆2, f2α2

=
∆2

2/∆1∆3. There are the two colours: D1 consists of conics passing through
the B-fixed point, and D2 of those tangent to the B-stable line, Di being
given by the equation ∆i = 0, whence vDi

= α∨i /2, where α∨i are the simple
coroots.
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Consider the embedding Q2 ↪→ P5 = {all conics in P2}. The boundary
is the G-stable prime divisor D of singular conics, given by the equation
∆3 = 0, whence vD = −ω∨2 /2, where ω∨i are the fundamental coweights.
There are 3 orbits: the open one Q2, the closed one Y = {double lines}, and
D \ Y = {pairs of distinct lines}. We have VY = {vD}, DY = {D2}, hence
CY is generated by −ω∨2 /2, α∨2 /2.

The dual embedding Q2 ↪→ (P5)∗ = {all conics in (P2)∗} is given by map-
ping each smooth conic in P2 to the dual one in (P2)∗ consisting of all lines
tangent to the given conic. In coordinates, q 7→ q∨, the adjoint matrix
formed by the cofactors of the entries in q. All above considerations can
be repeated, but the indices 1, 2 are interchanged. In particular, there is a
unique G-stable divisor D′ ⊂ (P5)∗ with vD′ = −ω∨1 /2, and a unique closed
orbit Y ′ with CY ′ generated by −ω∨1 /2, α∨1 /2.

By Theorem 21(3), CY , CY ′ ⊇ V, whence V = CY ∩ CY ′ is generated by
−ω∨1 /2,−ω∨2 /2, i.e., V is the antidominant Weyl chamber.

Now consider the diagonal embedding Q2 ↪→ P5 × (P5)∗ and let X = Q2

be the closure of its image. It is given by the equation q · q∗ = λE (λ ∈ C),
where q, q∗ are nonzero symmetric (3 × 3)-matrices. It is easy to see that
there are four orbits Yij ⊂ X given by (rk q, rk q∗) = (i, j) = (3, 3), (2, 1),
(1, 2), (1, 1), respectively. Differentiating the equation at a point of the
unique closed orbit Y11, one verifies that X is smooth. Since Y11 projects
onto Y, Y ′, we have CY11

⊆ CY ∩ CY ′ = V, DY11
⊆ DY ∩ DY ′ = ∅. But

X is a complete simple embedding of Q2, whence (CY11
,DY11

) = (V, ∅) by
Theorem 21(3). The space X, called the space of complete conics, was first
considered by Chasles (1864).

3.3. Algebraic semigroups. A nice application of the embedding the-
ory 3.2 is the classification of reductive algebraic monoids, i.e., linear al-
gebraic semigroups with unity whose groups of invertibles are reductive.
The general study of algebraic semigroups was undertaken by Putcha and
Renner, particular cases were classified by them. A complete classification
of normal reductive monoids was developed by Vinberg [Vin]. It soon be-
came clear that this classification can be easily derived from the embedding
theory of spherical varieties. Rittatore [Rit] made this last step.

The point is that a reductive monoid X with unit group G ⊆ X can be
considered as a (G × G)-variety, where the factors act by left/right multi-
plication. From this viewpoint, X is a (G × G)-equivariant embedding of
G = (G×G)/diag G.

Theorem 22 ([Vin], [Rit]). X is an affine embedding of G. Conversely,
any affine (G ×G)-embedding of G carries a structure of algebraic monoid
with unit group G.

Proof. The actions of the left and right copy of G×G on X define coactions
C[X]→ C[G]⊗C[X] and C[X]→ C[X]⊗C[G], which are the restrictions to
C[X] ⊆ C[G] of the comultiplication C[G]→ C[G]⊗C[G]. Hence the image
of C[X] lies in (C[G]⊗C[X]) ∩ (C[X]⊗C[G]) = C[X]⊗C[X], and we have
a comultiplication in C[X]. Now G is open in X and consists of invertibles.
For any invertible x ∈ X, we have xG ∩G 6= ∅, hence x ∈ G. �
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To apply 3.2, we have to determine the coloured data for (G×G)/diag G.
This was done by Vust [Vu] in the more general context of symmetric spaces.

First, the isotypic decomposition of the coordinate algebra has the form
C[G] =

⊕
λ∈Λ+

C[G](λ), where Λ+ is the set of dominant weights, and

C[G](λ)
∼= V ∗λ ⊗ Vλ is the linear span of the matrix entries of the repre-

sentation G : Vλ. It is convenient to choose the Borel subgroup B− × B in
G×G. Thus Λ is naturally identified with Λ(B).

Secondly, the valuation cone V ⊆ Λ∗Q is identified with the antidominant
Weyl chamber. To see it, we recall the proof of Theorem 19. A vector
v ∈ Λ∗Q determines a G-valuation iff 〈v, βi〉 ≤ 0 for all βi which occur in the

decompositions C[G](λ) ·C[G](µ) = C[G](λ+µ)⊕
⊕

i C[G](λ+µ−βi), ∀λ, µ ∈ Λ+.
But C[G](λ) ·C[G](µ) is the linear span of the matrix entries of G : Vλ⊗Vµ =
Vλ+µ ⊕

⊕
i Vλ+µ−βi

, and all simple roots occur among βi for generic λ, µ.

The colours are the Schubert subvarieties Dj = B−sjB ⊂ G of codi-
mension 1, where sj is the reflection along the simple root αj in the Weyl
group W . It is easy to see (e.g. from [Bri5, 3.1]) that vDj

= α∨j are the
simple coroots.

From Theorems 21(2), 22 and other results of 3.2, we then deduce

Theorem 23. Normal reductive monoids X are in bijection with strictly
convex cones C(X) ⊂ Λ∗Q generated by all simple coroots and finitely many

antidominant vectors. The set C(X)∨ ∩ Λ of lattice points in the dual cone
consists of all highest weights of C[X], and determines C[X] ⊆ C[G] com-
pletely.

Remark. This is in terms of highest weights of the coordinate algebra that
the classification of Vinberg was initially presented. The semigroup C(X)∨∩
Λ is formed by the highest weights of the representations G → GL(Vλ)
extendible to X. If we are interested in non-normal reductive monoids, then
we have to replace C(X)∨∩Λ by any finitely generated subsemigroup S ⊆ Λ+

such that ZS = Λ and
⊕

λ∈S C[G](λ) ⊆ C[G] is closed under multiplication,
i.e., all highest weights λ + µ− β of Vλ⊗ Vµ belong to S whenever λ, µ ∈ S.
X is normal iff S is the semigroup of all lattice vectors in a polyhedral cone.

Definition 8. We say that λ1, . . . , λm G-generate S if S consists of all high-
est weights k1λ1 + · · ·+kmλm−β of G-modules V (λ1)

⊗k1⊗· · ·⊗V (λm)⊗km ,
k1, . . . , km ∈ Z+. (In particular any generating set G-generates S.)

It is easy to see that X ↪→ EndV iff the highest weights λ1, . . . , λm of
G : V G-generate S.

Lemma 6 ([Tim3, §2]). Q+S = (Q+W{λ1, . . . , λm})∩C, where C = Q+Λ+

is the dominant Weyl chamber. (In other words, a multiple of each dominant
vector in the weight polytope eventually occurs as a highest weight in a tensor
power of V .)

If V = Vλ is irreducible, then the center of G acts by homotheties, whence
G = C× · G0, where G0 is semisimple, Λ ⊆ Z ⊕ Λ0 is a cofinite sublattice,
Λ0 being the weight lattice of G0, and λ = (1, λ0). By Lemma 6, Q+S is
the intersection of Q+(Wλ) with the dominant Weyl chamber. Recently de
Concini showed that Q+(Wλ)∩Λ+ is G-generated by (conv Wλ)∩Λ+ [Con].
It follows that X is normal iff λ0 is a minuscule weight [Con], [Tim3, §12].
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Example 12. Let G = GLn, and X = Matn be the full matrix algebra.
For B take the standard Borel subgroup of upper-triangular matrices. We
have Λ = 〈ε1, . . . , εn〉, where the εi are the diagonal matrix entries of B. We
identify Λ with Λ∗ via the inner product such that the εi form an orthonormal
basis. Let (k1, . . . , kn) denote the coordinates of λ ∈ ΛQ w.r.t. this basis.

The upper-left corner i-minors ∆i are highest weight vectors in C[X], and
their weights ε1 + · · ·+ εi generate Λ. Put Di = {x ∈ X | ∆i(x) = 0}. Then
D = {D1, . . . , Dn−1}, vDi

= εi − εi+1, ∀i < n, and Dn is the unique G-
stable prime divisor, vDn = εn. Therefore C(X) = Q+vD1

+ · · · + Q+vDn =
{k1 + · · · + ki ≥ 0, i = 1, . . . , n}, and C(X)∨ = {k1 ≥ · · · ≥ kn ≥ 0}.
Lattice vectors of C(X)∨ are exactly the dominant weights of polynomial
representations, and S = C(X)∨∩Λ is generated by ε1+ · · ·+εi, i = 1, . . . , n,
and G-generated by ε1.

3.4. Projective group compactifications. Given a faithful representa-
tion G : V , we obtain a reductive monoid X = G ⊆ EndV , whose weight
semigroup S is G-generated by the highest weights of V . The projective
counterpart of this situation is studied in [Tim3]: given a faithful projec-
tive representation G : P(V ) with highest weights λ0, . . . , λm, we exam-
ine the geometry of X = G ⊆ P(EndV ) in terms of the weight polytope
P = conv W{λ0, . . . , λm} of V . Without loss of generality we may assume
V = Vλ0

⊕ · · · ⊕ Vλm
. The affine situation can be regarded as a particular

case of the projective one, since EndV ↪→ P(End(V ⊕C)) is an affine chart.
To a certain extent, the projective case reduces to the affine case by taking
the affine cone.

Theorem 24 ([Kap], [Tim3]). (G×G)-orbits Y ⊂ X are in bijection with
the faces Γ ⊆ P such that (int Γ)∩C 6= ∅. They are represented by y = 〈eΓ〉,
where eΓ is the projector of V onto the sum of T -eigenspaces of weights in Γ.
The cone CY is dual to the cone of P ∩C at the face Γ∩C, and DY consists
of simple coroots orthogonal to 〈Γ〉.

Remark. One can also describe the stabilizers (G×G)y [Tim3, §9].

Proof. It is easy to see that the points y = 〈eΓ〉 are limits of 1-parameter
subgroups in T , whence y ∈ T . Moreover, one deduces from elementary
toric geometry that wy (w ∈ W ) represent all T -orbits in T , because wΓ
run over all faces of P.

Recall the Cartan decomposition G = KTK, where K ⊂ G is a maximal
compact subgroup. Hence X = KTK, and therefore y represent all (G×G)-
orbits Y ⊂ X. In particular, closed (G × G)-orbits Yi ⊂ X correspond to
the dominant vertices λi ∈ P, and the representatives are yi = 〈vλi

⊗ v∗−λi
〉,

where vλi
∈ V is a highest weight vector, and v∗−λi

∈ V ∗ the dual lowest
weight vector.

Take one of these vertices, say λ0, and consider the parabolic P = P (λ0) =

L · UP . There is an L-stable decomposition V = 〈vλ0
〉 ⊕ V0. Let X̊ = X ∩

P
(
(EndV ) \ 〈v∗−λ0

⊗ vλ0
〉⊥

)
. Here is a (projectivized) version of Theorem 1:

Lemma 7. X̊ ' U−P ×UP ×Z, where Z ' L ⊆ End(V0⊗C−λ0
), and y0 ∈ X̊

corresponds to 0 ∈ Z.
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Proof of the Lemma. By Theorem 1, the affine chart X̊ has the above struc-
ture with Z = X ∩ P

(
C×(vλ0

⊗ v∗−λ0
) ⊕W0

)
, where W0 = (g × g)

(
v∗−λ0

⊗

vλ0

)⊥
=

(
gv∗−λ0

⊗ vλ0
+ v∗−λ0

⊗ gvλ0

)⊥
⊇ V0 ⊗ V ∗0 = EndV0. Hence

Z = (L× L)e = L ⊆ P
(
C×(vλ0

⊗ v∗−λ0
)⊕ EndV0

)
' End(V0 ⊗ C−λ0

). �

By Lemma 6, Q+S = (C ∩ P)λ0
is the cone of C ∩ P at λ0, and CY0

=
(Q+S)∨ by 3.2. It is also clear that Dj 3 y0 iff αj ⊥ λ0. Thus Theorem 24
is proven for closed orbits, and the assertion for other orbits is deduced by
passing to coloured faces, see details in [Tim3, §9]. �

Example 13. X = P(Matn) is a projective embedding of G = PGLn. In
the notation of Example 12, we have P = conv{ε1, . . . , εn}, P ∩ C = {k1 ≥
· · · ≥ kn ≥ 0, k1 + · · · + kn = 1} = conv{(ε1 + · · · + εi)/i | i = 1, . . . , n},
Γ = conv{ε1, . . . , εi} (i = 1, . . . , n), eΓ is the projector onto the span of
the first i basic vectors of V = Cn, and Y = P(matrices of rank i) are the
(G×G)-orbits in X.

Finally, we give criteria of normality and smoothness of X. It clearly
suffices to look at singularities at points of closed orbits.

Theorem 25. In the above notation,

(1) X is normal at points of Y0 iff the weights λ1− λ0, . . . , λm − λ0 and
negative simple roots −αj 6⊥ λ0 L-generate Λ ∩ (P ∩ C)λ0

.
(2) X is smooth at points of Y0 iff L ' GLn1

× · · · × GLnp, the repre-
sentation (L : V0 ⊗ C−λ0

) is polynomial and contains the minimal
representations (GLni

: Cni) of factors of L.

Proof. (1) X is normal along Y0 iff Z is normal at 0 iff Λ∩ (P ∩C)λ0
is L-

generated by the highest weights µ1, . . . , µs of (L : V0⊗C−λ0
). The weights

λ1 − λ0, . . . , λm − λ0, −αj occur among them, being the highest weights
of vλ1

, . . . , vλm
, e−αj

vλ0
∈ V0, where e−αj

∈ g are root vectors. But

V =
∑

k,i

p− · · · p−︸ ︷︷ ︸
k

vλi
=

∑

n,i,j1,...,jn

gL,−αj1
· · · gL,−αjn

· VL,λi

where VL,λi
⊆ V , gL,−αj

⊆ g are simple L-modules generated by vλi
, e−αj

,
respectively. The summands on the r.h.s. are quotients of gL,−αj1

⊗ · · · ⊗
gL,−αjn

⊗ VL,λi
. Hence λi − λ0,−αj L-generate all remaining µk.

(2) Again it suffices to consider the smoothness of Z at 0. Z naturally
embeds into

⊕s
i=1 EndVL,µi

and T0Z =
⊕p

i=1 EndVL,µi
, p ≤ s, after re-

ordering µi. If Z is smooth, then the L-equivariant projection Z → T0Z is
étale at 0 and in fact isomorphic by a weak version of Luna’s fundamental
lemma from the étale slice theory, see [Tim3, §3]. Now it is easy to conclude
that L ' GLn1

× · · · ×GLnp , Z ' Matn1
× · · · ×Matnp , and µi (i ≤ p) are

the highest weights of (GLni
: Cni), whence all the required conditions hold.

The converse implication is obvious. �

Examples:

14. Take G = Sp4, with simple roots α1 = ε1 − ε2, α2 = 2ε2, ±εi being the
weights of the minimal representation Sp4 : C4. Let λ0 = 3ε1, λ1 = 2(ε1+ε2)
be the highest weights of V . We have α1 6⊥ λ0 ⊥ α2 and L ' SL2 × C∗,
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so that α2 is the simple root of SL2, and ε1 is a generator of Λ(C∗). The
Clebsch–Gordan formula implies that λ1 − λ0 = 2ε2 − ε1, −α1 = ε2 − ε1

L-generate all lattice points in the cone Q+{2ε2−ε1,−ε1} except −ε1. Thus
X is non-normal along Y0. But if we increase V by adding Vλ2

, λ2 = 2ε1,
then X becomes normal.

15. Suppose G = SO2l+1, and V = Vωi
is a fundamental representation. We

have a unique closed orbit Y0 ⊂ X. If i < l, then L 6' GLn1
× · · · ×GLnp ,

hence X is singular. But for i = l, L ' GLl is the common stabilizer of two
transversal maximal isotropic subspaces in C2l+1. It follows e.g. from the
realization of the spinor representation in the Clifford algebra that Vωl

⊗C−ωl

is L-isomorphic to
∧•

Cl. Here all the conditions of Theorem 25(2) are
satisfied, whence X is smooth.

3.5. Divisors and line bundles. The theory of divisors on spherical vari-
eties is due to Brion [Bri1]. The starting point is to show that each divisor
on a spherical variety is rationally equivalent to a combination of colours
and of G-stable prime divisors.

Theorem 26. Each Weil divisor δ on a spherical variety X is rationally
equivalent to a B-stable Weil divisor δ ′.

Proof. Let X̊ be the B-chart, corresponding to the coloured cone (0, ∅), i.e.,

just the open B-orbit in G/H. Since X̊ is a factorial variety, δ|X̊ = divX̊ f

for some f ∈ C(X̊). Now take δ′ = δ − divX f . �

Remark. This assertion is a particular case of a more general result [FMSS]
stating that each effective algebraic cycle on a B-variety is rationally equiv-
alent to a B-stable effective one. The idea here is to apply Borel’s fixed
point theorem to Chow varieties of cycles.

Next, we describe the relations between the B-stable generators of the
divisor class group ClX, i.e., between colours and G-stable divisors on X.

Theorem 27. There is a finite presentation

ClX =

〈
D1, . . . , Dn

〉 / 〈
n∑

i=1

〈vi, λ〉Di

∣∣∣∣∣ λ ∈ Λ

〉

where Di are all the B-stable divisors on X, represented by indivisible vectors
vi ∈ Λ∗. (Of course, it suffices to take λ from a basis of Λ.)

Proof. Just note that B-stable principal divisors are of the form div fλ, and
ordDi

fλ = 〈vi, λ〉. �

There are transparent combinatorial criteria in terms of coloured data for
a B-stable divisor to be Cartier, base point free, or ample.

Theorem 28. Let δ =
∑

miDi be a B-stable divisor on X.

(1) δ is Cartier iff for any G-orbit Y ⊆ X, ∃λY ∈ Λ∗ such that mi =
〈vi, λY 〉 whenever Di ⊇ Y .

(2) δ is base point free iff these λY can be chosen in such a way that
λY ≥ λY ′ |CY and mi ≥ 〈vi, λY 〉, ∀Y, Y ′ ⊆ X, ∀Di ∈ D \

⋃
Y⊆X DY .



EQUIVARIANT EMBEDDINGS OF HOMOGENEOUS SPACES 31

(3) δ is ample iff λY can be chosen in such a way that λY > λY ′ |CY \C′Y
and mi > 〈vi, λY 〉, ∀Y, Y ′ ⊆ X, ∀Di ∈ D \

⋃
Y⊆X DY .

Remark. Theorem 28 says that a Cartier divisor is determined by a piece-
wise linear function on the fan, and it is base point free, resp. ample, iff this
function is convex, resp. strictly convex w.r.t. the fan, with some additional
positivity condition on the coefficients at the colours which do not contain
G-orbits in their closures.

Proof. Note that δ is Cartier outside a G-stable subvariety in supp δ [Kn4,
2.2], because gδ ∼ δ, ∀g ∈ G.

(1) If δ satisfies the condition, then supp(δ − div fλY
) 6⊇ Y , whence δ is

Cartier on an open subset X̊ ⊆ X, X̊ ∩ Y 6= ∅. By the above remark, δ is
Cartier on X.

Conversely, suppose δ is Cartier. By Sumihiro’s theorem, we may as-
sume that X is quasiprojective and δ is very ample, since each Cartier
divisor on a quasiprojective variety is the difference of two very ample divi-
sors. Then there exists a B-eigenvector sY ∈ H0(X,O(δ)), sY 6= 0|Y , and
δ = div(fλY

sY ) for some λY ∈ Λ, which obviously satisfies the required
condition.

(2) δ is base point free iff for any G-orbit Y ⊆ X, ∃sY ∈ H0(X,O(δ)),
sY 6= 0|Y . We may assume sY to be a B-eigenvector. Then δ = div(fλY

sY )
for some λY ∈ Λ satisfying the required condition.

(3) If δ is ample, then, replacing δ by a multiple, we may assume that δ ′ =
δ−

∑
Di 6⊇Y Di is base point free for a given Y ⊆ X and apply the argument

from the previous paragraph to δ′ in order to obtain the required λY .
Conversely, assume that the condition on λY is satisfied. Then δ =

div(fλY
sY ), where sY ∈ H0(X,O(δ)) has the zero locus X \ X̊ , X̊ being the

B-chart given by (CY ,DY ). Then clearly C[X̊] =
⋃

m≥0 H0(X,O(mδ))/sm
Y .

Replacing δ by a multiple, we may assume that H0(X,O(δ))/sY contains

generators of C[X̊ ], ∀Y ⊆ X. Furthermore, we may replace H0(X,O(δ))
here by a finite-dimensional G-submodule M containing all sY . Then the
natural map φ : X → P(M ∗) is well defined on X̊ , whence on the whole X,

X̊ = φ−1(P(M∗\〈sY 〉
⊥)), and φ|X̊ is a closed embedding into P(M ∗\〈sY 〉

⊥),
∀Y ⊆ X. It follows that φ is a closed embedding, and δ is ample. �

Now we describe the G-module structure of H0(X,O(δ)) for a Cartier
divisor δ.

Theorem 29. In the notation of Theorem 28,

H0(X,O(δ)) '
⊕

λ∈P(δ)∩Λ

Vλ+π(δ)

where π(δ) is the B-weight of the canonical rational section sδ of O(δ) with
div sδ = δ, and

P(δ) = {λ | 〈vi, λ〉 ≥ −mi, ∀i = 1, . . . , n}

=
⋂

Y⊆X

(−λY + C∨Y ) ∩

{
λ

∣∣∣∣∣ 〈vi, λ〉 ≥ −mi, ∀Di ∈ D \
⋂

Y⊆X

DY

}
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is the weight polytope of δ.

Proof. Since all simple G-modules occur in H0(X,O(δ)) with multiplicities
≤ 1 by Theorem 18(4), it suffices to describe the set of highest weights. But
s = fλsδ is a highest weight section iff div fλ ≥ −δ iff λ ∈ P(δ) ∩ Λ. �

Remark. In order to find π(δ), we may identify O(δ)|G/H with G ×H Cχ,
where H acts on Cχ = C by a character χ. Then rational sections of O(δ)
are identified with rational functions on G that are H-semiinvariant from
the right with character −χ, and π(δ) is the weight of the equation of the
pull-back of δ to G, up to a shift by a character of G.

3.6. Application: tensor product decompositions. If P,Q ⊂ G are
two parabolics and X = G/P × G/Q is a spherical variety, then the ge-
ometry of X can be applied to finding decompositions of certain tensor
products of simple modules. Namely, by the Borel–Weil–Bott theorem, the
space of global sections of any line bundle on G/P or G/Q is a simple
G-module (maybe zero). The tensor product of pull-backs to X of line bun-
dles L → G/P ,M→ G/Q equals O(δ) for some B-stable Cartier divisor δ.
Computing P(δ) leads to a decomposition of H0(L) ⊗ H0(M) into simple
G-modules.

If P,Q stabilize the lines generated by lowest weight vectors v−λ, v−µ in
two G-modules, respectively, and L = G×P Cλ,M = G×QCµ are pull-backs
of ample line bundles on G〈v−λ〉, G〈v−µ〉, then H0(L) = Vλ, H0(M) = Vµ.
All pairs of fundamental weights (λ, µ) such that X is spherical were classi-
fied by Littelmann [Lit] and the respective decompositions were computed.
Recently all pairs of weights with spherical X were classified by Stembridge
[St] and decompositions of Vλ ⊗ Vµ were found in all cases.

Examples:

16. Consider the double flag variety X = Pn−1 × Pn−1 of Example 8. We
have seen that X is spherical and Λ = 〈εn−1 − εn〉 ' Z, where εi are the di-
agonal matrix entries of B, the standard Borel subgroup of upper-triangular
matrices. There are three B-stable divisors D,D ′, D′′ given by equations

∆ =

∣∣∣∣
xn−1 yn−1

xn yn

∣∣∣∣ = 0, xn = 0, yn = 0

in homogeneous coordinates. Any B-eigenfunction is (up to a scalar mul-
tiple) an integer power of fεn−1−εn(x, y) = xnyn/∆, whence D,D′, D′′ are
represented by the vectors v = −1, v′ = v′′ = 1 in Λ∗ ' Z.

There are the two orbits in X: the closed one Y = diag Pn−1, and the
open orbit X \ Y . We have DY = {D}, VY = ∅ (or vice versa for n = 2),
hence CY = Q−.

There is a relation D = D′ + D′′ in PicX, hence any divisor on X is
equivalent to δ = pD′ + qD′′. We have H0(X,O(pD′)) = H0(Pn−1,O(p)) =
C[An]p ' V−pεn , and similarly H0(X,O(qD′′)) = C[An]q ' V−qεn . On the
other hand, it is easy to compute P(δ) = {k(εn−1 − εn) | 0 ≥ k ≥ −p,−q}.
Shifting by the highest weight π(δ) = −(p + q)εn of the canonical section
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sδ = xp
n ⊗ yq

n yields a decomposition

C[An]p ⊗ C[An]q =

min(p,q)⊕

k=0

V(k−p−q)εn−kεn−1

generalizing the Clebsch–Gordan formula.

17. Consider another spherical double flag variety X = Pn−1 × LGr(Cn) of
Example 9. In the notation of that example, Λ = 〈ε1 + εl, ε1 − εl〉 w.r.t.
the standard Borel subgroup of upper-triangular matrices in Spn. There
are the two orbits in X: the closed one Y = {(`, F ) ∈ X | ` ⊆ F}, and
the open orbit X \ Y . There are four B-stable divisors D1, . . . , D4 given by
the conditions ` ⊥ 〈e1〉, F ∩ 〈e1, . . . , el〉 6= 0, (F + `) ∩ 〈e1, . . . , el−1〉 6= 0,
(F + `) ∩ `⊥ ∩ 〈e1, . . . , el〉 6= 0, respectively. (One verifies it by proving
that the complement of the union of the Di is a single B-orbit.) Clearly
DY = {D3, D4}.

It is easy to see from the above description that the Di can be deter-
mined by bihomogeneous equations Fi in projective coordinates of Pn−1 and
Plücker coordinates of LGr(Cn) of bidegrees (1, 0), (0, 1), (1, 1), (2, 1), and
B-eigenweights ω1 = ε1, ωl = ε1 + · · · + εl, ωl−1 = ε1 + · · · + εl−1, ωl,
respectively. We have fε1+εl

= F1F2/F3, fε1−εl
= F1F3/F4, whence Di are

represented by the vectors vi ∈ Λ∗Q, where v1 = ε1, v2 = (ε1+εl)/2, v3 = −εl,

v4 = (εl−ε1)/2, under the identification of ΛQ with Λ∗Q via the inner product
such that the ε1, εl form an orthonormal basis. In particular, CY is generated
by −εl, (εl − ε1)/2.

Every divisor on X is rationally equivalent to δ = pD1 + qD2. We have
H0(X,O(pD1)) = Vpω1

, H0(X,O(qD2)) = Vqωl
. Computing P(δ) = {λ =

aε1 + bεn | 0 ≥ b ≥ a ≥ −p, a + b ≥ −2q} and shifting by π(δ) = pω1 + qωl

finally yields a decomposition

Vpω1
⊗ Vqωl

=
⊕

0≤b≤a≤p
a+b≤2q

a≡b (mod 2)

V(p+q−a)ε1+qε2+···+qεl−1+(q−b)εl

3.7. Intersection theory. The approach to enumerative problems on ho-
mogeneous spaces mentioned in the introduction leads to the definition of
the intersection ring C∗(G/H) [CP2]. It may be defined without use of com-
pactifications, but one proves that C∗(G/H) = lim

−→
H∗(X) over all smooth

completions X ⊇ G/H.
In the simplest case, we have to compute the intersection number of divi-

sors on G/H. Everything reduces to computing the self-intersection number
(δd) for an effective divisor δ ⊂ G/H, d = dimG/H.

Translating δ by a generic element of G, we may assume that no colours
are among the components of δ. Since the open B-orbit X̊ ⊆ G/H is a

factorial variety, we may consider the equation f ∈ C[X̊] of δ|X̊ .

Definition 9. The Newton polytope of δ is

N (δ) = {λ | 〈v, λ〉 ≥ v(f), 〈vD, λ〉 ≥ ordD(f), ∀v ∈ V, D ∈ D}
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Example 18. Suppose G/H is quasiaffine and, for simplicity, δ = div f
is a principal divisor, f = f1 + · · · + fm, fj ∈ C[G/H](λj ), fj 6= 0. Then

v(f) = minj〈v, λj〉, ∀v ∈ V, ordD f = 0, ∀D ∈ D, and

N (δ) = (conv{λ1, . . . , λm}+ V∨) ∩ {λ | 〈vD, λ〉 ≥ 0, ∀D ∈ D}

In particular, if G is a torus, then N (δ) = conv{λ1, . . . , λm} is the usual
Newton polytope of a Laurent polynomial f .

Theorem 30 ([Bri4]).

(15) (δd) = d!

∫

N (δ)

∏

α6⊥Λ+〈π(δ)〉

(λ + π(δ), α)

(ρ, α)
dλ

where α runs over positive roots, ρ is half the sum of positive roots, π(δ) =
−

∑
D∈D(ordD f)π(D), and the Lebesgue measure dλ is normalized in such

a way that the fundamental parallelepiped of Λ has volume 1.

Proof. Consider a smooth projective embedding X ←↩ G/H. The divisor
δX = δ − divX f = −

∑n
i=1(ordDi

f)Di is B-stable, and P(δX ) = {λ |
〈vi, λ〉 ≥ ordDi

f, ∀i}. It is clear that N (δ) =
⋂

X←↩G/H P(δX).

There exists X such that the closure of δ contains no G-orbits [CP2]. Then
δ is base point free, (δd) = [δX ]d ∈ H2d(X), and N (δ) = P(δX ). Indeed,

take any λ ∈ P(δX ) and v ∈ V. Consider an embedding X̂ obtained by

subdividing the fan of X by v, and let D ⊂ X̂ be the divisor corresponding
to v. It is easy to see that there is a map X̂ → X contracting D to the center
of v in X. For k � 0 we have s = fkλsk

δX
= fkλsk

δ/f
k ∈ H0(X,O(δ)) ⊆

H0(X̂,O(δ)), whence ordD s = 〈v, kλ〉+ordD sk
δ−v(fk) ≥ 0. But ordD sδ =

0, hence 〈v, λ〉 ≥ v(f), which yields λ ∈ N (δ).
It remains to compute [δX ]d. By [Har, Exer. II.7.5] base point free divi-

sors lie in the closure of the ample cone in (Pic X) ⊗ Q (this is also visi-
ble from Theorem 28), and both sides of (15) depend continuously on δX .
Therefore we may assume δX to be ample. Then [δX ]d = d! · I, where
dimH0(X,O(kδX )) = I · kd + lower terms.

Recall Weyl’s dimension formula dimVλ =
∏

α (λ + ρ, α)/(ρ, α) (over all
positive roots α). By Theorem 29,

dimH0(X,O(kδX )) =
∑

λ∈P(kδX)∩Λ

∏

α

(λ + π(kδX ) + ρ, α)

(ρ, α)

=
∑

λ∈P(δX )∩Λ/k

∏

α

(kλ + kπ(δ) + ρ, α)

(ρ, α)

The leading coefficient I equals the integral on the r.h.s. of (15). �

Theorem 30 can be regarded as a generalization of the classical Bézout
theorem.

Examples:

19. If G is a torus, then (δd) = d! volN (δ). Polarization yields (δ1, . . . , δd) =
d! vol(N (δ1), . . . ,N (δd)), with the mixed volume of N (δ1), . . . ,N (δd) on the
r.h.s., giving the number of solutions for a system of d equations in general
position on a d-dimensional torus (Bernstein–Kouchnirenko [Kou]).
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20. More generally, consider G = (G×G)/diag G as a homogeneous space
under the doubled group, cf. 3.3–3.4. Suppose δ = div f , f ∈ C[G]. (There
is no essential loss of generality, because a finite cover of G is a facto-
rial variety.) From Example 18 and results of 3.3 we see that N (δ) =
(conv{λ1, . . . , λm} −C∨) ∩C = (conv W{λ1, . . . , λm}) ∩C if f is expressed
as the sum of matrix entries of G : Vλi

, i = 1, . . . ,m, and π(δ) = 0. We have
Λ = {(−λ, λ) | λ ∈ Λ(B)}, the positive roots of G × G are (−α, 0), (0, α),
where α is a positive root of G, and (−ρ, ρ) is half the sum of positive roots
for G×G. Now Theorem 30 yields Kazarnovskii’s “Bézout theorem” on any
reductive group [Kaz]:

(δd) = d!

∫

N (δ)

∏

α

(λ, α)2

(ρ, α)2
dλ

21. Consider the Grassmannian Grk(P
n) acted on by G = GLn+1. Let δ be

a hyperplane section of its Plücker embedding into P(
∧k+1

Cn+1). We have
δ ∼ D, where D is the unique colour, which generates PicGrk(P

n). Here
Λ = 0, whence N (δ) = {0}, and π(δ) = π(D) = −εk+2−· · ·− εn+1. Positive
roots are of the form α = εi − εj, i < j, and ρ = (n/2)ε1 + (n/2 − 1)ε2 +
· · ·+ (−n/2)εn+1. The degree of the Plücker embedding equals

(δd) = d!
∏

α6⊥π(δ)

(π(δ), α)

(ρ, α)
= [(k + 1)(n− k)]!

∏

i≤k+1<j

1

j − i

= [(k + 1)(n− k)]!
0! . . . k!

n! . . . (n− k)!

This is a classical result of Schubert.

22. Now we come back to the classical enumerative problem mentioned in
the introduction. In the notation of Example 11, all conics tangent to a given
one fill the divisor δ given by the equation f(q) = Dis det(sq−tq0) = 0, where
q0 is the matrix of the given conic, s, t are indeterminates, and Dis denotes
the discriminant of a binary form. Note that f ∈ C[Q2], whence δ = div f
is principal.

From the expression for the discriminant of a binary cubic form and from
Example 11, it is easy to see that f = f(4ω1+4ω2)+f(6ω1)+f(6ω2)+f(2ω1+2ω2)+
f(0), where f(λ) is the projection to C[Q2](λ). It follows by Examples 18, 11
that N (δ) = conv{4ω1 +4ω2, 6ω1, 6ω2, 0} and π(δ) = 0. (Actually, it suffices
to know the highest weight 4ω1 + 4ω2 occurring in f .) We subdivide N (δ)
into 2 triangles Ni = conv{4ω1 + 4ω2, 6ωi, 0} (i = 1, 2).

The positive roots are α1, α2, ρ = α1 + α2. Write λ = 2x1α1 + 2x2α2,
∀λ ∈ Λ⊗Q. The number of plane conics tangent to 5 given conics in general
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position equals

(δ5) = 5!

∫

N (δ)

(λ, α1)(λ, α2)(λ, ρ)

(ρ, α1)(ρ, α2)(ρ, ρ)
dλ

= 5!

∫

N1

(4x1 − 2x2)(4x2 − 2x1)(2x1 + 2x2) dx1 dx2

= 5!

2∫

0

dx1

x1∫

x1/2

dx2 (4x1 − 2x2)(4x2 − 2x1)(2x1 + 2x2) = 3264

(Chasles, 1864)

4. Spaces of complexity one

The embedding theory of homogeneous spaces of complexity one is devel-
oped in [Tim1] from the general Luna–Vust theory of embeddings in a way
similar to the theory of spherical varieties. In this survey, we will only give a
brief exposition of this theory, skipping most proofs and attracting reader’s
attention to common points and distinctions from the spherical case.

4.1. Coloured data. In contrast with the spherical case, a B-semiinvariant
rational function on a homogeneous space G/H of complexity 1 is not
uniquely determined (up to a constant) by its weight. Observe by the Lüroth
theorem that C(G/H)B ' C(P1) is the field of rational functions in one vari-
able, and a B-eigenfunction fλ is determined by its weight λ ∈ Λ only up to
a multiple in C(P1)×. We have a short exact sequence

0 −→ C(P1)×/C× −→ A −→ Λ −→ 0

recalling A = C(G/H)(B)/C× from 2.2. It is convenient to fix a (non-
canonical) splitting A ' Λ × (C(P1)×/C×), so that each B-semiinvariant
function is represented as f = fλq, where fλ is a fixed function of weight λ,
and q ∈ C(P1).

Geometrically, the identification C(G/H)B ' C(P1) gives rise to a surjec-
tive rational map π : G/H 99K P1, whose generic fibers are (the closures of)
generic B-orbits in G/H. Thus the set of colours depends on one continuous

parameter. We may fix a cofinite subset D̊ ⊆ D consisting of Dz = π−1(z),

z ∈ P̊1, a cofinite subset of P1.
To any colour D ∈ D we associate a vector vD ∈ Λ∗ by restriction of ordD

to {fλ | λ ∈ Λ}. The restriction of ordD to C(G/H)B yields a valuation
of C(P1) with center zD ∈ P1 and the order hD ∈ Z+ of a local coordinate
at zD. We have ordD f = 〈vD, λ〉+hD(ordzD

q). (If ordD vanishes on C(P1),
then we put hD = 0 and take any point of P1 for zD.) Similarly, G-valuations
are determined by triples (v, h, z), where v ∈ Λ∗Q, h ∈ Q+, z ∈ P1.

Consider the union Λ+
Q =

⋃
z∈P1 Λ+

Q(z), where Λ+
Q(z) = Λ∗Q × Q+ are

half-spaces naturally attached together along their common boundary hy-
perplane Λ∗Q. We say that Λ+

Q is the hyperspace associated with G/H. By
the above, colours and G-valuations are represented by points of the hyper-
space. Reducing D̊ if necessary, we may assume that ordD fλ = 0, ∀D ∈ D̊,
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λ ∈ Λ. Hence Dz is represented by the vector (0, 1) ∈ Λ+
Q(z), ∀z ∈ P̊1. The

following result generalizes Theorem 19:

Theorem 31 ([Kn3]). G-valuations form a subset V ⊆ Λ+
Q, called the valu-

ation hypercone, such that the V(z) = V ∩Λ+
Q(z) are solid convex polyhedral

(in fact, cosimplicial) cones.

4.2. Equivariant embeddings. Now we reorganize coloured data of B-
charts and G-germs in a way similar to the spherical case.

The class CD consists of the pairs (W,F) such that W is finite and F

differs from D̊ by finitely many elements. Take (W,F) ∈ CD.
Condition (F) is always satisfied, but in this case it is non-trivial, see

[Tim1, 3.1].
Let C(z) be the cone generated by those elements of W and F which map

to Λ+
Q(z) and by

(16) Z =
∑

z∈P1

Z(z) ⊆ Λ∗Q (Minkowski sum), where

Z(z) = conv



v/h, vD/hD

∣∣∣∣∣∣

(v, h) ∈ W ∩ Λ+
Q(z)

(vD, hD) ∈ F ∩ Λ+
Q(z)

h, hD 6= 0





Put C =
⋃

z∈P1 C(z). Condition (C) means that (C,F) is a coloured hyper-
cone in the sense of the following

Definition 10. A coloured hypercone is a pair (C,F), where C ⊆ Λ+
Q , F ⊆ D,

and there exists a finite subset W ⊂ V such that:

• F differs from D̊ by finitely many elements, and F 63 0.
• Z 63 0, where Z is defined by Formula (16).
• C(z) = C ∩Λ+

Q(z) are strictly convex cones generated by W∩Λ+
Q(z),

F ∩ Λ+
Q(z), and by Z.

The interior of (C,F) is int C =
(⋃

z∈P1 int C(z)
)
∪ int(C ∩ Λ∗Q) whenever

C(z) 6⊆ Λ∗Q, ∀z ∈ P1, and ∅, otherwise. The coloured hypercone is said to be

supported if (int C) ∩ V 6= ∅.
A face of (C,F) is either a coloured cone (C ′,F ′) in some Λ+

Q(z) such that

C′ is a face of C(z) and C ′ ∩ Z = ∅, or a coloured hypercone (C ′,F ′) such
that C′(z) are faces of C(z) and C ′ ∩ Z 6= ∅, and F ′ = F ∩ C′ in both cases.

A coloured hyperfan is a collection of supported coloured cones and hyper-
cones which is obtained from finitely many coloured hypercones by taking
all the supported faces, and has the property that different cones and hy-
percones intersect along faces inside V.

Condition (W) says that W is recovered from (C,F) as the set of gener-
ators of those edges of C which do not intersect F and Z.

Conditions (V), (V′), (D′), (S) are reformulated verbatim alike the spher-
ical case.

The following theorem is a counterpart of Theorem 20.

Theorem 32. B-charts are in bijection with coloured hypercones, G-germs
with supported coloured cones and hypercones, and embeddings of G/H are
in bijection with coloured hyperfans.
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Theorem 21 transfers verbatim to the case of complexity 1 if we only
replace “G-orbits” by “closed G-subvarieties”, “cones” by “cones and hy-
percones”, and “fan” by “hyperfan”.

4.3. Divisors and intersection theory. Results of 3.5–3.7 are generalized
in [Tim2] to the complexity one case (and even, to some extent, to arbitrary
complexity).

Theorem 26 generalizes together with the proof if we take X̊ = UP×A×C
from Theorem 2 and observe that C is a smooth rational curve, hence X̊
is factorial. There is a description of B-stable Cartier, base point free, and
ample divisors similar to Theorem 28, see [Tim2, §4].

However, the G-module structure of global sections for a B-stable Cartier
divisor δ =

∑
miDi on an embedding X ←↩ G/H is more complicated. We

may assume that the sum ranges over all B-stable prime divisors Di ⊂ X
(with only finitely many mi 6= 0), and let (vi, hi) ∈ Λ+

Q(zi) be the respective
vectors of the hyperspace. Put

P(δ) = {λ ∈ ΛQ | 〈vi, λ〉 ≥ −mi whenever hi = 0}

mz = min
zi=z
hi 6=0

〈vi, λ〉+ mi

hi
, ∀z ∈ P1

m(δ, λ) = max

(
1 +

∑

z∈P1

mz, 0

)

Theorem 33. Let π(δ) be the B-weight of the canonical section sδ of O(δ)
with div sδ = δ. Then the multiplicity of Vλ+π(δ) in H0(X,O(δ)) equals
m(δ, λ) if λ ∈ P(δ), and 0, otherwise.

Remark. Note that the multiplicity function m(δ, λ) is a piecewise affine
concave function of λ on its support.

Proof. It suffices to examine the space of highest weight vectors of a given
weight in H0(X,O(δ)). A section s = fλqsδ (λ ∈ Λ, q ∈ C(P1)) is
a highest weight vector iff div fλq ≥ −δ iff 〈vi, λ〉 + hi(ordzi

q) ≥ −mi,
∀i. The latter condition is equivalent to λ ∈ P(δ) and ordz q ≥ −mz,
∀z ∈ P1. Hence the dimension of the space of highest weight vectors equals
dimH0

(
P1,O

(∑
z mzz

))
= m(δ, λ). �

Unfortunately, the intersection theory on homogeneous spaces of complex-
ity one is not as nice as for spherical spaces. The reason is that embeddings
of G/H generally have infinitely many G-orbits, and there might exist no
compactification X ←↩ G/H with finitely many orbits such that the closures
Zi of given subvarieties Z1, . . . , Zs ⊂ G/H intersect X \ (G/H) properly.
Then Z1 ∩ · · · ∩Zs may have points “at infinity”, and the intersection prod-
uct of [Zi] in H∗(X) has no relation with |Z1∩· · ·∩Zs|. In particular, there is
generally no “Bézout theorem” for the intersection number of hypersurfaces
in G/H. However, there is a weaker version of Theorem 30:
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Theorem 34 ([Tim2]). Let δ be a base point free divisor on a projective
embedding X ←↩ G/H, dimG/H = d. Then

(17) (δd) = d!

∫

P(δ)

m(δ, λ)
∏

α6⊥Λ+〈π(δ)〉

(λ + π(δ), α)

(ρ, α)
dλ

The proof is essentially the same as for Theorem 30 using Theorem 33
instead of Theorem 29. Details are left to the reader.

Consider the problem of finding the intersection number of divisors on
G/H. Suppose we managed to construct a compactification X ⊃ G/H with
finitely many orbits such that all divisors, whose intersection number we
are looking for, intersect each orbit properly. Then Theorem 34 leads to
a “Bézout theorem” on G/H. Another application of Theorem 34 is the
computation of the degree of any orbit in any SL2(C)-module or projective
representation [Tim2]. (For irreducible representations this degree was com-
puted in [MJ] using the description of Chow rings for smooth embeddings
of SL2/{e}.)
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