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Abstract

The set of point sets of Rn, n > 1, having the property that their minimal interpoint

distance is greater than a given strictly positive constant is shown to be equippable by a

metric for which it is a compact topological space. We also show that its subsets of Delone

sets of given constants in R
n, n > 1, are compact. We prove that this result implies the

classical selection theorem of Mahler.

1. Introduction

In 1946 Mahler [Ma] obtained important results on star bodies and their critical lattices in

R
n using the following fundamental result called now selection theorem of Mahler or Mahler’s

compactness theorem.

T 1.1. — Let (Lr) be a sequence of lattices of Rn such that, for all r : (i) ‖x‖ > c for

all x ∈ Lr , x ≠ 0, with c a strictly positive constant independent of r , (ii) the Lebesgue measure

|Lr | of the fundamental region of Lr satisfies |Lr | 6 M with M a constant < +∞ independent

of r . Then one can extract from the sequence (Lr ) a subsequence (Lr ′) that converges to a lattice

L of Rn such that |L| = limr ′→+∞ |Lr ′ |.

This theorem is considerably efficient in many problems of geometry of numbers [Ca] [GL].

The desirability of extending the main theorems of Geometry of numbers, whose Mahler’s com-

pactness theorem, to general algebraic number fields and more was emphasized by Mahler in a

seminar at Princeton [RSD]. Several authors revisited this theorem, giving generalizations and

analogs for other ambiant spaces than R
n: Chabauty [Ch] with subgroups in locally compact

abelian groups, Mumford [Mu] in semi-simple Lie groups without compact factors and mod-

uli spaces of compact Riemann surfaces of given genus, Macbeath and Swierczkowski [MS] in

locally compact and σ-compact topological groups (abelian or not) which are compactly gen-

erated, McFeat [Mf] in adele spaces of number fields, Rogers and Swinnerton-Dyer [RSD] in
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algebraic number fields. Groemer [Groe] gave an elegant proof of this theorem by showing

that it is a consequence of the selection theorem of Blaschke [Ca], by noticing the bicontinuous

one-to-one correspondence between lattices and their Voronoi domains.

The way that Chabauty [Ch] proved the theorem 1.1 is extremely instructive. A careful at-

tention to his ”elementary” proof reveals the very important following fact that the Z-additive

structure of the lattices Lr is not necessary to obtain the convergence of a subsequence. From

this essential remark, Chabauty proposed in [Ch] a possible extension of Mahler’s compactness

theorem to locally compact abelian groups as ambiant spaces with a suitable topology, method

which was controversed and refined by Mumford [Mu] for further generalizations. This essen-

tial remark opens the way to deal with sequences of non-periodic point sets, that is without

any additional algebraic structure, instead of only lattices or subgroups, suggesting that the

selection theorem of Mahler should exist in more general situations.

In this paper we will exploit these ideas to develop a new version of the theorem of selection

of Mahler adapted to point sets (i.e. not only lattice or subgroup point sets) sticking to the

”elementary” approach of Chabauty. This can be formulated as follows. We will be interested

in sets of point sets, say UD(H , δ)r , of a metric space (H , δ), where δ is a metric on H , which

have the property that the minimal interpoint distance is greater than a given strictly positive

constant, say r . Concerning the point (i) of the theorem 1.1, the fundamental question is now

the following:

(q1) for which metric spaces (H , δ) can the set UD(H , δ)r be endowed with a topology

such that it is compact, and for which values of r ?

In the scope of generalizing the assertion (ii) of the theorem 1.1, let us recall the (Besicov-

itch) concept of relative denseness [MVG] : we will say that a subset Λ of (H , δ) is relatively

dense (for δ) in H if there exists R > 0 such that for all z ∈ H there exists λ ∈ Λ such that

δ(z, λ) 6 R. We will say that Λ is relatively dense of constant R if R is chosen minimal for

that property. Then we can formulate the fundamental question:

(q2) for which metric spaces (H , δ) can the subset X (H , δ)r,R of UD(H , δ)r of the

relatively dense subsets of H of given constant R > 0 be endowed with a topology such that

it is compact, and for which values of R ?

We will say that a subset Λ of (H , δ) is a Delone set if there exist r > 0 and R > 0 such

that its minimal interpoint distance is > r and that it is relatively dense of constant R > 0. In

this case we will say that Λ is a Delone set of constants (r, R) (see [MVG] for possible values

of r and R when H = R
n). For instance, observe that a lattice in (Rn, ‖ · ‖) is already a

Delone set, where ‖ · ‖ is the standard euclidean metric. The main theorem of this paper is the

following. It provides answers to (q1) and (q2) when H = Rn and δ = ‖ · ‖. For short, in this

case, let us denote by UDr the set UD(Rn, δ)r and by Xr,R the set X (Rn, δ)r,R .

T 1.2. — For all r > 0, the set UDr can be endowed with a metric d such that the

topological space (UDr , d) is compact. For all R > 0, the subspace Xr,R of (UDr , d) of the

Delone sets of constants (r, R) is closed.
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In section 2 we will give an ”elementary” proof of the theorem 1.2 in the same spirit as

in Chabauty’s approach. For this we will construct a suitable metric whose properties will be

studied. In section 3 we will show that the theorem 1.2 implies the selection theorem of Mahler

1.1 and will comment about sufficient conditions on the space H to provide positive answers

to the problems (q1) and (q2) from the present proof. Some applications of the theorem 1.2 will

be reported in [MVG1] [MVG2] [MVG3].

2. Proof of the theorem 1.2

It is clear that it suffices to prove the theorem 1.2 for r = 1 to obtain it for all r > 0 by

the properties of the euclidean norm on R
n. We will consider r = 1 in the sequel. Let us

simplify again the notations and put UD for UD1 and X or XR instead of X1,R . We will

speak generically of UD-sets for the elements of UD. Namely, a UD-set will be either the

”empty set” element ∅, a point set {x} reduced to one point with x ∈ R
n, or a point set

Λ ⊂ R
n which contains at least two points such that x, y ∈ Λ, x ≠ y ⇒ ‖x − y‖ > 1.

The sequel will be organized as follows: in the subsection 2.1 we will construct a collection of

pseudo-metrics on UD, each pseudo-metric being a kind of counting system normalized by

a suitable distance function. Then we will show that the supremum of these pseudo-metrics is

a metric which possesses nice properties and leads to the same pointwise behaviour of UD-

sets as that reported by Chabauty in the classical lattice case [Ch] (subsection 2.2). Then, in

the subsections 2.3 and 2.4 we will prove the completeness and the precompactness of the

topological space UD hence its compactness. In the subsection 2.5 we will prove that the

subspaces XR for all R > 0 are closed in (UD, d), hence compact.

2.1. Construction of a metric and properties

Denote by B(c, ε) the closed ball ofRn of center c and radius ε > 0 and
o
B(c, ε) its interior. Since

any UD-set Λ is countable, we denote by Λi its i-th element. Let E = {(D, E ) | D countable

point set in R
n, E countable point set in (0, 1/2)} and f : Rn → [0, 1] a continuous function

with compact support in B(0, 1) which satisfies f (0) = 1 and f (t ) 6
1/2+‖λ−t /2‖

1/2+‖λ‖ for all

t ∈ B(0, 1) and λ ∈ Rn (for technical reasons which will appear below). Recall that a pseudo-

metric δ on a space satisfies all the axioms of a distance except that δ(u, v) = 0 does not

necessarily imply u = v.

With each element (D, E ) ∈ E and origin α of the affine euclidean space R
n we associate a

real-valued function dα,(D,E ) on UD × UD in the following way. Let B(D,E ) = {Bm} denote

the countable set of all possible finite collections Bm = { o
B (c

(m)
1 , ε

(m)
1 ),

o
B (c

(m)
2 , ε

(m)
2 ), . . . ,

o
B

(c
(m)
im

, ε
(m)
im
)} (with im the number of elements #Bm of Bm) of open balls such that c

(m)
q ∈ D

and ε
(m)
q ∈ E for all q ∈ {1, 2, . . . , im}, and such that for all m and any two balls in Bm of

respective centers c
(m)
q and c

(m)
k , we have ‖c

(m)
q − c

(m)
k ‖ > 1. Then we define the following

function, with Λ,Λ′ ∈ UD,

dα,(D,E )(Λ,Λ′
) := sup

Bm∈B(D,E )

|φBm(Λ)− φBm(Λ
′)|

(1/2 + ‖α‖ + ‖α− c
(m)
1 ‖ + ‖α− c

(m)
2 ‖ + · · · + ‖α− c

(m)
im

‖)
(1)
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where the real-valued function φBm is given by φBm(Λ) :=
∑

o
B(c,ε)∈Bm

∑
i ε f

(
Λi−c
ε

)
. By

convention we putφBm(∅) = 0 for all Bm ∈ B(D,E ) and all (D, E ) ∈ E . It is clear that, for all

m and Λ ∈ UD, inside each ball
o
B(c, ε) ∈ Bm, there is at most one point of Λ and therefore

the summation
∑

i ε f
(
Λi−c
ε

)
is reduced to at most one non-zero term. Therefore the sum

φBm(Λ) is finite.

L 2.1. — For all (α, (D, E )) inRn × E , dα,(D,E ) is a pseudo-metric valued in [0, 1].

Proof. — Let α ∈ R
n and (D, E ) ∈ E . It is easy to check that dα,(D,E ) is a pseudo-metric on

UD. Let us show it is valued in [0, 1]. Let us consider Bm ∈ B(D,E ) for which the centers of

its constitutive balls are denoted by c1, c2, . . . , cim . Then we have im
2

6 1/2 + ‖α‖ + ‖α− c1‖ +

‖α− c2‖ + · · · + ‖α− cim‖. Indeed, if there exists j ∈ {1, 2, . . . , im} such that ‖c j − α‖ 6 1/2,

then for all k ≠ j , ‖ck −α‖ > 1/2. Hence 1/2 + ‖α‖ + ‖α− c1‖ + ‖α− c2‖ + · · · + ‖α− cim‖ >

1/2 + ‖α‖ + im−1
2

>
im
2

. If ‖ck −α‖ > 1/2 for all k ∈ {1, 2, . . . , im}, then 1/2 + ‖α‖ + ‖α− c1‖ +

‖α− c2‖+ · · ·+‖α− cim‖ > 1/2 +‖α‖+ im
2

>
im
2

. On the other hand, since the radii of the balls
o
B (c j , ε j ) ∈ Bm are less than 1/2 by construction, we have 0 6 φBm(Λ) 6

im
2

for all UD-set

Λ. Therefore |φBm(Λ)− φBm(Λ
′)| 6 1/2 + ‖α‖ + ‖α − c1‖ + ‖α − c2‖ + · · · + ‖α − cim‖, for

all Bm ∈ B(D,E ) and all UD-setsΛ,Λ′. We deduce the claim.

The uniform topology on UD given by the pseudo-metrics dα,(D,E ) is generated by the open

sets {Λ ∈ UD | dα,(D,E )(u,Λ) < ε}, u ∈ UD (Weil [We]). In order to get rid of a peculiar

choice of the origin α and of the element (D, E ) of E , we now take the supremum over all

choices (α, (D, E )) in Rn × E .

T 2.2. — The supremum d := sup
α∈Rn

(D,E )∈E

dα,(D,E ) is a metric on UD, valued in [0, 1].

Proof. — The supremum of the family of pseudo-metrics dα,(D,E ) is obviously a pseudo-

metric which takes its values in [0, 1]. We have only to show that d is a metric. Assume

Λ,Λ′ are UD-sets which are not empty such that d(Λ,Λ′) = 0 and let us show thatΛ = Λ′. We

will show that Λ 6⊂ Λ′ and Λ′ 6⊂ Λ are impossible. Assume that Λ ≠ Λ′ and that Λ 6⊂ Λ′. Then

there exists λ ∈ Λ such that λ 6∈ Λ′. Denote by ε := 1
2

min{ 1
2

, min{‖λ − u‖ | u ∈ Λ′}}. We

have ε > 0 since Λ′ is a UD-set. The ball
o
B (λ, ε) contains no point of Λ′ and only the point

λ of Λ. Take α = λ, D = {λ}, E = {ε}. We have dλ,(D,E )(Λ,Λ′) = ε
1/2+‖λ‖ > 0. Hence d(Λ,Λ′)

would be strictly positive. Contradiction. Therefore Λ ⊂ Λ′. Then, exchanging Λ and Λ′, we

have Λ′ ⊂ Λ. We deduce the equality Λ = Λ′. If we assume that one of the UD-sets Λ or Λ′ is

the empty set, we see that the above proof is still valid.

The metric d can be applied to UD-sets of Rn which may have very different R-spans, with

distinct dimensions possibly strictly less than n. Therefore, it is important to understand the

behaviour of the restriction of d to subspaces of Rn.

Descent to lower dimensions.– Once the dimension n and the function f are fixed, the con-

struction of the distance d on the space of UD-sets of Rn generates a distance constructed in

a similar way on the space of UD-sets of E, for all affine subspace E ⊂ R
n containing the
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origin: it suffices to take the restriction f |E instead of f , α in E and collections of balls Bm

in B(D,E ) with (D, E ) ∈ E|E := {(D, E ) | D countable point set in E, E countable point set in

(0, 1/2)}. This process allows to define a new collection of pseudo-metrics dα,(D,E ) |E relatively

to E itself. Let us denote dE := sup dα,(D,E ) |E the corresponding distance. The following lemma

is then obvious from the definitions.

L 2.3. — For all affine subspaces E, F of Rn containing the origin such that E ⊂ F and for

any UD-set Γ of E we have dE(Γ, ∅) 6 dF(Γ, ∅). In particular, if Λ is an arbitrary UD-set of Rn

and E ⊂ R
n denotes its R-span, then dE(Λ, ∅) 6 d(Λ, ∅).

Let us now give the general properties of the metric d .

P 2.4. — For all A, B, C ∈ UD such that A ∪ B ∈ UD and all (D, E ) ∈ E and

Bm ∈ B(D,E ), the following assertions hold: (i) φBm(A∪B)+φBm(A∩B) = φBm(A)+φBm(B) ;

(ii) d(A ∪ B, C) 6 d(A, C) + d(B, A ∩ B) ; (iii) d(A ∩ B, C) 6 d(A, C) + d(B, A ∪ B). In

particular: (iv) d(A ∪ B, ∅) 6 d(A, ∅) + d(B, ∅) as soon as A ∩ B = ∅ ; (v) d(A ∪ B, A ∩ B) 6

min{d(A, A ∩ B) + d(B, A ∩ B), d(A, A ∪ B) + d(B, A ∪ B)} ; (vi) if B is reduced to one point, say

{λ}, such that λ 6∈ A, we have: d(A ∪{λ}, C) 6 min{d(A, C) + d({λ}, ∅), d({λ}, C) + d(A, ∅)}.

Proof. — The assertion (i) can easily be checked from the definition of φBm . The assertion (ii)

is a consequence of (i) and of the inequality |φBm(A ∪ B)−φBm(C)| = |φBm(A) +φBm(B)−
φBm(A ∩ B)−φBm(C)| 6 |φBm(A)−φBm(C)| + |φBm(B)−φBm(A ∩ B)|. The assertion (iii)

follows from (ii) by exchanging ”∪” and ”∩”. The assertions (iv) to (vi) can be deduced from (i),

(ii) and (iii).

Let us remark that the assertions (iv) and (vi) show the special role played by the ”empty set” el-

ement ∅ in the set-theoretic processes of ”point addition” and ”point removal”. A fundamental

question is now whether the ”point removal process” of the points of a UD-set is continuous.

We will precise this question below and will answer to it.

L 2.5. — The following equalities hold: (i) d({λ}, ∅) = 1
1+2‖λ‖ , for all λ ∈ Rn (remarkably

this value does not depend upon f (x)), (ii) d(Λ− {λ},Λ) = 1
1+2‖λ‖ for all non-empty UD-set

Λ and all λ ∈ Λ.

Proof. — (i) First, let us show that d({λ}, ∅) 6 1
1+2‖λ‖ . By definition we have d({λ}, ∅) =

sup α∈Rn

(D,E )∈E

sup
Bm∈B(D,E )

φBm(Λ)
(

1/2 + ‖α‖ + ‖α− c
(m)
1 ‖ + ‖α− c

(m)
2 ‖ + · · · + ‖α− c

(m)
jm

‖
)−1

.

Whatever (D, E ) ∈ E , Bm ∈ B(D,E ), a maximum of one ball of Bm may contain λ. Denote by
o
B (c, ε) this variable generic ball and say that c = c

(m)
1 . The other balls of Bm have a zero

contribution to the numerator φBm(Λ) in the expression of d({λ}, ∅). The denominator is

such that: 1/2 + ‖α‖ + ‖α− c
(m)
1 ‖ + ‖α− c

(m)
2 ‖ + · · · + ‖α− c

(m)
jm

‖ > 1/2 + ‖α‖ + ‖α− c‖. But

1/2 +‖α‖+‖α− c‖ > 1/2 +‖c‖, this minimum being reached on the segment [0, c]. Therefore,

by definition of the function f , we have dα,(D,E )({λ}, ∅) 6
ε f ( λ−c

ε
)

1/2+‖c‖ 6 ε
1/2+‖λ‖ 6

1/2
1/2+‖λ‖ =

1
1+2‖λ‖ . Conversely, if we take α = λ, D = {λ} and E a dense subset in (0, 1/2), we see that

d({λ}, ∅) > dα=λ,(D={λ},E )({λ}, ∅) = 1/2
1/2+‖λ‖ . We deduce the equality and the assertion (i); (ii)
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The proof is similar as in (i) since Λ and Λ− {λ} differ by only one element λ which belongs

to at most one ball in a collection Bm for any (D, E ) ∈ E and any Bm ∈ B(D,E ). The details

are left to the reader.

C 2.6. — For all UD-set Λ ≠ ∅ and all λ ∈ Λ, the inequality holds: |d(Λ, ∅)−
d(Λ− {λ}, ∅)| 6

1
1+2‖λ‖ .

Proof. — From (ii) in the proposition 2.4, we deduce d(Λ, ∅) 6 d(Λ−{λ}, ∅)+d({λ}, ∅). From

(iii) in proposition 2.4, we obtain d(Λ − {λ}, ∅) 6 d(Λ, ∅) + d(Λ − {λ},Λ) but d({λ}, ∅) =

d(Λ− {λ},Λ) = 1
1+2‖λ‖ by the lemma 2.5. We deduce the claim.

Let us now turn to the ”point removal process” of subcollections of points of UD-sets. In the

following, for all Λ ∈ UD and R > 0, we will denote by ΛR the new UD-set Λ∩ o
B (0, R).

L 2.7. — Let Λ,Λ′ ∈ UD and C be an arbitrary subset of Λ∩Λ′. Then d(Λ,Λ′) = d(Λ \
C,Λ′\C). In particular, d(Λ,Λ′) = d(Λ\(Λ∩Λ′),Λ′\(Λ∩Λ′)) and d(Λ\ΛR , ∅) = d(ΛR ,Λ) for

all R > 0.

Proof. — These results follow from the definition of d .

The following proposition is fundamental.

P 2.8. — Let Λ ∈ UD. Then limR→∞ d(Λ,ΛR) = limR→∞ d(Λ \ ΛR , ∅) = 0. More-

over the convergence is uniform in the following sense: for all ε ∈ (0, 1), there exists R > 0 such

that d(Λ, ∅) < ε for all Λ ∈ UD such that Λ ⊂ R
n \ B(0, R).

Proof. — If Λ is finite, the limit is obviously zero. Therefore we will assume that Λ is infinite in

the sequel. To prove this result we will use the inequality of Stolarsky [St] (recalled in proposi-

tion 2.9) which will provide an upper bound of d(Λ,ΛR). Then we will explicitely compute this

upper bound by means of representations of integers as sums of squares (of integers) (Gross-

wald [Gr]) (steps 1 and 2). This type of computation will provide the uniform convergence

property.

P 2.9. — (Stolarsky [St]) Let u, v rational integers such that u > v > 1. Let

{x1, x2, . . . , xu} be a finite set of u points of Rn and {y1, y2, . . . , yv} be another finite set of v

points of Rn. Let us define h(u, v) = 1 if u = v, h(u, v) = u−1
v

if u > v. Then

∑

16i< j6u

‖xi − x j‖ +
∑

16i< j6v

‖yi − y j‖ 6 h(u, v)

u∑

i=1

v∑

j=1

‖xi − y j‖ (2)

where the constant h(u, v) is best possible.

Take v = 1 and u = im + 1 > 2 with x1 = 0 and ‖xi‖ > R for all i = 2, 3, . . . , u; then

put y1 = α ∈ R
n arbitrary. The inequality (2) gives

∑im+1
j=2 ‖x j‖ +

∑
26i< j6im+1 ‖xi − x j‖ 6

h(im +1, 1)
(
‖α‖ +

∑im+1
i=2 ‖α− xi‖

)
. Consequently, setting ci−1 = xi for all i = 2, 3, . . . , im +1 for
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keeping the notations as close as possible to the definition of dα,(D,E ) , the following inequality

holds:

im

1/2 + ‖α‖ +
∑im

i=1 ‖α− ci‖
6

im

1
2

+ 1
im

(∑im
j=1 ‖c j‖ +

∑
16i< j6im

‖ci − c j‖
) . (3)

The supremum of the right-hand side expression, over all possible configurations of balls in

B(D,E ) and (D, E ) ∈ E such that their centres ci satisfy ‖ci‖ > R, is greater than 2d(Λ\ΛR , ∅).
We will show that it goes to zero when R tends to infinity. For this, we will compute explicitely

a lower bound of η(R, im) := 1
2im

+ 1

i2
m

∑im
j=1 ‖c j‖ + 1

i2
m

∑
16i< j6im

‖ci − c j‖ as a function of

R and im, where η(R, im) is the inverse of the right-hand side term in the inequality (3). In

order to simplify the notations, we will study the quantity η(R, m), what amounts merely to

replace m by im in the rest of the proof for coming back to the inequality (3).

We will proceed as follows, in three steps. The first step (step 1) will consist in making this

computation explicit when the points ci are on the lattice Zn with n > 5. The second step

(step 2) will describe how to provide a lower bound of ηΛ(R, m) (see definition in step 2) from

η(R, m) when the points ci are in a UD-set Λ ⊂ R
n which is not Zn with still n > 5 for

which the dimension of the R-span of Λ is n or less than n. The final step 3 will conclude when

n ∈ {1, 2, 3, 4} making use of lemma 2.3 for the descent to lower dimensions.

step 1 .- Let us recall the assumptions: R >
√

2 (for technical reasons) and ci ∈ Z
n , ‖ci‖ > R,

for all i = 1, 2, . . . , m with i ≠ j ⇒ ci ≠ c j . Minimizing η(R, m) corresponds to finding

expressions of lower bounds of m−2
∑

16i< j6m ‖ci−c j‖ and of m−2
∑m

j=1 ‖c j‖ as a function

of R and m, then to studying their sum when R tends to infinity.

Let us compute a lower bound of m−2
∑

16i< j6m ‖ci − c j‖. Let s be a positive integer and

consider the equation s =
∑n

i=1 c2
q,i with cq,i ∈ Z for all i = 1, 2, . . . , n. Any n-tuple

(cq,1, cq,2, . . . , cq,n) which satisfies this equation is called a solution of this equation. This so-

lution represents the vector cq = t (cq,1, cq,2, . . . , cq,n) in Zn of norm s1/2. Given s, denote by

rn(s) the number of solutions of the above equation; it is the number of elements of Zn which

lie on the sphere S(0,
√

s) of centre the origin and radius
√

s. Obviously rn(0) = 1, rn(1) = 2n .

Now, for all integer m > 1, there exists a unique integer k such that

rn(0) + rn(1) + · · · + rn(k) < m 6 rn(0) + rn(1) + · · · + rn(k) + rn(k + 1) (4)

with rn(k)rn(k + 1) ≠ 0. From Grosswald [Gr], chapters 9, 12 and 13, we know the behaviour

of rn(s) when n > 5: there exists two strictly positive constants K̂1(n) and K̂2(n) such that

rn(s) = ρn(s) + O
(

sn/4
)

with K̂1(n)s
n/2−1 6 ρn(s) 6 K̂2(n)s

n/2−1 for all integer s > 0.

Therefore, there exists two strictly positive constants K1, K2, which depend upon n, such that

K2 > 1 and K1sn/2−1 6 rn(s) 6 K2sn/2−1 for all integer s > 0. By saturating all the spheres

S(c1,
√

l )∩Zn for l = 0, 1, 2, . . . , k we deduce
∑m

j=2 ‖c j − c1‖ >
∑rn(0)+rn(1)+···+rn(k)+1

j=2 ‖c j −
c1‖ >

∑k
l =0 rn(l)

√
l . Let us consider that m is equal to rn(0) + rn(1) + · · · + rn(k) + rn(k + 1).

We now proceed with the other sums
∑m

j=i+1 ‖c j − ci‖, i > 2. For all i = 1, 2, . . . , rn(k + 1),

the difference m − i is greater than rn(0) + rn(1) + · · · + rn(k) and this implies
∑m

j=i+1 ‖c j −
ci‖ >

∑k
l =0 rn(l)

√
l . Hence

∑rn(k+1)
i=1

∑m
j=i+1 ‖c j − ci‖ > rn(k + 1)

(∑k
l =0 rn(l)

√
l
)

. Since
∑m−1

i=1

∑m
j=i+1 ‖c j − ci‖ =

∑rn(k+1)
i=1

∑m
j=i+1 ‖c j − ci‖ +

∑rn(k+1)+rn(k)
i=rn(k+1)+1

∑m
j=i+1 ‖c j − ci‖ +

9



. . . +
∑rn(k+1)+rn(k)+...+rn(1)

i=rn(k+1)+rn(k)+...+rn(2)+1

∑m
j=i+1 ‖c j − ci‖, by reproducing the same computation term

by term, we deduce

m−1∑

i=1

m∑

j=i+1

‖c j − ci‖ > rn(k + 1)




k∑

l =0

rn(l)
√

l


 + rn(k)




k−1∑

l =0

rn(l)
√

l


 + · · · + rn(2)rn(1) + 2n

>

k+1∑

p=1

rn(p)




p−1∑

l =0

rn(l)
√

l


 > K 2

1

k+1∑

p=1

p
n
2
−1




p−1∑

l =0

l
n−1

2


 (5)

Now make use of the following classical inequalities: for all β > 0 and integer r > 1, 0 + 1β +

2β + · · · + (r − 1)β 6
∫ r

0
xβdx = rβ+1

β+1
6 1β + 2β + · · · + (r − 1)β + rβ. We deduce the following

inequalities

m−1∑

i=1

m∑

j=i+1

‖c j − ci‖ >
2K 2

1

n + 1

k+1∑

p=1

p
n
2
−1
(p − 1)

n+1
2 >

2K 2
1

n + 1

k+1∑

p=1

(p − 1)
n
2
−1
(p − 1)

n+1
2

>
2K 2

1

(n + 1)

k+1∑

p=1

(p − 1)n−1/2
>

4K 2
1

(n + 1)(2n + 1)
kn+1/2 and m = rn(0) + rn(1) + · · · + rn(k) +

rn(k + 1) 6 K2

(
1 +

∑k+1
l =1 l

n
2
−1
)

6
2K2

n

[
n
2

+ (k + 2)
n
2

]
. Hence m−2

∑m−1
i=1

∑m
j=i+1 ‖c j − ci‖

>
K 2

1 n2kn+1/2

K 2
2 (n+1)(2n+1)(k+2)n

(
1 + n

2(k+2)
n
2

)−2

. Putting K3 :=
K 2

1 n22n+2

K 2
2 (n+1)(2n+1)3n(n+2

n
2 +1

)2
, we deduce

m−2
m−1∑

i=1

m∑

j=i+1

‖c j − ci‖ > K3

√
k. (6)

It is easy to check that the above computation is still valid when m lies strictly between rn(0) +

rn(1)+ · · ·+rn(k) and rn(0)+rn(1)+ · · ·+rn(k +1). Therefore limm→+∞
1

m2

∑m−1
i=1

∑m
j=i+1 ‖c j −

ci‖ = +∞. Let us observe that this minimal averaged growth to infinity is in “
√

k”, which is

extremely slow as compared to the growth of m to infinity.

Let us now compute a lower bound of the sum m−2
∑m

j=1 ‖c j‖. Take for R the square root of an

integer, say R =
√

t , t > 2. Let us consider that m is equal to m = rn(0)+rn(1)+· · ·+rn(k+1) and

let us write it as: m = rn(t ) + rn(t + 1) + · · · + rn(t + u) + w for a certain u > 0 and 0 6 w <

rn(t + u + 1). Then
∑m

j=1 ‖c j‖ >
∑t +u

t rn(l)
√

l > K1

∑t +u
t l

n−1
2 . As above we will make use

of the following classical inequalities: for all positive integers s and r > s + 1 and for all real

number β > 0, sβ + (s + 1)β + · · ·+ (r −1)β 6
∫ r

s
xβdx = rβ+1−sβ+1

β+1
6 (s + 1)β + (s + 2)β + · · ·+ (r −

1)β+rβ. We obtain the following inequalities:
∑m

j=1 ‖c j‖ >
2K1
n+1

[
(t + u)

n+1
2 − (t − 1)

n+1
2

]
and

2K1
n

[
(t + u)n/2 − (t − 1)n/2

]
6 m 6 rn(t ) + rn(t + 1) + · · · + rn(t + u) + rn(t + u + 1) 6

2K2
n

[
(t + u + 2)n/2 − t n/2

]
. From them we deduce

1

m

m∑

j=1

‖c j‖ >
K1n

√
u

K2(n + 1)


(1 + t /u)

n+1
2 −

(
t − 1

u

) n+1
2





(

1 +
2 + t

u

)n/2

−
(

t

u

)n/2


−1

.
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Dividing the above inequality by m once again and changing t into t − 1 and t into t + 2 in

the corresponding factors gives

1

m2

m∑

j=1

‖c j‖ >
K1n2u

1−n
2

2K 2
2 (n + 1)


(1 + (t − 1)/u)

n+1
2 −

(
t − 1

u

) n+1
2





(

1 +
2 + t

u

)n/2

−
(

2 + t

u

)n/2


−2

so that, using first-order developments in (t − 1)u−1, resp. in (2 + t )u−1, for u−1 close to

zero, we obtain

1

m2

m∑

j=1

‖c j‖ >
K1(t − 1)

n−1
2

K 2
2

1

u(u + 2 + t )n−2
(7)

This lower bound, as a function of u on [1, +∞), goes to zero at infinity.

Let us now compute a lower bound of m−2
∑m

j=1 ‖c j‖ + m−2
∑

16i< j6m ‖ci − c j‖. The lower

bound given by eq.(6) is a function of k and that given by eq.(7) a function of u. In order to

study their sum, we will deduce from the above a relation between u and
√

k and replace√
k by a lower bound of

√
k in eq.(6) which will only depend upon u. From the above, with

m = rn(0) + rn(1) + · · · + rn(k + 1), the following inequalities hold

2K1

n

[
(t + u)n/2 − (t − 1)n/2

]
6 m 6

2K2

n

[
n

2
+ (k + 2)

n
2

]
. (8)

Let h(x) = (t + x)n/2. Then h(u)− h(−1) = (u + 1)h′(ξ) for a certain ξ ∈ [−1, u]. We deduce

h(u)−h(−1) > n
2

u(t −1)
n
2
−1 since the derivative h′(x) is increasing on the interval [−1, u].

This last inequality and eq.(8) imply

u1/n



(

n

2

(
K1

K2

(t − 1)
n
2
−1 − 1

))2/n

− 2




1/2

6
√

k for all k > 1, u > 1, t > 2. (9)

From eq.(6) in which
√

k is replaced by the above lower bound and from eq.(7), we deduce

η(
√

t , m) > g(t , u) := C1(t )
1

u(u + 2 + t )n−2
+ C2(t )u

1/n

where C1(t ) = K1K −2
2 (t − 1)

n−1
2 and C2(t ) = K3

[(
n
2

(
K1
K2
(t − 1)

n
2
−1 − 1

))2/n − 2

]1/2

. It

is now routine to compute the value umin(t ) at which the function u → g(t , u) is minimal

and the value g(t , umin(t )) of its minimum. The equation satisfied by umin(t ) is nC1(t )(u + 2 +

t )1−n [(n − 1)u + 2 + t ] = C2(t )u
1+1/n and g(t , umin(t )) = C2(t )

[
1
n

umin(t )+2+t
(n−1)umin(t )+2+t

+ 1
]
(umin(t ))

1/n .

Since obviously umin(t ) > 1, 1
n

u+2+t
(n−1)u+2+t

+1 >
1

n(n−1)
+1 for t > 2, u > 1 and limt→+∞ C2(t ) =

+∞, we obtain: limt→+∞ g(t , umin(t )) = +∞. We deduce that for all integer m of the form

rn(0) + rn(1) + · · · + rn(k + 1) the limit limR→+∞ η(R, m) = +∞ holds. It is easy to check that

it is so even when m is an arbitrary integer which is not of this form. This implies, after eq.(3),

that limR→+∞ d(Zn , Zn
R) = 0, for all n > 5.

step 2 .- We will make use of the results of step 1 and of the following three lemmas. The as-

sumption n > 5 holds. Let us fix the notations: if Γ is a UD-set which contains the origin,

then, for all k ∈ N, denote Γ(k) := {x ∈ Γ |
√

k 6 ‖x‖ <
√

k + 1}, rΓ(
√

k) its number of

elements and s(
√

k) := maxΓ∈UD{rΓ(
√

k)} < ∞. Since all the functions Γ → rΓ(
√

k), k ∈ N,

on UD are valued inN, the maximum s(
√

k) is reached. Since, in particular, rZn(
√

k) = rn(k),

for any positive integer k, the following lemma is obvious.
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L 2.10. — For all positive integer k the inequality s(
√

k) > rn(k) holds.

In the following, we will number the elements xi of a UD-set Λ in such a way that ‖x j‖ >

‖xi‖ as soon as j > i > 1 (with x1 = 0 if Λ contains the origin). The following lemmas show

that the sequence {s(
√

k) | k ∈ N} is universal for splitting up any UD-set into layers of points

with the objective of making use of the inequality of Stolarsky (proposition 2.9) in a suitable

way.

L 2.11. — Let Λ be an infinite UD-set which contains the origin. For all positive integers

M , m ∈ N such that
∑M

k=0 s(
√

k) < m 6
∑M +1

k=0 s(
√

k), any point xm ∈ Λ indexed by such an

integer m satisfies ‖xm‖ >
√

M + 1.

Proof. — This fact comes from the way we have numbered the elements of Λ. Obviously, any

point xm ∈ Λ indexed by such an integer m is such that
∑M

k=0 rΛ(
√

k) 6
∑M

k=0 s(
√

k) < m. By

definition of the function rΛ we obtain the inequality.

L 2.12. — Let Λ be an infinite UD-set which contains the origin. There exists a subset

Λ∗ of Λ, with 0 ∈ Λ∗, and a surjective mapping ψΛ : Λ → Z
n such that: (i) ψΛ(0) = 0,

‖ψΛ(x)‖ 6 ‖x‖ for all x ∈ Λ; (ii) for all integers M , m ∈ N such that
∑M

k=0 s(
√

k) <

m 6
∑M +1

k=0 s(
√

k) the following equalities hold: ‖ψΛ(xm)‖ =
√

M + 1 for all xm ∈ Λ \ Λ∗,

‖ψΛ(xm)‖ = 0 for all xm ∈ Λ∗, (iii) the restriction of ψΛ to {0} ∪ Λ \ Λ∗ is a bijection from

{0} ∪ Λ \ Λ∗ to Zn ; (iv) when Λ = Z
n , then Λ∗ = {0} and ψΛ is the identity map up to a

renumbering of the elements of the layer
(
Z

n)(k) of Zn for all k ∈ N.

Proof. — Let us construct the function ψΛ. For all M ∈ N, denote s(M) :=
∑M

k=0 s(
√

k).

The following s(
√

M + 1)-tuple of points: (xs(M )+1, xs(M )+2, . . . , xs(M )+rn(M +1), xs(M )+rn(M +1)+1,

xs(M )+rn(M +1)+2, . . . , xs(M +1))of Λ will be splitted up into two parts. Let Λ∗(M) = {xs(M )+rn(M +1)+1,

xs(M )+rn(M +1)+2, . . . , xs(M +1)} and Λ∗ = ∪M∈NΛ∗(M). Let us put ψΛ(z) = 0 for all z ∈ Λ∗,

and, for all M ∈ N and for all i = s(M) + 1, s(M) + 2, . . . , s(M) + rn(M + 1), let us put

ψΛ(xi) ∈ S(0,
√

M + 1) ∩ Zn such that the restriction of ψΛ to Λ \ Λ∗ is injective. In other

terms, the first rn(M + 1) points of the above s(
√

M + 1)-tuple of points are sent injectively by

ψΛ to the rn(M + 1) elements of Zn of norm
√

M + 1 which lie on the sphere S(0,
√

M + 1), the

remaining points xs(M )+rn(M +1)+1, xs(M )+rn(M +1)+2, . . . , xs(M +1) going to the origin of Zn. There is

no uniqueness of such a mappingψΛ: givenΛ∗, any renumbering e of the elements of Zn con-

serving the norm provides another suitable mapping e ◦ψΛ : Λ→ Z
n . The properties (i) to (iv)

of ψΛ are easy consequences of its definition.

Let us now consider an infinite UD-set Λ which contains the origin and let us continue the

proof of the proposition (if Λ does not contain the origin we modify slightly a few points close

to the origin for having this property). In a similar way as in step 1 with eq.(3), we are looking

for a lower bound of the quantity (with ci , c j ∈ Λ and ‖ci‖ > R, ‖c j‖ > R)

ηΛ(R, m) :=
1

2m
+

1

m2

m∑

j=1

‖c j‖ +
1

m2

∑

16i< j6m

‖c j − ci‖
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as a function of R and m. Let us observe that the differences c j − ci belong to the translated

UD-setsΛ−ci = {λ−ci | λ ∈ Λ} ofΛwhich all contain the origin. Let us now compute a lower

bound of m−2
∑

16i< j6m ‖c j − ci‖. For integers M , m ∈ N that satisfy
∑M

k=0 s(
√

k) < m 6
∑M +1

k=0 s(
√

k), we deduce the following inequality:
∑m

j=2 ‖c j − c1‖ >
∑m

j=2 ‖ψΛ−c1
(c j)‖ >

∑M
l =0 rn(l)

√
l from the lemmas 2.10, 2.11 and 2.12. We now proceed with the other sums∑m

j=i+1 ‖c j − ci‖, i > 2. Let us assume that m =
∑M +1

q=0 s(
√

q). For all i = 1, 2, . . . , s(
√

M),

the difference m − i is greater than
∑M

q=0 s(
√

q) and this implies
∑m

j=i+1 ‖c j − ci‖ >
∑m

j=i+1 ‖ψΛ−ci
(c j)‖ >

∑M
l =0 rn(l)

√
l . We deduce the inequality

∑s(
√

M +1)
i=1

∑m
j=i+1 ‖c j−ci‖ >

s(
√

M + 1)
(∑M

l =0 rn(l)
√

l
)

> rn(M +1)
(∑M

l =0 rn(l)
√

l
)

. Since for all i, j the inequality holds:

‖c j − ci‖ > ‖ψΛ−ci
(c j)‖ and that

∑m−1
i=1

∑m
j=i+1 ‖c j − ci‖ =

∑s(
√

M +1)
i=1

∑m
j=i+1 ‖c j − ci‖ +

∑s(
√

M +1)+s(
√

M)

i=s(
√

M +1)+1

∑m
j=i+1 ‖c j − ci‖ + . . . +

∑s(
√

M +1)+s(
√

M)+...+s(
√

2)+s(
√

1)

i=s(
√

M +1)+s(
√

M)+...+s(
√

2)+1

∑m
j=i+1 ‖c j − ci‖, by

reproducing the same computation term by term, we deduce

∑

16i< j6m

‖c j − ci‖ > rn(M + 1)




M∑

l =0

rn(l)
√

l


 + rn(M)




M−1∑

l =0

rn(l)
√

l


 + · · · + rn(2)rn(1) + 2n .

This leads to the same inequality as in eq.(6), with m =
∑M +1

q=0 s(
√

q), except that ”k” has to be

replaced by ”M ”. Therefore, we obtain

m−2
∑

16i< j6m

‖c j − ci‖ > K3

√
M (10)

Let us now compute a lower bound of m−2
∑m

j=1 ‖c j‖. Consider that m =
∑M +1

q=0 s(
√

q) and

take R =
√

t with t > 2 an integer. This lower bound corresponds to a distribution by layers

of the points c1, c2, . . . , cm on Λ so that they are located as close as possible to the sphere

S(0, R). Let us write m as the following sum: m = s(
√

t ) + s(
√

t + 1) + · · · + s(
√

t + U ) + W for

certain integers U > 0 and 0 < W 6 s(
√

T t + U + 1). Then, by lemma 2.12,
∑m

j=1 ‖c j‖ >
∑m

j=1 ‖ψΛ(c j )‖ >
∑t +U

l =t rn(l)
√

l . Hence, by the same type of computation as in step 1, and

by replacing only ”u” by ”U ”, we deduce

1

m2

m∑

j=1

‖c j‖ >
K1(t − 1)

n−1
2

K 2
2

1

U (U + 2 + t )n−2
(11)

In order to compute a lower bound of the sum m−2
∑m

j=1 ‖c j‖ + m−2
∑

16i< j6m ‖c j − ci‖ as

a function of U only from eq.(10) and eq.(11), it remains to give explicitely a relation between

M and U . This relation comes from the computation of a lower bound of m which will be a

function of M only and an upper bound of m which will be a function of U only. Let us

compute these bounds. First, since
∑M +1

k=0 rn(k) 6
∑M +1

k=0 s(
√

k) = m we deduce, by the same

type of computation as in step 1 (with ”U ” instead of ”u”),

2K1

n

[
(t + U )n/2 − (t − 1)n/2

]
6

M +1∑

q=0

s(
√

q) = m. (12)

Second, if Vol(B(0, x)) denotes the volume of the ball B(0, x), by counting the maximal possible

number of points in the annulus {
√

k 6 ‖x‖ <
√

k + 1} (in this annulus any point should be
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at a distance from another one greater than unity), we deduce that the term s(
√

k), k > 1, is

smaller than
(

Vol(B(0,
√

k + 1 + 1/2))− Vol(B(0,
√

k − 1/2))
)
(Vol(B(0, 1/2)))−1 . Therefore

m =
∑M +1

k=0 s(
√

k) 6 1 + 2n
∑M +1

k=1

[(√
k + 1 + 1/2

)n −
(√

k − 1/2
)n]

. By a first-order develop-

ment of each term, we deduce m 6 1+2n
∑M +1

k=1

[√
k + 1 −

√
k + 1

]
n
(√

k + 1 + 1/2
)n−1

. Since
√

k + 1−
√

k +1 6 2 we obtain that m is certainly exceeded by n2n+1
∑M +1

k=1

(√
k + 1 + 1/2

)n−1
.

Now, for all 1 6 k 6 M + 1, we have
√

k + 1 + 1/2 6

√
k + 3

√
M + 1. We deduce m 6

n2n+1
∑M +1

k=1

(
k + 3

√
M + 1

) n−1
2 6

n2n+2

n+1

[
(M + 2 + 3

√
M + 1)

n+1
2 − (1 + 3

√
M + 1)

n+1
2

]
. Denote

l(x) =

(
x + 1+3

√
M +1

M +1

) n+1
2

andω = supM>1

(
supx∈[0,1] l ′(x)

)
. Then it is easy to check, by fac-

torizing (M + 1)(n+1)/2 and applying a first-order development to the factors in the right-hand

side term of the last inequality that this term is smaller than n2n+2ω(n +1)−1(M +1)
n+1

2 . Hence

m 6 2n+2
ω(M + 1)

n+1
2 (13)

From eq.(12) and eq.(13) (as for eq.(8) and eq.(9)) we deduce the following inequality

U
1

n+1


1

4

(
K1

2ω

)2/(n+1)

(t − 1)
n−2
n+1 − 1




1/2

6
√

M . (14)

Let gΛ(t , U ) :=
C1(t )

U (U +2+t )n−2 + C3(t )U
1

n+1 , where C3(t ) := K3

[
1
4

(
K1
2ω

) 2
n+1 (t − 1)

n−2
n+1 − 1

]1/2

.

Then (as in step 1) ηΛ(
√

t , m) > gΛ(t , Umin(t )), for all m =
∑M +1

k=0 s(
√

k), where Umin(t ) is

the value at which the function U → gΛ(t , U ) is minimal. The proof of limt→+∞ gΛ(t , Umin(t ))

= +∞ is similar as in step 1, for all integer m, and left to the reader. This implies, after eq.(3),

that limR→+∞ d(Λ,Λ R) = 0 for all UD-set Λ and all n > 5. This convergence is obvi-

ously uniform in the sense stated in the proposition since the sequence s(
√

k) is universal

and optimal for splitting up any UD-set Λ.

step 3.– If Λ is a UD-set in Rn′

with n′ = 1, 2, 3 or 4, then it can be viewed as a UD-set in

R
5. Since the proposition is true for n = 5 by the step 2, the lemma 2.3 implies that it is also

true in lower dimensions by descent.

2.2 Pointwise behaviour of UD-sets, proximity and pairing property

In the following, we will denote by dist(A, B) the distance inf{‖a−b‖ | a ∈ A, b ∈ B} between

two non-empty subsets A and B of Rn. The two following lemmas will be used in the proofs

of the completeness and the precompactness of (UD, d).

L 2.13. — Let Λ,Λ′ be two non-empty UD-sets, l = dist({0},Λ) < +∞, and ε ∈ (0, 1
1+2l

).

Assume that d(Λ,Λ′) < ε. Then, for all λ ∈ Λ such that ‖λ‖ < 1−ε
2ε

, (i) there exists a unique

λ′ ∈ Λ′ such that ‖λ′ − λ‖ < 1/2, (ii) this pairing (λ, λ′) satisfies the inequality: ‖λ′ − λ‖ 6

(1/2 + ‖λ‖)ε. In particular, for all λ, λ′ ∈ Rn, the distance d({λ}, {λ′}) tends to zero if and only

if ‖λ− λ′‖ tends to zero.
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Proof. — (i) Let us assume that for all λ′ ∈ Λ′ and all λ ∈ Λ such that ‖λ‖ < 1−ε
2ε

the

inequality ‖λ′ − λ‖ > 1/2 holds. This will lead to a contradiction. Assume the existence of an

element λ ∈ Λ such that ‖λ‖ < 1−ε
2ε

and take D = {λ} and let E be a countable dense subset

in (0, 1/2). Each Bm in B(D,E ) is a set constituted by only one element: the ball (say)
o
B (λ, em)

with em ∈ E . We deduce thatφBm(Λ) = em andφBm(Λ
′) = 0. Hence

dλ,(D,E )(Λ,Λ′
) = sup

m

em

1/2 + ‖λ‖ =
1/2

1/2 + ‖λ‖ 6 d(Λ,Λ′
)

But ε < 1
1+2‖λ‖ is equivalent to ‖λ‖ < 1−ε

2ε
. Since we have assumed d(Λ,Λ′) < ε, we should

obtain ε < dλ,(D,E )(Λ,Λ′) 6 d(Λ,Λ′) < ε. Contradiction. The uniqueness of λ′ comes from

the fact that Λ′ is a UD-set allowing only one element λ′ close to λ. (ii) Let us assume that

λ ≠ λ′ for all λ ∈ Λ such that ‖λ‖ < 1−ε
2ε

, with λ′ ∈ Λ′ that satisfies ‖λ′ − λ‖ < 1/2 (if the

equality λ = λ′ holds, there is nothing to prove). Then, for all λ ∈ Λ such that ‖λ‖ < 1−ε
2ε

,

let us take α = λ as base point, D = {λ} and E a dense subset in (0, ‖λ − λ′‖] ⊂ (0, 1/2).

Then φBm(Λ) − φBm(Λ
′) = em

(
1 − f

(
λ′−λ

em

))
. The restriction of the function z → z(1 −

f (λ
′−λ
z
)) to (0, ‖λ− λ′‖] is the identity function and is bounded above by ‖λ′ − λ‖. Therefore,

dλ,(D,E )(Λ,Λ′) = supBm

|φBm (Λ)−φBm (Λ
′)|

1/2+‖λ‖ =
‖λ′−λ‖
1/2+‖λ‖ . Since dλ,(D,E )(Λ,Λ′) 6 d(Λ,Λ′) < ε, we

obtain ‖λ′ − λ‖ 6 (1/2 + ‖λ‖)ε as claimed. The last assertion in (ii) can easily be deduced

from the above and from the continuity of the function f .

In other terms, each time a UD-set Λ is sufficiently close to another one Λ′ for the metric d ,

every element of Λ lying in a large ball centred at the origin in Rn, is automatically associated

with a unique element of Λ′ which is close to it within distance less than 1/2. Such pairings of

elements occur over larger and larger distances from the origin when Λ′ tends to Λ. From (ii),

we see that the proximity in the pairings (λ, λ′) is much better for the elements λ ∈ Λ which

are the closest to the origin.

L 2.14. — Let ε ∈ (0, 1) and Λ ∈ UD,Λ ≠ ∅. Then the condition d(Λ, ∅) < ε implies

Λ ⊂ R
n \ B(0, 1−ε

2ε
).

Proof. — Let us assume the existence of λ ∈ Λ such that ‖λ‖ 6 1−ε
2ε

and let us show that this

hypothesis implies that the assertion d(Λ, ∅) < ε is wrong. Take D = {λ} and E a dense

subset in (0, 1/2). Each Bm in B(D,E ) is a set constituted by only one ball: say the ball
o
B (λ, em)

with em ∈ E . We deduce thatφBm(Λ) = em. SinceφBm(∅) = 0, the following inequality holds:

dλ,(D,E )(Λ, ∅) = supm
em

1/2+‖λ‖ = 1/2
1/2+‖λ‖ 6 d(Λ, ∅). But ε 6

1
1+2‖λ‖ is equivalent to ‖λ‖ 6

1−ε
2ε

.

Hence, ε 6 dλ,(D,E )(Λ, ∅). We deduce d(Λ, ∅) > ε as claimed.

2.3 Completeness of (UD, d)

Let (Λ(i))i>0 be a non-stationary Cauchy sequence in UD. We will show that it admits a con-

vergent subsequence. Since this sequence is not stationary at the ”empty set” element ∅ in

particular, for all ε > 0, there exists a positive integer N (ε) such that d(Λ(m),Λ(q)) < ε for

all m, q > N (ε), with Λ(N (ε)) ≠ ∅. Let lN (ε) = dist({0},Λ(N (ε))) < +∞. There are two

cases: either (i) the function ε → lN (ε) goes very fast to infinity when ε goes to zero in the
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sense that the inequality ε 6
1

1+2lN (ε)
never holds on (0, 1), or (ii) there exists ε ∈ (0, 1)

such that ε 6
1

1+2lN (ε)
holds. In case (i) the sequence (Λ(i))i>0 admits as limit point set

a UD-set which has no point at finite arbitrary distance from the origin: this comes from

the fact that the condition ε > 1
1+2lN (ε)

is equivalent to lN (ε) >
1−ε

2ε
. In other words, the

sequence (Λ(i))i>0 converges to the ”empty set” element and we have proved the assertion

in this case. In case (ii), denote by ε0 the largest value of ε ∈ (0, 1) such that the inequal-

ity ε 6
1

1+2lN (ε)
holds. Denote lN (ε0) = dist({0},Λ(N (ε0))). Then ε0 6 (1 + 2lN (ε0))

−1 or

equivalently lN (ε0) 6
1−ε0
2ε0

. Let us use the pairings, in the sense of lemma 2.13, between the

points of Λ(N (ε0)) and Λ(N (ε0)+ j), for j > 1. This will give way to the construction, point-

wise in Rn, of a limit point set of the given Cauchy sequence Λ(i) by a diagonalization pro-

cess. Indeed, from lemma 2.13, all λ ∈ Λ(N (ε0)) such that lN (ε0) 6 ‖λ‖ <
1−ε0

2ε0
(such

elements λ are in finite number, say that they are λ1, λ2, . . . , λi0
) are such that there exists

λ( j) ∈ Λ(N (ε0)+ j), j > 1, such that ‖λ( j) − λ‖ 6 (1/2 + ‖λ‖)ε0. Let us use the indexation

by i = 1, 2, . . . , i0. Then, for all i = 1, 2, . . . , i0, the compact ball B(λi , (1/2 + ‖λi‖)ε0) con-

tains the infinite point set {λ( j)
i } j>1. The elements of Λ(N (ε0)+ j) , j > 1, located in Rn at

a distance less than supi∈{1,2,...,i0}
(‖λi‖ + (1/2 + ‖λi‖)ε0)

) (
<

1−ε0
2ε0

+ 1
2ε0

× ε0 = 1
2ε0

)
from

the origin, are all within
⋃i0

i=1 B(λi , (1/2 + ‖λi‖)ε0). From the sequence of points (λ
( j)
1 ) j>1 in

the first ball B(λ1, (1/2 + ‖λ1‖)ε0), which is compact, we extract a convergent subsequence

(λ
( j)
1 ) j∈J1

, with J1 an infinite subset of J0 := N \ {0}. Then, from the sequence of points

{λ( j)
2 } j∈J1

in the second ball B(λ2, (1/2 + ‖λ2‖)ε0), which is compact, we extract a conver-

gent subsequence {λ( j)
2 } j∈J2

, with J2 ⊂ J1, an infinite subset of J1. And so on up till i = i0

with Ji0
⊂ Ji0−1 ⊂ · · · ⊂ J2 ⊂ J1 ⊂ J0 and Ji0

an infinite subset of Ji0−1. Denote

by λ̃i := lim j∈Ji
j→+∞

λ
( j)
i = lim j∈Ji0

j→+∞
λ
( j)
i for i ∈ {1, 2, . . . , i0} the respective limit points,

one per closed ball B(λi , (1/2 + ‖λi‖)ε0). There are two cases: either (c0.i) Λ(N (ε0)) is finite

with a number of elements, #(Λ(N (ε0))), equal to i0, or (c0.ii) #(Λ(N (ε0))) > i0, possibly infi-

nite. In the first case (c0.i), we deduce that any element Λ(N (ε0)+ j), j > 0, of the sequence

has exactly i0 elements and that a limit point set for the given Cauchy sequence is exactly the

set {λ̃1, λ̃2, . . . , λ̃i0
}. If i0 = 1, it is clear that it is a UD-set. If i0 > 1, we will prove below

that it is a UD-set. In the second case (c0.ii), we reiterate the process: we take ε1 ∈ (0, ε0).

Then there exists N (ε1) > N (ε0) such that d(Λ(m),Λ(q)) < ε1 for all m, q > N (ε1) and

m, q ∈ Ji0
, with Λ(N (ε1)) ≠ ∅. The following inequality ε1 6

1
1+2lN (ε1)

is satisfied and is

equivalent to lN (ε1) 6
1−ε1

2ε1
. The pairing of the elements of Λ(N (ε0)) with the elements of

Λ(N (ε0)+ j), j ∈ Ji0
, goes now over greater distances in Rn, namely for all λ ∈ Λ(N (ε0)) such

that lN (ε0) 6 ‖λ‖ < 1−ε1
2ε1

. The number of elements λ which satisfy this last inequality is finite.

Assume that such elements λ can be indexed by {1, 2, . . . , i0, i0 + 1, . . . , i1} with i1 > i0 (it is

always possible to obtain a strict inequality by taking ε1 small enough). We now consider the

new series of closed balls B(λi , (1/2 + ‖λi‖)ε1), i ∈ {i0 + 1, . . . , i1}. Then, from the sequence

of points {λ( j)
i0+1} j∈Ji0

in the first ball of the new series B(λi0+1, (1/2 +‖λi0+1‖)ε1), which is com-

pact, we extract a convergent subsequence (λ
( j)
i0+1) j∈Ji0+1

with Ji0+1 an infinite subset of Ji0
.

We now reiterate the extraction process for all i = i0 + 2, . . . , i1. Denote the points at the limit

by λ̃i := lim j∈Ji
j→+∞

λ
( j)
i = lim j∈Ji1

j→+∞
λ
( j)
i for all i ∈ {i0 + 1, i0 + 2, . . . , i1}, one per ball in the
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new series of balls. Again, there are two cases: either (c1.i) the number of elements of Λ(N (ε0)),

#(Λ(N (ε0))), is equal to i1, or (c1.ii) #(Λ(N (ε0))) > i1. In the first case (c1.i) , we deduce that any

element Λ(N (ε0)+ j), j > 0 of the sequence has exactly i1 elements and that a limit point set for

the given Cauchy sequence is exactly the UD-set {λ̃1, λ̃2, . . . , λ̃i1
}. We will prove below that it

is a UD-set. In the second case (c1.ii), we reiterate the process: we take ε2 ∈ (0, ε1). And so on.

We obtain sequences {εs}, {is}, {Jis}, s = 0, 1, 2, . . . and {Jt | t = 1, 2, . . . } such that for all

t > 1, Jt ⊂ Jt−1 and is an infinite set, 0 < . . . εs < εs−1 < · · · < ε1 < ε0, 1 6 i0 < i1 < i2 < . . .

with λ̃i := lim j∈Ji
j→+∞

λ
( j)
i = lim j∈Jis

j→+∞
λ
( j)
i for all i ∈ {is−1 + 1, is−1 + 2, . . . , is} and all s > 1. Let

us call Λ̃ := {λ̃i | i integer > 1} the limit point set constructed in such a way. The sequence

{is} is finite when the UD-set ΛN (ε0) is finite. In such a case, #(Λ̃) = #(ΛN (ε0)). If not #(Λ̃) is

infinite.

Let us show that Λ̃, finite (not reduced to one point) or not, is a UD-set. Indeed, take two

arbitrary elements λ̃i , λ̃ j ∈ Λ̃, with i, j > 1, i ≠ j . We want to show that ‖λ̃i−λ̃ j‖ > 1. Assume

the contrary, that is ‖λ̃i − λ̃ j‖ < 1. Let it , t > 1, the smallest integer such that i 6 it , j 6 it .

We have λ̃i = lim k∈Jit
k→+∞

λ
(k)
i , resp. λ̃ j = lim k∈Jit

k→+∞
λ
(k)
j . Therefore, there exists q ∈ Jit such that

‖λ(q)i − λ(q)j ‖ < 1. ButΛ(q) is a UD-set. Contradiction.

We have proved that (UD, d) is complete by an application of the Bolzano-Weierstrass prop-

erty infinitely many times. It is the analogue of the proof of Chabauty [Ch] for lattices, but there,

only finitely many times sufficed.

2.4. Precompactness of (UD, d)

Recall that, to show that the metric space (UD, d) is precompact, we have to show that, for

all ε > 0, there are finitely many point sets Λ(1),Λ(2), . . . ,Λ(s) (s = s(ε)) of UD such that the

open d-balls {z ∈ UD | d(z,Λ(i)) < ε} with i = 1, 2, . . . , s cover UD. Let ε ∈ (0, 1). We will

explicitely exhibit such finite chains of open d-balls of radius ε.

The property of uniform convergence towards the ”empty set” element ∅ (proposition 2.8)

implies that there exists η(ε) > 0 such that, for all Λ ∈ UD such that Λ ⊂ R
n \ B(0, η(ε)), the

following inequality holds d(Λ, ∅) < ε. Hence, all Λ ∈ UD such that dist({0},Λ) > η(ε) is

such that d(Λ, ∅) < ε, i.e. will belong to the open d-ball {z ∈ UD | d(z, ∅) < ε}. Put Λ(1) := ∅.

Let us now prove that the collection of UD-sets Λ which satisfy dist({0},Λ) 6 η(ε) is

covered by a finite chain of open d-balls of radius ε. Let us consider the lattice Lµ =
µ√

n
Z

n with

0 < µ 6 1. Each point in space is within distance less than µ/2 from Lµ. We will chose µ small

enough so that the following continuity arguments hold: (i) any element λ ∈ Λ∩B(0, η(ε)) can

be associated (non uniquely) with an element lλ ∈ Lµ ∩ B(0, η(ε)) such that ‖λ− lλ‖ 6 µ/2,

(ii) denoting by A(Λ) := {lλ | λ ∈ Λ ∩ B(0, η(ε))} ⊂ Lµ ∩ B(0, η(ε)) the set of these close-

neighbour points, we have d(Λ, A(Λ)) < ε, (iii) A(Λ) is a UD-set. These items (i), (ii) and (iii)

express merely the possibility of the finite UD-set Λ ∩ B(0, η(ε)) to be slightly distorted and

”put” on the subset Lµ ∩ B(0, η) of the lattice Lµ for µ small enough.

Denote by S the finite set of non-empty subsets of Lµ ∩ B(0, η(ε)) which are UD-sets: let

S = {Λ(2),Λ(3), . . . ,Λ(s)} assuming the number of elements of S is s−1 (obviously s > 2). By
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the assertions (ii) and (iii), the set A(Λ) is one of the elements of S . We deduce that the open

d-balls {x ∈ UD | d(x,Λ(i)) < ε}, i = 2, 3, . . . , s, cover UD \{Λ ∈ UD |Λ ⊂ R
n \B(0, η(ε))}.

Hence, the open d-balls {x ∈ UD | d(x,Λ(i)) < ε}, i = 1, 2, . . . , s, cover UD.

We deduce the precompactness of the topological space (UD, d).

2.5. Compactness of the sets of Delone sets

P 2.15. — For all R > 0 the subspace XR = {Λ ∈ UD | ∀z ∈ R
n , ∃λ ∈

Λ such that ‖z − λ‖ 6 R} of the Delone sets of constant R is closed in (UD, d).

Proof. — Let Λ ∈ UD \ XR. We will show that it is contained in an open subset disjoint from

XR that will prove that XR is closed. Since Λ 6∈ XR , there exists z ∈ R
n such that ‖z − λ‖ >

R for all λ ∈ Λ. Let l = dist({z},Λ) > R and denote Λ−z := {λ−z | λ ∈ Λ} the translated set.

For ε > 0 small enough and all Γ in the open d-ball {Ω ∈ UD | d(Ω,Λ−z) < ε} the elements

γ of Γ satisfy all the inequality: ‖γ‖ > R + l−R
2
> R by the property of the pairing (proposition

2.13); all these point sets Γ are outside XR . Since the translation by z is bicontinuous, the

UD-set Λ is contained in the open subset z + {Ω ∈ UD | d(Ω,Λ− z) < ε} which is disjoint

of XR .

3. Theorem 1.2 implies theorem 1.1 and comments

Let Ln be the space of lattices in R
n, identified with the locally compact homogeneous space

GL(n,R)/GL(n, Z) [GL] [Ca] (Recall that a lattice in R
n is a discrete Z-module of maximal

rank of Rn, equivalently a discrete subgroup of the group of translations of Rn with compact

fundamental region). The following proposition is a key result for proving the theorem 1.1 from

the theorem 1.2.

P 3.1. — The restriction of the metric d to Ln ∩ UD ⊂ UD is compatible with the

topology on Ln ∩ UD induced by the quotient topology of Ln = GL(n,R)/GL(n, Z).

Proof. — This proposition is a reformulation of the following proposition.

P 3.2. — Let L ∈ Ln ∩ UD. Denote by {e1, e2, . . . , en} a basis of L . Then (i) for all

ε > 0 small enough there exists η > 0 such that all Z-module L′ ∈ UD contained in the open

ball {Λ ∈ UD | d(L,Λ) < η} is of rank n and admits a basis {e ′1, e′2, . . . , e′n} which satisfies the

property: maxi=1,2,...,n ‖ei − e′i‖ < ε; (ii) for all 0 < η < 1 there exists ε > 0 such that all lattice

L′ ∈ UD of Rn admitting a basis {e′1, e′2, . . . , e′n} which satisfies maxi=1,2,...,n ‖ei − e′i‖ < ε is

such that d(L, L′) < η.

Proof. — (i) First let us chose ε0 > 0 small enough such that all n-tuple {a1, a2, . . . , an} of

points ofRn with ai ∈ B(ei , ε0), i = 1, 2, . . . , n, is such that the vectors {Oa1, Oa2, . . . , Oan} are

Z-linearly independant (as usual we identify the point ai with the vector Oai , i = 1, 2, . . . , n).
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For instance, if Vecti , i = 1, 2, . . . , n, denotes the R-span generated by the vectors Oe1, Oe2,. . . ,

Oei−1, Oei+1, . . . , Oen , let us take ε0 = 1
3

mini=1,2,...,n {dist({ei}, Vecti)}. Let ε ∈ (0, ε0).

Assume that Λ is a UD-set such that d(L,Λ) < η with η small enough. By lemma 2.13 a

pairing between the points of L and Λ occurs over a certain distance, which is 1−η
2η

, from

the origin. Let us take η1 small enough in order to have 1−η1
2η1

> maxi=1,2,...,n ‖ei‖ . From the

lemma 2.13 the condition 0 < η < η1 implies the existence of n points e ′1, e′2, . . . , e′n in

Λ, the respective close-neighbours of the points e1, e2, . . . , en of L, which satisfy ‖e′i − ei‖ 6

(1/2 + ‖ei‖)η for i = 1, 2, . . . , n. Take η < η1 such that (1/2 + maxi=1,2,...,n ‖ei‖)η < ε. Since

ε < ε0, the vectors Oe′1, Oe′2, . . . , Oe′n are Z-linearly independant. This means that if Λ ∈
UD is a Z-module of Rn (necessarily discrete) which satisfies d(L,Λ) < η , Λ is necessarily

of rank n and contains the lattice
∑n

i=1 Ze′i . Let us show that there is equality. Denote by

V
′ = {∑n

i=1 θi e′i | 0 6 θi < 1 for all i = 1, 2, . . . , n} . The adherence V ′ of V
′ contains only

the points
∑n

i=1 ji e′i of Λ , with ji = 0 or 1, by the property of the pairing (proposition 2.13).

Therefore the free system {Oe′1, Oe′2, . . . , Oe′n} is a basis of Λ. (ii) Conversely, let 0 < η <

1 and L′ ∈ UD ∩ Ln. For all R > 0 the inequality d(L, L′) 6 d(L, LR) + d(LR , L′
R) +

d(L′
R , L′) holds. By the proposition 2.8 let us take R large enough such that d(L, LR) <

η/3 and d(L′, L′
R) < η/3. Let us now show that, if L′ admits a basis {e′1, e′2, . . . , e′n} which

satisfies maxi=1,2,...,n ‖ei − e′i‖ < ε, then ε can be taken small enough to have d(LR , L′
R) < η/3

( R kept fixed). Indeed, LR and L′
R are finite UD-sets. Denote N := #LR . For all α ∈

R
n, all (D, E ) ∈ E and all Bm ∈ B(D,E ), by continuity of the function f , the mapping

(x1, x2, . . . , xN ) → φBm({x1, x2, . . . , xN }) :=
∑

0
B(c,ω)∈Bm

∑N
i=1ω f

(
xi−c
ω

)
is continuous on

B(0, R)N for the standard product topology. Therefore all the mappings dα,(D,E )(LR , ·) :

(x1, x2, . . . , xN )→ sup
Bm

|φBm(LR)− φBm({x1, x2, . . . , xN })|
(1/2 + ‖α‖ + ‖α− c j1

‖ + ‖α− c j2
‖ + · · · + ‖α− c jN

‖)
are continuous on B(0, R)N . The continuity of (x1, x2, . . . , xN ) → d(LR , {x1, x2, . . . , xN }) on

B(0, R)N follows. Take for {x1, x2, . . . , xN } the point set L′
R . Consequently the quantity

d(LR , L′
R) is strictly less than η/3 as soon as ε is small enough. Finally d(L, L′) < 3η/3 = η

and we deduce the claim.

Recall that if L is a lattice in R
n and A a basis of L, then |det(A)| is called the determinant

of L; we will denote it by |L|. It is the volume of its fundamental region.

P 3.3. — For all M > 0, the subspace {L ∈ UD ∩ Ln | 0 < |L| 6 M} ⊂ Ln ∩ UD

is compact.

Proof. — By the proposition 3.1 and since (UD, d) is a compact topological space, we have

just to show that {L ∈ UD∩Ln | 0 < |L| 6 M} is closed. Since the operations x+y and xy are

continuous, the determinant function | · | is continuous on Ln. Hence {L ∈ UD ∩ Ln | |L| >
M} = | · |−1((M , +∞)) is an open set as reciprocal image of the open interval (M , +∞) by the

continuous application | · |. By taking its complement subspace in UD ∩ Ln we deduce the

claim.

Let us now prove the theorem 1.1. Let us consider a sequence of lattices (Lr) of Rn such that:

(i) ‖x‖ > 1 for all x ∈ Lr , x ≠ 0, (ii) the determinant |Lr | of Lr satisfies |Lr | 6 M with
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M a constant < +∞ independent of r . Then all Lr ∈ {L ∈ UD ∩ Ln | 0 < |L| 6 M} which

is compact by the proposition 3.3. Then, by the Bolzano-Weierstrass property, one can extract

from the sequence (Lr) a subsequence (Lr ′) that converges to a lattice L of Rn. By continuity

of the determinant function | · | and the proposition 3.1, we obtain: |L| = limr ′→+∞ |Lr ′ |. This

concludes the proof.

In final, let us make some comments about the topology on (UD, d). The topological space

(UD, d) is obviously a Polish space [Bo]. But this topology is not classical. It is routine to

compare it with the topologies reviewed by Kelley [Ke] and Michael [Mi] on spaces of non-

empty closed subsets of Rn (here adapted to point sets) and to conclude that it is none of

them. Nevertheless, if we denote UD f := {Λ ∈ UD | Λ finite} the subspace of UD of the

finite UD-sets and UD f ,t := {Λ ∈ UD | Λ ⊂ B(0, t )} ⊂ UD f for t > 0, the following

obvious results hold [Bo].

P 3.4. — The subset UD f is dense in UD. For all t > 0 the Hausdorff metric

∆ on UD f ,t is compatible with the topology on UD f ,t induced by that of (UD, d) and the

topological space (UD f ,t ,∆) = (UD f ,t , d) is compact.

Let us mention that the theorem 1.2 seems to become an important ingredient in the topo-

logical dynamics and the spectral approach in the ergodic theory of tilings [Ga]. At least, the

classical selection theorem of Mahler is already as important as the Ascoli-Arzela theorem in

analysis. Probably the present generalization will also play a basic role, not only in geometry of

numbers.

If we look carefully at the proof we have given in the section 2, particularly the proposition 2.8

which has for consequence the precompactness, we observe that it is based on three ingredi-

ents: (i) the use of the standard metric on R
n to which is added an ”origin”, (ii) a detailed

counting of the points of Zn in spheres in order to obtain uniform bounds of the function η at

infinity, (iii) a universal function s(
√

k) allowing to propagate this counting information to

general UD-sets. Therefore, to answer in general to the questions (q1) and (q2) means a pri-

ori that the expected compactness theorem on UD(H , δ)r will depend on the choice of the

metric, of the chosen ”origin”, of the reference discrete subspace chosen for the counting, on

the behaviour of the function η at infinity, of the possibility of universalizing the counting to

general elements of UD(H , δ)r . The present approach can be pursued to general hyperbolic

manifolds as ambiant spaces [MR].
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38402 St MARTIN D’HÈRES Cedex (France)

jlverger@ujf-grenoble.fr

22


