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Abstract. The complexity of a homogeneous space G/H under a
reductive group G is by definition the codimension of general orbits
in G/H of a Borel subgroup B ⊆ G. We give a representation-
theoretic interpretation of this number as the exponent of growth
for multiplicities of simple G-modules in the spaces of sections of
homogeneous line bundles on G/H . For this, we show that these
multiplicities are bounded from above by the dimensions of certain
Demazure modules. This estimate for multiplicities is uniform, i.e.,
it depends not on G/H , but only on its complexity.

1. Introduction

Let G be a connected reductive group over an algebraically closed
field k of characteristic 0, and H ⊆ G a closed subgroup. Consider the
homogeneous space G/H. Choose a Borel subgroup B ⊆ G. By lower
semicontinuity, general B-orbits in G/H have maximal dimension. The
minimal (=typical) codimension c = c(G/H) of B-orbits is called the
complexity of G/H. (Clearly, it does not depend on the choice of B
since all Borel subgroups are conjugate.) By the Rosenlicht theorem
[VP, 2.3], c(G/H) equals the transcendence degree of k(G/H)B over k.

This numerical invariant plays an important rôle in the geometry
of G/H. For instance, the class of homogeneous spaces of complexity
zero, called spherical spaces, is particularly nice [Kn1], [Bri2], [Vin]. It
includes many classical spaces, all symmetric spaces, etc. Also the equi-
variant embedding theory of G/H depends crucially on its complexity,
see [LV], [Tim].

In this note, we describe c(G/H) in terms of representation theory
related to G/H.
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Let Λ = Λ(B) be the weight lattice of B, and Λ+ ⊆ Λ be the set
of dominant weights. By V (λ) denote the simple G-module of highest
weight λ ∈ Λ+. For any rational G-module M , let multλ M denote the
multiplicity of V (λ) in M .

It turns out that c(G/H) characterizes the growth of multiplicities
in spaces of global sections of G-line bundles over G/H. Here is our
main result:

Theorem 1. The complexity c(G/H) is the minimal integer c such that
multλ H0(G/H,L) = O(|λ|c) over all λ ∈ Λ+ and all G-line bundles
L → G/H, where | · | is any fixed norm on the vector space spanned
by Λ. Moreover, this estimate for multiplicities is uniform over all
H ⊆ G such that c(G/H) = c. If G/H is quasiaffine, then it suffices
to consider only multλ k[G/H].

A weaker version of Theorem 1 under some restrictive conditions
(multiplicities in k[G/H] for quasiaffine G/H provided that k[G/H] is
finitely generated; no uniform estimate) appeared in [AP]. The relation
between complexity and growth of multiplicities is known for quite a
time, see partial results in [Pa1, 1.1], [Pa2, 2.4], [Bri2, 1.3].

We prove Theorem 1 in Section 2. The idea is to embed the “space
of multiplicity” in the dual of a certain Demazure submodule in V (λ),
associated with an element of length c in the Weyl group (Lemma 2).

In Section 3, we justify the term “complexity” by providing a much
more precise information on multiplicities on homogeneous spaces of
complexity ≤ 1. Actually, the spherical case is well known [VK] and
is included in the text only for convenience of the reader. In the case
of complexity 1, a formula similar to ours for multiplicities in k[G/H]
provided that it is a finitely generated unique factorization domain, and
G/H is quasiaffine, was obtained in [Pa1, 1.2], see also [Pa2, 2.4.19].

Acknowledgements. This note was written during my stay at Insti-
tut Fourier in spring 2003. I would like to thank this institution for
hospitality, and M. Brion for invitation and for stimulating discussions.
Thanks are also due to I. V. Arzhantsev for some helpful remarks.

Notation.

• The character lattice of an algebraic group H is denoted by
Λ(H) and is written additively.

• By MH we denote the set of H-fixed points in the set M acted
on by a group H. If M is a vector space, and H acts linearly,

then Mχ = M
(H)
χ is the H-eigenspace of eigenweight χ ∈ Λ(H).

• Throughout the paper, G is a connected reductive group, and
B ⊆ G a fixed Borel subgroup. The semigroup Λ+ of dominant
weights is considered relative to B. We fix an opposite Borel
subgroup B−, a maximal torus T = B ∩ B−, and consider the
Weyl group W of G relative to T .



COMPLEXITY AND GROWTH OF MULTIPLICITIES 3

• By λ∗ denote the highest weight of the dual G-module to the
simple G-module V (λ) of highest weight λ ∈ Λ+.

2. Upper bound for multiplicities

We begin with basic facts about line bundles on homogeneous spaces.
Every line bundle L → G/H admits a G-linearization, i.e., a fiberwise
linear G-action compatible with the projection onto the base, if we
possibly replace G by a finite cover [KKLV, §2]. (Alternatively, one
may replace L by its sufficiently big tensor power.) Every G-line bundle
is isomorphic to a homogeneous bundle L(χ) = LG/H(χ) = G ×H

kχ,
where H acts on the fiber kχ ' k via a character χ ∈ Λ(H). The bundle
L(χ) is trivial (regardless the G-linearization) iff χ is the restriction of
a character of G.

The space of global sections H0(G/H,L(χ)) ' k[G]
(H)
−χ is a rational

G-module, where H acts on G by right translations, and G by left
translations. By the Frobenius reciprocity [Jan, I.3.3–3.4], we have

multλ H0(G/H,L(χ)) = dim V (λ∗)
(H)
−χ .

In particular, H0(G/B,L(−λ)) = V (λ∗) whenever λ ∈ Λ+, and 0,
otherwise (the Borel–Weil theorem).

Observe that for any rational G-module M we have multλ M =

dim M
(B)
λ , ∀λ ∈ Λ+. In particular,

multλ H0(G/H,L(χ)) = dim k[G]
(B×H)
(λ,−χ)

The nonzero spaces k[G]
(B×H)
(λ,−χ) represent complete linear systems of

B-stable divisors on G/H, i.e., linear systems of pairwise rationally
equivalent B-stable divisors which cannot be enlarged by adding new
B-stable effective divisors. The respective biweights (λ, χ) form a sub-
semigroup Σ = Σ(G/H) ⊆ Λ(B × H). Two biweights (λ, χ), (λ′, χ′) ∈
Σ determine the same linear system on G/H iff (λ, χ) differs from
(λ′, χ′) by a twist of G-linearization, i.e., by (ε|B,−ε|H), ε ∈ Λ(G).

We need a useful result, essentially due to Brion. Replacing H by
a conjugate, we may assume that dim B(eH) is maximal among all
B-orbits, i.e., codim B(eH) = c = c(G/H).

Lemma 1 (cf. [Bri1, 2.1]). There exists a sequence of minimal parabol-

ics P1, . . . , Pc ⊃ B such that Pc · · ·P1(eH) = G/H. The decomposition
w = s1 · · · sc, where si ∈ W are the simple reflections corresponding to
Pi, is reduced, and Dw = BwB = P1 · · ·Pc is a “Schubert subvariety”
in G of dimension c + dim B.

Proof. If c > 0, then B(eH) is not G-stable, whence it is not stabilized
by some minimal parabolic P1 ⊃ B. Since P1/B ' P

1, the natural
map P1 ×

B B(eH) → G/H is generically finite, and codim P1(eH) =
c − 1. Continuing in the same way, we construct a sequence of min-
imal parabolics P1, . . . , Pc ⊃ B such that Pc · · ·P1(eH) = G/H, i.e.,
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Pc · · ·P1H is dense in G. The map Pc · · ·P1 ×B B(eH) → G/H is
generically finite, hence dim Pc · · ·P1 = c + dim B, which yields all the
remaining assertions. �

Remark 1. The “Schubert subvarieties” Dw, w ∈ W , form a monoid
w.r.t. the multiplication of sets in G, called the Richardson–Springer
monoid. It is generated by the Ds, s ∈ W a simple reflection, and is
naturally identified with W , defining relations being s2 = s and braid
relations for W . The action of the Richardson–Springer monoid on
the set of B-stable subvarieties (appearing implicitly in Lemma 1) is
studied in [Kn2].

Let vλ ∈ V (λ) be a highest weight vector. The B-submodule Vw(λ) ⊆
V (λ) generated by wvλ, w ∈ W , is called a Demazure module. In the
notation of Lemma 1, we have Vw(λ) = 〈Dwvλ〉 ' H0(Sw,LG/B(−λ))∗,
where Sw = Dw/B is a Schubert subvariety in G/B of dimension c. In-
deed, the restriction map V (λ∗) = H0(G/B,L(−λ)) → H0(Sw,L(−λ))
is surjective [Jan, II.14.15, e)], and Dwvλ is the affine cone over the im-
age of Sw under the map G/B → P(V (λ)).

Lemma 2. In the notation of Lemma 1, multλ H0(G/H,L(χ)) ≤
dim Vw(λ).

Proof. We show that the pairing between V (λ∗) and V (λ) provides an

embedding V (λ∗)
(H)
−χ ↪→ Vw(λ)∗. Otherwise, if v∗ ∈ V (λ∗)

(H)
−χ vanishes

on Vw(λ), then it vanishes on Dwvλ, i.e., 〈D−1
w v∗〉 = 〈Gv∗〉 = V (λ∗)

vanishes at vλ, a contradiction. �

Remark 2. A similar idea was used in [Pa2, 2.4.18] to obtain an upper
bound for multiplicities in coordinate algebras of homogeneous spaces
of complexity 1.

Remark 3. The assertion of Lemma 2 can be refined and viewed in a
more geometric context as follows. Consider the natural B-equivariant
proper map ϕ : D−1

w /B ∩ H ' D−1
w ×B B(eH) → G/H, which is

generically finite by construction. For L = LG/H(χ) we have ϕ∗L =
LD−1

w /B∩H(χ|B∩H), and ϕ∗ : H0(G/H,L) ↪→ H0(D−1
w /B∩H, ϕ∗L) gives

rise to

H0(G/H,L)
(B)
λ ↪→ H0(D−1

w /B ∩ H, ϕ∗L)
(B)
λ = k[D−1

w ]
(B×B∩H)
(λ,−χ)

' k[Dw]
(B∩H×B)
(−χ,λ) = H0(Sw,L(−λ))

(B∩H)
−χ = Vw(λ)∗(B∩H)

−χ

I am indebted to M. Brion for this remark.

Lemma 2 applies to obtaining upper bounds for multiplicities in
branching to reductive subgroups, cf. [AP, Thm. 2].

Corollary. If L ⊆ G is a connected reductive subgroup, then

multµ resG
L V (λ) ≤ dim Vw(λ∗)
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for any two dominant weights λ, µ of G, L, respectively, where w ∈ W
is provided by Lemma 1 for H equal to a Borel subgroup of L. Similarly,

length resG
L V (λ) ≤ dim Vw(λ∗)

where w ∈ W corresponds to H equal to a maximal unipotent subgroup
of L. (Here length is the number of simple factors in an L-module.)

Proof. Just note that

multµ resG
L V (λ) = dim V (λ)(H)

µ = multλ∗ H0(G/H,L(−µ))

in the first case, and length resG
L V (λ) = dim V (λ)H = multλ∗ k[G/H]

in the second case, and then apply Lemma 2. �

Example 1. Let P ⊇ B− be a parabolic subgroup with the Levi
decomposition P = L i Pu, L ⊇ T . By wL denote the longest element
in the Weyl group of L, and consider the decomposition wG = wLwL.
Let H be the unipotent radical of B− ∩ L. Then we may take w = wL

and obtain length resG
L V (λ) ≤ dim VwL(λ∗).

Proof of Theorem 1. Recall the character formula for Demazure mod-
ules [Jan, II.14.18, b)]:

chT Vw(λ) =
1 − e−α1s1

1 − e−α1
. . .

1 − e−αcsc

1 − e−αc
eλ

where eµ is the monomial in the group algebra Z[Λ] corresponding to
µ ∈ Λ, αi are the simple roots defining Pi, and si ∈ W are the respective
simple reflections acting on Z[Λ] in a natural way. One easily computes

1 − e−αisi

1 − e−αi
eµ = eµ(1 + e−αi + · · ·+ e−〈µ,α∨

i 〉αi), ∀i, ∀µ ∈ Λ,

where α∨
i is the respective simple coroot. It is then easy to deduce

that dim Vw(λ) = O(|λ|c), and Lemma 2 yields the desired estimate in
Theorem 1.

Alternatively, observing that Sw is a projective variety of dimen-
sion c, one may deduce that dim H0(Sw,L(−λ)) grows no faster than |λ|c

as follows.
Without loss of generality we may assume G to be semisimple and

simply connected. Let ω1, . . . , ωl be the fundamental weights of G. Put
X = PSw

(L(ω1)⊕ · · · ⊕ L(ωl)), a projective space bundle over Sw with
fiber P

l−1. Let OX(1) be the antitautological line bundle over X, and
π : X → Sw the projection map. Then

π∗OX(k) =
⊕

k1+···+kl=k, kj≥0

L(−k1ω1 − · · · − klωl)

Riπ∗OX(k) = 0, ∀i > 0

Now Rw =
⊕

k≥0 H0(X,O(k)) =
⊕

λ∈Λ+
H0(Sw,L(−λ)) is a Λ-graded

algebra, and the quotient field of Rw is a monogenic transcendental
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extension of k(X), hence it has transcendence degree n = c + l. Fur-
thermore, Rw is finitely generated. Indeed, Rw is a quotient of the
G-algebra R =

⊕

λ∈Λ+
H0(G/B,L(−λ)). The multihomogeneous com-

ponents of R are the simple G-modules V (λ∗), hence R is generated
by its components with λ = ω1, . . . , ωl. (The spectrum of Rw is the so
called multicone over the Schubert variety Sw, studied in [KR]. For
instance, this multicone has rational singularities.) Finally, a gen-
eral property of finitely generated multigraded algebras implies that
dim H0(Sw,L(−λ)) = O(|λ|n−rkΛ) = O(|λ|c).

This estimate is uniform in H, because there are finitely many choices
for w. It remains to show that the exponent c cannot be made smaller.

Let f1, . . . , fc be a transcendence base of k(G/H)B. There exists a
G-line bundle L and B-eigenvectors σ0, . . . , σc ∈ H0(G/H,L) of the
same weight λ such that fi = σi/σ0, ∀i = 1, . . . , c. (Indeed, L and
σ0 may be determined by a sufficiently big B-stable effective divisor
majorizing the poles of all fi.)

Consider the graded algebra R =
⊕

n≥0 Rn, Rn = H0(G/H,L⊗n)
(B)
nλ .

Clearly, σ0, . . . , σc are algebraically independent in R, whence

multnλ H0(G/H,L⊗n) = dim Rn ≥

(

n + c

c

)

∼ nc

This proves our claim.
Finally, if G/H is quasiaffine, then there even exist σ0, . . . , σc ∈

k[G/H] with the same properties. �

Remark 4. For a given H, the estimate of the multiplicity by dim Vw(λ)
may be not sharp. However, it is natural to ask whether it is a sharp
uniform estimate over all homogeneous spaces with given complexity.
More precisely, we formulate the following

Question. Given an element w ∈ W of length c, does there exist
a subgroup H ⊆ G such that multλ H0(G/H,L(χ)) = dim Vw(λ) for
sufficiently general (λ, χ) ∈ Σ(G/H)?

Example 2. In the notation of Example 1, put H = Pu. Then always
χ = 0, so that H0(G/H,L(χ)) = k[G/H]. We may take w = wL.
Then V (λ∗)H is a simple L-module of lowest weight −λ, and Vw(λ) is
the dual L-module of highest weight λ. It follows that multλ k[G/H] =
dim Vw(λ).

3. Case of small complexity

Homogeneous spaces of complexity ≤ 1 are distinguished among all
homogeneous spaces by their nice behaviour. For instance, they have
a well developed equivariant embedding theory [LV, 8–9], [Tim, 2–5].
There are also more explicit formulæ for multiplicities in this case.

Theorem 2. In the above notation,
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(1) If c(G/H) = 0, then multλ H0(G/H,L(χ)) ≤ 1, ∀(λ, χ) ∈ Σ.
(2) If c(G/H) = 1, then there exists a pair (λ0, χ0) ∈ Σ, unique up

to a shift by (ε|B,−ε|H), ε ∈ Λ(G), such that

multλ H0(G/H,L(χ)) = n + 1

where n is the maximal integer such that (λ, χ) − n(λ0, χ0) ∈
Σ(G/H).

Proof. The assertion is well known in the case c = 0, and we prove
it just to keep the exposition self-contained. Assuming the contrary
yields two non-proportional B-eigenvectors σ0, σ1 ∈ H0(G/H,L(χ))
of the same weight λ. Hence f = σ1/σ0 ∈ k(G/H)B, f 6= const, a
contradiction.

In the case c = 1, we have k(G/H)B ' k(P1) by the Lüroth the-
orem. Consider the respective rational map π : G/H 99K P

1, whose
general fibers are (the closures of) general B-orbits. By a standard
argument, π is given by two B-eigenvectors σ0, σ1 ∈ H0(G/H,L(χ0))
of the same weight λ0 for a certain (λ0, χ0) ∈ Σ. Moreover, σ0, σ1 are
algebraically independent, and each f ∈ k(G/H)B can be represented
as a homogeneous rational fraction in σ0, σ1 of degree 0.

Now put (µ, τ) = (λ, χ)− n(λ0, χ0), fix σµ ∈ H0(G/H,L(τ))
(B)
µ , and

take any σλ ∈ H0(G/H,L(χ))
(B)
λ . Then f = σλ/σ

n
0 σµ ∈ k(G/H)B,

whence f = F1/F0 for some m-forms F0, F1 in σ0, σ1. We may as-
sume the fraction to be reduced and decompose F1 = L1 · · ·Lm, F0 =
M1 · · ·Mm, as products of linear forms, with all Li distinct from all Mj.
Then σλM1 · · ·Mm = σµσn

0 L1 · · ·Lm.
Being fibers of π, the divisors of σ0, Li, Mj on G/H either coincide

or have no common components. By the maximality of n, the divisor of
σµ does not majorize any one of Mj. Therefore M1 = · · · = Mm = σ0,
m ≤ n, and σλ/σµ is an n-form in σ0, σ1. The assertion follows. �

Example 3. Let G = SL3, H = T (the diagonal torus), B be the
upper-triangular subgroup. The space G/H can be regarded as the
space of ordered triangles in P

2, i.e.,

G/H ' {p = (p1, p2, p3) | pi 6= pj} ⊂ P
2 × P

2 × P
2

Let `i ⊂ P
2 denote the line joining pj and pk, where (i, j, k) is a cyclic

permutation of (1, 2, 3). By p0 denote the B-fixed point in P
2, and by

`0 the B-stable line.
There are the following B-stable prime divisors on G/H:

Di = {p | pi ∈ `0} = div g3i, λi = ω2, χi = −εi

D′
i = {p | p0 ∈ `i} = div ∆i, ∆i =

∣

∣

∣

∣

g2j g2k

g3j g3k

∣

∣

∣

∣

, λ′
i = ω1, χ′

i = εi

Dt = B · p(t) = div(g32∆2 + tg33∆3), λ0 = ω1 + ω2, χ0 = 0



8 D. A. TIMASHEV

where i = 1, 2, 3, t ∈ P
1 \ {0, 1,∞}, and the vertices of the triangle

p(t) are: p1(t) = (0 : 0 : 1), p2(t) = (0 : 1 : 1), p3(t) = (1 : t : 1).
Here gij are matrix entries of g ∈ G, and H-semiinvariant polynomials
in gij are regarded as sections of G-line bundles on G/H. We also
indicate their biweights (λ, χ) ∈ Σ, denoting by ωi the fundamental
weights, and by εi the diagonal matrix entries of H. Observe that
g31∆1 + g32∆2 + g33∆3 = 0.

It follows that c(SL3 /T ) = 1. Now it is an easy combinatorial exer-
cise to deduce from Theorem 2(2) that multλ H0(SL3 /T,L(χ)) = n+1,
where

n =
k1 + k2

2
−

1

6

3
∑

i=1

|k1 − k2 + 2li − lj − lk|

whenever (λ, χ) ∈ Σ, λ = k1ω1 + k2ω2, χ = l1ε1 + l2ε2 + l3ε3; and
(λ, χ) ∈ Σ whenever k1 − k2 ≡ l1 + l2 + l3 (mod 3) and n ≥ 0.
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