COMPLEXITY OF HOMOGENEOUS SPACES AND GROWTH OF MULTIPLICITIES

D. A. TIMASHEV
Prépublication de l'Institut Fourier $n^{\circ} 610$ (2003)
http://www-fourier.ujf-grenoble.fr/prepublications.html

Abstract

The complexity of a homogeneous space G / H under a reductive group G is by definition the codimension of general orbits in G / H of a Borel subgroup $B \subseteq G$. We give a representationtheoretic interpretation of this number as the exponent of growth for multiplicities of simple G-modules in the spaces of sections of homogeneous line bundles on G / H. For this, we show that these multiplicities are bounded from above by the dimensions of certain Demazure modules. This estimate for multiplicities is uniform, i.e., it depends not on G / H, but only on its complexity.

1. Introduction

Let G be a connected reductive group over an algebraically closed field \mathbb{k} of characteristic 0 , and $H \subseteq G$ a closed subgroup. Consider the homogeneous space G / H. Choose a Borel subgroup $B \subseteq G$. By lower semicontinuity, general B-orbits in G / H have maximal dimension. The minimal (=typical) codimension $c=c(G / H)$ of B-orbits is called the complexity of G / H. (Clearly, it does not depend on the choice of B since all Borel subgroups are conjugate.) By the Rosenlicht theorem [VP, 2.3], $c(G / H)$ equals the transcendence degree of $\mathbb{k}(G / H)^{B}$ over \mathbb{k}.

This numerical invariant plays an important rôle in the geometry of G / H. For instance, the class of homogeneous spaces of complexity zero, called spherical spaces, is particularly nice [Kn1], [Bri2], [Vin]. It includes many classical spaces, all symmetric spaces, etc. Also the equivariant embedding theory of G / H depends crucially on its complexity, see [LV], [Tim].

In this note, we describe $c(G / H)$ in terms of representation theory related to G / H.

[^0]Let $\Lambda=\Lambda(B)$ be the weight lattice of B, and $\Lambda_{+} \subseteq \Lambda$ be the set of dominant weights. By $V(\lambda)$ denote the simple G-module of highest weight $\lambda \in \Lambda_{+}$. For any rational G-module M, let mult ${ }_{\lambda} M$ denote the multiplicity of $V(\lambda)$ in M.

It turns out that $c(G / H)$ characterizes the growth of multiplicities in spaces of global sections of G-line bundles over G / H. Here is our main result:

Theorem 1. The complexity $c(G / H)$ is the minimal integer c such that mult $_{\lambda} H^{0}(G / H, \mathcal{L})=O\left(|\lambda|^{c}\right)$ over all $\lambda \in \Lambda_{+}$and all G-line bundles $\mathcal{L} \rightarrow G / H$, where $|\cdot|$ is any fixed norm on the vector space spanned by Λ. Moreover, this estimate for multiplicities is uniform over all $H \subseteq G$ such that $c(G / H)=c$. If G / H is quasiaffine, then it suffices to consider only mult ${ }_{\lambda} \mathbb{k}[G / H]$.

A weaker version of Theorem 1 under some restrictive conditions (multiplicities in $\mathbb{k}[G / H]$ for quasiaffine G / H provided that $\mathbb{k}[G / H]$ is finitely generated; no uniform estimate) appeared in $[\mathrm{AP}]$. The relation between complexity and growth of multiplicities is known for quite a time, see partial results in [Pa1, 1.1], [Pa2, 2.4], [Bri2, 1.3].

We prove Theorem 1 in Section 2. The idea is to embed the "space of multiplicity" in the dual of a certain Demazure submodule in $V(\lambda)$, associated with an element of length c in the Weyl group (Lemma 2).

In Section 3, we justify the term "complexity" by providing a much more precise information on multiplicities on homogeneous spaces of complexity ≤ 1. Actually, the spherical case is well known [VK] and is included in the text only for convenience of the reader. In the case of complexity 1 , a formula similar to ours for multiplicities in $\mathbb{k}[G / H]$ provided that it is a finitely generated unique factorization domain, and G / H is quasiaffine, was obtained in [Pa1, 1.2], see also [Pa2, 2.4.19].

Acknowledgements. This note was written during my stay at Institut Fourier in spring 2003. I would like to thank this institution for hospitality, and M. Brion for invitation and for stimulating discussions. Thanks are also due to I. V. Arzhantsev for some helpful remarks.

Notation.

- The character lattice of an algebraic group H is denoted by $\Lambda(H)$ and is written additively.
- By M^{H} we denote the set of H-fixed points in the set M acted on by a group H. If M is a vector space, and H acts linearly, then $M_{\chi}=M_{\chi}^{(H)}$ is the H-eigenspace of eigenweight $\chi \in \Lambda(H)$.
- Throughout the paper, G is a connected reductive group, and $B \subseteq G$ a fixed Borel subgroup. The semigroup Λ_{+}of dominant weights is considered relative to B. We fix an opposite Borel subgroup B^{-}, a maximal torus $T=B \cap B^{-}$, and consider the Weyl group W of G relative to T.
- By λ^{*} denote the highest weight of the dual G-module to the simple G-module $V(\lambda)$ of highest weight $\lambda \in \Lambda_{+}$.

2. Upper bound for multiplicities

We begin with basic facts about line bundles on homogeneous spaces. Every line bundle $\mathcal{L} \rightarrow G / H$ admits a G-linearization, i.e., a fiberwise linear G-action compatible with the projection onto the base, if we possibly replace G by a finite cover $[\mathrm{KKLV}, \S 2]$. (Alternatively, one may replace \mathcal{L} by its sufficiently big tensor power.) Every G-line bundle is isomorphic to a homogeneous bundle $\mathcal{L}(\chi)=\mathcal{L}_{G / H}(\chi)=G \times^{H} \mathbb{k}_{\chi}$, where H acts on the fiber $\mathbb{k}_{\chi} \simeq \mathbb{k}$ via a character $\chi \in \Lambda(H)$. The bundle $\mathcal{L}(\chi)$ is trivial (regardless the G-linearization) iff χ is the restriction of a character of G.

The space of global sections $H^{0}(G / H, \mathcal{L}(\chi)) \simeq \mathbb{k}[G]_{-\chi}^{(H)}$ is a rational G-module, where H acts on G by right translations, and G by left translations. By the Frobenius reciprocity [Jan, I.3.3-3.4], we have mult $_{\lambda} H^{0}(G / H, \mathcal{L}(\chi))=\operatorname{dim} V\left(\lambda^{*}\right)_{-\chi}^{(H)}$.

In particular, $H^{0}(G / B, \mathcal{L}(-\lambda))=V\left(\lambda^{*}\right)$ whenever $\lambda \in \Lambda_{+}$, and 0 , otherwise (the Borel-Weil theorem).

Observe that for any rational G-module M we have $\operatorname{mult}_{\lambda} M=$ $\operatorname{dim} M_{\lambda}^{(B)}, \forall \lambda \in \Lambda_{+}$. In particular,

$$
\text { mult }_{\lambda} H^{0}(G / H, \mathcal{L}(\chi))=\operatorname{dim} \mathbb{k}[G]_{(\lambda,-\chi)}^{(B \times H)}
$$

The nonzero spaces $\mathbb{k}[G]_{(\lambda,-\chi)}^{(B \times H)}$ represent complete linear systems of B-stable divisors on G / H, i.e., linear systems of pairwise rationally equivalent B-stable divisors which cannot be enlarged by adding new B-stable effective divisors. The respective biweights (λ, χ) form a subsemigroup $\Sigma=\Sigma(G / H) \subseteq \Lambda(B \times H)$. Two biweights $(\lambda, \chi),\left(\lambda^{\prime}, \chi^{\prime}\right) \in$ Σ determine the same linear system on G / H iff (λ, χ) differs from $\left(\lambda^{\prime}, \chi^{\prime}\right)$ by a twist of G-linearization, i.e., by $\left(\left.\varepsilon\right|_{B},-\left.\varepsilon\right|_{H}\right), \varepsilon \in \Lambda(G)$.

We need a useful result, essentially due to Brion. Replacing H by a conjugate, we may assume that $\operatorname{dim} B(e H)$ is maximal among all B-orbits, i.e., codim $B(e H)=c=c(G / H)$.

Lemma 1 (cf. [Bri1, 2.1]). There exists a sequence of minimal parabolics $P_{1}, \ldots, P_{c} \supset B$ such that $\overline{P_{c} \cdots P_{1}(e H)}=G / H$. The decomposition $w=s_{1} \cdots s_{c}$, where $s_{i} \in W$ are the simple reflections corresponding to P_{i}, is reduced, and $D_{w}=\overline{B w B}=P_{1} \cdots P_{c}$ is a "Schubert subvariety" in G of dimension $c+\operatorname{dim} B$.
Proof. If $c>0$, then $\overline{B(e H)}$ is not G-stable, whence it is not stabilized by some minimal parabolic $P_{1} \supset B$. Since $P_{1} / B \simeq \mathbb{P}^{1}$, the natural map $P_{1} \times{ }^{B} B(e H) \rightarrow G / H$ is generically finite, and $\operatorname{codim} P_{1}(e H)=$ $c-1$. Continuing in the same way, we construct a sequence of minimal parabolics $P_{1}, \ldots, P_{c} \supset B$ such that $\overline{P_{c} \cdots P_{1}(e H)}=G / H$, i.e.,
$P_{c} \cdots P_{1} H$ is dense in G. The map $P_{c} \cdots P_{1} \times{ }^{B} B(e H) \rightarrow G / H$ is generically finite, hence $\operatorname{dim} P_{c} \cdots P_{1}=c+\operatorname{dim} B$, which yields all the remaining assertions.

Remark 1. The "Schubert subvarieties" $D_{w}, w \in W$, form a monoid w.r.t. the multiplication of sets in G, called the Richardson-Springer monoid. It is generated by the $D_{s}, s \in W$ a simple reflection, and is naturally identified with W, defining relations being $s^{2}=s$ and braid relations for W. The action of the Richardson-Springer monoid on the set of B-stable subvarieties (appearing implicitly in Lemma 1) is studied in [Kn2].

Let $v_{\lambda} \in V(\lambda)$ be a highest weight vector. The B-submodule $V_{w}(\lambda) \subseteq$ $V(\lambda)$ generated by $w v_{\lambda}, w \in W$, is called a Demazure module. In the notation of Lemma 1, we have $V_{w}(\lambda)=\left\langle D_{w} v_{\lambda}\right\rangle \simeq H^{0}\left(S_{w}, \mathcal{L}_{G / B}(-\lambda)\right)^{*}$, where $S_{w}=D_{w} / B$ is a Schubert subvariety in G / B of dimension c. Indeed, the restriction map $V\left(\lambda^{*}\right)=H^{0}(G / B, \mathcal{L}(-\lambda)) \rightarrow H^{0}\left(S_{w}, \mathcal{L}(-\lambda)\right)$ is surjective [Jan, II.14.15, e)], and $D_{w} v_{\lambda}$ is the affine cone over the image of S_{w} under the map $G / B \rightarrow \mathbb{P}(V(\lambda))$.

Lemma 2. In the notation of Lemma 1, $\operatorname{mult}_{\lambda} H^{0}(G / H, \mathcal{L}(\chi)) \leq$ $\operatorname{dim} V_{w}(\lambda)$.

Proof. We show that the pairing between $V\left(\lambda^{*}\right)$ and $V(\lambda)$ provides an embedding $V\left(\lambda^{*}\right)_{-\chi}^{(H)} \hookrightarrow V_{w}(\lambda)^{*}$. Otherwise, if $v^{*} \in V\left(\lambda^{*}\right)_{-\chi}^{(H)}$ vanishes on $V_{w}(\lambda)$, then it vanishes on $D_{w} v_{\lambda}$, i.e., $\left\langle D_{w}^{-1} v^{*}\right\rangle=\left\langle G v^{*}\right\rangle=V\left(\lambda^{*}\right)$ vanishes at v_{λ}, a contradiction.

Remark 2. A similar idea was used in [Pa2, 2.4.18] to obtain an upper bound for multiplicities in coordinate algebras of homogeneous spaces of complexity 1.

Remark 3. The assertion of Lemma 2 can be refined and viewed in a more geometric context as follows. Consider the natural B-equivariant proper map $\varphi: D_{w}^{-1} / B \cap H \simeq D_{w}^{-1} \times{ }^{B} B(e H) \rightarrow G / H$, which is generically finite by construction. For $\mathcal{L}=\mathcal{L}_{G / H}(\chi)$ we have $\varphi^{*} \mathcal{L}=$ $\mathcal{L}_{D_{w}^{-1} / B \cap H}\left(\left.\chi\right|_{B \cap H}\right)$, and $\varphi^{*}: H^{0}(G / H, \mathcal{L}) \hookrightarrow H^{0}\left(D_{w}^{-1} / B \cap H, \varphi^{*} \mathcal{L}\right)$ gives rise to

$$
\begin{aligned}
& H^{0}(G / H, \mathcal{L})_{\lambda}^{(B)} \hookrightarrow H^{0}\left(D_{w}^{-1} / B \cap H, \varphi^{*} \mathcal{L}\right)_{\lambda}^{(B)}=\mathbb{k}\left[D_{w}^{-1}\right]_{(\lambda,-\chi)}^{(B \times B \cap H)} \\
& \simeq \mathbb{k}\left[D_{w}\right]_{(-\chi, \lambda)}^{(B \cap H)}=H^{0}\left(S_{w}, \mathcal{L}(-\lambda)\right)_{-\chi}^{(B \cap H)}=V_{w}(\lambda)_{-\chi}^{*(B \cap H)}
\end{aligned}
$$

I am indebted to M. Brion for this remark.
Lemma 2 applies to obtaining upper bounds for multiplicities in branching to reductive subgroups, cf. [AP, Thm. 2].

Corollary. If $L \subseteq G$ is a connected reductive subgroup, then

$$
\operatorname{mult}_{\mu} \operatorname{res}_{L}^{G} V(\lambda) \leq \operatorname{dim} V_{w}\left(\lambda^{*}\right)
$$

for any two dominant weights λ, μ of G, L, respectively, where $w \in W$ is provided by Lemma 1 for H equal to a Borel subgroup of L. Similarly,

$$
\text { length } \operatorname{res}_{L}^{G} V(\lambda) \leq \operatorname{dim} V_{w}\left(\lambda^{*}\right)
$$

where $w \in W$ corresponds to H equal to a maximal unipotent subgroup of L. (Here length is the number of simple factors in an L-module.)

Proof. Just note that

$$
\operatorname{mult}_{\mu} \operatorname{res}_{L}^{G} V(\lambda)=\operatorname{dim} V(\lambda)_{\mu}^{(H)}=\operatorname{mult}_{\lambda^{*}} H^{0}(G / H, \mathcal{L}(-\mu))
$$

in the first case, and length $\operatorname{res}_{L}^{G} V(\lambda)=\operatorname{dim} V(\lambda)^{H}=\operatorname{mult}_{\lambda^{*}} \mathbb{k}[G / H]$ in the second case, and then apply Lemma 2.

Example 1. Let $P \supseteq B^{-}$be a parabolic subgroup with the Levi decomposition $P=L \curlywedge P_{\mathrm{u}}, L \supseteq T$. By w_{L} denote the longest element in the Weyl group of L, and consider the decomposition $w_{G}=w_{L} w^{L}$. Let H be the unipotent radical of $B^{-} \cap L$. Then we may take $w=w^{L}$ and obtain length $\operatorname{res}_{L}^{G} V(\lambda) \leq \operatorname{dim} V_{w^{L}}\left(\lambda^{*}\right)$.

Proof of Theorem 1. Recall the character formula for Demazure modules [Jan, II.14.18, b)]:

$$
\operatorname{ch}_{T} V_{w}(\lambda)=\frac{1-e^{-\alpha_{1}} s_{1}}{1-e^{-\alpha_{1}}} \ldots \frac{1-e^{-\alpha_{c}} s_{c}}{1-e^{-\alpha_{c}}} e^{\lambda}
$$

where e^{μ} is the monomial in the group algebra $\mathbb{Z}[\Lambda]$ corresponding to $\mu \in \Lambda, \alpha_{i}$ are the simple roots defining P_{i}, and $s_{i} \in W$ are the respective simple reflections acting on $\mathbb{Z}[\Lambda]$ in a natural way. One easily computes

$$
\frac{1-e^{-\alpha_{i}} s_{i}}{1-e^{-\alpha_{i}}} e^{\mu}=e^{\mu}\left(1+e^{-\alpha_{i}}+\cdots+e^{-\left\langle\mu, \alpha_{i}^{\vee}\right\rangle \alpha_{i}}\right), \quad \forall i, \forall \mu \in \Lambda
$$

where α_{i}^{\vee} is the respective simple coroot. It is then easy to deduce that $\operatorname{dim} V_{w}(\lambda)=O\left(|\lambda|^{c}\right)$, and Lemma 2 yields the desired estimate in Theorem 1.

Alternatively, observing that S_{w} is a projective variety of dimension c, one may deduce that $\operatorname{dim} H^{0}\left(S_{w}, \mathcal{L}(-\lambda)\right)$ grows no faster than $|\lambda|^{c}$ as follows.

Without loss of generality we may assume G to be semisimple and simply connected. Let $\omega_{1}, \ldots, \omega_{l}$ be the fundamental weights of G. Put $X=\mathbb{P}_{S_{w}}\left(\mathcal{L}\left(\omega_{1}\right) \oplus \cdots \oplus \mathcal{L}\left(\omega_{l}\right)\right)$, a projective space bundle over S_{w} with fiber \mathbb{P}^{l-1}. Let $\mathcal{O}_{X}(1)$ be the antitautological line bundle over X, and $\pi: X \rightarrow S_{w}$ the projection map. Then

$$
\begin{aligned}
\pi_{*} \mathcal{O}_{X}(k) & =\bigoplus_{k_{1}+\cdots+k_{l}=k, k_{j} \geq 0} \mathcal{L}\left(-k_{1} \omega_{1}-\cdots-k_{l} \omega_{l}\right) \\
R^{i} \pi_{*} \mathcal{O}_{X}(k) & =0, \quad \forall i>0
\end{aligned}
$$

Now $R_{w}=\bigoplus_{k \geq 0} H^{0}(X, \mathcal{O}(k))=\bigoplus_{\lambda \in \Lambda_{+}} H^{0}\left(S_{w}, \mathcal{L}(-\lambda)\right)$ is a Λ-graded algebra, and the quotient field of R_{w} is a monogenic transcendental
extension of $\mathbb{k}(X)$, hence it has transcendence degree $n=c+l$. Furthermore, R_{w} is finitely generated. Indeed, R_{w} is a quotient of the G-algebra $R=\bigoplus_{\lambda \in \Lambda_{+}} H^{0}(G / B, \mathcal{L}(-\lambda))$. The multihomogeneous components of R are the simple G-modules $V\left(\lambda^{*}\right)$, hence R is generated by its components with $\lambda=\omega_{1}, \ldots, \omega_{l}$. (The spectrum of R_{w} is the so called multicone over the Schubert variety S_{w}, studied in $[\mathrm{KR}]$. For instance, this multicone has rational singularities.) Finally, a general property of finitely generated multigraded algebras implies that $\operatorname{dim} H^{0}\left(S_{w}, \mathcal{L}(-\lambda)\right)=O\left(|\lambda|^{n-\mathrm{rk} \Lambda}\right)=O\left(|\lambda|^{c}\right)$.

This estimate is uniform in H, because there are finitely many choices for w. It remains to show that the exponent c cannot be made smaller.

Let f_{1}, \ldots, f_{c} be a transcendence base of $\mathbb{k}(G / H)^{B}$. There exists a G-line bundle \mathcal{L} and B-eigenvectors $\sigma_{0}, \ldots, \sigma_{c} \in H^{0}(G / H, \mathcal{L})$ of the same weight λ such that $f_{i}=\sigma_{i} / \sigma_{0}, \forall i=1, \ldots, c$. (Indeed, \mathcal{L} and σ_{0} may be determined by a sufficiently big B-stable effective divisor majorizing the poles of all f_{i}.)

Consider the graded algebra $R=\bigoplus_{n \geq 0} R_{n}, R_{n}=H^{0}\left(G / H, \mathcal{L}^{\otimes n}\right)_{n \lambda}^{(B)}$. Clearly, $\sigma_{0}, \ldots, \sigma_{c}$ are algebraically independent in R, whence

$$
\operatorname{mult}_{n \lambda} H^{0}\left(G / H, \mathcal{L}^{\otimes n}\right)=\operatorname{dim} R_{n} \geq\binom{ n+c}{c} \sim n^{c}
$$

This proves our claim.
Finally, if G / H is quasiaffine, then there even exist $\sigma_{0}, \ldots, \sigma_{c} \in$ $\mathbb{k}[G / H]$ with the same properties.

Remark 4. For a given H, the estimate of the multiplicity by $\operatorname{dim} V_{w}(\lambda)$ may be not sharp. However, it is natural to ask whether it is a sharp uniform estimate over all homogeneous spaces with given complexity. More precisely, we formulate the following

Question. Given an element $w \in W$ of length c, does there exist a subgroup $H \subseteq G$ such that mult $H^{0}(G / H, \mathcal{L}(\chi))=\operatorname{dim} V_{w}(\lambda)$ for sufficiently general $(\lambda, \chi) \in \Sigma(G / H)$?

Example 2. In the notation of Example 1, put $H=P_{\mathrm{u}}$. Then always $\chi=0$, so that $H^{0}(G / H, \mathcal{L}(\chi))=\mathbb{k}[G / H]$. We may take $w=w_{L}$. Then $V\left(\lambda^{*}\right)^{H}$ is a simple L-module of lowest weight $-\lambda$, and $V_{w}(\lambda)$ is the dual L-module of highest weight λ. It follows that mult ${ }_{\lambda} \mathbb{k}[G / H]=$ $\operatorname{dim} V_{w}(\lambda)$.

3. Case of small complexity

Homogeneous spaces of complexity ≤ 1 are distinguished among all homogeneous spaces by their nice behaviour. For instance, they have a well developed equivariant embedding theory $[\mathrm{LV}, 8-9]$, [Tim, 2-5]. There are also more explicit formulæ for multiplicities in this case.

Theorem 2. In the above notation,
(1) If $c(G / H)=0$, then mult ${ }_{\lambda} H^{0}(G / H, \mathcal{L}(\chi)) \leq 1, \forall(\lambda, \chi) \in \Sigma$.
(2) If $c(G / H)=1$, then there exists a pair $\left(\lambda_{0}, \chi_{0}\right) \in \Sigma$, unique up to a shift by $\left(\left.\varepsilon\right|_{B},-\left.\varepsilon\right|_{H}\right), \varepsilon \in \Lambda(G)$, such that

$$
\operatorname{mult}_{\lambda} H^{0}(G / H, \mathcal{L}(\chi))=n+1
$$

where n is the maximal integer such that $(\lambda, \chi)-n\left(\lambda_{0}, \chi_{0}\right) \in$ $\Sigma(G / H)$.

Proof. The assertion is well known in the case $c=0$, and we prove it just to keep the exposition self-contained. Assuming the contrary yields two non-proportional B-eigenvectors $\sigma_{0}, \sigma_{1} \in H^{0}(G / H, \mathcal{L}(\chi))$ of the same weight λ. Hence $f=\sigma_{1} / \sigma_{0} \in \mathbb{k}(G / H)^{B}, f \neq$ const, a contradiction.

In the case $c=1$, we have $\mathbb{k}(G / H)^{B} \simeq \mathbb{k}\left(\mathbb{P}^{1}\right)$ by the Lüroth theorem. Consider the respective rational map $\pi: G / H \rightarrow \mathbb{P}^{1}$, whose general fibers are (the closures of) general B-orbits. By a standard argument, π is given by two B-eigenvectors $\sigma_{0}, \sigma_{1} \in H^{0}\left(G / H, \mathcal{L}\left(\chi_{0}\right)\right)$ of the same weight λ_{0} for a certain $\left(\lambda_{0}, \chi_{0}\right) \in \Sigma$. Moreover, σ_{0}, σ_{1} are algebraically independent, and each $f \in \mathbb{k}(G / H)^{B}$ can be represented as a homogeneous rational fraction in σ_{0}, σ_{1} of degree 0 .

Now put $(\mu, \tau)=(\lambda, \chi)-n\left(\lambda_{0}, \chi_{0}\right)$, fix $\sigma_{\mu} \in H^{0}(G / H, \mathcal{L}(\tau))_{\mu}^{(B)}$, and take any $\sigma_{\lambda} \in H^{0}(G / H, \mathcal{L}(\chi))_{\lambda}^{(B)}$. Then $f=\sigma_{\lambda} / \sigma_{0}^{n} \sigma_{\mu} \in \mathbb{k}(G / H)^{B}$, whence $f=F_{1} / F_{0}$ for some m-forms F_{0}, F_{1} in σ_{0}, σ_{1}. We may assume the fraction to be reduced and decompose $F_{1}=L_{1} \cdots L_{m}, F_{0}=$ $M_{1} \cdots M_{m}$, as products of linear forms, with all L_{i} distinct from all M_{j}. Then $\sigma_{\lambda} M_{1} \cdots M_{m}=\sigma_{\mu} \sigma_{0}^{n} L_{1} \cdots L_{m}$.

Being fibers of π, the divisors of σ_{0}, L_{i}, M_{j} on G / H either coincide or have no common components. By the maximality of n, the divisor of σ_{μ} does not majorize any one of M_{j}. Therefore $M_{1}=\cdots=M_{m}=\sigma_{0}$, $m \leq n$, and $\sigma_{\lambda} / \sigma_{\mu}$ is an n-form in σ_{0}, σ_{1}. The assertion follows.

Example 3. Let $G=\mathrm{SL}_{3}, H=T$ (the diagonal torus), B be the upper-triangular subgroup. The space G / H can be regarded as the space of ordered triangles in \mathbb{P}^{2}, i.e.,

$$
G / H \simeq\left\{p=\left(p_{1}, p_{2}, p_{3}\right) \mid p_{i} \neq p_{j}\right\} \subset \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}
$$

Let $\ell_{i} \subset \mathbb{P}^{2}$ denote the line joining p_{j} and p_{k}, where (i, j, k) is a cyclic permutation of $(1,2,3)$. By p_{0} denote the B-fixed point in \mathbb{P}^{2}, and by ℓ_{0} the B-stable line.

There are the following B-stable prime divisors on G / H :

$$
\begin{array}{ll}
D_{i}=\left\{p \mid p_{i} \in \ell_{0}\right\}=\operatorname{div} g_{3 i}, & \lambda_{i}=\omega_{2}, \chi_{i}=-\varepsilon_{i} \\
D_{i}^{\prime}=\left\{p \mid p_{0} \in \ell_{i}\right\}=\operatorname{div} \Delta_{i}, \quad \Delta_{i}=\left|\begin{array}{ll}
g_{2 j} & g_{2 k} \\
g_{3 j} & g_{3 k}
\end{array}\right|, & \lambda_{i}^{\prime}=\omega_{1}, \chi_{i}^{\prime}=\varepsilon_{i} \\
D_{t}=\overline{B \cdot p(t)}=\operatorname{div}\left(g_{32} \Delta_{2}+t g_{33} \Delta_{3}\right), & \lambda_{0}=\omega_{1}+\omega_{2}, \chi_{0}=0
\end{array}
$$

where $i=1,2,3, t \in \mathbb{P}^{1} \backslash\{0,1, \infty\}$, and the vertices of the triangle $p(t)$ are: $p_{1}(t)=(0: 0: 1), p_{2}(t)=(0: 1: 1), p_{3}(t)=(1: t: 1)$. Here $g_{i j}$ are matrix entries of $g \in G$, and H-semiinvariant polynomials in $g_{i j}$ are regarded as sections of G-line bundles on G / H. We also indicate their biweights $(\lambda, \chi) \in \Sigma$, denoting by ω_{i} the fundamental weights, and by ε_{i} the diagonal matrix entries of H. Observe that $g_{31} \Delta_{1}+g_{32} \Delta_{2}+g_{33} \Delta_{3}=0$.

It follows that $c\left(\mathrm{SL}_{3} / T\right)=1$. Now it is an easy combinatorial exercise to deduce from Theorem 2(2) that mult ${ }_{\lambda} H^{0}\left(\mathrm{SL}_{3} / T, \mathcal{L}(\chi)\right)=n+1$, where

$$
n=\frac{k_{1}+k_{2}}{2}-\frac{1}{6} \sum_{i=1}^{3}\left|k_{1}-k_{2}+2 l_{i}-l_{j}-l_{k}\right|
$$

whenever $(\lambda, \chi) \in \Sigma, \lambda=k_{1} \omega_{1}+k_{2} \omega_{2}, \chi=l_{1} \varepsilon_{1}+l_{2} \varepsilon_{2}+l_{3} \varepsilon_{3}$; and $(\lambda, \chi) \in \Sigma$ whenever $k_{1}-k_{2} \equiv l_{1}+l_{2}+l_{3}(\bmod 3)$ and $n \geq 0$.

References

[AP] D. N. Akhiezer, D. I. Panyushev, Multiplicities in the branching rules and the complexity of homogeneous spaces, Moscow Math. J. 2 (2002), no. 1, 17-33.
[Bri1] M. Brion, Parametrization and embeddings of a class of homogeneous spaces, Proceedings of the International Conference on Algebra, Part 3, Novosibirsk, 1989, 353-360, Contemp. Math., vol. 131, Part 3, AMS, Providence, 1992.
[Bri2] M. Brion, Variétés sphériques, Notes de la session de la S. M. F. "Opérations hamiltoniennes et opérations de groupes algébriques", Grenoble, 1997,
http://www-fourier.ujf-grenoble.fr/~mbrion/spheriques.ps.
[Jan] J. C. Jantzen, Representations of algebraic groups, Pure and Applied Math., vol. 131, Academic Press, Boston, 1987.
[KR] G. R. Kempf, A. Ramanathan, Multicones over Schubert varieties, Invent. Math. 87 (1987), no. 2, 353-363.
[KKLV] F. Knop, H. Kraft, D. Luna, Th. Vust, Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie (H. Kraft, P. Slodowy, T. A. Springer, eds.), DMV Seminar, vol. 13, pp. 63-75, Birkhäuser, Basel-Boston-Berlin, 1989.
[Kn1] F. Knop, The Luna-Vust theory of spherical embeddings, Proc. Hyderabad Conf. on Algebraic Groups (S. Ramanan, ed.), pp. 225-249, Manoj Prakashan, Madras, 1991.
[Kn2] F. Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995), 285-309.
[LV] D. Luna, Th. Vust, Plongements d'espaces homogènes, Comment. Math. Helv. 58 (1983), 186-245.
[Pa1] D. I. Panyushev, Complexity of quasiaffine homogeneous varieties, t decompositions, and affine homogeneous spaces of complexity 1, Lie groups, their discrete subgroups, and invariant theory, 151-166, Adv. Soviet Math., vol. 8, AMS, Providence, 1992.
[Pa2] D. I. Panyushev, Complexity and rank of actions in invariant theory. Algebraic geometry 8., J. Math. Sci. (New York) 95 (1999), no. 1, 1925-1985.
[Tim] D. A. Timashev, Classification of G-varieties of complexity 1, Izv. Akad. Nauk SSSR Ser. Mat. 61 (1997), no. 2, 127-162 (Russian). English translation: Math. USSR-Izv. 61 (1997), no. 2, 363-397.
[Vin] E. B. Vinberg, Commutative homogeneous spaces and co-isotropic symplectic actions, Uspekhi Mat. Nauk 56 (2001), no. 1, 3-62 (Russian). English translation: Russian Math. Surveys 56 (2001), no. 1, 1-60.
[VK] E. B. Vinberg, B. N. Kimelfeld, Homogeneous domains on flag manifolds and spherical subsets of semisimple Lie groups, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 12-19 (Russian). English translation: Funct. Anal. Appl. 12 (1978), no. 3, 168-174.
[VP] E. B. Vinberg, V. L. Popov, Invariant theory, Algebraic geometry 4 (A. N. Parshin, I. R. Shafarevich, eds.), Itogi Nauki i Tekhniki, Sovrem. Problemy Math., Fundam. Napravl., vol. 55, pp. 137-309, VINITI, Moscow, 1989 (Russian). English translation: Algebraic geometry IV, Encyclopædia of Mathematical Sciences, vol. 55, pp. 123-278, SpringerVerlag, Berlin-Heidelberg, 1994.

Department of Higher Algebra, Faculty of Mechanics and Mathematics, Moscow State University, 119992 Moscow, Russia

Current address: Institut Fourier, UFR des Mathématiques, UMR 5582, B. P. 74, 38402 Saint-Martin d'Hères CEDEX, France

E-mail address: timashev@mech.math.msu.su
URL: http://mech.math.msu.su/department/algebra/staff/timashev

[^0]: Date: May 29, 2003.
 2000 Mathematics Subject Classification. 14L30, 20G05, 22E46.
 Key words and phrases. homogeneous space, complexity, multiplicity, Demazure module.

 Supported by the NATO research scholarship 350590A.
 Thanks are due to Institut Fourier, where this work was completed.

