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ABSTRACT. We study the varieties of reductions associated to the four
Severi varieties, the first example of which is the Fano threefold of index
2 and degree 5 studied by Mukai and others. We prove that they are
smooth but very special linear sections of Grassmann varieties, and ra-
tional Fano manifolds of dimension 3a and index a +1, for a = 1,2,4, 8.
We study their maximal linear spaces and prove that through the general
point pass exactly three of them, a result we relate to Cartan’s triality
principle. We also prove that they are compactifications of affine spaces.
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1. INTRODUCTION

1.1. Preliminary: Reductions of Quadrics. Let P" = P(V;,41), V41 =
C"*1 be the complex projective n-space, and let P = P(Vn+1), Vn+1 =
Hom(Vy,41,C), the dual projective n-space. Let @@ be a smooth quadric
in P". A non-singular reduction of @ is any n-simplex A C P" (equiv-
alently, any set of » + 1 independent point in ]f”"), such that in homo-
geneous coordinates (r) = (x1 : -+ : Zpt1), defining the (n — 1)-faces
A;=(z;=0),1=1,...,n+1of A, the quadratic form Q(z) defining the
quadric Q = (Q(z) = 0) becomes diagonal. The hyperplanes h; = (z; = 0),
spanned on the (n —1)-faces A;, 7 =1,...,n+1 of A , are the principal axes
of () defined by the reduction A.

The (n + 1) principal axes h; defined by a (nonsingular) reduction A of
Q are also the vertices of the dual simplex A C P to A; and the fact that
A is a reduction of ) means that the point Q € P(Sym? Vn+1) lies in the
projective n-space II" = II"(A) spanned on the Veronese images ¢; of the
axes h;, 1 = 1,...,n + 1. That is:

(%) The family Red®(Q) of non-singular reductions of the smooth quadric
Q C P" is isomorphic to the family of (n+1)-secant n-spaces to the Veronese
n-fold vo(P™) passing thourgh Q.

1.2. Reductions in Jordan algebras. We shall see that the projectivized
simple Jordan algebras are the natural projective representation spaces where
one can define analogs of reductions in a way similar to the case of quadrics.

On the one hand, the observation is that the space P(W) = P(Sym? V,,;1)
is an irreducible projective representation space of the group G = SLj4;.
Moreover P(Sym? Vn+1) is a prehomogeneous projective space of SLy1,
i.e. the group G = SL, ;1 acts transitively over an open subset of this space
— the set P(Sym? V1) — Det of quadrics of rank n + 1. The last identifies
the varieties of reductions of any two quadrics of rank n + 1.

On the other hand, the Veronese variety v (]f””), which is the closed orbit
of the projective action p of SL,.1 on P(Sym? V1), is isomorphic to
the projective n-space. This makes it possible to define the reductions as
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simplices with faces defined by intersections of coordinate hyperplanes in
Pr.

In the above context, it is natural to look for smooth projective varieties
that are, in some way, analogs of the projective space. The most natural
possible analogs of the projective space are the Severi varieties AP? — the
Veronese models of the projective planes over the 4 complexified composition
algebras A = R, C, H, O, and the varieties of Scorza — the projective n-spaces
AP, n >3 over A =R C,H [26, 31].

The ambient projective spaces of all the varieties AP" — of Severi, as
well of Scorza — are projectivized prehomogeneous spaces. The represen-
tation spaces supporting the varieties AP", n = 2,4 = 1,2,4,8 and n >
3,a = 1,2,4 are exactly the spaces of all the simple complex Jordan alge-
bras P(Jn+1(A)) of rank n > 3. In particular, for A = R = C one obtains
again the Jordan algebra J,1(R) = Sym? C"*! of symmetric matrices of
order n + 1.

1.3. The principal results and structure of the paper. In this paper
we treat the case n = 3, i.e. the question about the description of the vari-
eties of reductions in the four projectivized simple complex Jordan algebras
of order 3.

The four complex composition algebras A = R, C, H, O are the complexifi-
cations of the four normed division algebras A = R, C, H, O — the reals, the
complexes, the quaternions, and the octonions. As complex vector spaces
these algebras have correspondingly dimensions ¢ = dim cA =1,2,4,8; in
particular R = C.

For any a = 1,2,4,8, the Jordan algebra J3(A) is the complex vector
space of A-Hermitian matrices of order 3. Its projectivization contains three
types of matrices, depending on the rank (which can be defined properly even
over the octonions). In particular, the (projectivization of the) set of rank
one matrices is the Severi variety X, the projective A-plane, a homogeneous
variety of dimension 2a.

For a point w € PJ3(A) defined by a rank three matrix, a non-singular
reduction of w is a 3-secant plane to X, through w — see 1.1(x). The
projection from the fixed point w sends the quasiprojective set Y,? of non-
singular reductions of w isomorphically to the family of 3-secant lines to the
projected Severi variety X, inside the projective space PJ3(A), = P3¢+! of
traceless matrices; and the projective closure Y, of Y in the Grassmannian
G(2,TJ3(A),) = G(2,3a+2) is the variety of reductions of w, our main object
of study.

In the first section we relate the family Y of simple reduction planes with
another series of homogeneous varieties X*. These varieties appear in the C-
column of the geometric Freudenthal square explored in [17] (while the Severi
varieties are those of the C-line). Specifically, we note that the choice of w
gives an embedding in these varieties X of a copy X, of a variety from the
R-column of the magic square. Then, we prove that the choice of a reduction
plane gives an embedding in X2 of what we call a triality variety Z., a variety
from the 0-column of the magic square. We give an interpretation of these
varieties as zero-set of sections of homogeneous vector bundles whose spaces
of global sections are precisely the Jordan algebras J3(A). This is another
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example of the fascinating geometry related to Freudenthal’s magic square,
the new feature here being, while we usually understand the square line by
line, the geometry of the first three columns is deeply interwoven with that
of the first two lines.

In the second section, we focus on the beautiful geometry of the comple-
tion Y, of Y0, the variety of reductions. This subvariety of G (2, J3(4)o) has
dimension 3a, and is endowed with a natural action of the automorphism
group SO3(A) := Aut(J3(A)) of the Jordan algebra. We prove that Y, has
four SO3(A)-orbits, which we describe explicitely: they have codimension
0, 1, 2 and 4 (Proposition 3.2). We prove that Y, can be defined as a linear
section of the ambient Grassmannian G(2, J3(A)g), in its Pliicker embedding
(Proposition 3.1). For a > 1, this section is non transverse, not even proper.
Nevertheless, we prove that Y, is a smooth subvariety of G(2, J3(A)o) (The-
orem 3.11). This unexpected phenomenon is related to the presence in Y, of
large linear spaces: namely, Y, is covered by a family of P*’s parametrized
by the Severi variety X,. We prove that the stabilizer of a generic point of
Y, is the semi-direct product of a triality group by a symmetric group G4
(Propositions 3.8). Moreover, exactly three P%’s pass through that point,
which are permuted by the symmetric group &3, obtained as the quotient
of &4 by the normal subgroup of permutations given by products of two
disjoint transpositions. This leads to a very nice geometric picture of the
Lie algebra isomorphism

503 (A) = t(A) S7) Al @ AQ @ A3

(see 2.7.1 for the notations), which was used in [18] in a very different
context. This geometric occurence of triality completes the picture given by
E. Cartan in his paper on isoparametric families of hypersurfaces, the first
geometric appearance of the exceptional group Fj [5].

Using the geometry of linear subspaces on Y,, we prove that the point-line
incidence variety Z, over Y, is the blow-up of the projected Severi variety
X, in PJ3(A)y (Proposition 3.16). An easy consequence is that Y, is a
smooth Fano manifold of index a + 1 (and dimension 3a) with a cyclic Pi-
card group. We also compute its Betti numbers, and its degree with respect
to the Plucker embedding. Finally, we use the group action to prove that Y,
is a minimal compactification of C3¢. More precisely, the maximally degen-
erate hyperplane sections of Y, are parametrized by its closed orbit (which
identifies with the space of special lines on the hyperplane section X0 of
the Severi variety), and their complements in Y, are affine cells (Theorem
3.22). Remember that the only minimal projective compactification of C?
is the projective plane, and that there exists only four types of such com-
pactifications of C3. Several people asked for the classification of minimal
compactifications of C", but very few explicit examples seem to be known.
Our varieties of reductions give a series of such examples.

The case a = 1 is classical: Y; is a transverse intersection of the Grass-
mannian G(2,5) C P? with a codimension three linear subspace. This is the
Fano threefold of degree 5, studied in particular by Mukai [25]. The fact that
Y; is a compactification of C* was discovered by Furushima (see [11] and
the references therein). We realized that the second variety of reductions Y3
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also appears in the litterature, in a slightly disguised form: it is called in
[30] the variety of determinantal nets of quadrics. In our interpretation, it is
rather the space of abelian planes in sl3, and is therefore closely connected
with the commuting variety of sl3. We show in the last section that it is
the image of one of the two extremal contractions of the punctual Hilbert
scheme Hilb?P? (the other one is the Hilbert-Chow morphism, whose image
is of course singular). Since Y5 is a Fano manifold of index 3 and dimension
6, a generic codimension three linear section is a smooth Calabi-Yau three-
fold. We conclude the paper by a computation of the Euler number of this
Calabi-Yau manifold, showing that its general deformation is not induced
by a deformation of the section.

2. REDUCTIONS IN THE JORDAN ALGEBRAS J3(A)

2.1. The four special complex Jordan algebras of order 3.

Let A =R,C,H, O, the reals, the complexes, the quaternions and the oc-
tonions, be the four real division algebras. As real vector spaces, they have
dimensions correspondingly ¢ = 1,2,4,8. They are endowed with non de-
generate quadratic forms ¢ such that ¢(zy) = ¢(z)q(y). We denote by q(z,y)
the associated scalar product, so that ¢(z) = ¢(z,z). By orthogonal sym-
metry with respect to the unit element 1, a vector x € A is transformed
into its conjugate Z € A, which is such that xZ = Zz = ¢(x)1. The real
and imaginary parts of x are defined by the identities x = Re(x)1 + I'm(z),
Z = Re(z)1 — Im(x).

For any a = 1,2,4,8, let let A = A ®gr C be the complex composition
algebra with multiplication (z1 ® ¢1)(z2 ® ¢2) = z1272 ® ¢1¢2 and conjugation
z®c =T ®c. In particular R 2 C, C =2 C® C, and H = M,(C), the
algebra, of complex matrices of order 2.

For any a = 1,2,4,8 the space

C1 I3 I2

J5(A) = { T3 ¢ 11| :¢€Cox; € A} ~ gdat3
Tz T1 C3

of A-Hermitian matrices of order 3, together with the Jordan multiplication

Ao B = (AB + BA) is a Jordan algebra, i.e. (J3(A),0) is commutative

and the equality

(AoB)o(AocA)=Ao(Bo(AoA))
holds for any A, B € J5(A).

2.2. The Severi varieties and reductions. On J3(A) there is a well
defined determinant det, a cubic form which can be defined in terms of the
trace of a matrix and its second and third powers, by the formula which is
usual in M3(C).

For a = 1,2,4,8 the subgroup of GLc(J3(A)) of complex-linear transfor-
mations preserving the determinant, is the product of its center by the de-
rived group SL3(A). This semi-simple group is isomorphic correspondingly
to SL3, SLs x SL3,SLg, Eg; and in fact the action p, : SL3(A) X J5(A) —
J3(A) is an irreducible representation of SL3(A) in the complex vector space
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J3(A) = C3¢+3, More precisely, let Ay, Ay + A, As, Eg be correspondingly
the Dynkin diagrams of SL3(A), a = 1,2,4,8. Then, in the notation of
[Bourbaki], we may consider that:

— The representation p; is defined by the weight 2w, i.e. p; is the 2-nd
symmetric power of the standard representation of SLs; in particular the
Jordan algebra J3(R) is isomorphic to the algebra Sym? C? of symmetric
complex matrices of order 3.

— The representation py is defined by any pair of weights (wj,wy), 1 <
i,j < 2 of the two copies (4%, AY) of As in the diagram of SL3 x SLs; in
particular J3(C) is isomorphic to the algebra ®% C? of matrices of order 3.

— The representation py is defined by ws or by wy , i.e. py is the second or
the fourth alternative power of the standard representation of SLg; in par-
ticular J3(C) is isomorphic to the algebra A? C® of antisymmetric matrices
of order 6.

— The representation pg is defined by any of the weights w; or wg of Fg.

Denote by p, also the projectivized action
pa : SL3(A) x PJ3(A) — PJ3(A)

on the projective complex space PJ3(A) = P3¢+2. The following is well-
known, see e.g. [28, 17]:

Lemma 2.1. The projective action of p, of SL3(A) splits PJ3(A) into a
union of 3 orbits

PJ3(A) = (PJs(A) —D3(A)) U (Ds(A) — AP?) U AP?,

where D3 (A) = (det = 0) and AP? are correspondingly the determinantal
cubic hypersurface and the locus of Jordan A-matrices of order 3 and of
rank 1. Moreover D3(A) = Sec(AP?) = the union of all the secant lines to
AP?; and AP? = Sing D3 (A).

The rank of a matrix with coefficients in Q is a rather delicate notion. In
this paper, it will suffice to consider that by definition, these three orbits in
PJ3(A) consist in matrices of rank 3, 2 and 1 respectively.

The varieties AP? = RP2, CP?, HP? and OP? can be interpreted as the
four complex projective A-planes, see [26]. From another point of view they
are also all the four Severi varieties [26, 31, 6]. They can be described very
explicitely:

Lemma 2.2. The Severi variety X, C PJ3(A) is defined by the equations
X? = trace(X)X, which generate its ideal. Its intersection with the affine
subspace of PJ3(A) on which the first diagonal coefficient is non zero is

1 =z gy
X,N{c1 #0} = { T zr Y|, x,y,EA} ~ G2,
Yy yzr yy

The Severi varieties really show up the geometry of projective planes.
They are covered by a family of projective A-lines AP' = Q?, quadrics of
dimension a, and two (generic) such A-lines intersect at a unique point.
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In the interpretation J3(R) = Sym? C, the R-plane RP? is the Veronese
image v2(P?) of the complex projective plane, and the hypersurface Ds (R)
is the symmetric determinant cubic in P(Sym? C). For J3(R) = ®2C3,
the C-plane CP? is the Segre variety P? x P2, and D5 (C) is the symmetric
determinant cubic in P(®2 C). For J3(H) = A? C®, the complex quater-
nionic plane HP? is the grassmannian G(2, 6), and s (H) is the pfaffian cubic
Pf C P(A? C%). At the end, the complex octonionic plane, or the complex
Cayley plane OP? C P(J3(0)) = P?6 is a smooth Fano 16-fold of degree 78
with Pic OP? = ZH, H being the hyperplane section, and Kgp: = —12H.

Weighted Dynkin diagrams of the Severi varieties X,

To the four Jordan algebras one can attach the algebra [J3(0) = C3 of
complex diagonal matrices of order 3, coming from the algebra 0 = (0).
Then the determinant hypersurface ID)( ) € J3(0) = P? is, of course, the
coordinate triangle A C P2, and the 0-plane (or the 0-th Severi variety)
0P? = v3 PV is the triple of vertices of A.

The five Severi varieties fill in the 2-nd line of the extended Freudenthal
square, see [LM]:

0 R C H O
R| 0 v(PY)  P(Tp2) IG(2,6) QOP§ | section of Severi
C| V3P° | w(P?) x2P? G(2,6) QP? Severi
H | x3P! LG( 6) G(3,6) Legendre
0| D Fpd Eg adjoint

Here we denoted by IG(2,6) (resp. LG(3,6)) the isotropic (resp. la-
grangian) grassmannian of isotropic 2-planes (resp. 3-planes) in C® with
respect to a symplectic form. The adjoint varieties are the closed orbits in
the projectivizations of the adjoint representations of the simple Lie alge-
bras.

As we will see below, the 0-th column will play an important role in the

description of the varieties of reductions in the Jordan algebras J3(A),a =
1,2,4,8.

Definition 2.3. (Reductions and reduction planes) Let a = 1,2,4,8,
and let w € PJ3(A)° = PJ3(A) — D3(A) be a projective rank 3 Jordan
matriz of order 3. Call a non-singular reduction of w any simply 3-secant
plane P? C P3¢+2 = PJ3(A) to AP? which passes through the point w.

2.3. The four varieties of reductions Y, C G(2,73(A)y). Let w €
PJ3(A)° = PJ3(A) — D3 (A) be as above, and let

Tw : PT3(A) ——» PJ3(A),,

be the rational projection from w. One can identify the base space PJ3(A),,
of 7, with the polar hyperplane P33T! C P3¢+2 to the rank 3 point w, defined
has follows: let det(X,Y, Z) be the polarisation of the determinant, i.e. the
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unique symmetric trilinear form on J3(A) such that det(X) = det(X, X, X).
Then the polar hyperplane to w is defined by the equation det(W, W, X') = 0,
where W € J3(A) is any representative of w.

Since the point w doesn’t lie in the secant variety Sec(AP?) = D3 (A) (see
Lemma, 2.1), then the projection 7, sends: (a) the Severi variety X, = AP?
isomorphically to its image X, C P3¢*L: (b) any non-singular reduction P?
of w to a line I which is simply 3-secant to Xj,.

Inversely, any line I C P3¢+! which is simply 3-secant to X, is a projection
from w of a unique plane P? € Y,2. Therefore 7, embeds the set of reductions
of w as a subset Y, of the grassmannian G(2, J3(A), ) of lines in Pdatl —
PJ3(A)y, which yields the following

Definition 2.4. For the point w € PJ3(A)° = PJ3(A) — D3(A), define the
variety You to be the closure of Y, in the grassmannian G(2,J3(A)w) =
G(2,3a + 2).

Since the group SL3(A) acts transitively on the points w € PJ3(A)?, as
well as on the Severi variety AP? then all the varieties Youw, w € PT3(A)°
are projectively equivalent, by the induced action of SL3(A) on G(2, J5(A)),
to the same variety Y,; and we let

Y, = a,l

where I is the projectivized unit matrix diag(1,1,1) € J3(A). Note that
J3(A); coincides with J35(A)g, the space of traceless matrices in J3(A).

2.4. The C-column. Denote by X® = P(T%), x*P? LG(3,6), E¢¢, a =
1,2, 4,8 the four varieties of the C-column of the Freudenthal square. By the
preceding, for any a = 1,2, 4, 8 the choice of the Jordan algebra J3(A) defines
uniquely the group SL3(A), and the variety X, = AP? C PJ3(A) in the C-
line of the Freudenthal square. Similarly, J3(A) defines uniquely the variety
X% in the C-column as the closed orbit of the projective representation p®
of the group SL3(A), as follows; as above we use the notation of weights
from [3]:

— p! is the adjoint representation of SLs3, defined by the weight w; + wy
of AQ.

— p? is defined by any pair of weights (wi,wy), 1 < 4,5 < 2 of the two
copies (A}, AY) of As in the diagram of SLs x SLg; in particular J3(C) is
isomorphic to the algebra ®2 C? of matrices of order 3.

— p* is defined by the weight w3 of As giving the 3-rd alternative power
of the standard representation of SLg;

— p8 is the adjoint representation of the group Fg given by the weight ws
of the diagram FEj.

2.5. Points in PJ3(A) and isotropic varieties from the R-column.

2.5.1. Points and isotropic groups. Let p, be the action SL3(A) in PJ73(A).

For a point w € PJ3(A)° define SO3(A),, C SL3(A) to be the connected
component in the isotropy subgroup of w. Since PJ3(A)° is a pg-orbit of
SL3(A), then the group SL3(A) permutes the set

{503(A)w C SL3(A)>'LU € PJZ&(A)O}
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of all these copies this way identifying any of them with the subgroup

SO3(A) = SO3(A);r C SL3(A) preserving the projective unit matrix I =

diag(1,1,1). By [7], Proposition 3.2, this group SO3(A) coincides with the

automorphism group AutJ3(A) of the Jordan algebra [J3(A). It preserves

not only the determinant, but also the linear form trace(X) = det(I, 1, X)

and the quadratic form Q(X) = trace(X?) = det(I, I, X)? — 2det(I, X, X).
The following result is well-known, see e.g. [1]:

Lemma 2.5. The action of SO3(A) on the Severi variety X, has ezxactly
two orbits, the hyperplane section Xg = X, NPJT3(A)g and its complement.

For a = 1,2,4,8, SO3(A) is correspondingly SOs, SL3, Spg, Fy, see e.g.
[17]. We denote by SO3., SL3w, Spew, Faw the copy of SO3(A), in
SLg(A)w = SLs, SL3 x SLs, SLg, Fg defined by w € ]P’jg(A)o.

For a fixed, w € PJ3(A)°, the projective representation p® of SL3(A)
induces a projective representation p®|,, of the subgroup SO3(A). The rep-
resentation p?|,, is already reducible; in fact one has, in terms of highest
weights:

—fora =1, p!|, = 4w; @ 2wy, and we let p}, = 4w;.

—for a =2, p?|ly = 2wi @ wi, and we let p2, = 2w;.

—for a =4, pl, = w3 ® w; and we let pl = ws.

—fora =8, p®|ly = w1 ® wy, and we let p8 = wi.

For any a = 1,2, 4, 8, the subrepresentation p% of SO3(A),, is irreducible;
and the choice of w € PJ3(A) defines uniquely the projective representation
subspace P(V,%2) of p2, in the space P(V?) of p®. For a = 1,2,4,8 denote
these subspaces correspondingly by

P(Sym2 C?) C P(sl3), P(Sym2ZC?) C P(®? C3),

P(A;'C%) CB(ALCY),  Plfaw) C Ble).
In particular dim P(V?) = 4,5,13,51 in the space P(V*) of dimension
7,8,19,77.

Definition 2.6. (Isotropic spaces and isotropic varieties) For w €
PJ3(A)°, a = 1,2,4,8 we call the subspace V.2 C V* (respectively the
projective subspace P(V,2) C P(V?)) the isotropic subspace of w (respec-
tively the isotropic projective space of w). We call the closed SO3(A).,, -orbit
X3 C P(V) the isotropic variety of w.

For a = 1,2,4,8, denote the isotropic subvariety X7 C X* by
v4(PY)y CP(TR), v2(P?)w C X*P?, LGyu(3,6) C G(3,6) and Ff4 C Eg.

Now the following is direct:

Lemma 2.7. Let a = 1,2,4,8. Then any w € PJ3(A)° defines uniquely the
isotropic subvariety X3 C X in the R-column of the Freudenthal square as
the intersection

X3 =X"NP(V,2)
of X® C P(V*) with the isotropy projective subspace P(V,3) of w.



10 A.ILIEV, L. MANIVEL

N e—O
*«—o0

=~ e

Weighted Dynkin diagrams of the varieties X® and X,

The weighted Dynkin diagrams of the varieties X/’ are obtained by folding
those of the varieties X,,.

2.5.2. Isotropic varieties as zero-sets. In this section we let a > 1. It
turns out that the isotropy subvarieties X2 C X® are zero-sets of sections of
a homogeneous vector bundle £% on X*. Recall that an irreducible homoge-
neous vector bundle on a homogeneous variety X = G/P is determined by
the highest weight of the corresponding P-module, which can be encoded
in a weighted Dynkin diagram. To get the weighted Dynkin diagram of
our vector bundle on X%, we just superimpose the weighted diagram of the
Severi variety X,, to that of X@.

Since the weighted Dynkin diagram of X* has a twofold symmetry, while
that of X, does not, we obtain in fact two vector bundles £* and £ on X,
which can be deduced one from the other through the action of an outer
involutive automorphism of X¢.

Proposition 2.8. The vector bundles £* and £ on X® are generated by
their global sections, and their spaces of global sections are isomorphic to the
Jordan algebra J3(A) and its dual J3(A)*. Their ranks and determinants
are as follows:

rank 8 =6, det £ = O(3),
rank £* = 3, det £* = O(2),
rank €% = 2, det £2 = O(1,2).

Proof. The first assertion is an immediate consequence of the Borel-Weil
theorem. The rank of £* (and £%) can be read off its weighted Dynkin
diagram, since the P-module that defines £% is encoded in the weighted
diagram which is obtained after deleting the black nodes that define X?.
To compute the determinant, we need to list the weights of this P-module,
which are just the images of the highest weight by the Weyl group of P
(indeed, theses modules are minuscule, as we can see case by case). Taking
the sum of these weights, we get the weight of the determinant. O

More explicitly, the vector bundles £% and £ on X® can be described as
follows. On X2 = P? x P?, we have the pull-backs O(1) and O(1)' of the
hyperplane line bundles on the two copies of P2, and the pull-backs 7" and
T' of the rank two tautological bundles; then £2 and £?' are the bundles
Hom(T,0(1)") and Hom(T',O(1)). On X* = G(3,6), let T and @ denote
the tautological and quotient vector bundles, both of rank three; then £*
and £* are the bundles A?Q and A?T™*.
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The case of X8 = E'gd is slightly more subtle. Recall that the adjoint
variety E3¢ is the closed orbit in Peg. If X € eg defines a point of the adjoint
variety, consider its action dpg(X) on J3(0) (see 2.2). We claim that dpg(X)
has rank six. To check this, we use the fact that eg contains a copy of sog
whose action on J3(0Q) can be described very explicitely. Recall that the
infinitesimal triality principle asserts that for any g = g1 € so0g, there exists
uniquely defined operators go, g3 € s0g such that go(zy) = zg1(y) + g3(x)y
for all z,y € O. Then the action of g on J3(0) is given by the formula
[16, 13, 20]

cC1 T3 I9 0 93(3:3) 92(552)
dps(g) | Z3 c2 z1 | =|gs(zs) 0  gi(z1)
Ty ZT1 3 92(z2) gi(z1) 0

When g belongs to the adjoint variety of sog (which is naturally contained
in that of ¢g), g1, 92 and g3 have minimal rank, that is rank two, so clearly
dpg(X) has rank six. Therefore we get two vector bundles whose fibers
at X € B are J3(0)/Ker dpg(X) and (Im dpg(X))*, respectively. These
bundles are homogeneous of rank six, and respectively quotients of the trivial
bundles with fibers J3(Q) and J3(Q)*: they are our bundles £ and £%'.

Distinguishing the two bundles £* and £%' is really a matter of convention.
Our choice will be such that the space of global sections of the vector bundle
&% is the Jordan algebra J3(A), rather than its dual.

Since for a section w € H(X? £%)° = J3(A)°, and ¢ € C*, the zero-
sets Z(w) and Z(cw) coincide, one can regard equivalently the elements
w € PJ3(A) as projective sections of £, and their zero-sets Z(w) C X°.

Proposition 2.9. Let a > 1. Then for any projective section
w € P(H(X?,£%)°) = PJ3(4)°,
the zero-set Z(w) C X* coincides with the isotropy subvariety X3 C X.

Proof. We treat the case a = 8, the other ones are simpler. Since PJ3(0)°
is an orbit of Fg, we may suppose that w = I, the identity of J3(0). By the
description we have just given of £8, a point X € E3¢ belongs to the zero-set
Z(I) if and only if I € Ker dpsg(X), which means that X belongs to the
isotropy Lie algebra of I. But recall that the (connected component of the
identity in the) isotropy group of I is the automorphism group AutJ73(0) =
Fy, hence the isotropy Lie algebra is f4. We conclude that Z(I) = EgINPf, =
Fpa, a

2.6. The 3-secant Lemma. Let G(2, J3(A)) be the grassmannian of lines
in PJ3(A), and let A(A) C G(2,J3(A)) be the subset of lines L C PJ3(A)
which are not simply 3-secant to the determinant hypersurface D5 (A). Clearly
A(A) is a hypersurface in G(2, J3(A)), so A(A) € |Og2,7,(a)) (d)| for some
d in the Pliicker polarization of G(2, J3(A)); and we shall see that d = 6.
Indeed, d is the number of intersection points of A(A) with the general line
A C G(2,J3(A)). Such a general line A is a plane pencil of lines in a general
plane P? C PJ3(A) passing through a fixed general point w € P2. The plane
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P2 intersects D3 (A) at a smooth cubic C; and now the Hurwitz formula im-
plies that through w pass exactly d = 6 lines L; € A, ¢ = 1,...,6 which are
tangent to C.

Lemma 2.10. Let L C PJ3(A) be any simply 3-secant line to D3 (A), i.e.
L e G(2,T35(A))°.

Then inPJ35(A) there exists a unique simply 3-secant plane (or a reduction
plane — see 1.5) to the Severi variety X, = AP? which passes through L.
Denote this plane by

]P)Q = ]P)z = <517€27€3>7
€1,€2,€3 being the three intersection points of P? with X,. The intersection
A, = P2 N D3(4)
is a triangle with sides Ly = (e;,¢4), {3,7,k} = {1,2,3}.

Proof. Let 1,72,73 be the three intersection points of L and D3(A). By
[31], for any 7;, i = 1,2,3 there exists a unique subspace ]P’ghLl C PJs3(A)
which passes through ; and intersects the Severi variety X, along a smooth
a-dimensional quadric Q; C IP’;H'I. Moreover any space ]P);”'1 is swept out
by all the lines through v; which are bisecant or tangent to X,; and any
two quadrics @; and @; intersect each other at a unique point e, {3, ,k} =
{1,2,3}.

We shall see that the plane (e1,e9,e3) pases through L. Indeed, let e.g.
e3 € X, be the intersection point of the quadrics @ and Q2, let P3 be the
plane spanned by L and €3, and let L; be the line 7;e3, ¢ = 1, 2.

Since the line L; lies in IP"fH and passes through v;, it is bisecant to X,:
the intersection L; N X, contains €3 and another point &/.

L Ly

€1 V2

€3

€2
!
L3

Since P2 O L and the general point of L has rank 3, the plane P% can’t
lie entirely in the determinant cubic D3(A). Therefore, it intersects Ds(A)
along a 1l-cycle A of degree 3. Being bisecant to X,, the two lines Lq, Lo
are components of A. Moreover A passes through the rank 2 point 3 € ]P’g.
Therefore, there exists another line Lg C IP’%, passing through 3, such that
the cubic cycle A = L1+ Lo+ Ls. This line is bisecant to X, at its intersection
points with L; and Lo, which must coincide with €} and &); and now the
uniqueness of the triple (e1,e2,¢€3) yields €} = ¢; and P% = P2.
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In addition, if in the above construction one assumes that one of the lines,
say L; degenerate to a tangent to X, at €3, i.e. €) = €3, then the line Lo
will degenerate to a multiple (double or triple) component of the intersection
cubic cycle A of P4, i.e. either A = Ly +2Ls, or L1 = Ly and A = 3Ls. But
then L can’t be simply 3-secant to D3 (A), since L C P2 and the intersection
cycle L N D3 (A) must be contained (as a set) in the support of A. O

Corollary 2.11. The group SL3(A) acts transitively on the set of reduction
planes in PJ3(A).

Proof. From the proof of the 3-secant lemma, we see that a reduction plane,
i.e. a simply 3-secant plane to X, is uniquely defined by a simply 3-secant
line to D3 (A). So we just need to prove that SL3(A) acts transitively on the
set of these lines.

But it was observed in [28] that the action of SL3(A) on J3(A) & J3(A)
is prehomogeneous, the dense orbit being given by the complement of the
discriminant hypersurface, that is, precisely, the set of couples (z,y) in
J3(A) & J3(A) which are independent, and such that the line 7y is simply
trisecant to D3 (A). Our claim obviously follows. O

Remark. Of course, the prehomogeneity of J3(A) @ J3(A) is not an ac-
cident. Indeed, consider the exceptional Lie algebras f4,¢s,¢7,¢s. Their
adjoint representations correspond to an extremal node of their Dynkin di-
agram. Delete its unique neighbour. Then the resulting (non connected)
Dynkin diagram is that of SL3(A) x SLg, and if we darken the nodes which
neighboured the one which has been erased, we get the weighted Dynkin di-
agram of its representation J3(A) ® C? = J3(A) @ J3(A). By a Theorem of
Vinberg, in such a situation, the action of SL3(A)x GLy on J3(A) @ J3(A) is
prehomogeneous (see [27]). In a sense, the previous Corollary is thus really
a consequence of the existence of exceptional simple Lie algebras.

2.7. Lines in PJ3(A), reduction planes and triality varieties from
the 0-column.

2.7.1. Lines, reduction planes and triality subgroups. In the hypotheses and
notations of Lemmas 2.7 and 2.10, we shall see that the isotropic varieties
X2 of all the points w € P2 — A have a common subvariety — a triality
subvariety Z.. We shall regard one of the rank 3 points w € L as fixed;
this way identifying the unique 3-secant plane through L D w to a non-
singular reduction of w. Let v € L C PJ3(A)° be another point of L and let
A =P2NDs(A).

Lemma 2.12. The isotropy subgroup Ty, , = SO3(A)y, N SO3(A)y of the
pair (w,v) is, up to a finite group, a copy of the triality group T(A).

Recall from [20] that this triality group is defined as

T(A) ={g = (91,92, 93) € SO(A)*, g2(zy) = g1(z)g3(y) Vz,y € A}.

We have T(A) = 1,Gy X Gy, SLy X SLy X SLo, Sping respectively for
a =1,2,4,8. Denote its Lie algebra by

t(A) = {u = (u1,u9,u3) € 50(A)?, ui(zy) = uo(x)y + zus(y) Vz,y € A}



14 A.ILIEV, L. MANIVEL

By construction, t(A) has three natural actions on A, which we denote
Ay1,Ay, Ag. By a special case of the triality construction of Freudenthal’s
magic square [18], we have a natural decomposition

EO(A) = Derjg,(A) = t(A) DA DA D A3.

The Lie bracket can be explicitely described in this decomposition, but what
we will need again and again in the sequel is the explicit action on J3(A),
which is given by the following formulas [16, 13]. Let u = (uy, us,us) € t(A)
and a; € A;. Then

T T3 To 0 ug(ws) wuz(ze)

(1) ulTy 2 T = ’U3(.’I}3) 0 Ul (371) ,
T3 T1 T3 uz(w2) u1(z1)
Ty T3 T 0 —a1T3 T3a1

(2) a1 |z3 2 =1 = —zoa1 —2q(a1,z1) (re2—r3)ar |,
Ty Ty T3 aizy (ro—r3)ar  2q(ai,z1)
T T3 X2 2q(a2, iEQ) a1 (7"3 — ’1"1)0,2

3) a|mT3 r2 x| = z102 0 — T30 ,
Ty T1 T3 (r3 —r1)az —agxs —2¢(ag,zs)
TL T3 T2 2q(a3,z3) (ro—ri)as a3ty

(4) a3|x3 2 x| = |(re—r1)az —2q(a3,x3) —z2a3
Ty T1 T3 z1a3 —asra 0

Recall that g is the natural scalar product on the complexified normed al-
gebra A. Using these formulas we can easily prove the Lemma.

Proof. Since the action of SL3(A) on the set of simply trisecant lines to
D3 (A), we can suppose that L is the line of trace zero diagonal matrices,
whose intersection with D3 (A) is the triple of points in PJ3(A) defined by
the matrices diag(0,1,—1),diag(1,0,—1) and diag(1,—1,0). We then read
off the previous formulas that the subalgebra of s0(A) consisting of operators
that kill every diagonal (traceless) matrices, is exactly t(A). This implies
the claim. O

Note that T, , = T,

w' o for any other couple (w',v") of rank 3 points of

P2, such that the line L' = w'v’ does not pass through a vertex e; of A.
Indeed, the induced action of Ty , C SL3(A) on PJ3(A) must fix together
with w,v also all the lines (hence — all the points) in the unique reduction
plane ]P’g passing through the line L = ww.

Therefore, for any reduction plane P? C PJ3(A) the intersection
T4 = N{SO3(A), : u € P2 — A}

is, up to a finite group, a copy of the triality group of the 0-column of the
Freudenthal square. Moreover,

T = T&v = SO3(A)y N SO3(A),

for any pair w,v € P?, w # v, such that the line L = wWov does not pass

through a vertex e; € AP? of the triangle A = P2 N D3 (A).
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2.7.2. Lines, reduction planes and triality subspaces. Let w,v € P, — A be
as above, and let P(V,%) and P(V,?) be their isotropic subspaces of C P(V%).
Then the intersection subspace P(V?) = P(V,3) NP(V,?) = N{P(V?) : u €
P2— A} in P(V?) is a projective representation space of their common triality
subgroup Ty, ,, = T,

Definition 2.13. (Triality subspaces) For any reduction plane P? =
(e15€2,e3) C PJ3(A) we call the projective subspace P(VE) C P(V?®) the
triality subspace of P2.

Proposition 2.14. Let a > 1, with the same notations as above.
(1) Z, = XgNXy = Z(w)NZ(v) is a copy of the triality variety Z* =
V3P, x3PL, D from the O-th column of the Freudenthal square.
(2) 28,=28:=0{Xs:ueP? - A} =n{Z(u) :u € P2 - A}

Proof. The second assertion follows from the previous discussion. Let us
prove the first assertion. The case a = 2 is easy, so we begin with a = 4:
here w,v are generic symplectic forms on C%, and Z;},’U is the intersection
in G(3,6) of the lagrangian grassmannians LG, (3,6) and LG, (3,6). It is a
classical fact that w and v can be simultaneously diagonalized, which means
that we can find three planes P;, P, P; in general position in C®, which
are orthogonal with respect to both w and v. It is then easy to see that
a 3-plane which is isotropic with respect to w and v must be generated by
three lines I; C P;. Hence the isomorphism LG (3,6) N LG,(3,6) = x3P.
See [15] for more details.

Suppose now that a = 8, and let again L. = wv be the line of traceless
diagonal matrices in J3(Q). By the description of £8 given in 2.5.2, we have
Z(w) N Z(v) = B8 N Psog = D3 O

2.8. Triality varieties as zero-sets. Let w € PJ3(A)°, a > 1; and denote
by Fg = €% xg the restriction of the homogeneous vector bundle £¢ — X,
to the isotropic subvariety X C X®. One can check case-by-case that F
is an irreducible homogeneous vector bundle on X2, and that its space of
global sections is the polar hyperplane J3(A),,. Since X is defined as the
zero-locus of w, considered as a global section of £% on X ¢, this isomorphism

comes from the natural maps
Ts(B)w ~ J5(A)/Cw ~ HY(X?,£%)/Cw —5 HO(X2,F2).

For any w € PJ3(A)° the polar hyperplane PJ3(A),, C PJ3(A) to w does
not pass through w, and we can identify the base of the rational projection
pw of PJ3(A) from w with PJ3(A),,. This identifies the lines L C PJ3(A)
which pass through w and the projective sections wy, € P(X2,F5), i.e.

Pw : PT3(A) = PT3(A), =P(XE,FS), L wr = py(L).
We shall denote by Z(wy) C X& the zero-set of the projective section wy, of
Fa.
For the fixed w € PJ3(A)°, let U, C G(2,J3(A)) be the subset of all

simply 3-secant lines to D3(A) which pass through w. In particular p,,
embeds U, in PJ3(A),, and its complement

A(A)y =PJ3(A)y — Uy C PT3(A)y
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is a hypersurface of degree 6 in PJ73(A),, — the discriminant hypersurface of
w.

Let L € U,,. By the preceding one can identify L with a projective section
wy, € Uy C PJ3(A), = PH(X2,F%); and we shall identify the zero-set
Z(wr) C X% of wr. First, by Lemma 2.10, through the line L C PJ3(A)
passes a unique simply 3-secant plane P? = ]P’g( L) to Xg; let IP;(L) € Y? be
the proper p,,-image of IP’E(L) in G(2,J3(A)y). Second, by Proposition 2.9,
for any v € PJ3(A)° the zero-set Z(v) C X® coincides with the isotropic
subvariety X¢ C X° Third, by Proposition 2.14, for any v € L° = L N
PJ3(A)° the intersection Z§ := X2 N XY is a copy of the triality variety Z¢,
embedded in the isotropy subvariety X C X?; equivalently

Zt = Z(wr) =N{Z(u) : u € L°}
is a copy of the triality variety Z¢ C X.

2.9. The zero-set map. We can identify the lines L; in IP’f:(L) passing
through the point w, with the elements of the line IE”;(L) = pw(]P’z(L)) C

PJ3(A)y. Among these lines only three — the lines L., = we;, 1 = 1,2,3 do
not belong to Uy. Let & = wy,, be their projections to PJ3(A),. Then

75 = 0{Z(wr,) : pu(l) € Py, — £(0)}
where g(L) = {51,52,53}.

Through any point w;, € PH?(X2,F%)° passes a unique 3-secant line
Pl = ]P)i( L)~ the proper p,,-image of the unique 3-secant plane ]Pf( L) which
passes through the line L; and this plane is simply 3-secant to the Severi
variety X®. In other words, if A(A),, C PJ3(A),, is the discriminant sextic,
then the open subset

PH'(Xy, Fy,)° = PT3(A), = PT3(A)w — A(A)y

is swept out once by the family of 3-secant lines ]P’é to YZ,; and the unique
line which passes through a point of PH?(X2, F%)° belongs to the open
subset Y? C Y, of non-singular reductions of w. One can regard such a
3-secant line P! equivalently as a reduction ¢ of w. By the preceding, all
the points on such 3-secant line P!, except the 3 points of intersection of P
with X,, are projective sections of F2 with the same zero-set — a triality
variety Z., defined uniquely by the reduction €. Moreover, two different
simply 3-secant lines P and P! (equivalently — two different non-singular
reductions € = (e1,¢&9,¢e3) and o0 = (01,09,03) of w) have different triality
varieties Z. and Z,. Indeed, two different reduction planes P? = (g1, €9, €3)
and P2 = (01, 09,03) in PJ3(A) define two different triality subgroups 7
and T¢ of SO3(A), hence two different triality subspaces P(V*) and P(V?),
and two different triality subvarieties Z¢ C P(V*) and Z2¢ C P(V2?).
We collect all these observations in the following

Proposition 2.15. Let a > 1, and let w € PJ3(A)°. Let py : PT3(A) —
PJ35(A)y be the rational projection from w to the polar hyperplane section to
w, and let X, CPJ3(A)y be the isomorphic projection of the Severi variety
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X, C PF(A) from w. Let Y? C Y* be the open subset of non-singular
reductions € = (e1,€9,€3) of w; and denote by

P2 = (e1,€9,€3) C PR(A) and Pl = py(P?) C PJ3(A)y

correspondingly the plane and the line of the non-singular reduction € € Y.

Denote by Z(X2)° the (non closed) family of zero-sets Z(v), for projective
sections v € PH(X%,F8)°. Then any Z(v) € Z(X2)° is a copy of the
triality variety Z® in X2, and there exists a 1:1-correspondence

Y2~ Z(X%)°, € Z.

described as follows:
1. Ife € Y2, then Z. =N{Z(v) : v € P! —€}.
2. If Z € Z(X$)°, then the closure of

{v e P(HY(XE, F2)) : Z(v) = Z.} CPHY(XZ,F2) =PT3(A)y

is a 3-secant line P} to X,,, corresponding to a non-singular reduction ¢ € Y2

such that Z = Z,.

This suggests to compactify Y? by embedding it into the Hilbert scheme
of X{ and taking the closure, but we will not do that.

We can also look at the sections Z(v) of projective sections v € PH?(X2, F2)
that do not belong to the open subset PH?(X%, F%). An interesting “degen-
eration” of this kind occurs when v is on a line joining, in some reduction
plane ]P’g, w to one of the three vertices ¢; of the simplex A = Li + Ly + Ls.
We obtain the following picture:

a 2 4 8
Z.  Vv3pY x3pl pgd
Z(v) PLvP® @3 xP! By

Note that we have three vertices of A, hence three varieties Z(vy), Z(v2), Z(v3)
containing Z.. For a = 2, we just have three points and we join two of

them by a line. For a = 4 we have a product of three P!’s, and we embed

the product of two of them into a three dimensional quadric. For a = 8,

t(0) = s0g C t(0) ® O; = s09 C f4 for each 1 = 1,2, 3, so there are naturally

three copies of Sping in Fj containing a given Sping, and there are three

ways, inside F2?, to embed the adjoint variety D¢ = G(2,8) in a copy of

B§Y = G(2,9). Once again, triality leads the game.

3. GEOMETRY OF THE VARIETIES OF REDUCTIONS

In this section we make a detailed study of our varieties of reductions.

3.1. Varieties of reductions are linear sections of Grassmannians.
Our first result is that, as it is well-known for the Fano threefold Y7, the
varieties of reductions are linear sections of the ambient Grassmannians.
But there is a first surprise:

Proposition 3.1. The wvariety of reductions Y, is a linear section of the
Grassmannian G(2, J3(A)g), but non transverse for a > 1, and not even of
the expected dimension.
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This will be proved in the next section.

The linear section is defined as follows. Recall that the automorphism
group AutJ3(A) = SO3(A); preserves the quadratic form Q(M) = trace(M?)
on J3(A)g, At the infinitesimal level, this implies that the action of SO3(A);
on J3(A)y induces a map from the Lie algebra sos(A) of SO3(A) to the
space of skew-symmetric endomorphisms A2J3(A). Explicitely, choose any
orthonormal basis X; of J3(A)¢; then the map is

u € 503(&) — ZXZ AN uX;.
i

In particular, by Schur’s lemma the wedge power A2 J3(A)q contains a copy
of s03(A) as submodule. It turns out that there is a very simple decompo-
sition

N J3(A)o = s03(A) @ U,,
where the module U, is given as follows:

a 1 2 4 8

503 (A) sl sl 5pg fa
Ua V6w1 ‘/3(411 S V3wz VLU1+w3 sz

Here we denoted by V,, the irreducible so3(A)-module of highest weight w,
and we used the same indexing of the weights as [3].

We can define the projection map 7 : A2J3(A)g — s03(A) by chosing two
bases u;, v; of s03(A) which are dual one to each other with respect to the
Killing form. Then we can let, for X,Y € J3(A)o,

(X AY) = Z Q(X, u;Y)v; € s03(A).

It is quite clear that, the quadratic form @ being so3(A)-invariant, this map
is well-defined, and equivariant. But by Schur’s lemma there is only one
such map, up to scalar, so m must be the projection, up to scalar. This gives
in particular a simple characterization of U,, since it is precisely the kernel
of m: it is the subspace of A2J3(A)y generated by the skew tensors X A Y
such that Q(X,uY) = 0 for all u € so3(A).

Note also that U, is always irreducible as a so3(A) x H,-module, where
H, is the finite group defined as follows (it is non trivial only for ¢ = 2, in
which case H, = Zj3) : let D, be the Dynkin diagram of so3(A), let d, C D,
be the set of nodes supporting the highest weight of J3(A)g; then H, is the
group of diagram automorphisms of D, preserving d,.

The fact that Y, C PU, can be seen as follows: if P? is a simple trisecant
plane to X, passing though I, and €1,e2,e3 denote the three intersection
points, its representative in PJ3(A)g C PJ3(A) is easily computed to be

we = trace(e1)ez A €3 + trace(eg)es A g1 + trace(esz)er A ea.

Suppose that P? is the plane of diagonal matrices. Then we immediately
read off the formulas 2.7.1 (1-4) that Q(e;,ue;) = 0 for all 4,5 and all
u € s03(A). But the set of simple reduction planes is SO3(A)-homogeneous,
so this is true in general. Thus each ¢; A ¢; is contained in U,, and a fortiori
we also is.
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3.2. Orbit structure. The stabilizer SO3(A) = AutJ3(A) of the identity
element of J3(A) acts on the variety of reductions. We prove that under
this action, Y, only has a finite number of orbits. More precisely:

Proposition 3.2. The variety of reductions Y, is irreducible of dimension
3a. It is the union of four SO3(A)-orbits of respective codimensions 0, 1, 2
and 4. (The codimension 4 orbit is empty for a =1.)

Proof. We prove both Propositions simultaneously: we let
Y, == G(2,J3(A)o) NPU,

and prove that is has four SO3(A)-orbits of codimensions 0, 1, 2 and 4. This
will imply that Y, is irreducible. In particular it is equal to the closure of
its open orbit Y, the subset of reduction lines with three simple contacts
with X,. Since Y is precisely defined as the closure of this set of lines, it is
equal to Y, and Propositions 3.1 and 3.2 follow.

Lemma 3.3. Let X € PJ3(A)g — A(A). Then there exists g € SO(A)y,
such that gX is a diagonal.

Proof. We first recall that the Cayley-Hamilton theorem holds in J3(A) [7]:
any matrix Y € J3(A) satisfies the identity

Y23 — trace(Y)Y2 4+ Q' (Y)Y — det(Y)I =0,

with Q'(Y) = (trace(Y)%—trace(Y?)). In particular, if Y belongs to J3(4)o,
then Y2 — 2Q(Y)Y —det(Y')I = 0. Moreover, the discriminant hypersurface
can be defined, as usual, by the condition that the characteristic polynomial
has a multiple root.

Let ap, s, a3 denote the roots of the characteristic polynomial of X.
Since X ¢ A(A), they are distinct. Let

_ (X—asI)(X—asl) _ (X—a1)(X—asl)

(X—a1)(X—asl)
(a1—a2)(a1—a3) ? T2 = (a2—ai1)(a2—a3) ’ : ;

(as—a1)(as—az2)

1 T3 =

A little computation shows that trace (m;) = 1 and 77 = m;. Moreover,
71 + mo + w3 = I. In particular, (1,72, 73) is a plane through I with three
simple contacts on X,.

But we know that SO3(A) acts transitively on this set of planes, so that
there exists g € SO3(A) such that g(m,mo,m3) is the plane of diagonal
matrices. Since X = o171 + agmy + a3my, the matrix gX is diagonal. O

Let [ € Y, be a line which is not contained in the discriminant hypersur-
face A(A). Choose a point X € [ — A(A). By the lemma, we can suppose
that X is diagonal. Then its diagonal coefficients are different, and the
formulas 2.7.1 (1-4) imply that

0 a3 ag

so3(A)X = { az 0 a1], ai,a9,a3€ A}.
d d 0

Thus P(s03(A) X)* is the line of trace zero diagonal matrices (orthogonality

is taken with respect to the invariant quadratic form). This line is the

projection of the plane of diagonal matrices, which is simply trisecant to the

Severi variety X,.
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Therefore, the open subset of Y,, of lines not contained in the discrimi-
nant hypersurface, is an SO(A),,-orbit isomorphic to the open set of simply
trisecant planes in Y.

Let now | € Y, be a line contained in the discriminant hypersurface A(A).
The plane generated by [ and the identity I has a double contact at least
with X,, at some point Z € X?. Since SO3(A) acts transitively on X0 we
may suppose that

1 ¢ 0 T — 1Ug u v
Z=1+ -1 0], TZXa:{ U r4+iug v |, TEC,u,UEA}.
0 0 O v 10 0

Here uy denotes the real part of w.

Let us choose a tangent line generated by a pair (u,v), and consider the
plane P generated by this line and the identity. Observe that if this plane
is in Y,, then u must be real, i.e. equal to its real part ug. Indeed, the
projection of P to PJ3(A)g is the line joining Z to the matrix

r_

3 — iU U v

Y = U % + ’in v
—_ . o 2_7-

U v 3

For s = (s1,892,s3) € t(A) C so3(A), we have Q(sZ,Y) = iq(s3(1),u).
Since s3(1), the image of the unit element 1 € A, by the skew-symmetric
endomorphism s3 € s0(A), can be any imaginary vector in A, this scalar
product is identically zero if and only if u is real. Changing Y into Y +wuoZ
we can then suppose that u = 0. We call the set of such tangent directions
through Z the restricted set of tangents.

Now, a simple computation shows that det(al +bY + cZ) = c(c + rb)2.
For r # 0, the intersection P N D3(A) is the union of a tangent line to X,
and a double non tangent line, both through Y. The non tangent line cuts
X, again, outside X2, at the unique point

q(v) igq(v) —rv
X = iq(v) —q(v) —z'gv

For r = 0, PN Sec(X,) is a triple line through Y tangent to X,. If ¢(v) # 0,
this line meets X, only at Y, but if g(v) = 0 it is contained in X,.

This gives three cases, and we must check that we obtain correspondingly
three SO(A)-orbits in Y,, and no more.

Lemma 3.4. The isotropy group of Z in SO(A) acts on the restricted set
of tangent directions through Z with exactly three orbits, respectively of codi-
mension 0, 1 and 2.

Proof. The isotropy subalgebra of (the line directed by) Z in so3(4A) is

Isoz(s03(A)) = {(s,a1,a2,a3) € 503(A) = t(A) B Ay @ Ao @ Ag,
ay = iay, is3(1) = 2Im(a3)}.
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Its action on the restricted set of tangent directions is given by the formulas

r 0 w 0 0 v 0 0 s2(v) —2s3(1)v
(5,0,0,6) [0 7 v ]| = Re(d) [0 0 |+ [0 0 dsi(v)+Lss(L)v ],
v 1w 0 v tw 0 * % 0
r 0 w 0 0 —ra
(0,ia,a,0) |0 r v ]| = 0 0 —ira],
v 1w 0 —ra —ira 0

(with is3(1) = 2Im(b), and the * being the conjugates of the entries in
symmetric position). On the second formula, we can already see that the
isotropy group of Z acts transitively on the set of restricted tangent direc-
tions for which r # 0.

When r = 0, we have to use the first formula, and study the rank of the
map ¢y : t(A) — A sending s to sp(v) — 3s3(1)v. We claim that this map is
surjective when ¢(v) # 0: this will ensure that the isotropy group of Z acts
transitively on the set of tangent directions for which » = 0 and ¢(v) # 0.

Recall from [20] that the triality algebra t(A) is isomorphic to the direct
sum of the derivation algebra Der(A), with two copies of ImA. Explicitely,
the map sending (D, u,v,w) € Der(A) @ (ImA)3, with u+v+w = 0, to the
triple s = (D + L, — Ry,,D + Ly, — Ry, D + L, — R,), is an isomorphism
onto t(A) C so(A)3. (We denoted by L, and R, the operators of left and
right multiplication by z in A.) We have

1 1
s2(v) — 533(1)1} = Dv — E(tv + 2ut),

so that the corank of ¢, is equal to the corank of the endomorphism 1, of
A defined by 9, (t) = tv + 2vt.

Suppose that t € Ker(1,). Since A is always alternative, the subalgebra
generated by ¢ and v is associative and we deduce that 2vtv = —tv? = —4v°t.
But since v is imaginary, v?> = —q(v), thus when ¢(v) # 0 we get t = 0, as
claimed. It follows that 1, and ¢, are surjective.

Now suppose that g(v) = 0. Then the corresponding tangent direction
is in fact the direction of a line which is contained in X?. The family of
such lines is empty for a = 1, and for ¢ = 2 it is the union of a projective
plane and its dual. For a > 2, we know from [19], Theorem 4.3, that the
family of lines in X0 through the point Z is irreducible, but splits into two
orbits of the isotropy group, giving two types of lines which we called general
and special, respectively. Already for dimensional reasons we can see that
the restricted tangent directions generate special lines only, hence that the
isotropy group acts transitively on the set of tangent directions for which
r=gq(v) =0. O

We have thus obtained four orbits in Y,, of codimension 0, 1, 2 and 4. Tt
is clear from the proof that each orbit is in the closure of any other orbit of
larger dimension. In particular, ¥, is irreducible. This concludes the proof
of Propositions 3.1 and 3.2. O

Note that the identity ¥, = Y, implies the following characterization of
lines belonging to Y;,, which we will use over and over in the sequel.
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Corollary 3.5. A line XY C PJ3(A)g defines a point of the variety of
reductions Y, C G(2,J3(A)o), if and only if

Q(X,uY)=0 Vu € so3(A).

For future use we retain the following description of the SO(A),,-orbits in
PJ3(A)g. We denote by Tan®(X?) € PJ3(A)¢ the union of the tangent lines
to X0 corresponding to the codimension one orbits of the isotropy groups
of the points of X0, see the previous Lemma.

Proposition 3.6. The orbits of SO(A), in PJ3(A)g which are not con-
tained in the discriminant hypersurface are the hypersurfaces Dy, (A) =
{X € PJ3(A)o, 6tdet(X)? = sQ(X)3}, where [s,t] € P! — {[1,9]}.

The orbits of SO(A)y, in PJ3(A)y which are contained in the discriminant
hypersurface A(A) = Dy g)(A) are:

X0, X, - X0, Tan(X0) - X%, A(A) - X, UTan(X?).

Proof. The first assertion follows from Lemma 3.3. To prove the second
assertion, we first recall that the action of SO3(A) on X, (or X,) has exactly
two orbits: the hyperplane section X? and its complement, see Lemma 2.5.
Let now X € A(A) with Q(X) # 0. Then Q(X) = 6t2 and det(X) = —2¢3
for a unique scalar ¢, and (X —tI)2(X +2tI) = 0. Let Z = (X —tI)(X +2tI).
If Z =0, then X —tI is in X,, thus X belongs to X,. If Z # 0, trace(Z) =
trace(X2) — 6t2 = 0 and Z2 = 0, so that Z defines a point of X2. Moreover,
if U =X + 2tI, we have (U — 3tI)Z = 0, hence 2UZ = 6tZ = trace(U)Z,
which means that U belongs to Tz X,. Since X0 is SO3(A)-homogeneous,
we may suppose that

1 + 0 T — 1UQ U v
Z=1+ -1 0], U= U r4+iuy w |,
0 0 0 v 1 0

for some r € C,u,v € A. Then we compute that the identity Z = (X —
tI)(X +2tI) = (U—3tI)U is equivalent to the relations Im(u) = 0, g(v) =0,
r = 3t, 3tug = 1. Then we can write

Z. 00 v 10 0
X=2z+[0 0 w|+t|lo1 0],
3t 5 i 0 00 -2

where g(v) = 0. If v = 0, then again X belongs to X,. If v # 0, by the proof
of Proposition 3.2 the isotropy group of Z acts transitively on the special
lines of X? passing through Z. Looking more carefully at the explicit action,
we can see that in fact, it acts transitively on the cone of X0 generated by
these lines (minus the vertex Z, of course). We conclude that SO3(A) acts
transitively on A(A) — Tan®(X?) U X,.

Let us consider now some X € A(A) such that Q(X) = det(X) = 0. In
particular, X3 = 0, and X belongs to X? if X? = 0. Suppose this is not the
case. Then Z = X? defines a point of X?, and U = X belongs to Tz X.
We can chose Z to be the same matrix as in the previous case, as well as
U, but with r = 0 since trace(U) = trace(X) = 0. The equation Z = U?
gives the relations g(v) = 1 and I'm(u)v = 0, hence I'm(u) = 0 since v is
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invertible. Again, we check that the isotropy group of Z acts transitively
on the (pointed) cone generated by the codimension one orbit of restricted
tangent directions through Z. We conclude that SO3(A) acts transitively
on Tan®(X?) — X0, and the proof is complete. O

Explicit representatives of the four orbits in A(A) are, respectively:

1 i 0 10 0 1 i 1 1 14il 0
i -1 0], (o1 of, i -1 i), [1-iI 1 o0
0 0 0 00 —2 1 i 0 0 0 -2

3.3. Geometric description of the orbits. We denote by Y, the orbit
of codimension i in Y.

a. The open orbit.

Proposition 3.7. The open SO3(A)-orbit in Y, is Y? ~ SO3(A) /Ty, with
Lie(T,) = t(A). In particular, it is an affine variety.

Proof. A point in the open orbit Y2 is given by the line of traceless diagonal
matrices in PJ3(A)g. One can read off the explicit action of so3(A) on J3(A)g
that the stabilizer of this line is t(A), which implies the first assertion. Since
t(A) is reductive, the second assertion follows from a theorem of Matsushima,
following which the quotient of a reductive group by a reductive subgroup
is affine [24]. O

The open orbit Y consists in planes in PJ3(A) having three simple con-
tacts with X,. Let (e1,€2,€3) be such a plane, and suppose that €1 +e9+e3 =
1. By Corollary 2.11, this triple is projectively equivalent to the triple of
rank one diagonal matrices, and since SO3(A) = AutJ3(A) this implies that
€162 = €163 = €263 = 0. Multiplying the previous identity by ¢;, we thus get
€2 = g;, hence trace(g;) = 1 by Lemma 2.2. The triple €1, €9, 3 is therefore
what algebraists call a Pierce decomposition of the Jordan algebra J3(A)
[16].

These observations lead to the slightly more precise statement:

Proposition 3.8. The generic isotropy group T, is the semi-direct product
of the triality group T(A) with the symmetric group G4.

Proof. The generic isotropy group 7, is the stabilizer of the line of traceless
diagonal matrices in J3(A)g, or equivalently to the plane of diagonal matri-
ces in J3(A), which is generated by the three diagonal idempotents e1, &3, 3.
These three idempotents are permuted by the elements of T,, giving a mor-
phism v : T, — &3. Note that &3 is the quotient of &4 by the normal
subgroup generated by the permutations which are products of two disjoint
transposition. This subgroup is a copy of Zy X Zy. We must therefore prove
that the morphism v is surjective, and that its kernel T2 coincides with the
semi-direct product of T'(A) with Zy X Zs.
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To prove the surjectivity of v, we define two endomorphisms o1 and o9 of
Js3(A) by the formulas

c1 T3 T2 c2 T3 X2
o1|Z3 @ 1| =23 aa x1 ],
o T1 c3 o I1 c3
€1 T3 I c1 T3 I
o2 |%3 @ 1| =|T3 c3 X1
o X1 c3 T2 x1 C2

It is easy to check that these endomorphisms are in fact automorphisms of
the Jordan algebra J3(A). Moreover, they belong to Ty, and their images
by v are the two simple generators of &3, proving that v is surjective.

Let now t € T2, so that t fixes each g;. Being an automorphism of J3(A),
t also preserves the subspace €;J3(A)¢;, for 1 < i,j < 3. But this is the
space of matrices whose entries are zero except possibly that on the i-th line
and j-th column, and symmetrically that on the j-th line and i-th column.
Therefore, there exists scalars (1, (2, (3, and endomorphisms 71, 72, 73 of A,
such that

¢ T3 T9 G m3(x3) T2(ze)
t|Z3 co x| = m(x3) (e Ti(z1)
Ty Z1 €3 To(z2) mi(z1) (3¢3

But ¢(I) = I, hence ¢; = (o = (3 = 1. Moreover, a straightforward compu-
tation shows that this is an automorphism of J3(A) if and only if

To(zy) = 13(2)71(Y) Vz,y € A
This is precisely the definition of T'(A), except that we don’t ask the 7; to
belong to SO(A). They will automatically belong to the orthogonal group
O(A), but the sign ambiguity explains the appearance of the Zq x Z, factor.

This concludes the proof. (The heart of this argument can be found in [16],
see also [28]). O

b. The orbit of codimension one.

The codimension one orbit Y is made of planes in P73(A) having a simple
contact with X, outside X 2, and a double contact on X 2. This implies the
existence of two fibrations p and pg, the first one over X, — X 2 , the second
one over X0.

Lemma 3.9. (Point-line polarity in X, = AP?). Let Z be a point of X,.
The intersection X, N (TzX,)" is an a-dimensional quadric Q%, an A-line
in X,. This quadric contains Z if and only if Z belongs to X2.

A point Y belongs to Q% if and only if there exists a reduction plane
P €Y, passing through'Y and Z. In particular,

Y eQf) <— ZecQy.

Proof. If Z ¢ X0, the line ZI meets the determinant hypersurface Ds(A)
at a unique point M ¢ X,, and the set of secant (or tangents) lines to
X, passing through M cuts a smooth a-dimensional quadric Q% on X, (the
entry-locus of M, see e.g. [31]). A reduction plane P € Y, through Z is then
generated, with Z an I, by a point Y of that quadric. A simple computation
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shows that actually, Q“Z = %, and our claim follows for all points outside
X0

To conclude the proof, we check than also for Z € X0, the intersection
Xa N (TZXa)J- is a smooth quadric: this is a straightforward computation.
Then the last assertion of the Lemma follows by continuity. O

Remark. If Z ¢ X0, one can define the quadric Q% as the set of points
Y € X, such that YZ = 0. Nevertheless, for Z € X? this condition defines
a larger set than Q9.

This Lemma allows a simple description of the fibers of the two projections
p and po. Indeed, one easily checks that if Z € X0 and X € X, — X2,
P (2)=Q%-QyNXJ,  and pTl(X)=Q% NXg.
We'll see below that Q% N X0 is a singular section of the quadric Q%, with
a unique singularity at Z, so that pg Y(2) ~ ce.
An explicit representative of Y;' is the line generated by

1 7 0 1 0 O
Z=17 -1 0 and Y=[0 1 O
0 0 O 0 0 -2

c. The orbit of codimension two.

The elements of the codimension two orbit Y2 are the planes in PJ3(A)
with a triple contact with X, on X?. This defines a fibration p over X2, and
by the proof of Proposition 3.2, the fiber of p over Z is the set of tangent
directions generated by matrices of the form

0 0 v 1 i 0
Y=(0 0 4w it Z=11i -1 0},
5 v 0 0 0 0

with g(v) # 0. An easy computation shows that

1 1y 9
Qz = { iry —ry we |, 1,73 € Cozp €A, Ty = Q($2)}-
9 1T r3
This is a smooth quadric which is tangent to X? at Z, hence Q% N X? is
a quadratic cone with vertex Z, which is its unique singular point. The
fiber p~1(Z) can then be described as the set of lines through Z in the
linear subspace of P73(A)o spanned by Q% N XY, which are not contained in
that cone. This shows that p~!(Z) is the complement of a smooth quadric
hypersurface in a P41,
An explicit representative of Y, is the line generated by

1 4 0 0 01
Z=17 -1 0 and Y={(0 0 ¢
0O 0 0 1 i 0

d. The closed orbit.

Finally, the codimension four orbit Y;* is made of planes containing a line
of X0, and such planes are completely determined by their corresponding

a’
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line, which we noticed to be special when a > 2. With the convention that
any line on x2P? is special, we get:

Proposition 3.10. The closed orbit Y.} in Y, is isomorphic to the orbit of
special lines in X0.

Specifically, we have
Vit=0, Yy =P*uP? Y;=F,(1,3;6)=Sps/Prs, Y5 =Fi/Ps.

An explicit representative of Y is the line generated by

1 ¢ 0 0 0 1—4l
Z=1t -1 0 and Y = 0 0 i+ 1
0 0 O 14 +—1 0

3.4. Smoothness. We have seen in Proposition 3.1 that the varieties of
reductions, for ¢ > 1, are non transverse linear sections of their ambient
Grassmannians. The following Theorem is therefore rather surprising.

Theorem 3.11. The varieties of reductions Y, are smooth.

Proof. This is already known for a = 1. For a > 1, we check that a point of
the codimension 4 orbit is smooth, which is enough to prove the theorem.
We have just seen that a point of Y,* is the line generated by

1 ¢ 0 0 0 1—1I
Z=11 -1 0 and Y = 0 0 1+ 1
0 0 O 144 +—1 0
We choose a basis e; =1+ 1l,e9,...,e, of A. Then we can complete these

two matrices Z,Y into a basis of J3(A)o,

1 i 0 0 0 e 0 0 e;j
Z=|i =1 0], YV;'=[0 0 4], Yy=[0 0 —ie],
0 0 0 e ie; 0 e —ie; 0
0 e O 00 0
X;=|¢ 0 0], W=[(01 0
0 0 0 0 0 -1

This provides us with a system of local coordinates on G(2, J3(A)o) around
the line ZY : a line in a certain neighbourhood of ZY has a unique basis
A, B of the form

A = Z+Z]>1 a;—.y‘;—i— +Z]Zl a]_.Y‘;_ +Z]21 TJX] +UW,

B = Y43 b)Y+ b Y+ 3 85X + oW

By Lemma 3.5, such a line belongs to Y, if and only if Q(A,uB) = 0 for
all u € so3(A). If we write A = Z 4+ 0A and B =Y + 6B, we get the
infinitesimal equations

Q(uZ,6B) = Q(uY,dA) Yu € so3(A).
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Using the explicit action of m; € A; C s03(A), we obtain the following three
sets of a equations,

203 519(mi,e)b; = Yisq qlema, e5)r; + dig(ma, e1)u,
203751 9(ma, €5)b; =D j>11a(maeér, e5)rj + 3740 ig(mo, ej)aj+
+ 2551 4(ma; ej)a; + 2ig(mo, e1)u,
=23 51 4(ms, €5)s; — 2ig(ms, 1)v - = 37, iq(mae, ej)a;-"
+ 2251 9(msér, ej)a;

The first set of equations gives the b; in terms of u and the r;, because
the coefficient of b} is g(m1,e;), and m; can be chosen arbitrarily . Then

the second set of equations gives the a; in terms of u, the r; and the a;'.
Finally, the third set of equations gives the s; in terms of u, v, the r; and
the a;-".

This proves that the Zariski tangent space of Y, at ZY has codimension at
least 3a in that of G(2, J35(A)g). But Y, has dimension 3a and G(2, J3(A)o)

has dimension 6a, so ZY must be a smooth point of Y. O

3.5. Linear spaces in the varieties of reductions. In a Grassmannian
G(2,n) of projective lines, there are two types of linear spaces. Those of the
first kind are made of the lines containing a fixed point and contained in a
fixed subspace. Those of the second kind have dimension two only; they are
made of the lines contained in a fixed plane.

By Lemma 3.5, the maximal linear spaces of the first kind that are con-
tained in Y, are defined as follows: take some point X € PJ3(A)y and
consider the space of lines L such that

X € L C P(so3(A)X)™.

Proposition 3.12. The space (s03(A) X)L has dimension a+2 if X belongs
to the projection X, of the Severi variety X,, and dimension 2 otherwise.

Proof. The dimension of s03(A) X is the dimension of the SO(A),,-orbit of X
in J3(A)g (not in the projectivisation PJ3(A)g !). We consider the different
cases obtained in Proposition 3.6.

If X ¢ A(A), its orbit is, by Lemma 3.3, the set of matrices with the
same characteristic polynomial: its codimension is two, hence (so3(A)X)*
has dimension two.

If X belongs to (the cone over) the open orbit in A(A), again its orbit in
J3(A)o depends on its characteristic polynomial, so it must be of codimen-
sion two and again (so3(A)X)* has dimension two.

The (pointed) cone over Tan®(X?) — X0 either is an SO3(A)-orbit, or the
union of a one dimensional family of codimension one orbits. An explicit
computation of the infinitesimal action shows that we are in fact in the first
situation. Indeed, By Proposition 3.6 and its comment we can let

1 i 1
X=[(i -1 i],
1 i 0

and determine its centralizer using formulas (1-4) in 2.7.1. If (u,a1,a9,a3) €
s03(A) annihilates X, looking at the diagonal coefficients we first see that
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a1, ag and ag must be imaginary. The non diagonal coefficients then give
the equations

ul(l) = —z'al — ag — ia3,
uz(l) = —a1+ ag +ias,
’u,1(1) = 1ta1 + a2 — 2ias.

The matrix formed by the coefficients of a1, a9, a3 is easiliy seen to be in-
vertible. We conclude that a;,as and as are uniquely determined by u,
which can be arbitrary. Thus the stabilizer of X has codimension 3a in
SO(A), which implies that the orbit of X has dimension 3a, which is also
the dimension of the cone over Tan®(X?). This proves our claim.

Hence if X belongs Tan®(X?) — X0, since it is a codimension two orbit in
J3(A)g, (s03(A)X)* has dimension two again.

If X belongs to the cone over X, — X2, its SO3(A)-orbit depends on
its characteristic polynomial, so its orbit has dimension 2a. Finally, the
(pointed) cone over X0 is a full SO3(A)-orbit of dimension 2a. Thus if
X belongs to the cone over X,, the dimension of (so3(A)X)' is a + 2,
independently of the fact that X belongs to X? or not. O

Corollary 3.13. The variety Y, C G(2, J3(A)g) does not contain any plane
of the second kind.

Proof. A plane of the second kind in G(2, J3(A)o) is a space of lines con-
tained in the projectivization of some three-dimensional subspace K of
J3(A)g. Let such a plane be contained in Y,, and consider a point of
that plane, which represents a line Zy in PJ3(A)g. Then we must have
K C (so3(A)z)* N (s03(A)y)*. In particular the line 7y C PJ3(A)o must
be contained in X,: otherwise, if p = az + By ¢ X,, then (so3(A)z)t N
(so3(A)y)L C (so3(A)p)*, which is two-dimensional.

Suppose that z € X, — X?. Since this space is homogeneous, we can let

1 0 0 rn z3 0
z=]{0 1 0], thus (so3(A)z)" = { 3 r2 0| ,ri+rotry = 0}-
0 0 -2 0 0 rs

A straightforward computation shows that P(so3(A)z)t N X, is

r I3 0
{ 3 2 0 ), ri+m +7"3=0a‘1($3):(7"1—7”3)(7"2—7"3)}U{55}-
0 0 r3

In particular, z is an isolated point of that intersection, which can therefore
contain no line through =z.

Suppose now that z € X2, and we can even suppose that the whole line
7y is contained in X?. By the proof of Proposition 3.2, we can suppose that

1 ¢ 0 0 0 w
zr=1+ -1 0], y=10 0 dv],
0 0 0 v i 0
where ¢(v) = 0. Another computation, which we leave to the reader, shows
that again (so3(A)z)* N (so3(A)y)"L is only two-dimensional. O

Corollary 3.14. The mazimal linear spaces in Y, are P*’s parametrized by
Xq.
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Recall (Lemma 2.5) that SO3(A) has exactly two orbits inside X, ~ X,:
the closed orbit X, which is the hyperplane section of X, by PJ3(A)g, and
its complement. Correspondingly, there are two types of P*’s inside Y, :
special ones, for z € X0, and general ones, for z ¢ X?.

Proposition 3.15. The numbers of general and special P*’s through a point
of the codimension i orbit Y! of Y, is given as follows:

general special

Y0 3 0
Y}! 1 1
Y2 0 1
v 0 ool

Note that the fact that there are exactly three P*’s through a point of
the open orbit is a genuine geometric manifestation of triality ! Indeed,
we know that the tangent space to a point of the open orbit is equal to
so3(A)/t(A) = Ay & Ay ® A3 as a module over the stabilizer Lie algebra
t(A). The three copies of A correspond to the directions of the three P?’s.
Moreover, by Proposition 3.8 the isotropy group of a generic point contains
a copy of &3, which permutes these three spaces.

Proof. A point of Y is given by the line of diagonal matrices in PJ3(A)o.
If this point is contained in a maximal linear subspace P; of Yy, then z is
diagonal and belongs to X,. There are exactly three such matrices (up to
scalar),

10 0 1 0 0 —2 0 0
01 0], 0 -2 0], ad [0 1 0],
00 —2 0 0 1 0 0 1

the projections of the three diagonal matrices of rank one. Thus a point of
Y belongs to exactly three lines, and they are all general.
A point of Y| is given by the line in J3(A)g generated by

1 7 0 1 0 O
Z=12 -1 0 and Y=[0 1 O
0 0 O 0 0 -2

This line meets X, only at Z and Y. Since Y belongs to X2 and Z does
not, this implies that a point of Y;! belongs exactly to one special P* and
one general P¢ of Y.

A point of Y2 is given by the line generated by

1 4 0 0 01
Z=12 -1 0 and Y={(0 0 ¢
0 0 O 1 72 0

This is a tangent line to X0 at Z, and it meets X, only at this point. Thus
a point in Y2 belongs to a unique maximal linear subspace of Y,, which is
special.

Finally, a point of Y;! is given by a special line in X2, and each point of
this line defines a special maximal linear subspace of Y, through that point
of Y. O
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3.6. Varieties of reductions are rational Fano manifolds. Let Z, de-
note the space of incident points and lines p C [, with p € PJ3(A)¢ and
ley,.

Proposition 3.16. There is a commutative diagram

Zy =Py, (S)

XX, CPT(A)g—————————~ ~Y, C PU,,

where p is the P -bundle defined by the restriction to Y, of the tautological
rank two bundle S over G(2, J3(A)o), and o is the blow-up of X,.

Proof. 1t follows from Proposition 3.12 that the projection o to PJ3(A)g
is an isomorphism over the complement of X,. Moreover, the fiber of a
point of X, is a P, which is mapped isomorphically by p to a maximal
linear subspace of Y,. This implies in particular that c~!(X,) is a smooth
irreducible divisor £ in Z,, which is itself smooth since Y, is smooth. By

[8], Theorem 1, this is enough to ensure that o is the blow-up of Xj,. O

Corollary 3.17. The variety of reductions Y, is a rational Fano manifold
of index a + 1, with Picard group Pic(Y,) = ZO(1).

Proof. The claim on the Picard group is clear. To compute the index of
Y,, let again E denote the exceptional divisor of o, and H the pull-back
of the hyperplane class. Since there are three P*’s through the general
point of Y,, we have E.f = 3 if f denotes the class of a fiber of p. Also
H.f =1, hence p*O(1) = 3H — E. On the other hand it is easy to see that
Os(1)®p*O(1) = H, hence Og(1) = E — 2H. Now one can compute the
canonical divisor of Z, in two ways:

KZ U*KPJS(A)O +aF = —(30, +2)H—|— aF

= p*(Ky, ®detS) ® Og(—2) =p*Ky, + H — E,

a

so that p*Ky, = —(a + 1)p*O(1) and Ky, = O(—a — 1). Since the Picard
group of Y, is generated by O(1), this implies that Y; is a Fano manifold of
index a + 1.

The fact that it is rational follows from the diagram above: if L is a
hyperplane in PJ3(A)g, it is birational to its strict transform by p, which is
itself birational to Y, via o, since a general line of Y, meets L. O

Remark. The diagram of Proposition 3.16 can be interpreted in terms of the
study we made in section 2. Indeed, we can complete it as follows:
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X0 c X, cPRH(A)y- - - -~ - -—-—~- >Y, C PU,,

zero—set map YO

a

PHO(X{, )’

Remember from 2.8 and 2.9 that we defined on X§ a homogeneous vector
bundle F§, whose space of global sections was isomorphic to J3(A)r =
J3(A)g (we take w = I here, which is harmless). On the complement
PH O(X}L,]-"}l)o of the discriminant hypersurface, the zero-locus of a pro-
jective section was a triality subvariety Z¢, and we proved (see Proposition
2.15) that the family of these triality varieties was parametrized by the open
orbit Y0 of the variety of reductions. The map ¢ is nothing but the zero-set
map considered as a rational map.

We now turn to a different direction. We use Proposition 3.16 to compute
the Betti numbers of the Y, ’s.

Corollary 3.18. Y, has pure cohomology (i.e. its Hodge numbers h?1(Y,) =
0 for p # q), and for a > 2 its Betti numbers can be deduced from those of
X, by the formula
14+ (-1)7P
bop(Ya) = 7(2 ) + Y by ajo(Xa):
0<2j<a

The topological Euler charateristic of Y, is e(Y,) = 3@ + 1, again for
a> 2.

Proof. A simple computation, using the formulas giving the Betti numbers
of a blow-up that can be found in [12], page 605. |

The Betti numbers of X, present a nice regular pattern at least for a > 2:

1 for0<p<2or3 <p<2aq,
bQP(Xa):{Q fOT%Sp<aora<p§37a,
3 forp=a.

In particular e(X,) = 3a+3. From this fact and the recursive formula of the
Corollary we can easily deduce the explicit Betti numbers of our varieties of
reductions:

D 0123456789101112131415161718192021222324

bop(Y1) 1111

bop(Ya) 1133311

bop(Ys) 1123455543 2
(Ys)

11
112234567889 9 9 8876 5432211
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Correspondingly, the Euler characteristics are

e(Y1) =4, e(Y2) =13, e(Ya) =37, e(Ys)=121.

Now we identify the rational map ¢. Since p*O(1) = 3H — E, it must be
defined by a system of cubics on PJ3(A)g.

Proposition 3.19. The space of cubics on PJ3(A)y vanishing on X, is
isomorphic to U,.

Proof. A case-by-case verification with [23] shows that the space of cubics
on jg (A)() is

S3T3(A); = S Ts(A)g = SO T(A)g @ S2T3(A)o @ U,.

The embedding of S2J3(A)g inside S3J3(A)g is given as follows: to A, B €
J3(A)o, we associate the cubic form ps p(X) = trace(X(AX)(BX)). One
can check that these cubics vanish on X0, as expected, but not identically
on X,.

The embedding of U, is deduced from the map A2J3(A)y — S3J3(A)o
defined as follows: to a skew-symmetric form 6, we associate the cubic form

1
pe(X) = 0(X, X? — gtrace(XQ)I).

Such cubics vanish on X,. Indeed, let X be the projection of some Z € X,
that is X = Z — 41 and Z% = zZ, where z = trace (Z). Then X? —
trace (X?)I = £X, so clearly pg(X) = 0.

To conclude that the base locus of U, C S3J3(A)p ~ S3J3(A)} is exactly
X,, we first observe that these cubics cannot vanish identically on the dis-
criminant hypersurface, which is irreducible of degree 6. By Proposition 3.6,
what remains to check is that they don’t vanish identically on Tan®(X?).
Remember from the proof of Proposition 3.2 that the tangent space of X
at

1 2 0
Z = i =1 0 is
0 0 0
T — 1UQ U v
T, X, = {X: U r+iuy w |, TEC,U,’UEA}.
v 10 0
Now consider the line of diagonal matrices in J35(A)g, seen as a point 6 €
U,. A straightforward computation shows that pg(X) = —3iuoq(Im(u)) #
0. ]

Corollary 3.20. The rational map ¢ is the map defined by the linear system
of cubics vanishing on the projected Severi variety X,.

Finally, we use Proposition 3.16 to compute the degrees of the varieties of
reductions. We also provide the degrees of the Grassmannians G(2, 3a + 2),
which are well-known to be the Catalan numbers ﬁ(gg), to show that
although the degrees of the Y, can be quite big, they are relatively small

compared to those of their ambient Grassmannians.
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Theorem 3.21. The degrees of the varieties Y,, and of the Grassmannians
G(2,J3(A)o) are:

degT = 5 degG(2,5) = 5

degY, = 57 deg G(2,8) = 132

degYy = 12273 deg G(2,14) = 208012

degYy = 1047361761 deg G(2,26) = 1289904147324

Proof. Using Proposition 3.16, the degree of Y, can be computed once the
normal bundle of X, in PJ3(A)g, and the Chow ring of X, are understood.
The case of a = 2 is explained in the next section.

The most complicated case is of course that of Yg. We give a detailed
description of the Chow ring of the Cayley plane Xg = OP? in the Appendix,
and show how the degree of Yg can be computed. O

3.7. Varieties of reductions are compactifications of affine spaces.
The fact that Y is a compactification of C? is due to Furushima [11], who
gave several geometric proofs of this property. We show that the varieties
of reductions are always compactifications of affine spaces (and indeed min-
imal compactifications, since the Picard group is cyclic). Actually, this will
directly follow from the fact that there is only a finite number of orbits.

Theorem 3.22. The variety of reductions Y, is a compactification of C3®.

Proof. Since Y, is a smooth projective variety, it is enough to prove that
SOs3(A) contains a one-dimensional torus 7" acting on Y, with a finite number
of fixed points. By the work of Byalinicki-Birula ([4], Theorem 4.4), this will
ensure that Y, contains a dense affine cell. More precisely, one can attach to
each fixed point z € Y, the subset of Y, defined as the union of the points
that are attracted by z through the action of ¢ € T', when ¢ tends to zero,
and this provides a cell decomposition of the variety.

For a > 1, we have seen in Proposition 3.8 that SO3(A) contains the
triality group T'(A), a reductive subgroup of maximal rank. We choose a
maximal torus H of SO(A) contained in T'(A).

As a t(A)-module, J3(A)g = C? ® A1 @ Ay @ Az. In particular the set of
weights of J3(A)y is very easy to describe: there are 3a non-zero weights
of multiplicity one (which are all conjugate under the action of the Weyl
group), and the weight zero, whose multiplicity equals two. Let us denote
by Li,...,Ls, the one-dimensional weight spaces, and by P the plane of
weight zero.

Let T be a generic one-dimensional subtorus of H. Then the set P73(A)
of fixed points of T in PJ3(A)g is the union of 3a points ey,...,e3,, and a
projective line d. For the induced action on the Grassmannian G(2, J3(A)g),
the set of fixed points G(2, J3(A)g)7 is then the union of (32“) points, the
lines €;€; in PJ3(A)o, another point, the line d in PJ3(A)o, and 3a projective
lines d;, given by the set of lines in PJ3(A)( joining e; to some point of d.

We need to check that none of these lines is contained in Y,. Suppose
that d; C Y. This would mean that L C (so3(A)l;)*. But [; is generated by
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a weight vector X; contained in some A; C J3(A)o: for example, if j = 3,

0 z O
X, = z 0 0], so
0 00
2q(z,a3)  g3(2) —zay
so3(A)X; = { 93(2) —2q(z,a3) —Zzas ,gEt(A),al,ag,ageA}.
112 —a9% 0

Since the diagonal coefficients of these matrices are not identically zero,
s03(A)X; is not orthogonal to P.

Therefore the fixed lines d; are not contained in Y,, which means that the
action of T on Y, has a finite number of fixed points. O

We can analyze a little more carefully the set of fixed points of T' contained
in Y,. First note that the line d is certainly one of them. If X; is as in the
proof above, then so3(A)X; is orthogonal to exactly one point of d (more
precisely, one of the three points of d N X,). This proves that d; cuts Y, at
exactly one point, giving 3a fixed point of T' in Y.

Finally, we have to decide which of the lines €;e; are contained in Y.
Suppose that e; is generated by the vector X;,above, which we denote by
A3(z). If e; also belong to Az and is represented by X; = A3(z’), then the
line &;e; represents a point of Yy if ¢(2/,g3(2)) = 0 for all g € t(A). But
93(z) can be any vector in A orthogonal to z, so this would imply that z
and 2z’ are parallel, hence e; = e;. Now suppose that e; does not belong to
A3 like e;, but for example to Ay. Then the line €;e; represents a point of
Y, if ¢(2’,za1) = 0 for all a; € A. But z is isotropic, so this means that
2" € L(z). Since L(z) is, like z, preserved by the torus action, it has a basis
of eigenvectors of the torus, and we have A\ = dim L(z) possibilities for the
choice of e; in A, and also in Az. This gives 3a\ new fixed points of T in
Y,. Since A = 0 when a = 1 and A = a/2 when a > 2, we get a total of 4
fixed points when @ = 1, and 3a2/2 + 3a + 1 fixed points when a > 2. Note
that we know from [4] that this number of fixed points is just the topological
Euler characteristic of Y,, which we have thus recovered.

A more interesting consequence is the fact that C3¢ is the complement in
Y, of a hyperplane section.

Proposition 3.23. For a > 1, let = be a point of the closed orbit Y of Yy,
and let H, denote the polar hyperplane. Then Y, — Yy, N H, ~ C3¢,

Proof. A case by case examination with the help of [23] shows that the
highest weight of U, has exactly 3a?/2 conjugate under the Weyl group
action: they are the weights u; + p; of the lines €;€; we have just described.
In particular, the highest weight of U, is of this type, and we can find a
one-parameter subgroup whose attractive point in PU, is the line of highest
weight. This point z, which belongs to the closed orbit in Y, (and can be
chosen, by homogeneity, to be any point in Y,}), attracts the complement
of a hyperplane of PU, generated by the remaining weight vectors. This is
precisely the polar hyperplane H, of z. If we restrict the action to U,, the
point = attracts the complement to the hyperplane section Y, N H;, and by
Bialiynicki-Birula’s theorem this is a copy of C3¢. O
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Note that a point z of Y;* is a special line I, on X?. The polar subspace
L, has codimension 2 in PJ3(A)g, and we get:

Proposition 3.24. The singular section Y, N H, is the Schubert variety of
lines that meet Ly, and belong to Y,.

Remark. When a = 1 the analysis is of course different, since the codimen-
sion 4 orbit is empty. Nevertheless, one can check that Byalinicki-Birula’s
method still applies, giving a family of singular hyperplane sections of Y;
parametrized by the closed orbit (a sextic curve — or equivalently by the spe-
cial lines on Y7), whose complements are isomorphic to C3. Nevertheless,
Furushima proved that there exists another family of hyperplane sections of
Y7 (parametrized by the general lines), whose complements are affine cells.
We do not know whether a similar phenomenon holds for the other varieties
of reductions Y,, a > 1.

4. THE CASE OF P? x P2

The case a = 2, A = C deserves special attention because the variety
of reductions Y5 is a smooth compactification of the space of independent
triples in P2, But we already know such a compactification : the Hilbert
scheme Hilb®P2.

4.1. Y, and the Hilbert scheme. The second Severi variety X, = P? x P
is embedded into PJ3(C) = PM3(C), and is homogeneous under the action
of SL3(C) = SL3 x SL3. Its hyperplane section X§ = PTp2 = F(1,2;3) C
PJ3(C)o = Psl3, the variety of complete flags in C®, is homogeneous under
SO3(C) = SL3. We thus have a coincidence between J3(C)o and so03(C),
and the map A273(C)g = A?sl3 — s03(C) = sl3 is just the Lie bracket.
Therefore:

Proposition 4.1. The second variety of reductions Yo C G(2,sl3), is the
variety of abelian planes in sl3.

The open SLs-orbit of Y5 is the set of planes of matrices which are diag-
onal in a given basis. This basis is unique up to multiplication by scalars,
so that a point in Y3 is actually just an unordered triple of independent
points in P2, In particular, Y> is birational to Hilb3P2, the punctual Hilbert
scheme of length three subschemes of P?. But we can be much more precise:

Theorem 4.2. The Hilbert scheme Hilb*P? has two extremal contractions.
One is the Hilbert-Chow morphism onto Sym3P?. The variety Y is isomor-
phic to the image of the other one.

Proof. The extremal contraction of Hilb®P? which is not the Hilbert-Chow
morphism was constructed in [22] as follows: this is the morphism

@1 : Hilb3P? — G(3, 52C3)

mapping a length three subscheme Z of P? to the dimension 3 system of
conics that contains it.

Lemma 4.3. Uy ~ A3(S2C3).



36 A.ILIEV, L. MANIVEL

Proof. The space A3(S%C?) is generated by decomposable tensors of the form
e2 A f2 A g?. If we identify the dual of C? with its second wedge power, we
can associate to such a tensor the 3-dimensional subspace of gl; generated
byeANf®g, fAg®eand g e® f. These three morphism commute and
their sum is e A f Ag times the identity, hence their projection to sl3 from the
identity defines a point in Us. The morphism so defined is clearly sl3 and
Hs equivariant (see 3.1 for the definition of Hy), hence an isomorphism. [

This implies that we can identify Yo with the subvariety of G(3,S2C3)
defined as the closure of the planes e? A f2 A g2. This is not exactly the
image of 1, which is the closure of the planes ef A fg A ge. But the theorem
follows from the following lemma.

Lemma 4.4. The endomorphism of A(S%2C?) mapping €2 A f2 A g% toef A
fag N ge, is an isomorphism.

Proof of the lemma. Let p denote this endomorphism. We prove that 2y is
an involution. We have 64u(ef A fg A ge) is equal to

(lle+ 12— e = NIALF+97 = (F— 92 Allg + ) — (g - e)?)
= Deeren=ni(ftee)(g+ef)A(g+ef)le+e"g) Ale+e"g)(f +ce)
= Deee—si(fghgeNef +ef A fgAge)
= 16ef A fg A ge.

Indeed, in the previous sum we need only keep terms which have even degree

in each of the ¢,¢’,e"” (the other ones clearly cancel), and there are only two
of them. (|

Note that we have obtained, by the way, another interpretation of Y.

Proposition 4.5. The second variety of reductions Y is isomorphic to the
variety of trisecant planes to the Veronese surface vy(P?) C P5,

It was proved in [22] that ¢; contracts those subschemes of P? contained in
a line, to a P? parametrizing precisely these lines. At the level of SLs-orbits,
the Hilbert scheme contains seven orbits, and 3 of them are contracted onto
one the two sls-invariant P?’s inside Y. Actually, ¢ is just the blow-up
of this P2. The fact that the image of ¢; is smooth, which is the most
surprising point here, is not mentionned in [22].

Proposition 4.6. The degree of Yo is 57.
First proof. From the preceding theorem we get that
deg ¥z = (¢10(1))°,

and we are reduced to a computation on Hilb®P?, whose Chow ring has
been described in detail in [9]. With their notations, it is easy to see that
©10(1) = A+H. Since they computed that H® = 15, H5A = 15, H*A? = 3,
H3A3 = —12, H?A* =12, HA® = —3 and A% = —15, we get

©i01)% = HS + 6H A+ 15H* A% 4+ 20H3 A® + 15H2 A* + 6 HAS + AS = 57.
Second proof. We can use Theorem 3.16 and the structure of Z; to compute
the degree of Y, as follows. First notice that H.f = 1 implies that

degY, = H(3H — E)®
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(recall that H is the pull-back of the hyperplane class by o, and E the
exceptional divisor). The intersection numbers on Z; can be computed
explicitely, using the fact that ¢ is a blow-up with smooth center X,
once we know the Chern classes of its normal bundle. First note that
the normal bundle of Xo = P? x P? is Q(1) ® Q'(1), where Q,Q' de-
note the rank two tautological quotient bundles on the two copies of P2.
Since X, is an isomorphic linear projection of Xy, we have an exact se-
quence 0 — O(1,1) = Nx, — Nx; — 0, from which we deduce that the
Chern classes of Ny, are

Cl(NX—Q) = b5h+ 51,
c2(Nx;) = 10h*> 4+ 17hh' 4 10h",
c3(Nxg;) = 18h*h' + 18hh",

if h and h' denote the two hyperplane classes on our two copies of P2.
Therefore, the Chow ring of the exceptional divisor E is the quotient of
Z[h, k', €] by the relations h3 = h”® = 0 and €3 —5(h+h')e? + (10h? + 17Thh' +
10h'?)e — 18(h2h' + hh'?) (see e.g. [12]). This being given, we compute (note
that h2h/?e? = 1, since h%h'? is the class of a fiber of E — P? x P?, over
which e restricts to the hyperplane class on P?),

H' =1, H’E=0, H°E?=0, H'E3=degX, =6,
H3E* = (h + h')3€e3 = 5(h + h')*e? = 30,
H?ES = (h+ h')%e* =5(h + 1')3e® — (h + 1')2(10h? 4 1Thh + 10h"%)e?
=150 — 54 = 96,
HES = (h+ 1')e® = 5(h + h')%e* — (h + h')(10h? 4 17hh + 10h"?)e?
+18(h + h')(h2R' + hh'?)e? = 480 — 270 + 36 = 246,

hence deg Y5 = 3% — 33(5)6 + 3%(5)30 — 3($)96 + 246 = 57. O

[SARN

Corollary 4.7. As a subvariety of G(3,S?C3), the homology class of Yo is
Poincaré dual to o3 + 2091 + 40111.

Proof. The Schubert class o111 is dual to the space of 3-planes in S2C3
contained in a fixed 4-plane. This defines a P? cutting the Veronese surface
in P° = P(S2C?) in four points. There are four ways to choose three of these
four points, so that o111 cuts Y5 at four points.

Similarly, the Schubert class o3 is dual to the space of 3-planes in S2C3
containing a fixed 2-plane. For such a generic plane, there is a unique basis
of C® diagonalizing each of the quadratic forms it parametrizes, so that o9
cuts Yo at a single point.

To compute the last coefficient, we just note that a variety whose homol-
ogy class is Poincaré dual to zos+yoo1 + 20111 has degree d = 5z + 16y +5z.
For d =57, z =1 and z = 4 imply y = 2. a

4.2. A Calabi-Yau linear section. Since Y5 is a Fano variety of dimension
6 and index 3, we can take smooth linear sections of dimension 3 to get a
family of Calabi-Yau manifolds C. It was communicated to us by K. Ranes-
tad that these Calabi-Yau’s had first been considered in [30], who computed
the corresponding Gromov-Witten invariants. The following result seems to
be new:
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Proposition 4.8. The Betti numbers of C are by = by = by = bg = 1,
b1 = bs =0, b3 = 2140.

Proof. We know the Betti numbers of Ys, and then all the Betti numbers
of C except bs are given by Lefschetz theorem. To compute b3, we need to
compute the Euler number

3
0= [0 = |, ety

where h denotes the hyperplane class. To do this, we can pull everything
back to Hilb®P2. Note that since the the Hilbert scheme is the blow-up of Y5
along a P? which will not be cut by a generic linear section of codimension
3, we have

3

— (1 _ ! 1,372
(0) = elpr (O = [ | el R,
where | = <p1_1h. To compute this, we use Bott’s fixed-point formula as
in [10], taking profit of the natural action on P2, hence on Hilb*P?, of the
diagonal torus D = {diag(zo,z1,22)} of GL3.

The fixed points in Hilb®P? are unions of monomial ideals supported on
the three fixed points in P2. There are 22 of them, divided into five classes
of cardinality 1, 6, 6, 6 and 3 respectively. These classes are described below
with the induced action of the torus on the tangent space of the Hilbert
scheme at the fixed points.

The drawings on the left column of the table below represent the different
types of length three subschemes of P? which are fixed points of the torus
action: 1) the union of the three fixed points, 2) a length two subscheme
supported on a fixed point, given by a tangent line pointing to another fixed
point, plus that point, 3) a length two subscheme supported on a fixed point,
given by a tangent line pointing to another fixed point, plus the other fixed
point, 4) a length three curvilinear subscheme supported on a fixed point,
with a prefered direction pointing to another fixed point, 5) a fattened fixed
point, i.e. the square of the maximal ideal of a fixed point.

For each fixed point Z, the torus D acts on the tangent space T;Hilb3P2.
The character chp(TzHilb*P?) of this module has been computed with the
help of formula (4.7) in [10].
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Z HY%(0y) chp (TZ7Hilb>P?)
[ ]
3 .3 .3 To 4 %o 4 ZT1 o4 L1 T2 4 T2
Ty, TY, T Il+$Z+IO+$Z+IO+I1
[ ] [ ]
(o]
3 23 .2 To 4 ZTo 4 T2 4 T2 Z2)2
Ly, Loy TyX0 2w1 + T2 + zo + z1 + (wo)
*—r [ ]
[ ]
3 .3 .2 Zo 4 T1 4 To 4 T2 4 T2 Z2)2
Ly, Lo, LyL1 T + To + To + o + T1 + (11)
*— o

x3, r2ry, xox? Lo 4 LL 4 To 4 i + (%0)2 4 (Z0)3
03 LQ+1s L0L] T x2 x2 TOT2

3 .2 2 T ToT T ToT
Ty, THT1, ToT2 250+ 2—31 +220 + g—%z

We now choose a one dimensional subtorus

two 0 0 zg 0 O
T:{ 0 tvr 0 ,teC*}cD:{ 0 z1 O ,mo,ml,xgEC*},
2

0o 0 v 0 0 =z

with the same fixed points. This condition is achieved when the tangent
spaces have no zero weight space: the formulas above show that the weights
wp, w1, w2 must be such that w; # w; and 2w; # w;+wy, for all permutations
1,7,k of 0,1,2. We let wg = 0, w1 = 1,we = 3. The table below gives the
character chT(TZHilb3]I”2), that is, the set of integers my, ..., mg such that

chp (TZHIIb3P?) = ™ 4 ™2 4 M3 4 ™4 | 45 4 M6,

To complete the computation, we will apply Bott’s fixed point formula in
the form given by Theorem 2.2 in [10]. The intersection numbers we need
to compute are given by this formula as sums of rational numbers which
are contributions of the 22 fixed points. Part of these contributions come
from the Chern classes of the tangent bundle, and are easily deduced from
its character at each fixed point. The contribution of the class [ can be
computed as follows: recall that [ = <pf1h = 2H + FE, where H denotes the
pull-back of the hyperplane class by the Hilbert-Chow morphism, and E is
the exceptional divisor of that morphism. If &, is the vector bundle whose
fiber at a scheme Z is given by H°(Oz(n)), we have det &, = nH + E, so we
just need to compute det & and det £;, which is straightforward. We get:
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Z det & det & l
°
1 ToTr1T9 x%x%x%
e °
o
Zo 2 3.3
To .’,603:2 xo.'L'Q
e o
°
x2 2,..3
I ZoTr1T2 TyL{T2
e» O
[¢] 3
z 3 3.3
3 T3 Ty
e O 0
° T1T 4
152 TOT1T2 ToT1T2.
< Zo
e O

Finally, we list in the table below, for our choice of T, and for each fixed

point Z, the integers m1,...,mg giving the character of the tangent space,
the integers ¢; corresponding to the Chern classes c; (Hilb*P?) for i = 1,2,3,6
(these are just the i-th elementary symmetric functions of mg,...,mg), as

well as the weights A of [.
From these data we can compute that

/ ca(HIDP2)® = 3 243 = 243,
Hilb3P2 5 Ce

/ co(HIDP2)1 = 3 2% = 261,
Hilb3P2 5 C6

e (HII3P2)5 = S5 = 171,
/Hilb3]P’2 1( ) Z Ce

Z

hence e(C) = 243 -3 %261 —6x171—10x 57 = —2136. Since e(C) = 4 —bs,
this implies our claim. [l

Since b3(C) = 2 + 2h>(C), we get h>(C) = 1069 = dim H'(C,TC).
This is the dimension of the space of deformations of C, and is much larger
than the number of available parameters for the codimension three linear
section which defines C. Therefore:

Corollary 4.9. A general deformation of C is not a linear section of Ya.
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T, Hilb> P2
1,-1,2,-2,3,-3

-1,-1,2,3,-3,6
1,1,2,-2,3,4
1,-1,2,-2,-3,-3
1,-1,-2,-2,-2,-3
1,2,-2,3,3,—4
~1,2,2,3,-3,—6
1,2 4
1 -2
1, 1 2

?

737
3 4

?

-2

) ¥

-3

’ 37_

3,6
1,-1,2,-2,-3,-6
,22 3
2,—

]' bl ) 337
-1, -2

) ;37 -3
~1,-1,-2,-2,-3,-3
172;_2a [ —4
—12 ~3,5,-6,-9
~2,3,-4,5,—6
—123 —4,6,9
1,—1,2,3,4,6
1,-1,-1,-3,-3, -5
1,1,-2,-2,4, -5
1,2,2,3,3,4

C1

-9

-3

—12
-3
—12
-3
15
15

—12
-3
15

C2

—14

—12
23

29
-17
—-27

-2
—2
13
13
—11
—11

58
-17
—6
—41
39
79

49
—21
91

C3

—70
-5
30
=35
—63
23

—60
60
—45
45
-39
39

—144
39
368
87
—235
165

—72
47
285

Ce

—36

—-108
—48
36
—24
144
—216

72
72
72
72
72
72

36
—144
1620
—720
1296
—144

—45
-80
144

41
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APPENDIX. THE CHOW RING OF THE CAYLEY PLANE
A.1. INTRODUCTION

In this appendix we give a detailed description of the Chow ring of the
complex Cayley plane? Xg = QP2 the fourth Severi variety. This is a smooth
complex projective variety of dimension 16, homogeneous under the action
of the adjoint group of type Eg. It can be described as the closed orbit in
the projectivization P?® of the minimal representation of F.

The Chow ring of a projective homogeneous variety G/P has been de-
scribed classically in two different ways.

First, it can be described has a quotient of a ring of invariants. Namely,
we have to consider the action of the Weyl group of P on the character ring,
take the invariant subring, and mod out by the homogeneous ideal generated
by the invariants (of positive degree) of the full Weyl group of G. This is
the Borel presentation.

Second, the Chow ring has a basis given by the Schubert classes, the
classes of the closures of the B-orbits for some Borel subgroup B of Fj.
These varieties are the Schubert varieties. Their intersection products can
in principle be computed by using Demazure operators [2]. This is the
Schubert presentation.

We give a detailed description of the Schubert presentation of the Chow
ring A*(OP?) of the Cayley plane. We describe explicitely the most interest-
ing Schubert cycles, after having explained how to understand geometrically
a Borel subgroup of Es. Then we compute the intersection numbers. In the
final section, we turn to the Borel presentation and determine the classes
of some invariants of the partial Weyl group in terms of Schubert classes,
from which we deduce the Chern classes of the normal bundle of Xg = OP?
in P26, This allows us to compute the degree of the variety of reductions
Yy C P272,

A.2. THE CAYLEY PLANE

Let O denote the normed algebra of (real) octonions, and let O be its
complexification. The space

c1 T3 T2
~73(®):{ Zz3 ¢ T1 :cieC,gr:ie@}gc27

Ty X1 C3

of O-Hermitian matrices of order 3, is the exceptional simple complex Jordan
algebra, for the Jordan multiplication A o B = 1(AB + BA).

The subgroup SL3(0Q) of GL(J3(0)) consisting in automorphisms pre-
serving the determinant is the adjoint group of type Fg. The Jordan algebra
J3(0) and its dual are the minimal representations of this group.

The action of Eg on the projectivization PJ3(0) has exactly three orbits:
the complement of the determinantal hypersurface, the regular part of this
hypersurface, and its singular part which is the closed Fg-orbit. These three
orbits are the sets of matrices of rank three, two, and one respectively.

2Not to be confused with the real Cayley plane Fy/Sping, the real part of OP?, which
admits a cell decomposition R’ UR® UR' and is topologically much simpler.
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The closed orbit, i.e. the (projectivization of) the set of rank one matrices,
is the Cayley plane. It can be defined by the quadratic equation
X? = trace(X)X, X € J3(0),

or as the closure of the affine cell
1 =z y
(O)IP’2={ z zT yz |, x,ye@}%cw.

It is also the closure of the two similar cells

U U VU
@IP’2={ a 1 v |, u,vE@}%Cw,

uv v vv

tt st ¢

(O)IP’2={ ts 3s s|, s,te([))}gclﬁ.
t 51

Unlike the ordinary projective plane, these three affine cells do not cover

QP2. The complement of their union is

0 r3 T2
o= { (5% 2. soe o)
f2 -’E_l 0 o3 r1x3 Z1T2 0
a singular codimension three linear section. Here, ¢(z) = x% denotes the
non degenerate quadratic form on O obtained by complexification of the
norm of O.

Since the Cayley plane is a closed orbit of Ejg, it can also be identified with
the quotient of Eg by a parabolic subgroup, namely the maximal parabolic
subgroup defined by the simple root ag in the notation below. The semi-
simple part of this maximal parabolic is isomorphic to Spin,.

a1 (65) a3 (073 (673
o °

|

Qg

The Eg-module J3(0) is minuscule, meaning that its weights with respect
to any maximal torus of Eg, are all conjugate under the Weyl group action.
We can easily list these weights as follows. Once we have fixed a set of
simple roots of the Lie algebra, we can define the height of any weight w as
the sum of its coeficients when we express w on the basis of simple roots.
Alternatively, this is just the scalar product (p,w), if p denotes, as usual, the
sum of the fundamental weights, and the scalar product is dual to the Killing
form. The highest weight wg of J3(0) is the unique weight with maximal
height. We can obtain the other weights using the following process: if we
have some weight w of J3(0), we express it in the basis of fundamental
weights. For each fundamental weight w; on which the coefficient of w is
positive, we apply the corresponding simple reflection s;. The result is a
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weight of J3(0) of height smaller than that of w, and we obtain all the
weights in this way. The following diagram is the result of this process. We
do not write down the weights explicitely, but we keep track of the action
of the simple reflections: if we apply s; to go from a weight to another one,
we draw an edge between them, labeled with an 3.

A.3. THE HASSE DIAGRAM OF SCHUBERT CYCLES

Schubert cycles in OP? are indexed by a subset W9 of the Weyl group W
of Eg, the elements of which are minimal length representatives of the Wy-
cosets in W. Here Wy denotes the Weyl group of the maximal parabolic Py €
FEg: it is the subgroup of W generated by the simple reflections s1, ..., ss,
thus isomorphic to the Weyl group of Spin,.

But W) is also the stabilizer in W of the weight wg. Therefore, the weights
of J3(0) are in natural correspondance with the elements of W, and we can
obtain very explicitely, from the picture above, the elements of W9. Indeed,
choose any vertex of the diagram, and any chain of minimal length joining
this vertex to the leftmost one. Let %1,...,i; be the consecutive labels on
the edges of this chain; then s;, ---s; is a minimal decomposition of the
corresponding elements of W9, and every such decomposition is obtained in
this way.

For any w € W9, denote by o, the corresponding Schubert cycle of
QP?. This cycle o, belongs to A®)(QP?), where [(w) denotes the length
of w. We have just seen that this length is equal to the distance of the
point corresponding to w in the picture above, to the leftmost vertex. In
particular, the dimension of A*(QP?) is equal to one for 0 < k < 3, to two
for 4 < k <7, to three for £ = 8 (and by duality, this dimension is of course
unaltered when £ is changed into 16 — k).

The degree of each Schubert class can be deduced from the Pieri formula,
which is particularly simple in the minuscule case. Indeed, we have ([14],
Corollary 3.3), if H denotes the hyperplane class:

ow - H* = Z K(w,v)oy,
1(v)=I(w)+k
where k(w, v) denotes the number of path from w to v in the diagram above;
that is, the number of chains w = ug — u; — -+ — ux = v in W such that
I(u;) = I(w) + i and w;1u; * is a simple reflection. In particular, the degree
of oy, is just x(w,w?), where w® denotes the longest element of W, which
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corresponds to the leftmost vertex of the diagram. We include these degrees
in the following picture, the Hasse diagram of OP?. Note that they can very
quickly be computed inductively, beginning from the left: the degree of each
cycle is the sum of the degrees of the cycles connected to it in one dimension

less.

Degrees of the Schubert cycles

We can already read several interesting informations on this diagram.

(1)
(2)

The degree of OP? C P?6 is 78. This is precisely the dimension of
Ejg. Is there a natural explanation of this coincidence ?

One of the three Schubert varieties of dimension 8 is a quadric.
This must be an O-line in QP?, i.e. a copy of OP' ~ Q®. Indeed,
Eg acts transitively on the family of these lines, which is actually
parametrized by OP? itself. In particular, a Borel subgroup has a
fixed point in this family, which must be a Schubert variety.

The Cayley plane contains two families of Schubert cycles which
are maximal linear subspaces: a family of P*’s, which are maximal
linear subspaces in some Q-line, and a family of P?’s which are not
contained in any O-line. We thus recover the results of [19], from
which we also know that these two families of linear spaces in QP?
are homogeneous. Explicitely, we can describe both types in the
following way.

Let z € O be a non zero octonion such that g(z) = 0. Denote
by R(z) and L(z) the spaces of elements of O defined as the images
of the right and left multiplication by z, respectively. Similarly, if
I C O is an isotropic line, denote by R(l) and L(l) the spaces R(z)
and L(z), if z is a generator of . When [ varies, R(l) and L(I)
describe the two families of maximal isotropic subspaces of O (this
is a geometric version of triality, see e.g. [7]). Consider the sets

1

[y

T Yy z 0
0 0 ,yEl,mEL(l)} and { z 0 0 ,xER(l)} .
0 0 0 00

Q| 8I

Their closures in PJ3(0) are maximal linear subspaces of QP? of
respective dimensions 5 and 4.
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A.4. WHAT 1S A BOREL SUBGROUP OF FEjg ?

The Schubert varieties in QP?, by definition, are the closures of the B-
orbits, where B denotes a Borel subgroup of Eg. To identify the Schubert
varieties geometrically, we need to understand these Borel subgroups better.

The Cayley plane OP? = Eg/Ps C PJ3(Q) is one of the Eg-grassmannians,
if we mean by this a quotient of Eg by a maximal parabolic subgroup. It is
isomorphic to the dual plane OP* = Eg/P; C PJ3(0), the closed orbit of
the projectivized dual representation. By [19], we can identify Fg/Ps and
Eg/P;3 to the varieties G(P!,OP?) and G(P?,0P?) of projective lines and
planes contained in QP?. Similarly, Eg/P, and Eg/Ps can be interpreted as
the varieties of projective lines and planes contained in )

The remaining Eg-grassmannian Eg/Py is the adjoint variety Egd, the
closed orbit in the projectivization Pes of the adjoint representation. By
[19] again, Eg/P; can be identified to the variety G(P!, EZ%) of projective
lines contained in E$¢ C Peg.

Now, a Borel subgroup B in Fj is the intersection of the maximal para-
bolic subgroups that it contains, and there is one such group for each simple
root. Each of these maximal parabolics can be seen as a point on an Fg-
grassmannian, and the fact that these parabolic subgroups have a Borel
subgroup in common, means that these points are incident in the sense of
Tits geometries [29].

Concretely, a point of Eg/Ps defines a projective plane IT in OP?, a dual
plane 1T in @IP’Q, and a line A in E%¥. Choose a point p and a line £ in

(0)2 _such that p € ¢ C TI, choose a point p and a line £ in OP” such that
p € £ C I, and finally a point ¢ € A.

A 14

|

q

O3«
[

o3

We call this data a complete Fg-flag. By [29], there is a bijective corre-
spondance between the set of Borel subgroups of Eg and the set of complete
Eg-flags: this is a direct generalization of the usual fact that a Borel sub-
group of SL, is the stabilizer of a unique flag of vector subspaces of C".

We will not need this, but to complete the picture let us mention that the
correspondance between II, IT and A can be described as follows:

= ()(T.08)" = (1500,

z€ll yeA

This description of Borel subgroups will be useful to construct Schubert
varieties in QP?. Indeed, any subvariety of the Cayley plane that can defined
in terms of a complete (or incomplete) Eg-flag, must be a finite union of
Schubert varieties.
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Let us apply this principle in small codimension. The data §,/, A from
our Fg-flag are respectively a point, a line and a plane in oP’. They define
special linear sections of QP?, of respective codimensions 1, 2 and 3. We read
on the Hasse diagram that these sections are irreducible Schubert varieties.

Something more interesting happens in codimension four, since we can
read on the Hasse diagram that a well-chosen codimension four linear section
of QP? should split into the union of two Schubert varieties, of degrees 33
and 45. The most degenerate codimension four sections must correspond
to very special P?’s in OP’. We know from [19] that OP” contains a whole
family of P3’s, in fact a homogeneous family parametrized by FEg/ Py In
terms of our FEg-flag, that means that a unique member of this family is
defined by the pair (g, £).

We can describe explicitely a P3 in QP? in the following way. Choose a
non-zero vector z € O, of zero norm. Then the closure of the set

0 z O
{ z 0 0], wEL(z)},
0 0 0

is a three dimensional projective space P2 in QP?. Let us take the orthogonal
of this space with respect to the quadratic form Q(X) = trace(X?), and
cut it with OP?. We obtain two codimension 4 subvarieties Z; and Z»,
respectively the closures of the following affine cells Z? and Z9:

1 =z vy

(5) z) = { z 0 mzy|, xEL(z),yE@},
y yz yy
0 u wv

(6) zy = { a 1 v |, uEL(z),vE@}.
vU U VU

The sum of the degrees of these two varieties is equal to 78. The corre-
sponding cycles are linear combinations of Schubert cycles with non negative
coefficients. But in codimension 4 we have only two such cycles, o) and o7,
of respective degrees 33 and 45. The only possibility is that the cycles [Z]]
and [Z2] coincide, up to the order, with ¢ and 7.

To decide which is which, let us cut Z; with H; = {c; = 0}.

Lemma 4.10. The hyperplane section Y1 = Z1 N Hy has two components
Y11 and Y12. One of these two components, say Y11, is the closure of

0 0 ¢
Yle{ 0.0 s, q(s)=q(t)=0, st:O}.
t 5 1
It is a cone over the spinor variety S1o C P,

Recall that the spinor variety Sig is one of the two families of maximal
isotropic subspaces of a smooth eight-dimensional quadric. Its appearance
is not surprising, since we have seen on the weighted Dynkin diagram of
OP? = Fg/Ps that the semi-simple part of Ps is a copy of Spin;,. At a
given point of p € QP?, the stabilizer Ps and its subgroup Spin;, act on
the tangent space, which is isomorphic as a Spin;y-module to a half-spin
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representation, say A . From [19], we know that the family of lines through
p, that are contained in QP?, is isomorphic to the spinor variety Sio, since
it is the closed Spin;j-orbit in PA .

In particular, to each point p of OP? we can associate a subvariety, the
union of lines through that point, which is a cone C(S1g) over the spinor
variety. This is precisely what is Y7 1. Note that we get a Schubert variety
in the Cayley plane. Moreover, since we can choose a Borel subgroup of
Spin,, inside a Borel subgroup of Eg contained in Fs, we obtain a whole
series of Schubert varieties which are isomorphic to cones over the Schubert
subvarieties of S15. These Schubert varieties can be described in terms of
incidence relations with an isotropic reference flag which in principle can be
deduced from our reference Eg-flag.

The Hasse diagram of Schubert varieties in S1g is the following:

The identification of the cone of lines in QP? through some given point,
with the spinor variety S1p, is not so obvious. Consider the map

vy 060 = K(0Q),  wlzy) = ** “i).

2 7O, )= (57

We want to identify Pvy ' (0) with S1p. The following result is due to P.E.
Chaput:

Proposition 4.11. Let (z,y) € v, '(0). The image of the tangent map to vy
at (z,y) is a 5-dimensional subspace of Jo(Q), which is isotropic with respect
to the determinantal quadratic form on J3(Q). Moreovoer, this induces an
isomorphism between PVQ_I(O) and the spinor variety Sqp.

In fact, we can obtain this way the two families of maximal isotropic
subspaces in J2(Q), just by switching the two diagonal coefficients in the
definition of . The spin group Spin;, can also be described very nicely.

But let’s come back to the Schubert varieties in S;9. Taking cones over
them, we get Schubert subvarieties which define a subdiagram of the Hasse
diagram of QP?. We drew this subdiagram in thicklines on the picture below.
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In principle, we are able to describe any of these Schubert varieties geo-
metrically in terms of our reference Eg-flag.

Proof of Lemma 4.1. First note that Y7 does not meet the two affine cells
OP? and QP (see section 2). Moreover, it is easy to check that Y; NOP% has
dimension at most ten, hence strictly smaller dimension than Y;. Therefore,
Y; is the closure of its intersection with QP%, namely

0 st t
Y1 NOP2 = { ts 0 s|, q(s)=gq()=0, ste L(z)}
t 5 1

For a given non zero s, the product 5t must belong to L(z) N L(3), the in-
tersection of two maximal isotropic spaces of the same family. In particular,
this intersection has even dimension.

Generically, the intersection L(z) N L(s) = 0, and we obtain

0 0 ¢t

Y&:{ 0 0 s|, q(s)=g¢q(t) =0, Et:()} Y.
t 51

We have seven parameters for s, and for each s # 0, ¢ must belong to L(s),

which gives four parameters. In particular, Yfl is irreducible of dimension

11, and its closure is an irreducible component of Yi.

The intersection L(z) N L(s) has dimension two exactly when the line
joining z to § is isotropic, which means that § belongs to the intersection of
the quadric ¢ = 0 with its tangent hyperplane at z. This gives six parameters
for s, and for each s, five parameters for ¢, which must be contained in the
intersection of the quadric with a six-dimensional linear space. Therefore,
the closure of

0 5t ¢
Ylo’2 = { ts 0 s|, q(s)=q(t)=0, dim L(z) N L(3) = 2},
t 5 1
is another component of Y;.

The remaining possibility is that s be a multiple of z, but the correspond-
ing subset of has dimension smaller than eleven. Hence Y1 = Y7 1UY; 5. O

We conclude that Z; has degree 45, while Z5 has degree 33. Indeed,
if Z1 had degree 33, we would read on the Hasse diagram that its proper
hyperplane sections are always irreducible, and we have just verified that
this is not the case.
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Note that Z; and Z; look very similar at first sight. Nevertheless, a com-
putation similar to the one we have just done shows that if we cut Z, by the
hyperplane Hy = {c; = 0}, we get an irreducible variety, the difference with
Z1 coming from the fact that we now have to deal with maximal isotropic
subspaces which are not on the same family. The difference between Z; and
Z is therefore just a question of spin...

A.5. INTERSECTION NUMBERS

We now determine the multiplicative structure of the Chow ring A*(QP?).
A priori, we have several interesting informations on that ring structure. We
have already seen in section 2 that the Pieri formula determines combinato-
rially the product with the hyperplane class. Another important property
is that Poincaré duality has a very simple form in terms of Schubert cycles:
the basis (0uw)yewo is, up to order, self-dual; more precisely its dual basis
is (ow*)wewo, where the involution w +— w* is very simple to define on the
Hasse diagram: it is just the symmetry with respect to the vertical line pass-
ing through the cycles of middle dimension. Finally, we know from Poincaré
duality and general transversality arguments that any effective cycle must
be a linear combination of Schubert cycles with non negative coefficients.

This is the information we have on any rational homogeneous space. For
what concerns the Cayley plane, we begin with an obvious observation:

Proposition 4.12. The Chow ring A*(QP?) is generated by the hyperplane
class H, the class o)), and the class og of an O-line.

More precisely, one can directly read on the Hasse diagram and from the
Pieri formula that as a vector space, the Chow ring is generated by classes
of type H?, o} H’ and ogH*. For example, we have the relations

(7) H' = o)+,

(8) oyH* = o3+ 30} + 20,
(9) ofH* = o3+ 4o} + 30},
(10) ogH* = oly+ol,,
(1) AH = 30ly + ol
(12) ohHY = 2005+ 30),.

As a consequence, the multiplicative structure of the Chow ring will be
completely determined once we’ll have computed the intersection products
(%)%, 0Y05 and (0})2. (Note that the Hasse diagram and the Pieri formula
can be used to derive relations in dimension 9 and 13, but these relations
are not sufficient to determine the whole ring structure.)

Proposition 4.13. We have the following relations in the Chow ring:

(13) og = 1,
(14) o408 = Ol
(15) ojog = ofs.

Proof. Recall that og is the class of an Q-line in OP?, and that we know
that the geometry of these lines is similar to the usual line geometry in
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P2: namely, two generic lines meet transversely in one point. This implies
immediately that o2 = 1.

To compute ojog and ojog, we cut the Schubert varieties Z; and Zj
introduced in section 4, whose class we know to be o, and o, with the O-
line L defined in QP? by the conditions z; = 2 = r3 = 0. We get transverse

Intersections
r y 0
ZiNL = { 7 0 0], yEL(z)},
0 0O
0 v O
ZoNL = { g r 0], yEL(z)}.
0 0O

These are two four dimensional projective spaces P} and P§ inside QP?,
which look very similar. But there is actually a big difference: P} is extend-
able, but IP’% is not ! Indeed, a P° in QP? containing ]P"l1 or IF’% must be of the
form, respectively:

Yy 8 0
{ 0 0 ,yEL(z)}, and { i

0 0 0

where s describes some line in . In the second case, the equation sy = 0
must be verified identically, and we can take s on the line Cz: thus Pj
is extendable. But in the first case, we need the identity ys = 0 for all
y € L(z), which would imply that L(z) C R(s): this is impossible, and P} is
not extendable. The proposition follows — see the third observation at the
end of section 3. O

0
s|,y EL(Z)},
0

® Q3
w3

We now have enough information to complete the multiplication table.
First, we know by Poincaré duality that

(16) (08)” = (08)” = (05)* = 1,
(17) o0y = o040y = ogoy = 0,
(18) 0401 = 04075 = 1,
(19) 0401y = 0401y = 0.

Suppose that we have

1\2 ! n
(04)° = oo + piog + paoyg,

mM\2 ! "
(04)° = wog+ viog + 1oy,

! n ! "
0404 = 708+ Y108+ Y203,

for some coeflicients to be determined. Cutting with og, we get po = vy = 1.
The equations (3), (4), (5) give the relations

pot+v =1, pr+m=3, pet+tr=2
vy+v=1 vrvi+m=4 wva+y=3.

In particular, vp = 0. Now, we compute (cj)%(c4)? in two ways to obtain
the relation

Y+ 4% = povo + pivi + pave.
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Eliminating the u;’s and v;’s, we get that 7y, + 5y, = 19. But v, and ~» are
non negative integers, so the only possibility is that v4 = 2, 7o = 1. Thus:

(20) (0}))? = o8+ oy+op,
(21) (O'Z)Q = og+ 20§ + 204,
(22) oyoyi = 204+ 0f.

And this easily implies that

(23) o408 = 01+ 207y,
(24) 0408 = 019+ 01,

(25) ogoy = 2015+ 207,
(26) ojog = 0y + 2070

A.6. THE BOREL PRESENTATION

We now turn to the Borel presentation of the Chow ring of OP?. This is
the ring isomorphism

A*(OP?)q ~ Q[P /QIP]Y

where Q[P]"° denotes the ring of Wy-invariants polynomials on the weight
lattice, and Q[P]Y is the ideal of Q[P]""° generated by W-invariants without
constant term (see [14], 77).

The ring Q[P]"° is easily determined: it is generated by we, and the
subring of W) invariants in the weight lattice of Spin;,. It is therefore the
polynomial ring in the elementary symmetric functions ey; = ¢;(e1,...,¢€5),
1<i<4,andines =¢€1--€5.

The invariants of W, the full Weyl group of Eg, are more difficult to
determine, although we know their fundamental degrees. But since we know
how to compute the intersection products of any two Schubert cycles, we
just need to express the Wy-invariants in terms of the Schubert classes. This
can be achieved, following [2], by applying suitable difference operators to
these invariants.

Since we give a prominent role to the subsystem of Eg of type Ds, it is
natural to choose for the first five simple roots the usual simple roots of Ds,

that is, in a euclidian 6-dimensional space with orthonormal basis 1, ..., €g,
ap = &1 — €2,
Qo = &2 — €3,
a3 = &3 — &4,
Q4 = &4 — Esp,
as = €4+ €5,

ag = —3(e1+ea+es+estoes)+ L.
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The fundamental weights are given by the dual basis:

1
w1 = 51+%66’
2
w2 = 51+52+%565
3
w3 = 51+€2+€3+%56,
1 3
Wy = 5(61+62+63+€4—65)+766,
1 5
wy = §(€1+62+83+€4+85)+%86,
1 3
we = _§(€1+52+€3+54+55)+§86.

The action of the fundamental reflexions on the weight lattice is specially
simple in the basis €1,..., €5, ag. Indeed, s1, s2, s3 and s4 are just the trans-
positions (12), (23), (34), (45). The reflection s affects e4, 5 and ag, which
are changed into —e5, —e4 and ag + €4 + €5. Finally, sg changes each ¢; into
i + ag/2, and of course ag into —ag.

It is then reasonably simple to compute the corresponding divided differ-
ences with MAPLE. We obtain:

Proposition 4.14. The fundamental Wy-invariants are given, in the Chow
ring of the Cayley plane, in terms of Schubert cycles by;

(27) e = —%HQ,
27 21
(28) €4 = —gcﬁ + goﬂ,
3 21
9 _ 2 04l
(29) € 1675~ 3295
27 87
(30) e = —Eoé + 3—20(;,
21 291 519
1 _ 4 29 g 22 o
(31) es 12878 1 25678 ~ 25678

This allows to compute any product in the Borel presentation of the Chow
ring of QP?2.

A.7. CHERN CLASSES OF THE NORMAL BUNDLE

Let A denote the normal bundle to the Cayley plane OP? C PJ3(0). We
want to compute its Chern classes.

First note that the restriction of J3(Q) to the Levi part L ~ Spin;, x C*
of the parabolic subgroup Py of Ejg, is

j3(©)|L = Wwe @ st—wﬁ @ le—w6'

Indeed, there is certainly the line generated by the highest weight vector,
which gives a stable line on which L acts through the character wg. After
we, there is a in J3(0) a unique highest weight, ws — wg, which generates
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a 16-dimensional half-spin module. Finally, the lowest weight of J3(Q) is
—w1, whose highest Wy-conjugate is w; — wg and generates a copy of the
natural 10-dimensional representation of Spin;q. Since these three modules
give 1+ 16 + 10 = 27 dimensions, we have the full decomposition.

Geometrically, this decomposition of J3(Q) must be interpreted as follows.
We have chosen a point p of OP?, corresponding to the line p = W,,,. The
tangent space to OP? at that point is given by the factor W,,, . (More
precisely, only the affine tangent space T is a well-defined Pg-submodule of
J3(0), and it coincides with W, & W,,,_,,.) The remaining term W, _,,
corresponds to the normal bundle. To be precise, if M, denotes the normal
space to QP? at p, there is a canonical identification

Np = Hom(p, j3(©)/T) = Hom(Wiyg, Wi, —ws)-

In other words, the normal bundle A/ to OP? is the homogeneous bundle
Euwy—2we defined by the irreducible Ps-module W, _ouy.

Since w; = €1 + %we, the weights of the normal bundle are the +¢; — %L{JG,
and its Chern class is

cWN) = Tl (1 + e — Sws)(1 — & — Swe)
= B (0+3mp-2)
= Y o(—D)(1+ SH)O ey,

where ejg = e%. We know how to express this in terms of Schubert classes,
and the result is as follows.

Proposition 4.15. In terms of Schubert cycles, the Chern classes of the
normal bundle to OP? C PJ3(Q) are:

Cl(N) = 15H

co(N) = 102H?

cs(N) = 414H3

caa(N) = 11070 + 11130%

cs(N) = 20250)H + 207907

ce(N) = 529205 + 80340¢

ct(N) = 469805 H + 72180§

cs(N) = 2751log + 978604 + 70320%
co(N) = 9630sH + 343805 H + 246607
cio(N) = 15303H? + 5490, H? + 38704 H?

Note that as expected, we get integer coefficients, while the fundamental
WO invariants are only rational combinations of the Schubert cycles. This
is a strong indication that our computations are correct.

A.8. THE FINAL COMPUTATION

We want to compute the degree of the variety of reductions Yg. Recall
that this variety Yjg is a smooth projective variety of dimension 24, embedded
in P22, A P'-bundle Zg over Yz can be identified with the blow-up of the
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projected Cayley plane Xg in PJ3(Q)g, the projective space of trace zero
Hermitian matrices of order three, with coefficients in the Cayley octonions.

Let H denote the pull-back to Zg of the hyperplane class of PJ5(Q)g, and
FE the exceptional divisor of the blow-up. We want to compute

degYz = H(3H — E)**.

We use the fact that the Chow ring of the exceptional divisor £ C Zg, since
it is the projectivization of the normal is the quotient of the ring A* _(@IPQE]
by the relation given by the Chern classes of the normal bundle N of Xg,
namely

9
e’ + Z(—l)ici(ﬁ)eg_i = 0.
i=1
The normal bundle A of Xy is related to the normal bundle N of Xg = QP?

by an exact sequence 0 — O(1) — N — N — 0, from which we can compute
the Chern classes of N:

a(N) = 14H

co(N) = 88H?

cs(N) = 326H3

cs(N) = 7810} + 7870)

cs(N) = 12440} H + 12920 H = 25360% + 129207
cs(N) = 275604 + 42060,

cr(N) = 194204H + 301204 H = 19420} + 495407
cs(N) = 8090s + 28900 + 207804

co(N) = 15403H + 54804 H + 38803 H = 70204 + 93604
cioN) = —ogH?> +ofH? — o H> = 0!

The fact that we get c19(N) = 0, which must hold since N has rank 9, is
again a strong indication that we did no mistake.

To complete our computation, we must compute the intersection products
H?»'E' in the Chow ring of Zg. For i > 0, this can be computed on the
exceptional divisor; since the restriction of the class F to the exceptional
divisor is just the relative hyperplane section, that is, the class e, we have
H?»7'E' = H*¢i~1 the later product being computed in A*(E). We still
denoted by H the pull-back of the hyperplane section from QP?.

Lemma 4.16. Let o € A'7%(QP?). Then oe®™* = os;(N), where sp(N)
denotes the k-th Segre class of the normal bundle N'. The former product is
computed in A*(E), and the the later in A*(QP?).

Proof. Tnduction, using the relation e + 35 | (—1)%¢;(NV)e®~* = 0, and the
fact that the Segre classes are related to the Chern classes by the formally
similar relation s (N) + Y25, (—1)%ci(N)sp_i(N) = 0. O
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We use the later relation to determine the Segre classes inductively. We
obtain

s1i(N) = 14H,

so(N) = 108H?,

ss(N) = 606H>,

sa(N) = 27630} + 275707,

s5(N) = 216240L + 1075207

se(N) = 7549205 + 11260207,

s7(N) = 2405340% + 59659807,

sg(N) = 71148905 + 246239705 + 175094707,
s9(N) = 876819604 + 1160030407,
s10(N) = 531279000", + 3019370407,
s11(N) = 2068576020%, + 7482322847,
s12(N) = 49198553107, + 66952322107,
s13(N) = 265771231203,

s1u(N) = 5875513812014

s15(N) = 1259116140605.

This immediately gives the degree of Yg,

24

24 _

degYs = 3% + > (-1)* ( L )324—’“}125—’“3”(/\/).
k=9

Theorem 4.17. The degree of the variety of reductions Yy is
degYs = 1047361 761.

Acknowledgements. We warmly thank D. Markushevitch for writing the
Macaulay script which allowed the computation of the Segre classes above,
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