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Abstract
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1 Introduction

The stability of quantum dynamical systems generated by time periodic hamiltonians is
sometimes characterized by means of the spectral properties of the corresponding unitary
evolution operator over a period, also called monodromy operator, see [Be, Hol, Co3].
Unfortunately, even for this relatively simple time-dependence, except for certain specific
models, e.g. [Co2, DF, Bo], it is rarely the case that one has enough information about
the actual monodromy operator so that a complete spectral analysis can be performed.
Therefore, one resorts to different approximation techniques in some specific regimes to say
something about the spectrum. For example, KAM inspired techniques, see e.g. [Be, Col,
DS, ADE, DLSV, GY], or adiabatic related approaches, see e.g. [Ho2, Ho3, Ho4, N1, J, N2],
have been used to tackle this problem.

In case the complexity of the monodromy operator is important enough to forbid of a
complete description of it, one may resort to a statistical modelization. It is the case in
particular in the study of the quantum dynamics of electrons confined to a ring threaded
by a time dependent magnetic flux, see e.g. the paper [BB] and references therein. A mod-
elization of this dynamics by means of an effective random monodromy operator taking
into account the details of the metallic structure of the ring is considered and tested nu-
merically in [BB]. We refer the reader to this paper and [BHJ] for a more detailed account
of the construction of the monodromy operator.

Motivated by this approach, the spectral analysis of a class of random and deterministic
unitary operators, which contains the above monodromy operator, is performed in [BHJ].
The main characteristics of these unitaries is that, when expressed as matrices in some
basis, they display a band structure: more precisely they are five-diagonal. The coefficients
of the matrix are determined by an infinite set of triples {7y, a, 0k }kez, Where ry’s are
reflection coefficients in ]0,1[ and «y’s and 6’s are phases. For example, in the statistical
modelization of the physical situation mentionned above, the phases are considered as
random, whereas the reflection coefficients are deterministic. While the construction of the
set of unitaries studied in [BHJ] is patterned after the above mentionned physical model, we
believe it contains sufficiently many parameters to be useful for a wider class of problems.

Another motivation in favor of the spectral analysis of such unitary operators stems from
the recent paper [CMV] where it is shown that certain infinite matrices associated with the
construction of orthonormal polynomials on the unit circle display the same five-diagonal
structure as our set of monodromy operators. Under certain conditions, these matrices
define unitary operators which actually form a subset of those considered in [BHJ].

The authors of [CMV] show that these matrices are to orthogonal polynomials with
respect to a measure on the circle what Jacobi matrices are to orthogonal polynomials
with respect to a measure on the real line. Orthogonal polynomials on the circle are deter-
mined by an infinite set of complex numbers {ay }xen such that |ag| < 1, called reflection
coefficients, through the so called Szegé recurrence relations, see e.g. [G] or [BGHN]. And
indeed, we will see that |ax| = 7, for all & € N. Therefore, once given the expression of
the five-diagonal matrix in terms of these reflection coefficients, the orthogonality measure
on the circle coincides with the spectral measure of the corresponding unitary operator.
These operators are further shown in [CMV] to be unitarily equivalent to unitary op-
erators introduced almost ten years ago in [GT] for the study of the same orthonormal
polynomials on the unit circle. The matrix form of the latter operators displays a different
structure, namely that of a Hessenberg matrix: it has zero coefficients for indices 7, 7 when
1 > 7 — 1 only. Although more complicated, this structure can allow for operator theo-



retical approaches of orthogonal polynomial in the circle as, e.g., in [GT] or [GNV]. Note
in particular that in [GT], properties of random polynomials defined by means of random
reflection coefficients a; are investigated through the corresponding random unitary opera-
tor, whereas some of the perturbative analyses performed in [GNV] and [BHIJ] bear strong
resemblance.

Nevertheless, we emphasize that the operators under consideration in [BHJ] and the
present paper are more general than those constructed in [GT] and [CMV] and therefore
their spectral analysis is richer. In particular in the random case, the way randomness
appears in the coefficients of the matrix elements may lead to different characteristics of
the spectral measure due to the availability of one more random variable.

The goal of the present paper is to pursue the analysis of such random unitaries in the
random setting considered in the paper [BHJ]: the phases (a,0)) are random variables
and the reflection coefficients ry are all set to r €]0,1]. This means that the phases of
the matrix elements of the five-diagonal operators are random whereas the deterministic
moduli depend on the parameter r only. Hence, if the phases are all set to zero, what we
will call the ”free case”, the unitary operator depends on the reflection coefficient r €]0, 1.
Note that, specializing to the (random) orthogonal polynomials setting, this means we
consider cases with |ag| = r for all k’s whereas the argument of the aj’s are random. Also
the free case is linked to the so called Geronimus polynomials, constructed by means of
constant (complex) reflection coefficients ay = a € C, for all k.

However, while the analysis of [BHJ] focused on spectral issues, i.e. proving singularity
of the almost sure spectrum by means of a unitary version of the Ishii-Pastur theorem
and the positivity of the Lyapunov exponent obtained via Furstenberg’s Theorem, the
main object of the present study is the density of states measure and its links with the
corresponding Lyapunov exponent. The Lyapunov exponent here is of course characterizing
the asymptotic behaviour of generalized eigenvectors of the unitary operator.

More precisely, expressing the density of states as the density of eigenvalues of a series
of unitary operators restricted to "boxes”, we are able to state this relation as what is
known as a Thouless formula. This formula allows to compute the Lyapunov exponent by
means of the density of states and to recover the a.c. component of the density of states
measure by means of a derivative of the Lyapunov exponent. A consequence of our version
of Thouless formula is the extension of some results of [BHJ] providing, in particular, an
explicit value of the Lyapunov exponent in these cases. We also prove the validity of the
Thouless formula for the deterministic free case, by explicit computations of the relevant
quantities.

When applied to the orthogonal polynomials setting, the existence of the density of
states measure can be expressed as the determination of a sequence of random polynomials
with a distribution of zeros converging to a measure whose support is the support of the
orthogonality measure, almost surely. These polynomials are associated with the random
orthogonal polynomials, but they do not coincide with them as the zeros of the former are,
by construction, on the unit circle whereas those of the latter lie strictly in the unit circle.
Such polynomials are also constructed in [GT] by suitable truncations of the Hessenberg
matrix considered. Our Thouless formula relates the potential of the density of states
measure, see e.g. [SaT], [StT] for these notions, with the Lyapunov exponent. Actually, the
Lyapunov exponent is essentially the limit of the potentials of the distributions of zero of the
random polynomials mentioned above and the density of states is the equilibrium measure
in the external field given by the Lyapunov exponent, see below. The existence of the limit



almost surely is a consequence of the ergodic properties of the phase distributions. Let us
also note here that a Thouless formula is proven for the unitary random operator studied
in [GT]. The Lyapunov exponent there characterizes the asymptotics of the difference
equation corresponding to the Szego relations associated with random complex ay’s.

In the second part of the paper, we further assume that some natural linear combination
of the original phases {7y} are i.i.d. random variables, in order to take advantage of the
analogy of our unitary matrices with the one dimensional discrete Schrodinger operator.
In that case, we characterize the support of the density of states in terms of that of the
distribution of the 7’s. Finally, we provide an effective criterion ensuring analyticity of the
integrated density of states in terms of the exponential decay rate of the Fourier coefficients
of the the distribution of these phases. This result relies on some kind of propagation
estimates for the free evolution.

The above mentionned assumption on the phases makes (ay,0;) correlated random
variables. In particular, in the orthogonal polynomials language, this means that when
the phase of each reflection coefficient ay (of constant modulus) is given by a sum of &
i.i.d. random phases, the almost sure support of the random orthogonality measure can be
determined.

The plan of the paper is as follows. Section 2 is devoted to the definition of the
model and its basic properties. In particular, the link with the constructions of [CMV] to
describe orthogonal polynomials on the unit circle is recalled there. The density of states is
introduced in the next section and Thouless formula is proven in Section 4. The statements
about the support of the density of state and its analyticity properties are made in Section
5, whereas an Appendix contains some technical items. The main results will be expressed
in the general framework described above. We shall content ourselves with commenting
on their translation in the orthogonal polynomial language, where appropriate, except in
Section 4 where a little bit more material about potential theory is provided.

2 The Model

We present here the unitary matrices we will be concerned with and recall some of its basic
properties to be used later.
The unitary operator we consider has the following explicit form in the canonical basis

{pr}rez of I?(Z)

Uoppor, = irte Mkpop 1 + 1r2e” Mk gy

. —am“ )
+ irte "R oy g — tPe R oy

_om¥ . _om¥
Uvpor+1 = —t%e Mk gy + itre "k oy
_' w . _. w
4+ rleTMt1 gy ) + irte” k41 gy o, (2.1)

for any k € Z. According to [BHJ], the random phases {7} }rcz are functions of some
physically relevant i.i.d. random variables {(6¢, o) }rcz on the torus given by

M = O +0p_1 + of — .y, (2.2)

for all k£ € Z and the coefficients r,¢ €]0,1[ are interpreted as reflexion and transition
coefficients linked by r? + t2. We will identify the operator and its matrix representation
(2.1). Let us recall that these parameters are assumed to be different from their extreme
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values 0 and 1, because in case r = 1 <= t = 0 the operator U, is diagonal and if
r =0 <= t = 1, it is unitarily equivalent to the direct sum of two shifts. Let us finally
mention that our U, is a particular case of the construction in section 2 of [BHJ] that we
briefly recall below, in order to make contact with the matrices considered in [CMV].

2.1 Link with orthogonal polynomials

Consider the set of 2 X 2 unitary matrices defined for any k € Z by

_—iby rpe itl.‘”'
Sp=e ( ity el ) ’ (23)

—iQ

parametrized by oy, 6 in the torus T and the real parameters ¢, 7, the reflection and
transition coefficients, linked by r,% +t2 = 1. Then, let P; be the orthogonal projector on
the span of ¢;, @;+1 in [?(Z). and let us introduce U, U, two 2 x 2 block diagonal unitary
operators on [2(Z) defined by

Ue = ZP%S%P% and U, = Zp2k+152k+lp2k+1- (2.4)
keZ kEZ

In matrix representation in the canonical basis,

S_o
U, = So (2.5)
So

and similarly for U,, with Sox11 in place of Sox. Note that the 2 x 2 blocks in U, are shifted
by one with respect to those of U, along the diagonal. The unitary operator

U =U,U., (2.6)

coincides with (2.1) in case ty = t <= r, = r, for any k € Z. Actually, a supplementary
phase factor appears in the off-diagonal elements of all Si’s in the original definition of
[BHJ]. We omit it here, as this phase is shown to be irrelevant in the spectral analysis of
U, see Lemma 3.2 in [BHJ].

Without entering into the details, orthogonal polynomials on the unit circle with respect
to a measure p are determined by a set of a’s such that |ax| < 1 for all £ € N, and we
shall assume that > 72 |ag| = oo, which is equivalent to saying that the corresponding
Hessenberg matrix is the matrix representation of a unitary operator, [GT], Lemma 2.2.
Therefore the equivalent five-diagonal matrix F' of [CMV] described below is unitary as
well. This matrix is constructed in the same way as (2.6) is, by means of blocks of the type
(2.3) for k > 0 of the form

0, — —lagle /1 — |ag|? _ |ak|e—i(7f/2—7k) i/1 = |ag|? )
FE\VI= Tl Jagle ) T TP i/T[anl? Jaglei/2m :

where a; = |ag|e?*, see Section 3 of [CMV]. This corresponds to the particular choices

Ok =m/2, ap=m/2—y, rp=a| (2.8)



The definition of F' is supplemented by particular ”boundary conditions” at zero of the type
(3.5) described below, as it is infinite in one direction only. One of the main properties of
the matrix F' shown in [CMV] is that the determinant of its principal n x n submatrices
coincides with the n-th (monic) orthogonal polynomial, as is also true for the corresponding
Hessenberg matrix. This property makes the analogy between Jacobi matrices and such F'
matrices all the more striking.

Note that despite the fact that the above matrix is infinite in one direction only whereas
ours is infinite in both directions, a ”duplication procedure” described in Section 3 of [BHJ]
allows to go from the former to the latter case modulo a finite rank perturbation. Hence
claims about the spectrum of the doubly infinite matrix also hold for the previous matrix,
modulo Birman-Krein’s theorem on finite rank perturbations and multiplicity considera-
tions.

From now on, we shall stick to doubly infinite matrices and we further make the choice
ry =1 €)0,1], for all k € Z.

2.2 FErgodic properties

More precisely, let us introduce a probabilistic space (2, F,P), where € is identified with
{T%}, T being the torus, and P = ®jcz Py, where Py, = Py and Por; = Py for any k € Z
are probability distributions on T and F the o-algebra generated by the cylinders. We
introduce the set of random vectors on (Q, F,P) given by

,Bk = (Gk,ak) : Q—)TQ, ke Z,
0;’; = Wk, Oéf = w2k+1. (29)

The random vectors {8 }recz are thus i.i.d on T2.

We denote by U, the random unitary operator corresponding to the random infinite
matrix (2.1). In analogy with Jacobi matrices describing the discrete Schrodinger equation,
we will also denote the vector ¢ by the site k, k € Z.

Introducing the shift operator S on {2 by

S(w)k = wkt2, k € Z, (2.10)

we get an ergodic set {S7 }jez of translations. With the unitary operator V; defined on the
canonical basis of I2(Z) by

Vj‘,Ok = (pk_gj,Vk €z, (2.11)
we observe that for any j € Z
Usiw = VULV (2.12)

Therefore, our random operator U, is a an ergodic unitary operator. Now, general argu-
ments on the properties of the spectral resolution of ergodic operators E,(A), where A
is a Borel set of the torus T, ensure that this projector is weakly measurable, as well as
E*(A) = P*E,(A), where x = p.p., a.c. and s.c., denote the pure point, absolutely con-
tinuous and singular continuous components, see [CL], chapter V. The analysis performed
in [BHJ] for the case where {(6},0})}krez are uniformly distributed on the torus shows
that the a.c. component of the spectrum of U, is almost surely empty.



2.3 Lyapunov Exponent

Let us proceed by recalling some facts concerning the Lyapunov exponent. It is shown in
[BB] and [BHJ] that generalized eigenvectors defined by

Uw‘lp = ei’\¢,
= crpr, ck €C, AT (2.13)
kez

in our unitary setting can be computed by means of 2 x 2 transfer matrices due to the
structure of the matrix U,. They are such that for all k£ € Z, ([BHJ])

<CQCIj—I|€—1 ) =T(k) (ZZ_T ) (2.14)

where the randomness lies in the phases 7, (\) = () defined by

nk(A) =k + A, (2.15)
and
T(k)1;1 = — e~ m2r-1(3) (2.16)
— T o=k () _
T(k)ie = i (e 1)
T(k)y = i~ (ei(n%()‘)—’?%—l()\)) _ e—inzk_l(/\)>
1
1, >, |
T(k)e = -3 etk (N) 7;_2 (e’(mk()‘)—nqu()\)) 11— e‘“?qu()\)) '

Note the properties

T(k) = T(n2(N); m2k—1(A)) (2.17)

whereas det T'(k) = e!(mx~m2%-1) is independent of ).
Therefore, knowing e.g. the coefficients (cg, ¢1), we compute for any k € N,

(C;jjl) = T(k)---T@2)T(1) (2) = o(k) (zi)
( C ok ) = T(—k+1)~'- . T(-1)"'T(0) (co) = (k) (Co) . (2.18)

C—2k+1 C1 C1
The dynamical system at hand being ergodic and the determinant of the transfer matrices
being of modulus one, we get the existence of a deterministic Lyapunov exponent y(e*),
for any A € C, such that

.1 iA
o = 8. 2.1
G i le@i= (") as (2.19)

Writing e#* = z € C\ {0}, we also know from classical arguments, see e.g. [CFKS], that v
is a subharmonic function of z.



3 Density of States

Following the standard approach in the self-adjoint case, we start by a definition of the
density of states by averaging over the phases and invoking the Riesz-Markov theorem.
Then we relate the density of state with alternative definitions in terms of the density of
eigenvalues of truncations of the original operator to I?([M, N]), as N — M — cc.

Definition: The density of states is the (non-random) measure dk on T defined by

/Tf(ff“)dk(h) = El[(¢olf (Uu)po) + (01| (Un)p1)]/2, (3.1)

for any continuous function f : St — C.
The average over the ¢y and 1 matrix elements is motivated by the forms of the matrix
(2.1) and shift (2.10). Note also that this definition makes dk a probability measure.

Now we turn to the definition of appropriate finite size unitary matrices constructed
from (2.1). There are several possible constructions suited to our purpose. Those we
use below result from considering U, provided with boundary conditions at certain sites
forbidding transitions through these sites, in the more general definition (2.6) with variable
reflection and transition coefficients. More precisely, such a boundary condition at site N
corresponds to imposing ¢ty = 0 whereas all other ¢;’s are kept equal to there common
value t. Therefore, one immediately gets that the matrix takes a block structure which
decouples the sites with indices smaller than N from those with indices larger than N.

Let us drop temporarily the sub- and super-scripts w in the notation. Fix N € Z
and consider the unitary operator U?Y on [?(Z) obtained from the original operator U by
imposing the following boundary conditions at the sites 2N. Let U2V be defined by (2.1)
for k ¢ {2N,2N + 1} where

MeN—1 = T2N = M2N+1 = TeN+2 =0 (3.2)
and, for k € {2N,2N + 1}
UNpon = itpan—1 + roan
UN pan 41 = rpan+1 + itpan o (3.3)

Similarly, a boundary condition imposed at site 2N + 1 defines U?N*! by (2.1) for k ¢
{2N,2N + 1,2N + 2,2N + 3} where

MmeN+1 = m2n+2 =0 (3.4)
and, for k € {2N,2N + 1,2N + 2,2N + 3}

UN T ooy = irte™™N pon_1 + 12e N @on + itpon+1

U Nt poni1 = —t2e™ N o1 + irte™™N pon + 1Ny

UMt ponsa = rpania +irte N+ pgn 5 — t2e TN+ oy

U2N+1(p2N+3 = +itpon 2 + rle tN+3 wan+3 + irte 2N +3 PIN+4- (3.5)

For any M € Z, the corresponding operator UM has a the block structure mentionned
above and it is unitary. Then, given (M, N) € Z? such that M + 4 < N, one defines a
unitary matrix UMY on I?(Z) by imposing boundary conditions at sites M and N. By
construction, UMY contains an isolated (N — M) x (N — M) unitary block on I?([M +1, N])



we denote by VMV,
Remark: In the definition of the boundary conditions, we put some phases equal to zero
around the sites 2N and 2N + 1, in order to avoid having to deal with random boundary
conditions later. We could have set them equal to any other value, without changing the
main properties of the construction.

Introducing the characteristic function xu,n of the set [M + 1, N] € Z, we denote by
the same symbol the projector on the sites [M + 1, N], corresponding to the multiplication
operator by xar,n. Therefore

VN = 5y \UMN = UMV v = X v UMY xan, v (3.6)

We now consider two measures related to finite matrices as follows.
Definitions: The measures dkyr,n and dkyr,n on T are defined by

/1r F@dhan (V) = tr (F(VMN) /(N — M) (3.7)
/T FE@)dbarn (V) = tr (o £ () xarn) /(N — M), (3.8)

for any continuous function f : S* — C.
Notice that dkjps y is nothing but the counting measure on T associated with the spectrum
of the finite block VMV and dky, v is associated with the projection of U on [M + 1, N].
This former operator is unitary whereas the latter is not.

We denote the trace norm by ||-||; and first show a slight generalization of [GT] allowing
to get

Lemma 3.1 With the above notations, assume
I(O"N —U)xanllh = o(N — N), as N — M — oo, (3.9)

then

lim

i (i (F(VYN) = tr (an v (U)xazw)) = 0. (3.10)

Remark:

The hypothesis is satisfied in particular if Rank(UM"¥ — U) < oo and uniformly bounded
in (N, M), as is the case with the definitions of UM-N above by means of (3.3, 3.5)
Proof:

We first note that it is enough to consider functions which are polynomials in z and z, z €
St. Any f € C(S') can be approximated by trigonometric polynomials Pr = Zf':f R €7
in such a way that if € > 0 is given, there exists R(e) < oo so that

sup |f(9) - PR(E)(9)| <e. (3.11)
9eT

Hence we get using (3.6),

tr (f(V™Y) —xunf (U)xmn) = tr (e n(FOMY) = f(U)xmn) =
tr (xar, v (P (UMY) = Prio(U)xm,n) +
tr (xar, v ((f = Prie)) (UMN) = (f = Pre))(U)xa,n)5 (3.12)



where the trace norm of the last term is bounded by 2¢(N — M), so that it becomes
negligeable when divided by (N — M). We are thus to consider z® and z°, with s € N. We
can write for any s > 1

s—1
Ut — (UMM =N I U - UMy oNM)sI (3.13)
=0
so that
s—1 ) _
XN (U = (UM )xmn =D xm U (U = UV M) xprn (UNM) =971, (3.14)
=0
Therefore,
s _ N,M\s __ y7N,M\., M,N
tr G (U° = U)*)x) _ sll(U = UV )MV, 619

N-M - N-M

The same result is true if s < 0, with all unitaries replaced by their adjoints. Thus,
—R(¢) < s < R(e) and the hypothesis on the trace norm of (U — UNM)yMN yield the
result. |

Then, restoring the dependence on w in the notation, we get by the same arguments as
in the self adjoint case, that the density of states is almost surely the limit in the vague
sense of the measures dkjs,n and dk M,N a8 N — M — co. A proof is provided in Appendix
for completeness.

Proposition 3.1 For any continuous function f : S* — C,

. i\ J1L.Y _ A
lim /T FeM)dke v (V) = /T FENEQ)  as. | (3.16)

N—M-—-x

and the support of the density of states dk coincides with 33, the a.s. spectrum of U,,.

Remark: The two previous results show that there exists a series of polynomials whose
asymptotic distribution of zeros converges to the measure dk, as announced in the intro-
duction. These polynomials are the characteristic polynomial of the unitary matrix VM-V,
As we noted earlier, there is some freedom in the definition of the boundary conditions
giving rise to these matrices, therefore this series of polynomials is not unique. Observe
also that the difference between these polynomials and the orthogonal polynomials only
lies with the boundary conditions used to define VM-V as recalled at the end of Section
2.1.

4 Thouless Formula

The link between the density of states and the Lyapunov exponent is provided by an
analysis of the spectrum of the finite unitary matrices V", It reads

Theorem 4.1 [Thouless Formula | For any z € C\ {0}

v(z) = 2/Tln |z — ' |[dk(N) + In(1/¢2) — In 2. (4.1)
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Remarks:

0) The identity y(1/z) = 7(z) holds.

i) It follows from the above formula, as in Theorem 4.6 in [GT], that the integrated density
of states is continuous and satisfies

In(2/t?)
IN(A1) = N(Ag)| < o e — ee]|’

where N()\) = /)\ dk(X'), (4.2)

-7

by an argument of Craig and Simon [CS].
ii) In case z = ¢"* € S', the formula can be cast into the form

(™) = /T In(sinZ((A — N)/2))dk(N) + In(4/2), (4.3)

from which we recover the estimate 0 < y(e**) < In(4/t?) that follows from the form of the
transfer matrices (2.16).

The proof of this version of Thouless formula is given at the end of the section and its
translation in terms of potentials of measures is given after the proof. We proceed with
a Corollary and an application of this formula. The Corollary essentially expresses the
radial derivative of the Lyapunov exponent as the Poisson integral of the density of states
measure dk, which allows to recover the a.c. component of dk by a limiting procedure.

Corollary 4.1 For any € > 0 and any X € T,

Tim y(e%e ) = 1(e), (14)
9 X _ z)\’ j:e|2 o
Z _ — K3 €
a’)’ / |el)‘ ezA,eiGPdk(A) = :F_P[dk] (e e ). (45)
Therefore, if n(A)dA/2n denotes the a.c. component of dk(A),
0 , iy 0 , v
1 el AN —ey n_ Y ) 4.6
Jim —oy(ee™) = n(X) = Z-(e), (4.6)

where the limit and the derivative exist for Lebesgue almost all X' € T.

Remark:

As in [CS], it follows also from the subharmonicity of y(z), that if y(e?*°) = 0, then
v: 8! = Rt is continuous at €™,

Proof:

Let us first consider the second statement with lower indices only. We compute

(@ e ) = e+ In(1/82) + /Tlnu +e7% — e 2cos(A — N))dk(N), (4.7)

which we can differentiate under the integral sign as long as € > 0 to get

0 i e / —2e72¢ 4 e “2cos(\ — )
el -1
867(6 ) + T14+e 2 —e2cos(A — /\’)dk()\)

1—e 2% i
= dk()\) = Pldk](e™ e79). 4.8
/11‘ 1+e 2 — e 2cos(A — \) ) [ak](e" ™) (48)

The existence for almost all A’ € T of the limit and the first equality in (4.6) is a direct
consequence of the above equality. The existence and equality with the derivative at zero
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for such )\ follows from the mean value Theorem. To get the first statement, notice that
14+ e 2 — e 2cos(z) > 2e7¢(1 — cos(z)) in formula (4.7) above yields

0<—In((14 e % —e 2cos(A = X))/4) < —In(2e7¢(1 — cos(A — X)) /4) =
e —In((1 — cos(A — \))/2), (4.9)

where the last function is in L'(T,dk) by Thouless formula. Therefore, an application of
the dominated convergence Theorem shows we can take the limit € — 0 inside the integral
to get the result. [ |

We consider now the properties of U, characterized by i.i.d. phases 8} and o} in the
definition (2.2), assuming one set of phases is uniformly distributed on T. In that situation,
not only can we can prove the transfer matrices have a (positive) Lyapunov behaviour,
but we can also exactly compute the Lyapunov exponent y(e**). This shows that in this
situation, the spectrum of U, is almost surely singular, in view of the unitary version of
the Ishii-Pastur Theorem proven in [BHJ]. This strengthens the corresponding results of
[BHJ], Theorem 4.1 and Propositions 5.4. There Furstenberg’s Theorem is applied to prove
positivity of the Lyapunov exponent, so that no value for y(e**) is provided.

Theorem 4.2 Let (6Y)rez and (off )kez be i.i.d. onT and assume the distribution of either
the 07 ’s or the of ’s is uniform on T. Then, for any A € T,

dk(\) = d\/2n, and ~(e?) = In(1/t?) > 0, (4.10)
therefore,

0(Uy)ac=0 and o(U,)sing. = S* almost surely. (4.11)
Remark:

The assumption on the distribution of the phases actually implies that the n’s are i.i.d.
and uniform on 7', see Lemma 4.1 below. This explains why the a.s. spectrum coincides
with S' and why the density of states is flat.

Proof of Theorem 4.2:

We first use the following lemma, of purely probabilistic nature proven in Appendix.

Lemma 4.1 Under the hypotheses of Theorem 4.2, the 0} ’s are i.i.d. and uniform on T.

Then we show the density of states is uniform for uniformly distributed phases. Expanding
(2.2) of the nx(w)’s we can write for any n # 0,

(0ilUspj) = > Uik U)kaks - Uy =
k=k1 k2, kn_1

) exp (—i mel(w)) (U0)j,k1 (Uo) ks ks * = (U0) k1,55 (4.12)
k

lel

where Up corresponds to U, when all phases 7, = 0 and where £ is a finite set of indices
depending on 7, E,n and p; are integers. Observing that the variables nx(w)’s all appear
with the same sign in (2.1), no compensation can take place between contributions of
different matrix elements above and one at least among the integers p;, for [ € L is stricly
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positive when 7 # 0. Using independence and the characterization E(e™ "™ ) = 6, of
the uniform distribution, we get

({9 |UR0;)) = by —> / M dE(N) = G (4.13)
T

and the first statement follows. The second equality is a consequence of Thouless formula
together with the identity

27 .
/ In|1 — e™|dx = 0. (4.14)
0

The singular nature of the almost sure spectrum of U, comes from the unitary version
of Ishii-Pastur Theorem proven as Theorem 5.3 in [BHJ], which is independent of the
properties of the common distributions of the «y’s and 6;’s and only requires ergodicity.
Finally, Proposition 3.1 yields the result about the support of the a.s. singular spectrum.

We compute here, for the sake of completeness, the density of states and Lyapunov
exponent for the deterministic free operator Uy corresponding to U, in case n = 0,Vk € Z.
In this case, equation (3.16) of Proposition 3.1 becomes a definition of the free density of
states dkg, provided the limit exists. That the limit exists, is the content of the next

Lemma 4.2 The free density of states dkq exists when defined for any f € C(S') by

/ f(eMdko(\) =  lim / F(eNdknn (V). (4.15)
T N—M—o0 JT

As we know essentially everything about the purely a.c. operator Uy, we can also use
a direct approach to perform these computations. In particular, the integrated density of
states of Uy can be defined as the distribution function on T of the band functions yielding
the spectrum Yy of Uy. This direct approach of the density of states coincides with the
above definition, see the proofs of Proposition 4.1 and Lemma 4.2 in Appendix. We note
here that the spectrum of Uy consists in the set

Yo = {e:ti(arccos(rz—tz cos(y)))’y € T}. (4.16)

We get in particular that g is the support of the density of states whereas ¥f is that of
the Lyapunov exponent:

Proposition 4.1 If Ny, dko and o denote the integrated density of states, the density of
states and Lyapunov exponents of Uy, respectively. We have for A € T ~] — m, 7],

sin(M)| : 2 42
ko)) = 1 IO d\ if |A| < arccos(r® —t%) (4.17)
otherwise
S ATCCOS (%) if A € [~ arccos(r? — ¢2),0]
No(A) = . 2 cosn) s (4.18)
1 — 5-arccos (T) if X € [0,arccos(r — t°)]
o 0 if |A\| < arccos(r? — t2) i1
Yo(e7) = cosh™! (TZ_;%) otherwise. (4.19)

Finally, Thouless formula (4.1) holds true for these quantities with z = e¢**, A € T.
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Remarks:

Note that the density of dko(\) diverges as 1/4/|A — arccos(r? — #2)| at the band edges and
behaves as 1/2nt as A — 0.

The integrated density of states No(\) tends to its values 0 and 1 as y/|\ — arccos(r2 — ¢2)|
at the band edges.

Also, in keeping with the fact that Uy becomes a shift if £ = 1 and the identity as r = 1,
No(A) becomes linear in A as t — 1 and a step function as r — 1.

The Lyapunov exponent, where non zero, is equivalently given by

2
() [ o) WM) ) (4.20)

2 2

It is an even C'™ function of A on {|\| > arccos(r? —#2)}, strictly increasing on [arccos(r? —
t2),w]. And dyo(e*)/d\ behaves as 1/4/X\ — arccos(r2 — #2) as A — arccos(r? — t2)*.
Given Lemma, 4.2 above, it is clear that Thouless formula holds for the above quantities.
A direct proof of this fact is nevertheless given in Appendix.

Finally, in terms of orthogonal polynomials, the free case is related to the choice of con-
stant reflection coefficients ar = a € C, for all k, which yields the Geronimus orthogonal
polynomials on the circle. For any such choice, the corresponding five diagonal operator
equals —Up, see (2.8), (2.2), and depends on |a| only. The spectral picture corresponds to
the one above, rotated by w. This is in agreement with the accounts of this special case
given in [G] and [GNV] for example, modulo a point mass or eigenvalue steming from the
boundary condition at the origin which we dont consider here, see Section 2.1.

4.1 Proof of Thouless Formula

We now turn to the proof of Theorem 4.1. Writing down explicitely the effect of the
boundary conditions at N > M on the coefficients of the eigenvector (2.13) we obtain the

following relations, which depend on the parity of N and M. Let MY = Xm,N¢ and
consider
VMNYMN _ idyMN 4y 201 41, N, (4.21)
We get by inspection,
Lemma 4.3 Assume (4.21) is satisfied. Then, if M is even
CM+2 Ny _ 1 —it(r —e )
_ = 2z . ). 4.22
(CM+3> cmy1b1(e) CM+135 <(T 6N gr(r — e (4.22)
If M is odd,
CM+1 Ny — 1 it
= = — X ; 4.2
(CM+2> crm+1ba(e) CM+1 (ez)\_r> (4.23)

Similarly, if N is even,

(CN_Q) = cnbz(e?) = CNl ( (r=e™) + T(T_i_x)e_i/\) ) : (4.24)

CN-1 12 —it(r—e
If N is odd,
CN—1)\ _ iy — l et —r
( p ) =cn_1b4(e) = CN*lz't ( it ) . (4.25)



These relations together with the formulas (2.18) allow to describe the spectrum of VM-V

in a convenient manner.

Corollary 4.2 Let M < N be fized and consider non zero vectors ai,as € C? such that
a;j(e?) € (bj42(eM)C)L, j =1,2. Then, e € o(VMN) iff

(a1 (eM)|T(N/2 —1)-- (M/2 + 2)b(e?)) =0, M,N even
(a2 (eM)|T((N +1)/2 — 1) (M/2 +2)b1(e?)) =0, M even ,N odd
(a1 (eM)|T(N/2 —1)---T((M 4+ 1)/2 + 1)ba(e"*)) =0, M odd ,N even
(ag(eM)|T((N +1)/2 — 1) CT((M 41)/2 4 1)by(e?)) = M,N odd (4.26)
Remark:
In particular, a possible choice for the a;’ is
a1(e?) = bi(e™ ™), az(e?) = ba(e ™). (4.27)

Each of the above quantities denotes a matrix element of a product of transfer matrices of
the type (2.18), which depend on ¢, and will be linked in the limit N — M — oo to the
Lyapunov exponent.

Let e = z € C\ {0} and ng, my € Z. Defining

@mom0 () = T(ng — 1) - -- T(mg + 2), (4.28)

one sees that the matrix elements (a;(z)|®™°™0(z)by(2)) correspond to those in the above
corollary for values N = 2ng, N = 2ng — 1,M = 2my, M = 2my + 1, depending on the
choice of indices 7, k.

Lemma 4.4 For any z € C\ S and any indices j,k = 1,2

o 1 . mo,no —
no 0 e — gy (@ ()T ()b ()] =
/ In|z — ' |dk(N) + In(1/t) — In(|2|Y/?), (4.29)
T
Proof: We note that for any k € Z, there exist 2 x 2 matrices A(k), B(k),C(k) such that
(with z = e*})
0 0
T(k) = zA(k) + B(k) + C(k)/z, where A(k) = (O e ) (4.30)
t
Also, for any j7 = 1,2, there exist vectors b;k), ag-k), k= -1,0,1 such that
ag(z) = zag) (0) + a; )/Za
bi(z) = 2b) b§§> BV /2, (4.31)
where bgfl) = ag) = 0 are the only zero vectors with the choice (4.27). Thus, taking into
account the above property ,
Pjj(z) = 20700 a;(2)| @700 (2) by (2)) (4.32)

is a polynomial in z of degree 2(ng — mo) +2 — (k + j). Let p; be the coefficient of the
highest power of z of P; ;. Then, because of corollary 4.2, we can write

deg P.

= D)k H eM), (4.33)
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where {¢M} is the set of eigenvalues of VMY and we compute

. no—1
el = 181 T A0p) =
l=mo+2
. (no—mgp)—2
Ky 1t 0 0O 0 _ K (4.34)
t2(no—mo) T 0 1 1 $2(no—mo)

where K, K7 are some constants that depends on j, k and ¢. Therefore, for any z € C\ S*,

deg Pj,k

In|P; In|z — et
lim 711' +(2)] zln(l/t2)+ lim Z 7n|z ™|
1=0

(o —m0) (4.35)

nog—mop—0o0 (’n() — mo) no—1mo—oC

Introducing the continuous function f, : S — R given by f,(z) = In|z — x|, the last term
can be written

deg P (€M) M.NY)
. . tr (fz V / iN
1 =2 1 — =2 k(N 4.36
im E — im f2(e (4.36)

ng—1moy—00 M—N-—o0 N-M

by application of Lemma 3.1 and Proposition 3.1. This ends the proof of the lemma. [
Then we make use the following easy lemma

Lemma 4.5 If®: C? — C? is linear and aj,b; € C?, j = 1,2 are such that span (a1, az) =
span (bi,be) = C?, then ||®| := max; |[(a;|®bi)| is a norm for @,

noting that its hypothesis is satisfied by ay(z),b;(z), for all z # —1, and of the fact that
the Lyapunov exponent is defined 1ndependently of the norm used in (2.19) to deduce
that (4.29) actually equals half the Lyapunov exponent. Finally, the fact that both the
Lyapunov exponent and the right hand side of (4.29) are subharmonic and coincide on
C\ S! implies the relation (4.1) on C as well, by classical arguments, see [CS]. This ends
the proof of Thouless formula. [

4.2 Link with potentials of measures

We now express Thouless formula as a property of the potential of the density of states
measure. Following [SaT], we briefly and informally recall the main definitions. The
(logarithmic) potential of a probability measure p on the circle is defined by

p(dps; ) = /T In |z — ¢ |dpu(A), (4.37)

the (logarithmic) energy of such a measure is defined by

/ / | — N du(N)du(6), (4.38)

whereas the energy E of a set X C S! is
= inf{I(dy) | supp du C ¥}. (4.39)
In case an external field () coming from a weight

w(z) =e Q@) z e S (4.40)
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is added, the weighted energy of the measure is defined by

L(dp) = — / /1r Infe? — P du(\)diu(0) + 2 /T QM) (M) (4.41)

and the weighted energy FE,, of a set 3 is defined as above, with I, in place of I. Now,
the equilibrium measure of a set ¥ is the unique measure duy realizing the infimum of the
energy F,,, when finite. These quantities are defined according to the electrostatic analogy.
For example, if duq = 2?21 %(52]., where z; € S are the zeros (with multiplicity) of some
monic polynomial A, p4 is the distribution of the zeros of A and its potential equals

1 n
Pldaiz) = ==Y Injz = ] = —In|A(2) /", (4.42)
j=1

and if ¥ = S!, the equilibrium measure dug: is the normalized Lebesgue measure so that

SN 0 if |z] <1
Pldpsii2) = { Ctnla| o > 1 (4.43)
Hence we can cast our Thouless formula for dk under the form
p(dk; 2) +v(2)/2 =In(1/t) Vze S, (4.44)

which, in view of Theorem 1.3.3 of [SaT| and the subharmonicity of -y says that the density of
states measure dk is the equilibrium measure on S* for the weight given by w(z) = e 1(2)/2,
More generally, we can observe a similarity between the proof or our Thouless formula and
Theorem I11.4.1 in [SaT]. This Theorem essentially says, in a deterministic framework, that
if {A; }n>0 is a sequence of asymptotically extremal monic polynomials for a weight w (i.e.
such that the asymptotic behaviour as n — 0o of (sup,ecg1 |w(2)™ A, (2)])Y/™ is essentially
given by a constant), then we have equivalence between

lim |4 (z)|Y/" = e PldHwizo) (4.45)
n—00,nEN
and
lim dpg, = dpp, (4.46)

in the vague sense, where du,, denotes the weighted equilibrium measure corresponding
to w and N denotes an infinite subsequence of N. Regarding the definition of dk and the
proof of Thouless formula, on the one hand we have that

pldk;z) = lm  pldua,ws2) (4.47)

where Ay un(2) = det(z — VM) is such that dpa, v,y — dk vaguely, and, on the other
hand, that this potential is related to the Lyapunov exponent in such a way that dk is the
equilibrium measure corresponding to the weight w(z) = e7(*)/2. Hence, in our random
setting, we can say our construction selects the asymptotically extremal monic polynomials
allowing a discrete approximation of the equilibrium measure associated to the external field
given by the Lyapunov exponent.
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5 Properties of the Density of States

We mentionned several times the analogy between our unitary operator U, and Jacobi
matrices corresponding to the self-adjoint case. In this section we slightly drift away from
the physical motivations underlying the study of (2.1) and consider more closely the links
between these cases. The analogy is made clearer by the following Lemma which will be
useful later.

Lemma 5.1 Denoting unitary equivalence by ~, we have

U, ~ DSy, with D, = diag {e*i"%} (5.1)
and
rt  —t?
r2  —rt
t 2 ort -t
Sy = r ~ U, 5.2
0 —t2 —tr 2 —rt 0 ( )
rt r?
—t2  —tr

where the translation along the diagonal is fized by (@or, 2|Sopak) = —t%, k € Z.

Remarks:

In some sense, the Lemma, says that, up to unitary equivalence, U, is a unitary analog of
the one dimensional discrete random Schrédinger operator where the a.c. unitary Sy plays
the role of the discrete laplacian, the pure point diagonal operator D, plays the role of the
potential on the sites, and the operator sum is replaced by a product.

We also recall that tridiagonal unitary matrices are spectrally uninteresting as they either
correspond to a shift of to infinite direct sums of blocks of size one or two, see Lemma 3.1
in [BHJ].

The Lemma also shows that our operator U, is essentially a product of an absolutely
continuous unitary and a pure point unitary, whereas it was constructed in Section 2 of
[BHJ] as a product of two pure point unitaries.

Proof:

Let us define a collection of rank two operators by

Py = loj){ejl + lejr){ejnl, j€Z, (5.3)
and the unitary V by the direct sum

V= jze;apzjl (—”;t i) Pj1. (5.4)
It is just a matter of computation to check that we can write

U, = U U, YUy =V D, VUy =V D, (VU V YV =V H(D,S0)V, (5.5)
with the required properties for Sy and D,,. [

Now, forgetting that the phases 7}’ are in general correlated random variables, see (2.2),
if we consider them as i.i.d., but not necessarily uniformly distributed on T, we get some
unitary Anderson-like model. This is where we depart from the physical motivation, as it is
recalled in Lemma 4.2 in [BHJ] that independence of the 7;’s is associated with a uniform
distribution.
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5.1 Support of the Density of States

Nevertheless, assuming the random phases {1} };cz are i.i.d. according to the measure dpu
on T, we can characterize the almost sure spectrum of U, in term of the support of u and
of the spectrum Yy of Up.

Theorem 5.1 Under the above hypotheses, the almost sure spectrum of U, consists in the
set

¥ := exp(isuppp)Xo = {*%g | a € supppu}. (5.6)

Remarks:

In the case where the n(w) are i.i.d. and uniform on T, we recover the fact that the almost
sure spectrum of U, is S'.

We recall that in the orthogonal polynomial setting, the hypothesis implies each phase
of the reflection coefficients is given by a sum of i.i.d. phases, see (2.2), (2.8).

Proof:

To show that ¥ belongs to the almost sure spectrum, we simply construct Weyl sequences
corresponding to the corresponding quasi-energies, with probability one. We know from
Section 6 of [BHJ] that for any e** € %, there exists a generalized eigenvector 1 such

Pa =Y cj(N)pj, Uohr = e?¢hy, and 0 < K < |¢;(N)| < 1/K, Vj € Z, (5.7)
JEZ
for some K > 0. The last property can be checked also by means of the transfer matrices
(2.16)

Let a € suppyu. Then, for all € > 0, there exists a set I, 5 « such that |I| < ¢, and
p(Ie) > 0. With the notation w(k) = ng(w), k € Z, we define for all n € N and k € Z,

Ap (k) = {w(kn) € I,w(kn+1) € I,--- ,w(kn+n — 1) € I.}. (5.8)

Due to the assumed independence, we have for any &, P(A4,(k)) = u(l:)"™ > 0 so that for
any n > 0, by Borel-Cantelli, P(Uxcz Ay (k)) = 1.

Let Ap(k) = {kn,kn+1,---,kn +n — 1} denote the set of indices appearing in A, (k)
and consider now

ak(N) = D ci(Ngj = x(An(k)$(N), (5.9)

JEAR(K)
where x (A (k)) is the projector on the span of {¢;};ea, ) Because of (5.7),
Uo¥ne(N) = €*ne(A) + Ry (A) + By, (5.10)
where the vectors Rji have at most four components close to the index 5 and
||R]i|| < R, where R is uniform in j. (5.11)
Also, by construction of Ay, (k), Uy and U,,, we have

1Uethn e (V) = €*Ustpnge NIl < (U = €T0) x (A () [19pn,6 V)|
= O()[[gnr N, (5.12)
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where the estimate O(e) is uniform in n and k. Therefore, for all € > 0 and all n > 0, there
exists, with probability one, a k such that A, (k) and the corresponding %y, x () have the
above properties so that

1Vt ) = @k V1| b (V)| =
(1T = €*Uo)pn,e(N) + € (Uo = )b e WD/l W] <
O(6) + 2R/l s VIl = Ofe +1/n). (5.13)

It remains to chose n = [1/€] to conclude that ¢ (®t}) € o(U,) almost surely.

Let us now show that S'\ ¥ belongs to the resolvent set of U,. In order to do so
we use Lemma 5.1 Therefore, we can consider as well the spectrum of the product DSy
to which the perturbation theory recalled in Chap.1, §11 of [Yaf] for example, applies.
In particular, dropping the w in the notation as randomness plays no role here, if we
know that for all j € Z, n; € [a,8] C T, then (D) C (61,62) where (61,d2) denotes
the corresponding arc on the unit circle swept in the positive direction from §; € S! to
dy € S'. We denote by |(d1,d2)| the length on the torus of this arc. Since o(Sp) = %
corresponds to the symmetric arc (e~ arccos(r?—t%) i arccos(’"zfﬁ)), perturbation theory tells
us that after (multiplicative) perturbation by Sy, the spectrum of U ~ DS is a subset of
an arc of wider aperture than (d1,d2). Quantitatively, Theorem 8, p.65 in [Yaf] tells us
that the arc (e’ arccos("2_t2)52, e‘iarcc"sm_ﬁ)dl) belongs to the resolvent set of U, provided
(81, 82)| < |(eiarccos(r?~t?) g—iarccos(r’~1*))| " This condition simply insures that the subset
of the resolvent set we are talking about is not reduced to the empty set. This is enough
to get the result in case the support of u is such that ¥ is connected. In case this set
is not connected, as |Xg| > 0, it consists of a finite set of connected components, each
of which can be associated with the convex hull of sufficiently far apart subsets of the
support of u. Denoting these subsets by m;, j = 1,---, N and the associated arcs on
S by (Mi(5), M2(j)), we have that the spectrum of D is the disjoint union of subsets
o; satisfying o; C (M1(j), M2(j)). The same argument as above says that the spectrum
of DSy is confined to the finite union of arcs ((ef2rccos(™* =) A1, (), (e~tarccos(r® =) pr, (4)),
which ends the proof of the Theorem.

5.2 Analyticity of the density of states

Without really entering the delicate analysis of the smoothness of the density of states, we
can further exploit the relation (4.12) in order to obtain, at the price of some combinatorics,
a condition on the common distribution of the 7;’s ensuring the analyticity of the density
of states. Recall that a function f on T is analytic, if and only if its Fourier coefficients f
satisfy an estimate of the form

|f(n)] < Ae BI"l wn e Z, (5.14)
for some positive constants A, B. We have

Theorem 5.2 Assume the ng’s are distributed according to a law that has an analytic
density f characterized by the estimate (5.14) with A, B > 0. Then, if

B > In(1 4+ 2rt) + In A, (5.15)

the density of states dk admits an analytic density, so that the integrated density of states
N is analytic as well.
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Remarks:

As f(0) = [y f(m)dn =1, A> 1.

When the Theorem applies, it prevents the Lyapunov exponent from being zero on a set
of positive measure.

This result has to be compared with the Proposition VI. 3.1. of [CL] stating a similar
result for the d-dimensional Anderson model.

As an immediate consequence, using 72 + 2 = 1, we get the following

Corollary 5.1 If the ny’s have an analytic density f, characterized by (5.14) with B >
In A, then there exist r*(f) and r—(f) in ]0,1[ such that the density of states is analytic
provided the reflexion coefficient r satisfies 1 > r > rt(f) or0 <r <r~(f). If B > In(24),
The density of state is analytic Vr € [0, 1].

Remark:

It is easy to check that in both the extreme cases r = 1 and r = 0, the density of states is
analytic. Indeed, if r = 1, dk(A\) = f(A)dA, where f is the density of the 7;’s, whereas if
r =0, dk(\) = d\/(27).

Proof of Theorem 5.2:

By hypothesis, for any n € Z,

2] = | [ €™ flaan| < e (5.16)
T
Then, in (4.12) above, Y ;. - pi = n, so that using independence

B [Uspi)] < A%7P" 3" {(U0)jkal|(U0)ks ol - - | (U k] (5.17)
kl;k2""7k’n71

Here the sum carries over a set of indices that form paths of length n 4+ 1 from index j
to index j. The allowed paths are those giving rise to non zero matrix elements (Up)im
in the sum above. In order to compute this last sum, we proceed as follows. Let us
introduce more general j-dependent subsets C, 1(j) of indices of Z"~! that appear in the
computation of the matrix element (po|Ul¢;). This set consists of paths of the form
{ko =0,k1,ko,---,kn—1,kn = j} of length n+ 1 in Z from 0 to j with the condition that

bmi1 — km € {0,41,—1,42}  if Ky, is odd

km+1 — km € {0,+1,—-1,—-2} if ky, is even, (5.18)
for all m =0,1,-,m — 1. Let us define
Su1(1) = Y 10001 U0)ks ksl -+~ (U)o 1,41 (5.19)
cnfl(j)

where the matrix elements |(Up),| are given by r2,rt and #? respectively, when |l — m)|
equals 0, 1 and 2 respectively. This quantity actually gives a crude upper bound on the
probability to go from site 0 to j in n time steps, under the free evolution. It is crude in
the sense that it does not take the phases into account during that free evolution.

We are actually interested in the computation of S,,_1(0) and of the similar quantity
appearing in the computation of (¢1|U 1), which correspond the the sum in the right
hand side of (5.17), in the asymptotic regime n — oco. The case of the matrix element
(p1|U1) being similar, we only consider S;,_1(0).
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The plan is to use a transfer matrix formalism to evaluate the generating function
associated with S,_1(j) and then to compute the asymptotics of S, 1(0). In view of
(5.17), the following proposition implies the Theorem.

Proposition 5.1 For some constant ¢ > 0,
c(r + 1)
N

Proof of Proposition 5.1:
Let

Sn—1(0) = (14+0(1)) as n— oo. (5.20)

Puz)= Y Sao1(i)a? (5.21)

—2n<j<2n

be this generating function which we split into two parts P,(z) = P (z) + P, (z) where

PEz)= > Spa(h)sl. (5.22)

—2n<j<2n
. even
7 odd
Clearly we have for n =0, 1,
P (z) =%, Py (z) = 0, Pt (z) = r* + 2272 P (z) = rt(z + 27 1). (5.23)
It is readily shown by induction that a transfer matrix allows to compute P,(x) for any n:
Lemma 5.2 For any n > 0,
Pri(z)\ _ [ r?+tz2 ri(z+zt) Pl (z)
P i (z))  \rt(z+z71) r?+t%2? P (z) )’
with Py (z) =%, Py (z) = 0.
Denoting by T'(z) the transfer matrix defined in this Lemma, and introducing the parameter

T =1t/r €]0, 0], (5.24)

we rewrite it as

2z 1t(z+z!
T(z) = r’ (7:'1(.;,‘1_4' z 1) § ++72x2)) ' (5-25)

We will consider first the case t # r <= 7 # 1. The case 7 = 1, for which more can be
said about S;,_1(j), see Proposition 5.2, is dealt with below.

5.2.1 CaseT#1

The eigenvalues of T'(x) are given by r? times A (z), where

Ae(@) = {1472 + 2722 /(T + r(@® T2 )20 - (-7}, (5.26)
so that
T™(z) = 12 A(z) (Aio(”’) N ?$)n) Alz)~! (5.27)



with
) — 7242 _(z) — 7242
Ae) = (M(T)(x S O )>' (5.28)

For the moment, x is just book keeping parameter, so that we ignore the potential problems
of the definition of A(z) in case the eigenvalues are degenerate and we further compute

(Iifgg) =T() (762) = (5.29)

r2r(z + z71) y
2y/(1+7(22 +272)/2)2 — (1 — 72)2

(/\Jr(ﬂﬂ)”Jrl = A (@)™ = (AL (@)" = A (2)") (1 + 7%2))
(@ + 27 (A (@) = A-(2)") '

We note at this point that one checks, using the binomial Theorem, that despite the
presence of square roots in the expressions for P (z), these quantities actually are given
by finite Laurent expansions in z, as they should. Focusing on P, (z) we can rewrite with
the shorthand +/- for the square root of the denominator above

Pi(z) = (5.30)

r?r(z 4+ o1 i .
% ((A+(a:)" @G E e+ L0 AW)) |

The quantity of interest to us is S,,—1(0), the coefficient of z° in the expansion of P (z).
Substituting ¢ for z in P, we get a trigonometric polynomial whose zero’th Fourier
coefficient is obtained by integration

S 1(0) = /T P (¢%)do/ (2r). (5.31)

It remains to perform the asymptotic analysis of the above integral as n — oco. It is
a matter of routine to verify the following propereties: The eigenvalues, as functions of
0 € T ~| — w, x|, are continuous. If 7 < 1, they are real valued, with discontinuity of the
derivative at § = +£m/2, where they cross and are given by 1 —72. At all other values of 0,
they are C°° and they satisfy

A (€?) > A_(e?), with A (") > 1 —72. (5.32)

If 7 > 1, the eigenvalues become complex conjugate. Let 6, = arccos(TiEQ) /2 be the
critical value where the square root becomes zero. If 6 € [0, 7 — 0.] U [—7 + 0., —6,], the
eigenvalues are complex conjugate, of modulus |1 — 72|. Otherwise they are real valued,
and satisfy (5.32) as well. Therefore, the asymptotics as n — oo of (5.31) is determined
by A4 only. Moreover, in both cases, In(\; (e??)) admits non degenerate maxima at § = 0
and 7, where )\, reaches its maximum value (1 + 72). Therefore, Laplace’s method yields

the asymptotics of the Proposition. [

5.2.2 caseT=1

The course of the proof being the same, it is presented in Appendix. However, instead of
computing S,_1(0) as n — oo, we can get exact forms for all S;,_1(j)’s. The Proposition
we actually show is
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Proposition 5.2

. 1 (2n—-1 . .
Sn—1(4) = on (j/2+n)’ —2n <j <2(n-1), J even
1 2n —1
Sn-1(j) = — . —2 1<53<2n -1 ] .
nl(]) 2”((]-”/24—’)@)’ n+1<7<2n s 7 odd (533)
Remark:
Of course, Stirling’s formula for n large yields proposition 5.1 with r =t = 1//2:
1 /2n—1 2"
Sn-1(0) = o5 ( n ) > (5.34)

6 Appendix

Proof of Proposition 3.1:
We have by definition,
1 N
A W
LHNdn0) = 5257 2 @il @, (61)

j=M+1

where, depending on the parity of M and N and due to the fact that f is uniformly
bounded, the right hand side can be rewritten as
N/2

N _1 i Z (@2n] f(Uw)p2r) + <902k+1|f(Uw)902k+1)) + Of(
k=(M+1)/2

1
N-M

) =

N/2

1
k=(M+1)/2

Now, by Birkhoff ergodic theorem, there exists {2; of measure one such that for all w € €2y,

N/2
Jlim S el Us)es) = S e Vi €2, (63)
k=(M+1)/2
therefore,
e e (RN F(U4)) - 5 (Elpold (T)go) + ool (T)oo)) (6.4

Then, C(S') being separable, we have the existence of a countable set of {f;};en, dense
in C(S1), for which the above is true, on a set of probability one, which proves the almost
sure convergence stated in the proposition.

Now assume e ¢ ¥ and take a continuous non negative f such that f(e0) = 1
and f|x, = 0. Then f(U,) = 0 as. so that [ f(e”)dk(\) = 0 and e*® ¢ supp k.
Conversely, if ¢#* ¢ supp k, there exists a non negative continuous f with f(e**°) =1 and
[ f(e?)dk(\) = 0. Hence, a.s., {(po|f(Us)po) + (p1]f([Uu)p1) = 0, therefore, by ergodicity,
(9| f(UL)pj) =0 as. for any j and f(U,) = 0. As f is continuous and equals one at e?o,
we get that eto ¢ 3. |
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Proof of Lemma 4.1:
We only deal with the case where the 6}’s are i.i.d. and uniform, the other case beeing
similar. Let ®,(n) = E(e!™ ) be the characteristic function of the random variable 7%,
and similarly for o}, and ®g(n) = d,,0. Then, using independence,

By (n) = @g(n)*@a(n)@a(—n) = dno|Pa(n)]” = dn, (6.5)
so that the n;’s are uniformly distributed. Consider now

(no,ma, -+, nj) = E(e! Zicohim), (6.6)

ano Tk a"',ij

We can assume the k;’s are ordered and we observe that 7y and 7;; are independent as
soon as j > 2, see (2.2). Therefore, we can consider consecutive indices k; and deal with

(I)nkmkﬂ,"-mkﬂ' (n1,ng,---,nj) = (6.7)

R 1t 1) ) 0 f (1, 7)),

where the second expectation contains ay’s only. Then

(I)nkmkﬂ,"'mkﬂ' (n1,ng,--- ’nj) =

®y(no)@g(no +n1) -+ Pg(nj—1 + nj)Pg(n;))E(f () =

5n0,05n1,0 e 5nj,0E(f(a7 ﬁ)) = 5ﬁ,6E(f(a7 0)) = 57‘;,‘7(_)‘7 (6 8)
whith the obvious notation, which yields the result. |

Proof of Proposition 4.1:
We first prove this Proposition with the definition of the density of states as the distribu-
tion function of the ”"band functions” of Uy, to be defined below. Then we’ll see in the
course of the proof of Lemma 4.2 below the equivalence with the definition as an average
counting measure. The proof of Proposition 6.2 in [BHJ] shows that Uy on [?(Z) is unitarily
equivalent to the operator multiplication by the matrix

V(z) = (

r? — t2e%T 24ty cos(z)

2 ~ T2 2
2itr cos(z) 1% — t26—2i$> on L*(T) ~ L% (T) @ L (T), (6.9)

by the unitary mapping that sends ¢, + €% /v/2m, and where L2 (T) is the susbspace
generated by even/odd harmonics {e#**},c7. The eigenvalues of V() are
Ai(z) = €@ where a(z) = arccos(r? — 2 cos(2z)). (6.10)

We note that Ay(z) = Ay(—z) and

V(z) = JV(—z)J where J = ((1) é) . (6.11)

Hence, the corresponding eigenvectors x4 (x) satisfy
V(z)x+(z) = As(2)x+(x) and V(z)Jxz(—2) = As(z)Ix2(—2), (6.12)

so that x+(z) and Jyxi(—=z) are linearly dependent. This is in keeping with the fact that
the subspace of generalized eigenvectors is of dimension 2, see (2.14). Also, one checks that
for any phase 8 €] — arccos(r? — t2),0[U]0, arccos(r? — 2)],

a Y(B) = {z1,z9, —x9 — 21} C] — m, 7. (6.13)
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Therefore, due to (6.12), only half these points contribute for the computation of the
density of states. We can now compute the integrated density of states Ny(3) as follows:
Taking into account the normalisation by a factor 1/27 in the definition (3.1), the fact
that supp k C [—arccos(r? — t2),arccos(r? — t2)] and the symmetries, we have for any
B € [~ arccos(r? — t2),0]

1 1 w/2
No(B) = E/]rd)\X{—a()\)<,B§0} = E/_ B dAX {cos(20)>(r? —cos(B))/12} (6.14)
1 arccos((r2—cos(B))/t?) 1 P2 _ COS(,B)
= o), = 5 arccos (T) ) (6.15)

A similar computation for 8 € [0, arccos(r? —t?)) yields (4.18). Therefore, dkq is absolutely
continuous w.r.t. Lebesgue and, for any |\| < arccos(r?—t2), dko()\) = N'(\)d)\, from which
the result on the density of states follows. In order to obtain the Lyapunov exponent, it
is enough to observe that the transfer matrices (2.14) T, now independent of k, are of
determinant one and trace equal to 2(r? — cos(\))/¢2. Therefore, it is readily checked that
when the eigenvalues 74 () of T

7+ (A) = (r? — cos(A) + /(12 — cos( —t4)/t? (6.16)

are complex conjugates, i.e. when |\ < aurc(:os(r2 — t2), they are of modulus one, whereas

max{|7y |, |7_|} = (r? — cos(X) £ /(12 — cos()))2 — t4) /12, (6.17)

if |A| > arccos(r? — #2). It remains to use definition (2.19) to get vo(e**). In order to prove
the last statement, we first rewrite the right hand side of Thouless formula with dky()\')
above as

1 I —y)?)
27 1 m

by means elementary manipulations, changing variables to x = (r? — cos(\'))/t? and intro-
ducing y = (r? — cos(\))/t? € [~1,(r? + 1)/t?]. Hence we are to show that (6.18) above
equals 0 if y < 1 and In(y + \/y? — 1) if y > 1. We first deal with the case y > 1. We can
differentiate (6.18) with respect to y under the integral sign to get

dx +1In2 (6.18)

1 dz
GVI—2(y—=z) 27 /C Vi 22(y—2) (6.19)

where C' is a contour in the complex plane surrounding the segment [—1, 1] in the positive
direction which does not contain y in its interior. By deforming the contour to a circle
centered at the origin and of radius R > 0 large enough, we pick a residue at y. As the
integral on the circle is of order 1/R, we eventually get in the limit R — oo

i Uin((z — 9)?) i
dy 1 V1-—a? N

as expected. The limit as y — 17 of the Lyapunov exponent fixes the constant to 0. Now,
if y €] — 1,1], we first convert (6.18) to a contour integral along a path similar to the one
above with te following difference. As the In is multivalued, with a cut from y along the
real axis towards —oo, the contour is attached to the point —1. By assumption, y does
not belong to the contour of integration, so that we can now differentiate with respect to y

dx + an} = (6.20)
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under the integral sign and thus get the same contour integral (6.19) as above to consider.
However, by expanding the contour to infinity, we get to residue this time, so that (6.18)
is constant for y €] — 1,1[. As it is known ([GR], # 4.224, p.526) that,

1 (' In(z? 2 (11 2 [7/?
L[ @) g, —/ LG —/ In(sin(t))dt = —In2, (6.21)
2m _1\/]_—1,‘2 ™ Jo 1— 22 T™Jo

we have, by continuity, that the integral is equal to zero on [—1,1]. [

Proof of Lemma 4.2:
We use freely the notations above. Let us introduce the eigenprojectors Py (z) associated
with Ay (z) such that

V(z) = Pr(z)Ai(z) + P_(z)\_(z). (6.22)

These quantities are analytic in z, in a strip including the real axis. Let f € C(S!) and let
us compute by means of (6.9) and the definition of L% (T)

tr O [ FUo)xmn) = D (il fUo)e;) =

Zn %A( (é) \(f(A+(w_))P+(:z:) + f(A_(z))P_(z)) ((1)) >dx+
> o L)) [00@nre@ + s0-@p-) (] ) Yo (629

The summand being independent of j and uniformly bounded, we can rewrite the above
trace as N — M gets large as
N-M
pp / fA4 () tr Pr(z) + f(A(2)) tr P (z)dz + O(1) =
T

oM / FO4 (@) + FO_(#))dz + O(1). (6.24)
0 T

Hence, with Ay (z) = e¥®®) a5 in (6.10), and taking into account the properties of a, we
g

et
ei)\ — i eia(a:) e—ia(a:) T
[ 1m0 = o [ £+ peio)a
1 w/2

= o (D) + f(e7**®))da, (6.25)
27 —7/2

which is easily seen to coincide with the ”direct” definition of dkg in the above proof. |
Proof of Proposition 5.2:

As in that case a commun term 2% can be factorized, see (5.17), we compute the generating

function of |C,,—1(7)|, the cardinal of the set of relevant indices. Using the same symbols

as above, we consider this time

Po(z) = Z |Cn—1(j)|$j’ (6.26)

—2n<j<2n
which we split into two parts P, (z) = P, (z) + P, (z) that satisfy for n = 0,1,
PH(z)=1,Py () =0,Pf(z) =1+2 %P (z) =2 +z " (6.27)

As above,
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Lemma 6.1 For any n > 0,

Priio)\_(l1+z? z+az! P (z)

P (z)) \z+z7! 1+4? P (z))’
with Py (z) =1, Py (z) = 0.

By diagonalization of the corresponding transfer matrix, we get

T(0) = AG@) () (o1 gy ) A

where
_ 1+ z? r+az7t
Alz) = (—(w +z7l) 1422 )
and we compute

(58) - () - =)

Using the binomial Theorem we obtain for PF (z)
n—1
2n —1
+ _ 21
i@ = 3 (7))
n—1
_ 2n —1
_ 20+1
hence the end result.
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