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Abstract

We consider a Schrédinger operator with a constant magnetic field in
a half 3-dimensional space, with Neumann type boundary conditions. It
is known from the works by Lu-Pan and Helffer-Morame that the lower
bound of its spectrum is less than the intensity b of the magnetic field,
provided that the magnetic field is not normal to the boundary.

We prove that the spectrum under b is a finite set of eigenvalues (each
of infinite multiplicity).

In the case when the angle between the magnetic field and the bound-
ary is small, we give a sharp asymptotic expansion of the number of these
eigenvalues.

1 Introduction

Let us consider, for (¢,z,s) in the half space E = IR, x IR*, the Neumann
realization of the operator with magnetic field

H = (D; — A1)* + (Dy — A3)? 4+ (Dy — A3)?

where D, = —i(%).

We will assume that the magnetic field B = dA, seen as a 3-dimensional
vector field, is not tangent to the boundary JF, and denote by 6 the angle
between B and the plane ¢t = 0 and by b the norm of B.

This implies that a suitable choice for the gauge A is the 1-form

A = b(zsinf — tcosf)dy
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(so that Ay = Ay = 0), since the condition B = dA leads to the 2-form

B =bsinf de Ady —bcos® dt Ady, (8 € [O,g])

Now the operator H can be written as
Hy = D} + D2 + (D, — b(zsinf — t cosh))? (1.1)

When 6 =0, it is easy to see that the spectrum of the Neumann operator Hy
is absolutely continuous. More precisely one has :

o(Ho) = 0ac(Ho) = [bpo, +00[ ; (1.2)
/mz&iu@% (1.3)

where p(€) denotes the first eigenvalue of the Neumann operator
Qe =D} +(t—€)? on L*(IRy) :

W@ =int Q)= int [ DR+ - ePd. (1)

||f||L2(R+):1
It is also easy to see that, if § = 7, the spectrum of Hz is absolutely continuous:
U(H%) = 0Oqac = [ba +OO[ . (15)

When 6 € ]0, Z[, the spectrum of Hp is no longer absolutely continuous
as proved by K. Lu and X-B. Pan [LuPa], (see also [HeMo2] ).
We are precisely interested in that case:

0<O< g . (1.6)
First, we observe that
o(He) = |J o(Hy ), (1.7)
TER

where Hy , denotes the Neumann realization in the half plane
F = IR, x IR of the operator

Hy, =D} + D2+ (1 —b(zsinf —tcosh))” . (1.8)
Furthermore using for any 7 the change of coordinates z — = — 37,
we see that o(Hy,r) = o(Hp,),
and then the spectrum of Hy is essential and given by :
0(Hyp) = 0ess(Hp) = 0(Hpo) = bx a(Py) , (1.9)

if Py =D?+ D2+ (tcosf—xsinf)? is the Neumann operator on the half plane
F=R, xR.



In [LuPal, (see also [HeMo2] ), it was proved that
inf o(Py) =v(0) <1 =inf 0.5:(Fp) ; (1.10)

so there exists a countable set of eigenvalues of Py, (v;(0));jer, (I C IN),

in [v(9), 1] . Each eigenvalue is of finite multiplicity, so we will assume that each
one is repeated according to its multiplicity. The associated orthonormalized
sequence of eigenfunctions will be denoted by (vg,;)jer :

(0) = 1n(0) < 1(0) < ...v;(0) <via(6) <...<1,  (L11)
Py, = vj(0)vg 5,
(1o,5|%0.k) = djk,
E] (Po)f =D (W15
J

—0o0,1[

({9 |f) = [pgfdtdz and E;(Py) denotes the spectral projection of Py on .J).
So

O'(Hg)ﬂ ] — 00, b[: {bvl(é?), bl/z(e), feey bl/j (0), bl/j+1 (6), .. } 5 (112)

(each bv;(0) is an eigenvalue of infinite multiplicity of Hy ).
For any d < 1 let us denote by N(d, Py) the number of eigenvalues of Py
in | —oco,d[:

N, Po) =Tr(E]_ (P) = #5i 1,(0) < d} (1.13)

The aim of this work is first to prove that for any 8 € ]0, %[, the number of
eigenvalues of Py in ] — 00, 1] is finite. This is the purpose of section 2. Another
interesting question is to get the asymptotic behaviour of N(d, Py) as 6 goes to
zero, when d < 1. This is done in section 4. Section 3 is devoted to a survey of
preliminary results about the function p(€) defined in (1.4) , which are required
in the computation of the asymptotics in section 4.

2 Finiteness of the discrete spectrum

The purpose of this section is to prove the following Theorem.
Theorem 2.1 There ezists a constant C > 1 such that, for any 6 € ]0, %[,

c
N1, Pp) < nd (2.1)

Proof

Convention 2.2 § € ]0, 2] is fized.



Convention 2.3 From now on, any constant depending only on 0
will be denoted invariably Cy .
If the constant does not depend on 8, it will be denoted invariably C.

Let us denote by ¢y the quadratic form associated to Py :
qo(u) = / [Diul? + |Dgul?® + (tcos @ — zsin 0)? |u|*]dtdz | (2.2)
F
Vu e HY(F)(L*(F; (tcosf — zsinf)?dtdr) ; (F =Ry, xR, ).
There exists a partition of unity (xo(t), x1(t)) satisfying :

xo(t) =1if t <1,

Xo(t) =0if t > 2,

Xo(t) +xi(t) =1. (2.3)
Let R > 1 be fixed. We consider the following covering of F :

Oor = {(t,z) e Ry xIR, 0 <t< 2R}
O, = {(t,z) e Ry xR, R<t} (2.4)

We define the partition of unity (xo,r(t), x1,r(t)) by :

Xinlt) = Xi(5) (2.5)

Let us recall that

a0(u) = qo(xs.mu) — Y X, rull® - (2:6)
J J
We define the following quadratic forms:
go,0(u) = / [Dyu|? + |Dyul? + ( (tcosf —zsinb)? — Vg(t) )|ul?]dtdz , (2.7)
Oo,r

VueHl(Oo,R) ﬂL2(00,R;m2dtdm), u/{t = 2R} = 0, with Vg(t) = Ej |X9,R(t)|2;
and

qo,l(u)z/ [Deuf? +|Dyul + ( (¢ cosb— wsin)? — Vig(t) )|ul?]dede , (2.8)
O1,r

Vu € H'(O1r)[)L*(O1,r; (tcosf — wsinf)’dtdr), u/{t= R} =0.
By min-max principle, we have

N(]'a qﬂ) S N(]-: q9,0) + N(17 q@,l) - (29)

This estimate remains if we change O; g into IR? in the definition of gs,1:

q,,,l(u)Z/ [Deuf® + |Dyuf® + ( (tcosd — zsin8) — Vi(t) )|ul?]dtd , (2.10)
RZ



Yu € H'(R?) ﬂ L?(IR?; (t cos § — x sin 0)?dtdx) .
As the operator P, associated to gg,0 has compact resolvent, and

1
go,0(u) > /OO’R [Dtu|2 + |Dyul* + (5552 sin?@ — 4R? cos®  — %) |u|2]dtdx ,

we get easily

< 22 M+ R2cos? 0] .
N(1, gpo) < sinG[ + R?cos® 6]

Using the orthonormal change of coordinates :
(t,z) = (s,y) with s = tcosf — zsinf, and y = tsinb + z cos b,
we can take for gg 1 the following expression :

go,1(u) = / [Dsul? + |Dyul? + (s° — Va(s,y) )|ul*]dsdy ,
RZ
Vu € H'(R*) ()L (R s2dsdy) , with

(5.1) (sc050+ysm0)‘

Let us consider the orthogonal projections

—r?/2 4T

M (u)(s,5) = aﬁﬂﬂﬂvww =

AMu = u—Thu,

so that, for any u € L*(IR?), we get : ||ul|? = || Tyul]®> + ||Arul® .
—_s2
Writing : I u(s,y) = eﬁl—/fw(y) and

Wr(y) \/—/ VRSy

we obtain that :
() = [ (1,0 + (1 = Wr(u) o]y
We have also
g0 (Ayu) > /RZ[|DyA1u|2 +(3- %)|A1u|2]dsdy.
But

go,1(uw) = qo,1 (1u) + go,1 (Ayu) — 2R€/ Ve (s, y)Iliu.Audsdy ;
R2

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)



so, for any € €]0,1],

1
a0,1(u) 2 gp.1 (Thu) == / . Vii(s,y) My dsdy + o1 (Aru) =€l Arul® . (2.18)
R
Thanks to (2.16), we can take ¢ = 1 and R large enough such that
a9,1(Arw) — el Avul” > [[Arul® (2.19)

for example R satisfying : 3 — % —e>1.
Then, by (2.15) (2.17) and (2.19), we get that

N(17 q9,1) S N(OJ q9,1,0) ) (220)
if
Go.10() = /R (1D — Wra(9)|0] dy (2.21)
Vi € HY(R), with

Wr(y \/_/ VR (s,y) + Vi(s,y)]ds .

From (2.3) and the formula (2.13), the following bound holds :

c 2R—ysinf

cos @ 2
< <5 B
O_WR,l(y)_RZ /RLs;ng e ds,

cos 6
(we used the fact that, for any fixed y, Vgr(s,y) = 0 for s outside the interval
defined by R < scosf + ysinf < 2R), so

0 < Wg,1(y) (2.22)

C _ (ysin§—R)? _ (ysin9—2R)?

= ﬁx[zs}fnw s?fa](y) + Rcos# 7 wme e oo ]

(v sinG—R)2

(ysin9—2R)2
cos2 6 1 D2

e cos2 6

As the operators on L?(IR), 3D2—

Rcos@e RcosO

and 3Sé2s460D Rg)sae_?ﬂ have the same spectrum, we get from (2.20)—(2.22)
that
N(17 qﬂ,l) S 2N(07 q9,1,1) + N(O7 q9,1,2) ) (223)
if
W= [ [ i, Tplay, (29
= - e .
.11 rLl3costd Y Rcosf v

and
w12 = [ [FIDAF ~ X[ o s 0WF|dr,  @22)

2sin 6’ slng

Vi € H'(IR), for some R > 1 independent of 6 €]0,%].

Tt is well known that N (0, gg1,1) < C<2220
and N(0, gg1,2) < SO

el
= §inf>
N(1 < —.

( ) q@,l) = 5ing

We conclude from (2.9), (2.11) and (2.26) that the estimate (2.1) is valid.

(2.26)



3 Some properties of u(§)

The properties of the first eigenvalue, wu(£), of the Neumann operator on
LA(Ry), Qe =D}+(t—€)?,

can be found in [DaHe|, or in [BeSt], or in [HeMol].

The main one is

p € C(R),

w'(€) #0 if £ # &o,

u(§) >1, if £<0, (3.1)
w) <1, if £€>0,

limg,— oo p(§) = 400, limeq00 p(§) =1;

(&0 > 0 is such that & = u(&) )-
Let ¢ be a normalized eigenfunction associated to u(€) :

lleelleomy) =1, w:(0) =0, Qepe = u(é)we , (3.2)

then
' (&) = —(u(€) =€) (0) - (3.3)

It is easy to see that ¢ is exponentially decreasing. More precisely we have

Lemma 3.1 For any £>1and n €]0,1],

/R [(t = €2 — p(©)], =72 o (D) 2dt < p(€)eH /15 (3.4)

consequently, there exists Co > 1 such that

1= Coe KI/% < pu(e) . (3:5)
More over, if p2(§) is the second eigenvalue of Q¢ , then we have also

3 — Coe™16/% < py(€) (3.6)

and then 5
l5z0¢C)llz2my) < Co, VE>T. (3.7)
213

Proof We proceed as in [Hel] to get (3.4). For any Lipschitz and real function
®, with compact support,

IDe(e®e)T2(my) = ([1(€) — (t =€) + (2')*] ¢l e)
SO
([(t=8)7—n(&) — (@] ,e®pele®we) < ([n(€) —(t—€)*+()*] e®pele®pe) -

This estimate is still valid for ® with non compact support, provided that the
right hand side of the inequality is finite; so we can take



®(t) = (1 —n)Y/2(t — £)?/2 to get (3.4).
Now, let x be a smooth cut-off function on IR :

x € C*(R),

xt) =1, if —1<t<]l,
x(t) =0, if |t|>2,
0<x<1.

If £ > 1, we define the function @ ¢(t) = X(4t—E§)g0§ (t).
So
~ 2 ~ 2 ~ 2, 6 =8
1De@1ell” + 11— E)Prell® = nE)llbrell” + 6_2”X (4T)¢5|l :

As @1 ¢ is of compact support and the first eigenvalue of D7 + (t—¢)? on L?(IR)
is 1, then
t—¢

- - 16
151,6l* < w(@)IPell” + §—2||X'(4 ¢ Jeell® s

then we use the estimate (3.4) to see that, for some constant C > 1,
1< (&) + Ce4°/C: the estimate (3.5) follows.

If po(§) is the second eigenvalue of Q¢ and ¢3¢ the associated normalized
eigenfunction, then we have in the same way, for any real function &,

([t =87 = 12() = ()], e®paele®pre)
< ([n2(9) = (¢ = )” + (2)°], e®paele®pre);
SO @2,¢ is exponentially decreasing as ¢g, and if @2 ¢(t) = X(4%)902,5(t),

then )
IDeBaell” + I(t = )Paell* < pa(8) + Ce ¢ /€

and 2
| |P2ell —1] < Ce€7/€,

NS 2 3.9
(@relFae)| < Ce€/C . (3.9

Those estimates, (3.5) and the min-max principle show that us (&) + Ce=¢7/C is
greater then the second eigenvalue of D? + (t — €)% on L%(IR),
50 3 < ua(é) + Ce~¢"/C : this ends the proof of the Lemma.

We recall that some elementary technique of perturbation shows that
0 -1
gePe®) = 2[Q¢ — n(&)] e (3.10)

with
Ye(t) = (t = e (t) — ((t — E)pelpe)pe(t) -
As |D7 el + It = &)pell = p(E)ll@ell = u(€) , we get easily (3.7) from (3.10).



Remark 3.2 As & goes to —oo, the following asymptotic expansions hold

u(€) =€ + (=20)*%p + O(|¢7¥/?) (3.11)

and
pa(6) = € + (—26*%p> + O(l¢| */?) (3.12)

if (pj) is the increasing sequence of eigenvalues of the Neumann operator on
L?(IR,) associated to D? +t .

As a matter of fact, if £ < —1, we have easily o(Q¢) = &2[1 + o(Q¢2)] , if
Q¢ 2 is the Neumann operator on L?(IR,) associated to h>D? + 2t + t* with
h—e2.

Using semi-classical method as in [Sil] or in [HeSjl] (or in [Hel]), we get
easily that the N-first eigenvalues of Q¢ » are equal to (2h)%/3py, ..., (2h)?/3pyN
modulo a O(h*/3) .

4 The case of small 6

We are still investigating the spectrum of the operator Py, defined in the intro-
duction as following :

Py = D} + D2 + (tcosf — zsinf)? .
Performing the scaling (¢, z) — (tv/cosé, — %), we observe that this operator
has the same spectrum as :
-2
sin“@ _,
cosf °

Py =cosf[D} + (t — z)?] +

(we keep on the same notation for simplification).
It has been proved [HeMo2| that for small values of § > 0 the following
asymptotics hold :

inf o(Pp) ~ po + Zcﬁj .
J21

Therefore let us consider a set
Ij= ] —o0, d[ with d€]po,1].
The goal of this section is to get information about
N(d, Py) = fo(Pp)N] — oo, d[ , (4.1)

which denotes the number of eigenvalues of Py included in the set I.

Here may be one can apply the technique of Balazard-Konlein [Bal] to get
the asymptotics of N(d, Py) , but the result will be rough, compared to our
result in Theorem 4.2: our remainder is an O(1) and the result of [Bal] would



give O(sin"? 8) with p > 1/2.
More over the assumptions in [Bal] are not satisfied in our case.
For a fixed a > 1 let us consider the following sets

Jo=[-a,+00], Ji=]—o0,—Z],

and a partition of unity :

Xo(x) + xi(x) =1, support (x;) C J;, Y Ixj@)|* <C.
j

For j = 0,1 let us denote by §; the domains IR, x J; :

Qo = IR+><] —a,—+—oo[ and QO = 1R+><] — og,—%[.
We take now the realization of the operators P; on each domain Q;, associated
to the quadratic form go;, with Neumann conditions on I'y = {0} x J; and
Dirichlet conditions on I'p = IR; x 0.J;.

The quadratic forms are defined as follows :

-2
0
sin |Dyul?

_ 2 L N2),,12
4o, () _/Qj{cosa[wtm + (- o)) + Tl

sin? 6 L oN2y12
> I @) [ul dtda
=0

cosf

Let us first explain why gq, will not give any contribution to the term
N(d, Py) .
According to section 3 we know that u(z), the first eigenvalue of D7 + (t —z)?
is decreasing on J; , so we have :
a sin” @ 9
g0, (u) > [p(—i)cow -C m]”u”L%Ql) .
But pu(—%) > 1, so for small 6 the preceding minoring ensues

qQ, (’LL) > ||U||%2(Ql) , if 0<6 <6y, (42)

for some 6y € ]0,Z] .

In order to study the form gq,, it is convenient to use the normalized eigen-
function ¢, associated to u(x), in the following way.

Let us denote by ITy(u) the orthogonal projection on the set

Fy = {pa(t00(a); ¥ € L()} , (4.3)
defined by
Mo (1) = 4 (8)( /R u(s,2)pa ()ds) | (4.4)

and by Fy = (Fp)' the orthogonal set of Fy . The corresponding orthogonal
projection is
I =1-1 .

10



A direct computation gives :
0, (pu) = Iy(0,u) + R(u) ,

where R is defined by

Rw) = (0|

The additional fact that

u(s,1)0z 0 (s)ds) + 0r 2 (1) (/

u(s,x)goz(s)ds). (4.5)
Ry

0, (ITyu) = 11, (O,u) — R(u)

yields the following bounds :

(1 = ) [10: (o) 30 + 100 (M) ) + 20 = IR oy
< [10pullZ2(0q)
< (1 + )10 (Mow) [ Z2(q,) + 10: Mru) |12y ] + 2(1 + %)”R(U)H%Q(QO) :
Using the result (3.10) in the Lemma 3.1, we get the following bound :
Lemma 4.1
3Co >0, s.t. Vu € L*(Q), [[RW)|lr20q) < Collullr2(ay) - (4.6)

Let us sketch the proof of the lemma 4.1. Taking norms in (4.5) we have :

[1RW)IE2(0q) < 2/Q |u(s, 2) (Do pa(s)) [ dsdz + 2 sup 00z ()l[72 (k) l1ullZ2(0y)
0

z€Jo

< 4sup [|0:0: )12y llullZzo,) -
z€Jo

The lemma will then be proved if we show that sup ||0¢s (t)||%2( Ryl 18

z€Jo
finite.
Going back to the relation (3.10)
0 —1
o pat) = 20Qu — )] (@)
z
with
Yo (t) = (t = 2)pa(t) — ((t — 2)palPa)pa(t) ,
and using :
103 0elaqaesy + 1t = 2)0allZagrz, = m@)0elams ) = (@)

we get that :

It = 2)ezllLa(ms) < V()

11



and then

{(t = 2)pzlpa) L2(R% )| <WVup
1Yzllz2mz) <2V (=) -

Since 9, lives on the orthogonal space of ¢, , let us consider the norm N,
of the restriction of [Qw - u(m)] ! to this orthogonal space. It is given by :

SO

1 1
No= @ @~ @) — @

where (u;()); is the increasing sequence of the eigenvalues of @ .
According to (3.1) and (3.6) , u(z) and N, are uniformly bounded on Jy ,
so there exists ¢y > 0 such that

i
sup 190 (®)ll 120y < 2 sup — VI
z€Jy ( )

S CO )
cedo H2(z) — p(z)

so the Lemma 4.1 follows.

From Lemma 4.1, we see that we can find a constant C; > 0, such that, for
any € €]0,1],

Cy

(1-¢) [||5w(H0U)||i2(QO) + ||6w(H1u)”%2(Qo)] ||U||L2(QO)

<82 ullZ2q0)

C
< (1 + €) 110 (Mow)[[Z2 () + 102 (M w) |72y + flIUHizmo)

From that we obtain the corresponding bounds on the quadratic form gq,

46, (Mow) + g5, () < ga, (u) < g5 (Mou) + g5 (Mru) (4.8)
where we used the natural notations :
_ 20
0. (u)z/ {cos[|Druf? + (¢ — 2)?|ul’] +(1—e)sm 51Dl fdtdo
Qo
.
sin” 6 Cy 9
Y [C+ ?]”u””mo)
and
.2
ety 2 20,2 sin” ¢ 2
a5t (w) —/Qo{cos0[|Dtu| + (t=a)lul’] + (1 + = [Dol }dtd:z:
sin? 4 Cy
g

12



Writing
sin 6
h= , 4.9
vcos@ (4.9)

taking into account (4.3), we define

W) = [ Igeaora,

and we get, using (4.4) that :
45, (Mou) = ¢~ (¢)

= [ {[u(@) cosb + (1 - e)h*W(2)] ¢ ()

Jo
+ (1= ORAD@) — 1?0+ D) o) e
In the same way we have :
‘190 (HOU) =¢“t(y)

= /J {[u(x) cosb + (1 + e)h*W (z)]|¢ ()|

2 C1

+ (L+e)h?|Datp(a)]” + 1> — ()" Yde.

Now we have to deal with the terms involving the second projection II; u . But
the definition of II;u , the min-max principle and the estimate 1—cosf < h2C
give the following lower bound :

C
g5 (M) > [inf pio(a) — b2 (C+ =) [Mullzaon)

z€Jo

where pa(x) denotes the second eigenvalue defined in the Lemma 3.1. This eigen-
value has to be greater than the first eigenvalue of the corresponding Dirichlet
problem, so

pa(z) > 1.
If we take for example € = h , we get that

N(d,¢5") = N(d, ¢°%) .

Let us take an extension fi(x) of u(x) outside of

Joa ={z € Jo, p(z) <d+(1-d)/2}, (4.10)
such that
A(@) = u(a), it o € Jog
Bz) > (1+d)/2, Vo ¢ Joa (4.11)
a(z) =1if || > Cy

13



for some constant C; > 0. Let us define
=) = [ [i(o) @) + (1 £ 0,6 @) ds

The exponential localization of eigenfunctions of ¢&* associated to eigenvalues
in | — 00, d[, (see [Hel]), and the polynomial bound of N(d,q“*) and N(d +
hC, qf)’i) obtained by Theorem 2.1, show as in [Hel] that

N(d—hC,q5*) < N(d,¢"*) < N(d+ hC,q5™) , (4.12)

(we have used that W(z) is bounded in Jy, thanks to (3.7)).

Applying a classical estimate of N(d, qg’i), (see for example D. Robert’s
book [Ro]), (Theorem V-11, page 263), we have that, for any A < (1+d)/2,
there exists C'y > 0 such that, for any h € ]0, 1[ and any € € ]0, 1/2 [,

1/2

1
2mhy/1 L € /R [)\ B u(x)]+

Taking € = h , we get from (4.8), (4.9), (4.10), (4.11), (4.12) and (4.13) with
A =d =+ hC , that there exists Cy > 0, depending only on d, such

‘N()\,qg’i) - dz| < C . (4.13)

<Cy. (4.14)

1 1/2
Naw) = gy [ [ @) e

We get easily from the above discussion the following theorem :

Theorem 4.2 For any d € |po, 1],
there exists Cq > 0 such that

<Cq- (4.15)

1 1/2
‘N(d,Pg) ~ 5 and /R[d—u(ac)]+ dz

Remark 4.3 The condition 6 < 6y (4.2) can be removed since N (d, Py) is finite
for fized 6 according to Theorem 2.1.

Acknowledgements. The authors would like to thank Bernard Helffer for
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