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1 Introduction

In this paper we study the local solvability of the tangential Cauchy-Riemann equation ∂ b

on an open neighborhood ω of a point z0 ∈ M when M is a generic CR manifold of real
codimension k in C

n, where 1 ≤ k ≤ n− 1. We assume that M is q-concave near z0 (see
Definition 2.2.1). Our method is to first derive an homotopy formula for ∂ b in ω when
ω is the intersection of M with a strongly pseudoconvex domain. The homotopy formula
gives a local solution operator for any ∂b-closed form on ω without shrinking. We obtain
Hölder and Lp estimates up to the boundary for the solution operator.

Let Cα(ω), 0 < α < 1, be the space of Hölder continuous functions of order α in ω. We
use Cα

n,s(ω) to denote the space of (n, s)-forms with Cα(ω) coefficients The norm in Cα
n,s(ω)

is defined to be the sum of Cα(ω) norm of each coefficient. We also denote by Lp
(n,s)(ω)

the space of (n, s)-forms with Lp(ω) coefficients, 1 ≤ p ≤ ∞. The norm in Lp
(n,s)(ω) is

denoted by ‖ ‖Lp for (n, s)-forms. Our main results are the following:

Theorem 1.0.1. (Homotopy formula for ∂ b.) Let M be a strictly q-concave generic CR
manifold in C

n and z0 ∈M . Let Ω be a strictly pseudoconvex domain containing z0 in C
n

with C3 boundary and ω = M ∩ Ω. For any s, n− k − q + 1 ≤ s ≤ n− k, there exists a

continuous operator Ts−1 from Cn,s(ω) into C
1
2
−ε

n,s−1(ω) such that for any f ∈ Cn,s(ω) with

∂f ∈ Cn,s+1(ω),
f = ∂bTs−1f + Ts∂f.

Theorem 1.0.2. (Hölder and Lp estimates for ∂b.) Let M be a strictly q-concave generic
CR manifold in C

n and z0 ∈ M . Let Ω be a strictly pseudoconvex domain containing
z0 in C

n with C3 boundary and ω = M ∩ Ω. For any f ∈ Lp
(n,s)(ω) with ∂bf = 0 in

ω, 1 ≤ p ≤ ∞ and n − k − q + 1 ≤ s ≤ n − k, there exists an operator T̃s−1 satisfying
∂bT̃s−1f = f in ω and the following estimates hold:
∗NSF grant DMS01-00492.
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(1) ‖T̃s−1f‖
L

2n+2
2n+1−ε

≤ C‖f‖L1 , for any small ε > 0.

(2) ‖T̃s−1f‖Lp′ ≤ C‖f‖Lp , where 1
p′ = 1

p − 1
2n+2 and 1 < p < 2n+ 2.

(3) ‖T̃s−1f‖Lp′ ≤ C‖f‖Lp , where p = 2n+ 2 and p < p′ <∞.

(4) ‖T̃s−1f‖Cα−ε ≤ C‖f‖Lp , where 2n+ 2 < p <∞, α = 1
2 − n+1

p and ε > 0.

(5) ‖T̃s−1f‖
C

1
2−ε ≤ C‖f‖L∞, for any ε > 0.

Corollary 1.0.3. Under the same assumption as in Theorem 1.0.2, the range of ∂ b is
closed in Lp

(n,s)
(ω) spaces for 1 ≤ p ≤ ∞.

The L2 estimates will give the Hodge decomposition theorem for ∂ b and the existence
of the ∂b-Neumann operators.

Corollary 1.0.4. Under the same assumption as in Theorem 1.0.2, the following strong
Hodge decomposition theorem holds: For n− k − q + 1 < s < n− k, there exists a linear
operator Nb : L2

(n,s)(ω) → L2
(n,s)(ω) such that

(1) Nb is bounded and Range(Nb) ⊂ Dom(�b).

(2) For any f ∈ L2
(n,s)(ω), we have

f = ∂b∂
∗
bNbf ⊕ ∂

∗
b∂bNbf.

(3) If f ∈ L2
(n,s)(ω) with ∂bf = 0, then f = ∂b∂

∗
bNbf . The solution u = ∂

∗
bNbf is called

the canonical solution, i.e., the unique solution orthogonal to Ker(∂ b).

Though our theorems are stated for (n, s)-forms, it is clear that they can be extended
to any (r, s)-forms for 0 ≤ r ≤ n.

It is well known (see [7]) that on a hypersurface, if the Levi form satisfies Kohn’s condi-
tion Y (s) at one point, then the Poincaré Lemma holds for (r, s)-forms in a neighborhood
of the point. Local solvability for ∂b on hypersurfaces has also been investigated in earlier
works of Andreotti-Hill [2], Treves [21], Boggess-Shaw [5] and Laurent-Thiébaut-Leiterer
[11]. When M is strongly pseudoconvex, homotopy formulas were first obtained by Henkin
[8] using integral kernels. Local solvability was also studied in Laurent-Thiébaut-Leiterer
[13] and Shaw [19] for CR hypersurfaces with mixed Levi signatures.

In this paper we obtain an homotopy formula for ∂ b on ω with Hölder and Lp estimates
on CRmanifolds with higher codimension. The q-concavity assumption can be viewed as a
generalization of condition Y (s) for appropriate degree s to higher codimension case. The
local solvability of the ∂b equation in q-concave CR manifolds goes back to Naruki [15],
Henkin [9], Airapetyan-Henkin [1] and Nacinovich [14]. Homotopy formula for ∂ b for forms
with compact support on q-concave manifolds was constructed earlier by Barkatou [3] and
Barkatou-Laurent-Thiébaut [4]. A microlocal version of the local homotopy formula for ∂ b

on q-concave manifolds was studied by Polyakov [16]. Optimal Hölder and Lp estimates
for �b have been proved using Campanato spaces in Shaw-Wang [20]. All these are results
on the interior regularity for ∂b and �b.
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The previously known results for the boundary regularity for ∂ b are for strongly pseu-
doconvex or q-concave hypersurfaces. If M is a strongly pseudoconvex hypersurface and
ω is a domain in M such that bω is the intersection of M with a Levi-flat hypersur-
face, then one can construct a solution operator which is bounded in Lp. It was proved
in Shaw [18] that, in this setting, Lp estimates for the local solutions for ∂ b up to the
boundary are best possible. If M is a q-concave hypersurface and ω is the intersection of
M with a bounded strictly pseudoconvex domain, a solution operator is constructed in
Laurent-Thiébaut-Leiterer [13] and Hölder C

1
2
−ε, ε > 0 estimates up to the boundary are

obtained.

For q-concave CR manifolds of higher codimension, it follows from the the results in
Barkatou-Laurent-Thiébaut [4] that for any given continuous form, the regularity of the

solution inside the domain is actually C
1
2 . The regularity up to the boundary proved in the

Theorem 1.0.1 is ε less than the interior regularity. It is not known if one can remove the
ε for the boundary regularity. This phenomenon is similar to the case of the ∂ equation
in domains with piecewise strictly pseudoconvex or q-convex boundary (see [17] and [12]).

In contrast to the Hölder regularity discussed above, the solution operator we con-
structed in the Theorem 1.0.2 has also a gain of regularity in Lp spaces, but the gain is
strictly less than the interior regularity. Actually the interior regularity is given by an
operator of weak type 2n

2n−1 and the boundary regularity is given by an operator of weak

type 2n+2
2n+1 . This phenomenon is new and has not been observed before.

The plan of this paper is as follows: in section 2 we construct the homotopy formula
for the local solution of ∂b on ω for smooth ∂b-closed forms. In section 3, Hölder estimates
are obtained. We also obtain better Hölder regularity in the complex tangential directions.
In section 4.1, a new homotopy formula for the kernel which involves only integration on
ω is derived to facilitate the estimation of the kernels in Lp spaces. The estimation for
smooth ∂b-closed forms and the approximation argument necessary to pass from a priori
estimates to actual estimates are carried out in subsection 4.2.

Part of the work was completed while the first author was visiting the University
of Notre Dame and the second author was visiting the Institut Fourier, Université de
Grenoble, France. The authors would like to thank both institutes for their hospitality
during their visit.

2 Homotopy formula on CR manifolds

2.1 Kernels attached to a generic CR manifold

Let M be a generic CR manifold of class C3 in C
n, U an open subset in C

n and ρ̂1, . . . , ρ̂k

some functions of class C3 from U into R such that

M ∩ U = {z ∈ U |ρ̂1(z) = · · · = ρ̂k(z) = 0}

and satisfying ∂ρ̂1(z) ∧ · · · ∧ ∂ρ̂k(z) 6= 0 for z ∈M ∩ U .
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Let C > 0 be a fixed constant, we set, for j = 1, . . . , k,

ρj = ρ̂j + C
k∑

ν=1

ρ̂2
ν

ρ−j = −ρ̂j + C
k∑

ν=1

ρ̂2
ν .

(2.1.1)

We define I as the set of all subsets I ⊂ {±1, . . . ,±k} such that |i| 6= |j| for all i, j ∈ I
with i 6= j. For I ∈ I, |I| denotes the number of elements in I, then I(l), 1 ≤ l ≤ k, is
the set of all I ∈ I with |I| = l and I ′(l), 1 ≤ l ≤ k, is the set of all I ∈ I of the form
I = (i1, . . . , il) with |iν | = ν for ν = 1, . . . , l.

If I ∈ I and ν ∈ {1, . . . , |I|}, then iν is the element with number ν in I after ordering
I by modulus. We set I(ν̂) = I \ {iν}.

If I ∈ I, then
sgnI = 1 if the number of negative elements in I is even
sgnI = −1 if the number of negative elements in I is odd.

Let (e1, . . . , ek) be the canonical basis of R
k, set e−j = −ej for every 1 ≤ j ≤ k. Let

I = (i1, . . . , il) be in I(l), 1 ≤ l ≤ k, set

∆I = {
l∑

j=1

λjeij |λi ≥ 0, 1 ≤ i ≤ l,
l∑

i=1

λi = 1}.

For each λ ∈ ∆I , we denote by ρλ a defining function of M in the direction λ,

ρλ = λ1ρi1 + · · · + λkρik .

A C2-map ψλ : U × U → C
n such that 〈ψλ(ζ, z), ζ − z〉 = 1 is called a Leray section

in the direction λ.
From now on, we assume that ψλ depends smoothly on λ.
We denote by D a relatively compact open subset of U and for I ∈ I, I = (i1, . . . , i|I|),

we define

DI = {ρi1 < 0} ∩ · · · ∩ {ρi|I| < 0} ∩D

D∗
I = {ρi1 > 0} ∩ · · · ∩ {ρi|I| > 0} ∩D

SI = {ρi1 = 0, . . . , ρi|I| = 0} ∩D

These manifolds are oriented as follows : DI and D∗
I as C

n for all I ∈ I, S{j} as the

boundary of D{j} for j = ±1, . . . ,±k, SI as the boundary of S
I(|̂I|)

∩D{i|I|} for all I ∈ I,

|I| ≥ 2, and M ∩D as SI with I = {1, . . . , k}.
If I ∈ I(l), l ≤ k, we set for z ∈ DI , ζ ∈ D

∗
I with z 6= ζ and λ ∈ ∆I

ψI(ζ, z, λ) = ψλ(ζ, z).

We denote by
◦
χ a C∞-function from [0, 1] into [0, 1], which satisfy

◦
χ (λ) = 0, if

0 ≤ λ ≤ 1/4, and
◦
χ (λ) = 1, if 1/2 ≤ λ ≤ 1.
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If I ∈ I(l), 1 ≤ l ≤ k, for λ ∈ ∆0I with λ0 6= 1, let
◦
λ be the point in ∆I defined by

◦
λiν =

λiν

1 − λ0
(ν = 1, . . . , l).

We set

ψ0I(ζ, z, λ) =
◦
χ (λ0)

ζ − z

|ζ − z|2
+ (1−

◦
χ (λ0))ψI(ζ, z,

◦
λ) (2.1.2)

for every I ∈ I(l), 1 ≤ l ≤ k, z ∈ DI , ζ ∈ D
∗
I with z 6= ζ and λ ∈ ∆0I . One may notice

that ψ0I is a function of class C2.
We can now define the kernels K0I(ζ, z, λ), for z ∈ DI , ζ ∈ D

∗
I with z 6= ζ and λ ∈ ∆0I ,

by

K0I(ζ, z, λ) =
(−1)n(n−1)/2

(2iπ)n
〈ψ0I , dζ〉 ∧ 〈(∂ζ,z + dλ)ψ0I , dζ〉

n−1

∧ d(ζ1 − z1) ∧ · · · ∧ d(ζn − zn),

(2.1.3)

and the kernels KI(ζ, z, λ) by

KI(ζ, z, λ) =
(−1)n(n−1)/2

(2iπ)n
〈ψI , dζ〉 ∧ 〈(∂ζ,z + dλ)ψI , dζ〉

n−1

∧ d(ζ1 − z1) ∧ · · · ∧ d(ζn − zn).

(2.1.4)

The kernels K0I and KI are differential forms of class C1 and degree 2n − 1 and, from
Proposition 3.9 in [10], we have

(∂ζ,z + dλ)K0I(ζ, z, λ) = 0. (2.1.5)

Finally we set, for z ∈ DI , ζ ∈ D
∗
I with z 6= ζ,

C0I(ζ, z) =

∫

λ∈∆0I

K0I(ζ, z, λ)

CI(ζ, z) =

∫

λ∈∆I

KI(ζ, z, λ)

Proposition 2.1.1. The kernels C0I(ζ, z) and CI(ζ, z) are differential forms of degree
2n−|I|−1 and 2n−|I|, respectively, of class C1 for z ∈ DI and ζ ∈ D

∗
I with z 6= ζ, which

satisfy the partial differential equation

∂zC0I + ∂ζC0I = C0δ(I) − CI ,

with C0δ(I) =
∑|I|

ν=1(−1)ν+1C0I(ν̂).

The next lemma is proved in [4].

Lemma 2.1.2. Let f be an (n, r)-form of class C1 with compact support in D∩M . Then∫
ζ∈SI

f(ζ) ∧ C0I(ζ, z) defines an (n, r − 1)-form of class C
1
2
−ε on DI .

Now set
BM (ζ, z) =

∑

I∈I′(k)

sgn(I)C0I(ζ, z) (2.1.6)

for ζ, z ∈M ∩D with ζ 6= z, and denote by [BM ]p,s the part of BM , which is of bidegree
(p, s) in z.
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2.2 Fundamental solution for the tangential Cauchy-Riemann operator

on q-concave generic CR manifolds

In this part we assume that the generic CR manifold M is q-concave.

Definition 2.2.1. A generic CR manifold M in C
n of real codimension k is q-concave,

1 ≤ q ≤ n−k
2 , if for all z ∈M and all λ ∈ R

k the restriction of the Levi form of the defining
function ρλ in the direction λ to the complex tangent space T C

z M of M at z admits at
least q negative eigenvalues.

It follows from Lemma 3.1.1 in [1] that we can choose the constant C in (2.1.1) such
that the functions ρj, −k ≤ j ≤ k, j 6= 0, have the following property : for each I ∈ I ′(k)
and every λ ∈ ∆I , the Levi form of the defining function ρλ of M in the direction λ has at
least q+ k positive eigenvalues on U ′ ⊂⊂ U . Then using the method developed in section
3 of [12], we can construct for each λ a Leray section in the direction λ, which has some
holomorphy properties and depends smoothly on λ. Let us recall the main steps of the
construction.

Denote by Fλ(ζ, .) the Levi polynomial of ρλ at ζ ∈ U . For ζ ∈ U , z ∈ C
n,

Fλ(ζ, z) = 2

n∑

j=1

∂ρλ

∂ζj
(ζ)(ζj − zj) −

n∑

j,k=1

∂2ρλ

∂ζj∂ζk
(ζj − zj)(ζk − zk).

Let G(n, q + k) be the grassmannian of all subspaces of C
n of dimension q + k, we

consider for all I ∈ I(k), a smooth map

TI : ∆I → G(n, q + k)

such that the Levi form of the defining function ρλ of M in the direction λ is positive
definite on T (λ) for all λ ∈ ∆I .

Denote by P λ the orthogonal projection from C
n onto TI(λ) and set Qλ = Id − P λ.

Taylor’s theorem implies that there exist a domain D ⊂⊂ U ′ and two positive constants
α and A such that

ReFλ(ζ, z) ≥ ρλ(ζ) − ρλ(z) + α|ζ − z|2 −A|Qλ(ζ − z)|2 (2.2.1)

for ζ, z ∈ D.
Since ρλ is of class C2 on U , we can find C∞ functions ajk, j, k = 1, . . . , n, on U ′ such

that for all ζ ∈ U ′

|ajk −
∂2ρλ

∂ζj∂ζk
(ζ)| <

α

2n2
. (2.2.2)

Then setting

F̃λ(ζ, z) = 2
n∑

j=1

∂ρλ

∂ζj
(ζ)(ζj − zj) −

n∑

j,k=1

ajk(ζj − zj)(ζk − zk),

it follows from (2.2.1) and (2.2.2) that

ReF̃λ(ζ, z) ≥ ρλ(ζ) − ρλ(z) +
α

2
|ζ − z|2 −A|Qλ(ζ − z)|2 (2.2.3)
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for ζ, z ∈ D.
Denote by (Qλ

jk)
n
j,k=1 the entries of the matrix Qλ, and set for (ζ, z) ∈ C

n × U ′

wλ
j (ζ, z) = 2

∂ρλ

∂ζj
−

n∑

k=1

ajk(ζk − zk) +A

n∑

k=1

Qλ
jk(ζk − zk)

wλ(ζ, z) = (wλ
1 (ζ, z), . . . , wλ

n(ζ, z))

Φλ(ζ, z) = 〈wλ(ζ, z), ζ − z〉

ψλ(ζ, z) =
wλ(ζ, z)

Φλ(ζ, z)

Since Qλ is an orthogonal projection, we have

Φλ(ζ, z) = F̃λ(ζ, z) +A|Qλ(ζ − z)|2

and it follows from (2.2.3) that

ReΦλ(ζ, z) ≥ ρλ(ζ) − ρλ(z) +
α

2
|ζ − z|2 (2.2.4)

for ζ, z ∈ D.
We shall say that a map f defined on some complex manifold X of complex dimension

n is l-holomorphic if, for each point ξ ∈ X, there exist holomorphic coordinates h1, . . . , hn

in a neighborhood of ξ such that f is holomorphic with respect to h1, . . . , hl.

Lemma 2.2.2. For every ζ ∈ U ′, the map wλ(ζ, z) and the function Φλ(ζ, z) defined above
are (q + k)-holomorphic in z.

This holomorphy condition implies the following vanishing properties of the kernels
CI .

Lemma 2.2.3. We assume that for I ∈ I(l), 1 ≤ l ≤ k, the functions ψI , are (q + k)-
holomorphic with respect to the variable z, then for each fixed ζ ∈ D

∗
I

[CI(ζ, z)]p,r = 0 si 0 ≤ p ≤ n et n− k − q + 1 ≤ r ≤ n− k

∂z[CI(ζ, z)]p,n−k−q = 0 si 0 ≤ p ≤ n,

on DI \ {ζ}, where [CI(ζ, z)]p,r denotes the part of bidegree (p, r) in z of CI .

It is proved in [4] that the kernel BM defined by (2.1.6) is a fundamental solution for
the ∂b operator on M , i.e.

∂z[BM ]p,r−1 + ∂ζ [BM ]p,r = (−1)
k(k+1)

2 [∆(U ′)], (2.2.5)

for 0 ≤ p ≤ n and n− k− q+ 1 ≤ r ≤ n− k, if [∆(U ′)] denotes the integration current on
the diagonal of U ′ × U ′.

For all I ∈ I ′(k), we denote by I• the multi-index (i1, . . . , ik, •), where I = (i1, . . . , ik),
and by I ′(k, •) the set of all multi-indexes I•, with I ∈ I ′(k). We set ρ• = 1

k (ρ1 + · · ·+ρk)
and ρλ = λ1ρ1 + · · · + λkρk + λ•ρ• for λ = (λ1, . . . , λk, λ•) ∈ ∆I•.
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Let E• be the larger linear subspace in C
n on which the Levi form of ρ• on U is

positive definite. It follows from the q-concavity of M and the choice of the defining
functions ρ1, . . . , ρk that dimE• ≥ q + k.

We get some functions w• and Φ• associated to the function ρ• by setting

w•
j (ζ, z) = 2

∂ρ•
∂ζj

(ζ) −
n∑

k=1

a•jk(ζ)(ζk − zk) +B

n∑

k=1

Q•
jk(ζk − zk)

w•(ζ, z) = (w•
1(ζ, z), . . . , w

•
n(ζ, z))

Φ•(ζ, z) = 〈w•(ζ, z), ζ − z〉,

where the function a•jk, j, k = 1, . . . , n, is of class C∞ on U and satisfies for all ζ ∈ U

|a•jk(ζ) −
∂2ρ•
∂ζj∂ζk

(ζ)| <
α•

2n2

and Q• is the orthogonal projection on the orthocomplement of the subspace E•.
We set

F̃•(ζ, z) = 2
n∑

j=1

∂ρ•
∂ζj

(ζ)(ζj − zj) −
n∑

j,k=1

a•jk(ζ)(ζj − zj)(ζk − zk),

then
Φ•(z, ζ) = F̃•(ζ, z) +B|Q•(ζ − z)|2

and consequently

Re Φ•(z, ζ) ≥ ρ•(ζ) − ρ•(z) +
α•

2
|ζ − z|2.

If λ = (λ1, . . . , λk, λ•) ∈ ∆I•, is such that λ• 6= 1, we denote by λ′ the point in ∆I

defined by

λ′iν =
λiν

1 − λ•
(ν = 1, . . . , l).

Let us consider a function χε of class C∞ from [0, 1] into [0, 1], which vanishes in a
neighborhood of 0, is equal to 1 in a neighborhood of 1, and moreover satisfies |χε(t)−t| < ε
for all t ∈ [0, 1]. For λ ∈ ∆I•, we set

wI•(ζ, z, λ) = (1 − λ•)(2

n∑

j=1

∂ρλ′

∂ζj
(ζ)(ζj − zj) −

n∑

j,k=1

ajk(ζ)(ζj − zj)(ζk − zk))

+ (1 − χε(λ•))A

n∑

k=1

Qλ′

jk(ζk − zk)

+ λ•(2

n∑

j=1

∂ρ•
∂ζj

(ζ)(ζj − zj) −
n∑

j,k=1

a•jk(ζ)(ζj − zj)(ζk − zk))

+ χε(λ•)B

n∑

k=1

Q•
jk(ζk − zk)

ΦI•(ζ, z, λ) = 〈wI•(ζ, z, λ), ζ − z〉.
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The function ΦI• has the following expression

ΦI•(ζ, z, λ) = F̃λ(ζ, z) + 〈P λ(ζ − z), ζ − z〉,

where P λ is the linear operator defined by (1−χε(λ•))AQ
λ′

+χε(λ•)BQ
•. If ε is sufficiently

small, then there exists γ > 0 such that

Re ΦI•(ζ, z, λ) ≥ ρλ(ζ) − ρλ(z) +
γ

2
|ζ − z|2. (2.2.6)

We define (ψJ )J∈I′(k,•) in U ′ by setting, for J = I•,

ψJ(ζ, z, λ) =
wI•(ζ, z, λ)

ΦI•(ζ, z, λ)
.

Notice that ψJ |U ′×U ′\∆(U ′)×∆I
= ψI . To these maps, we associate the kernels K0I•(ζ, z, λ)

and KI•(ζ, z, λ), for (ζ, z, λ) ∈ U ′ × U ′ \ ∆(U ′) × ∆0I•, defined by

K0I•(ζ, z, λ) =
(−1)n(n−1)/2

(2iπ)n
〈ψ0I•, dζ〉 ∧ 〈(∂ζ,z + dλ)ψ0I•, dζ〉

n−1

∧ d(ζ1 − z1) ∧ · · · ∧ d(ζn − zn),

(2.2.7)

and by

KI•(ζ, z, λ) =
(−1)n(n−1)/2

(2iπ)n
〈ψI•, dζ〉 ∧ 〈(∂ζ,z + dλ)ψI•, dζ〉

n−1

∧ d(ζ1 − z1) ∧ · · · ∧ d(ζn − zn).

(2.2.8)

We set also for (ζ, z) ∈ U ′ × U ′ \ ∆(U ′),

C0I•(ζ, z) =

∫

λ∈∆0I•

K0I•(ζ, z, λ),

CI•(ζ, z) =

∫

λ∈∆I•

KI•(ζ, z, λ).

As in Proposition 2.1.1 we have

∂ζ,zC0I• = C0δ(I•) − CI•. (2.2.9)

We set
EM =

∑

I∈I′(k)

sgn(I)C0I• and RM =
∑

I∈I′(k)

sgn(I)CI•.

In [4], it is proved that

∂ζ,zEM (ζ, z) = (−1)kBM (ζ, z) −RM (ζ, z) (2.2.10)

holds in the sense of currents on U ′×U ′. The relation (2.2.5) associated to (2.2.10) shows
then, that the kernel RM is also a fundamental solution for the ∂b operator on M .

This implies immediately the following integral representation formulas :
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Theorem 2.2.4. Let ω ⊂⊂M∩U ′ with piecewise smooth C1 boundary and f a (n, s)-form
of class C1 on ω, then

1) For n− k − q + 1 ≤ s ≤ n− k,

(−1)(n+s)(k+1)+
k(k+1)

2 f(z) = (−1)k

∫

ζ∈bω
f(ζ) ∧ [RM ]n,s(ζ, z) +

∫

ζ∈ω
∂bf(ζ) ∧ [RM ]n,s(ζ, z)

+(−1)k+1∂b

∫

ζ∈ω
f(ζ) ∧ [RM ]n,s−1(ζ, z).

2) For 0 ≤ s ≤ q − 1,

(−1)(n+s)(k+1)+ k(k+1)
2 f(ζ) = (−1)k

∫

z∈bω
f(z) ∧ [RM ]0,n−k−s−1(ζ, z)

+

∫

z∈ω
∂bf(z) ∧ [RM ]0,n−k−s−1(ζ, z) + (−1)k+1∂b

∫

z∈ω
f(z) ∧ [RM ]0,n−k−s(ζ, z).

We can describe the singularity of the kernel RM in the following way.
A form of type Os (or of type Os(ζ, z, λ)) on DI × D

∗
I × ∆I• is, by definition, a

continuous differential form f(ζ, z, λ) defined for all (ζ, z, λ) ∈ D
∗
I ×DI ×∆I• with z 6= ζ

such that the following conditions are fulfilled :

1. All derivatives of the coefficients of f which are of order 0 in ζ, and of order ≤ 1 in
z and of arbitrary order in λ are continuous for all (ζ, z, λ) ∈ D

∗
I ×DI × ∆I• with

z 6= ζ.

2. Let ∇κ
z , κ = 0, 1, be a differential operator with constant coefficients, which is of

order 0 in ζ, of order κ in z and of arbitrary order in λ. Then there is a constant
C > 0 such that, for each coefficient ϕ(ζ, z, λ) of the form f(ζ, z, λ),

|∇κ
zϕ(ζ, z, λ)| ≤ C|ζ − z|s−κ

for all (ζ, z, λ) ∈ D
∗
I ×DI × ∆I• with z 6= ζ.

Assume σ is a monomial in dζ1, . . . , dζn, dζ1, . . . , dζn, then

σ ∧RM (ζ, z) =
∑

I∈I′(k)

sgn(I)

∫

λ∈∆I•

[σ ∧KI•(z, ζ, λ)]degλ=|I|

=
∑

I∈I′(k)

∑

0≤m≤k
i1,...,im∈I

∫

λ∈∆I•

Ok+1−m

Φn
∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ).

(2.2.11)

As the manifold M is supposed to be q-concave with q ≥ 1 and consequently n > k + 1.
The integration with respect to λ allows us to control |σ ∧ RM (z, ζ)|, by a finite sum of
terms of the form :

K =
|σ ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)|

Πk+1
ν=1|Φ(z, ζ, λν)||ζ − z|2n−3k+m−3

, (2.2.12)

where λ1, . . . , λk+1 are points in ∆I∗, I ∈ I ′(k), which define a system of independent
vectors of R

k+1.
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2.3 Homotopy formula for the tangential Cauchy-Riemann operator on

q-concave CR generic manifolds

Let Ω be a domain in U with C3 boundary such that the intersection of M with the
boundary bΩ of Ω is transversal and that ω = M ∩ Ω is relatively compact in M ∩ U ′.
We assume also that Ω admits a Leray section ψ∗(ζ, z), which is holomorphic in the
variable z. For example if Ω is convex and defined by {ζ ∈ U | ρ∗(ζ) = 0}, one may take

w∗(ζ, z) = (∂ρ∗
∂ζ1

(ζ), . . . , ∂ρ∗
∂ζn

(ζ)), Φ∗(ζ, z) = 〈w∗(ζ, z), ζ − z〉 and ψ∗(ζ, z) = w∗(ζ,z)
Φ∗(ζ,z) .

For each I ∈ I ′(k), we denote by I∗ the multi-index (i1, . . . , ik, ∗), where I = (i1, . . . , ik),
and by I ′(k, ∗) the set of all multi-indexes I∗, when I describe I ′(k). Let ρ∗ be a defining
function for Ω in U , we assume that dρi1 ∧ · · · ∧ dρik ∧ dρ∗ 6= 0 on Ω.

Let ψ∗ be a Leray map for the function ρ∗. If λ = (λ1, . . . , λk, λ∗) ∈ ∆I∗ is such that
λ∗ 6= 1, we denote by λ′ the point in ∆I defined by

λ′iν =
λiν

1 − λ∗
(ν = 1, . . . , l).

Let
◦
χ be a C∞-function as in section 2.1, then we set for λ ∈ ∆I∗

ψI∗(ζ, z, λ) =
◦
χ (λ∗)ψ∗(ζ, z) + (1−

◦
χ (λ∗))ψI(ζ, z, λ

′),

To these maps, we associate the kernels K0I∗(ζ, z, λ) and KI∗(ζ, z, λ), for (ζ, z, λ) ∈ U ′ ×
U ′ \ ∆(U ′) × ∆0I∗, defined by

K0I∗(ζ, z, λ) =
(−1)n(n−1)/2

(2iπ)n
〈ψ0I∗, dζ〉 ∧ 〈(∂ζ,z + dλ)ψ0I∗, dζ〉

n−1

∧ d(ζ1 − z1) ∧ · · · ∧ d(ζn − zn),

(2.3.1)

and by

KI∗(ζ, z, λ) =
(−1)n(n−1)/2

(2iπ)n
〈ψI∗, dζ〉 ∧ 〈(∂ζ,z + dλ)ψI∗, dζ〉

n−1

∧ d(ζ1 − z1) ∧ · · · ∧ d(ζn − zn).

(2.3.2)

We set also for (ζ, z) ∈ U ′ × U ′ \ ∆(U ′),

C0I∗(ζ, z) =

∫

λ∈∆0I∗

K0I∗(ζ, z, λ)

CI∗(ζ, z) =

∫

λ∈∆I∗

KI∗(ζ, z, λ).

It follows from Proposition 2.1.1 that

∂ζ,zC0I∗ = C0δ(I∗) − CI∗. (2.3.3)

We set
FM =

∑

I∈I′(k)

sgn(I)C0I∗ and SM =
∑

I∈I′(k)

sgn(I)CI∗,
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then we get that if ζ, z ∈ U ′, with z 6= ζ

∂ζ,zFM (ζ, z) = (−1)kBM(ζ, z) − SM (ζ, z). (2.3.4)

Replacing I by J = I•, we can define in the same way as before the kernels C0I•∗ and
by Proposition 2.1.1 we get

∂ζ,zC0I•∗ = C0δ(I)•∗ + (−1)kC0I∗ + (−1)k+1C0I• − CI•∗. (2.3.5)

Let us introduce the kernel GM =
∑

I∈I′(k) sgn(I)CI•∗, then

∂ζ,zGM (ζ, z) = (−1)k∂ζ,z(FM (ζ, z) −EM (ζ, z)),

which implies, using (2.2.10) and (2.3.4), the relation

∂ζ,zGM (ζ, z) = (−1)k(RM (ζ, z) − SM (ζ, z)). (2.3.6)

Theorem 2.3.1. For n − k − q + 1 ≤ s ≤ n − k, there exist bounded operators Ts from
Cn,s+1(ω) into Cn,s(ω) such that for each (0, s)-form f of class C1 on ω we have

f = ∂bTs−1f + Ts∂bf.

The operator Ts is the integral operator

Tsg = (−1)(n+s)(k+1)+
k(k−1)

2 [

∫

ζ∈ω
g(ζ)∧[RM ]n,s(ζ, .)+(−1)n+s+1

∫

ζ∈bω
g(ζ)∧[GM ]n,s(ζ, .)].

Proof. Using (2.3.6), we get for z ∈ ω

(−1)k

∫

ζ∈bω
f(ζ) ∧ [RM ]n,s(ζ, z) = (−1)k

∫

ζ∈bω
f(ζ) ∧ [SM ]n,s(ζ, z)

+

∫

ζ∈bω
f(ζ) ∧ [∂ζ [GM ]n,s(ζ, z) + ∂z[GM ]n,s−1(ζ, z)].

Since ψ∗(ζ, z) is holomorphic in z, the Leray maps ψI∗ are (q + k)-holomorphic in z in
C

n, then [SM ]n,s, the part of bidegree (n, s) in z of [SM ], vanishes if s ≥ n − k − q + 1.
Moreover we have

∫

ζ∈bω
f(ζ) ∧ ∂ζ [GM ]n,s(ζ, z) = (−1)n+s

∫

ζ∈bω
∂ζ(f(ζ) ∧ [GM ]n,s(ζ, z))

− (−1)n+s

∫

ζ∈bω
∂bf(ζ) ∧ [GM ]n,s(ζ, z)

and by Stokes’ formula
∫

ζ∈bω
∂ζ(f(ζ) ∧ [GM ]n,s(ζ, z)) = 0,

which proves the homotopy formula using part 1) of Theorem 2.2.4.
The continuity on ω of the integral

∫
ζ∈ω f(ζ)∧[RM ]n,s(ζ, .) follows from the integrability

of the kernel RM , moreover as the kernels GM are of class C1 on U ′×U ′\∆(U ′) the integral∫
ζ∈bω f(ζ) ∧ [GM ]n,s(ζ, .) is of class C1 in ω, which proves the regulatity of the operator
Ts.
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3 Hölder estimates up to the boundary

3.1 A first description of the singularities of the kernel GM

In this section we will describe the singularities of the kernel GM in the case when the
domain Ω is strictly pseudoconvex. We use the notation of the previous section. Let us
recall that GM =

∑
I∈I′(k) sgn(I)CI•∗, with

CI•∗(ζ, z) =

∫

λ∈∆I•∗

KI•∗(ζ, z, λ)

and

KI•∗(ζ, z, λ) =
(−1)n(n−1)/2

(2iπ)n
〈ψI•∗, dζ〉 ∧ 〈(∂ζ,z + dλ)ψI•∗, dζ〉

n−1

∧ d(ζ1 − z1) ∧ · · · ∧ d(ζn − zn).

(3.1.1)

Let ρ∗ be a strictly plurisubharmonic defining function for Ω. Let F∗(ζ, .) be the
Levi polynomial of ρ∗ at a point ζ in a neighborhood of bΩ. It follows from the strict
plurisubharmonicity of ρ∗ that there exists a positive constant β such that

ReF∗(ζ, z) ≥ ρ∗(ζ) − ρ∗(z) + β|ζ − z|2 (3.1.2)

for (ζ, z) ∈ bΩ × Ω.
We set

w∗
j (ζ, z) = 2

∂ρ∗
∂ζj

(ζ) −
n∑

k=1

a∗jk(ζ)(ζk − zk)

w∗(ζ, z) = (w∗
1(ζ, z), . . . , w

∗
n(ζ, z))

Φ∗(ζ, z) = 〈w∗(ζ, z), ζ − z〉,

where the functions a∗jk, j, k = 1, . . . , n, are of class C∞ on U and satisfy for all ζ ∈ U

|a∗jk(ζ) −
∂2ρ∗
∂ζj∂ζk

(ζ)| <
β∗

2n2
.

We have

Re Φ∗(z, ζ) ≥ ρ∗(ζ) − ρ∗(z) +
β

2
|ζ − z|2. (3.1.3)

The map ψ∗ = w∗

Φ∗
defines a Leray map for the function ρ∗, which is holomorphic in the

variable z.
If λ = (λ1, . . . , λk, λ•, λ∗) ∈ ∆I•∗ is such that λ∗ 6= 1, we denote by λ′ the point in ∆I•

defined by

λ′iν =
λiν

1 − λ∗
(ν = 1, . . . , k, •).

Let
◦
χ be a C∞-function as in section 2.1, then we set for λ ∈ ∆I•∗

ψI•∗(ζ, z, λ) =
◦
χ (λ∗)ψ∗(ζ, z) + (1−

◦
χ (λ∗))ψI•(ζ, z, λ

′), (3.1.4)



14 C. Laurent-Thiébaut and M.C. Shaw

We use the following notation

W = W (ζ, z, λ′) = 〈wI•(ζ, z, λ
′), dζ〉, Φ = ΦI•(ζ, z, λ

′)

and

N = N(ζ, z) = 〈ψ∗(ζ, z), dζ〉

for ζ ∈ bω and z ∈ ω with z 6= ζ and λ ∈ ∆I•∗ \ ∆∗.

Let f be an (n, r)-form on ω, we set

f(ζ) = f̃(ζ)dζ1 ∧ · · · ∧ dζn.

It follows from (3.1.4), that

〈ψI•∗, dζ〉 =
◦
χ N + (1−

◦
χ)
W

Φ

〈(∂z,ζ + dλ)ψI•∗, dζ〉 = (
W

Φ
−N) ∧ d

◦
χ +

◦
χ ∂z,ζN + (1−

◦
χ)

(∂z,ζ + dλ)W

Φ

+ (1−
◦
χ)
W

Φ2
(∂z,ζ + dλ)Φ.

The kernels CI•∗ are obtained after integration on ∆I•∗, though we have only to
consider the part of bidegree k + 1 in λ of the kernel KI•∗. The differential forms
(∂z,ζ + dλ)Φ and (∂z,ζ + dλ)W are pullback of differential forms on ω × ω × ∆I• by the

map (z, ζ, λ) 7→ (z, ζ,
◦
λ); consequently since ∆I• is of real dimension k, for all s = 1, 2, . . . ,

we have [((∂z,ζ + dλ)W )s]degλ=k+1 = 0 and [((∂z,ζ + dλ)W )s ∧ (∂z,ζ + dλ)Φ]degλ=k+1 = 0,
which implies

[〈ψI•∗, dζ〉 ∧ 〈(∂z,ζ + dλ)ψI•∗, dζ〉
n−1]degλ=k+1

= (
◦
χ N + (1−

◦
χ)
W

Φ
) ∧ (n− 1)(

W

Φ
−N) ∧ d

◦
χ

∧ [(
◦
χ ∂z,ζN + (1−

◦
χ)

(∂z,ζ + dλ)W

Φ
+ (1−

◦
χ)
W

Φ2
(∂z,ζ + dλ)Φ)n−2]degλ=k.

Noting that W ∧W = 0 and N ∧N = 0, because W and N are 1-forms, we get

[f(ζ) ∧KI•∗(z, ζ, λ)]degλ=k+1 = af̃(ζ)
N ∧W

Φ
∧ d

◦
χ

∧ (
◦
χ ∂z,ζN + (1−

◦
χ)
∂z,ζW

Φ
)n−2−k ∧ ((1−

◦
χ)
dλW

Φ
)k,

where a is a constant.
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By the definition of differential forms of type Os, we have d
◦
χ= O0, O0 ∧ ∂z,ζW = O0,

O0 ∧ ∂z,ζΦ∗ = O1 and also

O0 ∧W =
∑

j∈I•

O0 ∧ ∂ρj(ζ) +O1

O0 ∧ dλW =
∑

j∈I

O0 ∧ ∂ρj(ζ) +O1

O0 ∧W ∧ (dλW )k =
∑

0≤m≤k
i1,...,im∈I

Ok+1−m ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)

O0 ∧N =
O0 ∧ ∂ρ∗(ζ) +O1

Φ∗

O0 ∧ ∂z,ζN =
O0

Φ∗
+
O1 ∧ ∂ρ∗(ζ) +O2

Φ2
∗

and consequently

[f(ζ) ∧KI•∗(z, ζ, λ)]degλ=k+1 =
∑

0≤s≤n−2−k
0≤m≤k

1

Φn−1−k−s
∗ Φk+s+1

(O0 +
O1 ∧ ∂ρ∗(ζ) +O2

Φ∗
)n−2−k−s

∧ (Ok+1−m ∧ ∂ρ∗(ζ) ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ) +Ok+2−m ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)).

Using that |Φ∗(ζ, z)| ≥ |ζ − z|2, we get

[f(ζ)∧KI•∗(z, ζ, λ)]degλ=k+1 ≤
∑

0≤s≤n−2−k
i1,...,im∈I∗, 0≤m≤k+1

Ok+2−m

Φn−1−k−s
∗ Φk+s+1

∧∂ρi1(ζ)∧· · ·∧∂ρim(ζ).

(3.1.5)
It follows from section 6 and Lemma 7.4 in [12] that, after a partial integration in λ, we
can control f(ζ) ∧ CI•∗(z, ζ) by a finite sum of terms of the form :

|σ ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)|

Φ∗(ζ, z)Πk
ν=1|Φ(ζ, z, λν)||ζ − z|2n−3(k+1)+m−1

, (3.1.6)

where λ1, . . . , λk are points in ∆I•, I ∈ I ′(k), which define a system of independent vectors
of R

k+1, and i1, . . . , im ∈ I∗.
Let σ be a monomial in dζ1, . . . , dζn, dζ1, . . . , dζn, λ1, . . . , λk some points in ∆I•, which

are linearly independent as vectors in R
k+1, tν = Im Φ(ζ, z, λν) and dtν = dζIm Φ(ζ, z, λν).

By the definition of Φ, we have

dtν(ζ, z) = i(∂ρλν (ζ) − ∂ρλν (ζ)) +O1,

and consequently

∂ρλν (ζ) =
1

2
dρλν (ζ) +

i

2
dtν(ζ, z) +O1.

As dρi|M = 0 for i = ±1, . . . ,±k, there exists some constant C and some monomials σL

in dζ1, . . . , dζn, dζ1, . . . , dζn such that for all i1, . . . , im ∈ I, m ≤ k,

|(σ ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim)|M | ≤ C
∑

|L|≤m

|σL ∧l∈L dtl| |ζ − z|m−|L|.
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Set tk+1 = Im Φ∗(ζ, z) and dtk+1 = dζIm Φ∗(ζ, z). By the definition of Φ∗, we have

dtk+1(ζ, z) = i(∂ρ∗(ζ) − ∂ρ∗(ζ)) +O1,

and consequently

∂ρ∗(ζ) =
1

2
dρ∗(ζ) +

i

2
dtk+1(ζ, z) +O1.

As dρ∗|bω = 0, there exists some constant C∗ and some monomials σL in dζ1, . . . , dζn,
dζ1, . . . , dζn such that for all i1, . . . , im ∈ I∗, m ≤ k + 1,

|(σ ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim)|bω| ≤ C∗

∑

|L|≤m

|σL ∧l∈L dtl| |ζ − z|m−|L|.

We deduce that |f(ζ)∧GM (ζ, z)| is dominated by a finite sum of differential forms of
the type :

|σs ∧
s
ν=1 dtν |

Πs
ν=1(|tν | + |ζ − z|2)|ζ − z|2n−(k+1)−s−1

, (3.1.7)

where 1 ≤ s ≤ k + 1.
Let Σ denote the set of the characteristic points of bω, i.e., points where ∂ρ1 ∧ ∂ρ2 ∧

· · · ∧ ∂ρk ∧ ∂ρ∗ = 0 on bω.

Lemma 3.1.1. For any continuous (n, r)-form f on ω in C
n, we have for all z ∈ ω \ Σ

and ε such that Σ ∩ {ζ ∈ bω | |ζ − z| < ε} = ∅

∫

ζ∈bω
|ζ−z|<ε

|f(ζ) ∧ [GM ]n,r(ζ, z)| ≤ Cε(1 + | log ε|)k+1 (3.1.8)

with a constant C, which does not depend on z.

Proof. If ζ ∈ bω \ Σ,

dζImΦ(ζ, z, λν1) ∧ ... ∧ ImΦ(ζ, z, λνk) ∧ dζImΦ∗(ζ, z)|ζ=z

= ik+1∂ζρλν1 (ζ) ∧ ... ∧ ∂ζρλνk (ζ) ∧ ∂ζρ∗(ζ)

6= 0.

We can choose coordinates on {ζ ∈ bω | |ζ − z| < ε} such that ti = ImΦ(ζ, z, λνi),
i = 1, ..., k, and tk+1 = ImΦ∗.

Then the assertion follows from the estimate (3.1.7) of the singularity at ζ = z of the
differential form f(ζ) ∧ [GM ]n,r(ζ, z).

3.2 Hölder estimates up to the boundary

We are now ready to prove some regularity up to the boundary for the integral operator

Trf = (−1)(n+r)(k+1)+
k(k−1)

2 [
∫
ζ∈ω f(ζ)∧[RM ]n,r(ζ, .)+(−1)n+r+1

∫
ζ∈bω f(ζ)∧[GM ]n,r(ζ, .)].

Let f be a continuous (n, r + 1)-form on ω. Let us notice that by (2.2.11) and (3.1.5)
the integrals

∫
ζ∈ω f(ζ)∧ [RM ]n,r(ζ, z) and

∫
ζ∈bω f(ζ)∧ [GM ]n,r(ζ, z) are of the same type.
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Since ω and bω are respectively of dimension 2n − k and 2n − (k + 1), and I and I∗
respectively of length k and k + 1, we can deduce the regularity of one of the integrals
from the other by exchanging k and k + 1. As bω may have characteristic points we will
study

∫
ζ∈bω f(ζ) ∧ [GM ]n,r(ζ, z). As before we will denote by Σ the set of characteristic

points in bω.

Lemma 3.2.1. Let I ∈ I ′(k), a and b two integers such that a+b = n+α with α = 0 or 1,
β ∈ Z and ε > 0, then

Jα,β =

∫

ζ∈bω
ε≤|ζ−z|≤C

∫

λ∈∆I•∗

Ok+2−m+β

Φa
∗Φ

b
∂ρi1 ∧ · · · ∧ ∂ρim ≤ C1(ε

β+1−2α + C2)(1 + | log ε|)k+1

for all i1, . . . , im ∈ I∗, 0 ≤ m ≤ k + 1.

Proof. Outside Σ, we can choose ti = ImΦ(ζ, z, λνi), i = 1, ..., k, and tk+1 = ImΦ∗ as
coordinates. This is not possible nearby the characteristic points. However, following a
device used in Range-Siu [17], one can replace these functions by second-order polynomial
approximation.

It follows from [12] that, after integration in λ, Jα,β is bounded by some integrals of
the type :

∑

1≤s≤k+1

∫

X∈R2n−(k+1)

ε≤|X|≤C

dX

Πs
ν=1(|Xν | + |X|2) |X|2n−(k+1)−s−1+2α−β

≤
∑

1≤s≤k+1

∫

X∈R2n−(k+1)

ε≤|X′|≤C, |X|≤C

dX

Πs
ν=1(|Xν | + |X ′|2) |X ′|2n−(k+1)−s−1+2α−β

+ ≤
∑

1≤s≤k+1

1

εµ

∫

X∈R2n−(k+1)

|X′|≤ε

dX

Πs
ν=1(|Xν | + |X ′|2) |X ′|2n−(k+1)−s−1+2α−β−µ

,

with X = (X1, . . . , Xs, X
′) and µ such that 1

Πs
ν=1(|Xν |+|X′|2) |X′|2n−(k+1)−s−1+2α−β−µ is inte-

grable at zero.
Then we get

∫
X∈R2n−(k+1)

ε≤|X′|≤C, |X|≤C

dX

Πs
ν=1(|Xν | + |X ′|2) |X ′|2n−(k+1)−s−1+2α−β

≤

∫ C

ε

(log(C + r2) − log r2)sdr

r2α−β

≤ C ′(εβ+1−2α − Cβ+1−2α)(log(C +C2) − log ε2)s

and

1

εµ

∫

X∈R2n−(k+1)

|X′|≤ε

dX

Πs
ν=1(|Xν | + |X ′|2) |X ′|2n−(k+1)−s−1+2α−β−µ

≤
1

εµ

∫ ε

0

(log(C + r2) − log r2)sdr

r2α−β−µ

≤ C ′εβ+1−2α(1 + | log ε|)s.
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Theorem 3.2.2. The integral operators Tr, 1 ≤ r ≤ n−k, are continuous operators from

Cn,r(ω) into C
1
2
−ε

n,r−1(ω).

Proof. Let z1 and z2 be two points in ω. We have

G̃Mf(z1) − G̃Mf(z2) =

∫

ζ∈Ω
f(ζ) ∧ (GM (z1, ζ) −GM (z2, ζ)).

and consequently

|G̃Mf(z1) − G̃Mf(z2)| ≤

∫
ζ∈ω

|ζ−z1|≤2|z1−z2|
1
2

|f(ζ) ∧ (GM (z1, ζ) −GM (z2, ζ))|

+

∫
ζ∈ω

|ζ−z1≥2|z1−z2|
1
2

|f(ζ) ∧ (GM (z1, ζ) −GM (z2, ζ))|.

As GM is a linear operator, we may assume that f is of the form f = f̃σ, with f̃ a
continuous function and σ a monomial in dζ1, . . . , dζn, dζ1, . . . , dζn. Then we get

|G̃Mf(z1) − G̃Mf(z2)| ≤ ‖f‖∞

∫
ζ∈ω

|ζ−z1|≤2|z1−z2|
1
2

|σ ∧ (GM (z1, ζ) −GM (z2, ζ))|

+ ‖f‖∞

∫
ζ∈ω

|ζ−z1|≥2|z1−z2|
1
2

|σ ∧ (GM (z1, ζ) −GM (z2, ζ))|.

Thus we have to estimate the integrals

J1 =

∫
ζ∈ω

|ζ−z1|≤2|z1−z2|
1
2

|σ ∧ (GM (z1, ζ) −GM (z2, ζ))|

J2 =

∫
ζ∈ω

|ζ−z1|≥2|z1−z2|
1
2

|σ ∧ (GM (z1, ζ) −GM (z2, ζ))|.

Without loss of generality we may assume that |z1 − z2| ≤ 1. Note that

J1 ≤

∫
ζ∈ω

|ζ−z1|≤2|z1−z2|
1
2

|σ ∧GM (z1, ζ)| +

∫
ζ∈ω

|ζ−z2|≤3|z1−z2|
1
2

|σ ∧GM (z2, ζ)|.

It follows from Lemma 3.1.1 that, away from the characteristic points of bω, we have

J1 ≤ C|z1 − z2|(1 + log |z1 − z2|)
k+1.

Near the characteristic points, one again use the Range-Siu’s trick to prove the estimates.
We deduce from the definition of J2 and from (3.1.5) that

J2 =
∑

I∈I′(k)

∫
(ζ,λ)∈ω×∆I•

|ζ−z1|≥2|z1−z2|
1
2

|
A(z1, ζ, λ)

Φn−1−k−s
∗ (z1, ζ, λ)Φk+s+1(z1, ζ, λ)

−
A(z2, ζ, λ)

Φn−1−k−s
∗ (z2, ζ, λ)Φk+s+1(z2, ζ, λ)

||σ ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)|,
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where A(z, ζ, λ) is a smooth function in z, which is Ok+2−m, i1, . . . , im ∈ I∗, 0 ≤ m ≤ k+1
and 0 ≤ s ≤ n− 2 − k. We may write

A(z1, ζ, λ)

Φn−1−k−s
∗ (z1, ζ, λ)Φk+s+1(z1, ζ, λ)

−
A(z2, ζ, λ)

Φn−1−k−s
∗ (z2, ζ, λ)Φk+s+1(z2, ζ, λ)

=
A(z1, ζ, λ) −A(z2, ζ, λ)

Φn−1−k−s
∗ (z1, ζ, λ)Φk+s+1(z1, ζ, λ)

+A(z2, ζ, λ)[
1

Φn−1−k−s
∗ (z1, ζ, λ)Φk+s+1(z1, ζ, λ)

−
1

Φn−1−k−s
∗ (z2, ζ, λ)Φk+s+1(z2, ζ, λ)

].

Using Lemma 3.2.1 with α = 0, β = −1 and ε = 2|z1 − z2|
1
2 , we get

J ′
2 =

∑

I∈I′(k)

∫
(ζ,λ)∈ω×∆I∗•

|ζ−z1|≥2|z1−z2|
1
2

|
A(z1, ζ, λ) −A(z2, ζ, λ)

Φn−1−k−s
∗ (z1, ζ, λ)Φk+s+1(z1, ζ, λ)

|

≤ C|z1 − z2|
1
2 (1 + | log |z1 − z2||)

k+1,

since |A(z1, ζ, λ) −A(z2, ζ, λ)| ≤ |z1 − z2|Ok+1−m.
The function Φ(z, ζ, λ) and Φ∗(z, ζ, λ) are of class C∞ in z and consequently

|Φ(z1, ζ, λ) − Φ(z2, ζ, λ)| ≤ c|z1 − z2|,

moreover noting that if |ζ − z1| ≥ 2|z1 − z2|
1
2 , then 1

2 ≤ |ζ−z1|
|ζ−z2|

≤ 2, we get

1

Φn−1−k−s
∗ (z1, ζ, λ)Φk+s+1(z1, ζ, λ)

−
1

Φn−1−k−s
∗ (z2, ζ, λ)Φk+s+1(z2, ζ, λ)

≤ C
∑

a+b=n+1

|z1 − z2|

Φa
∗(z2, ζ, λ)Φb(z2, ζ, λ)

.

Using Lemma 3.2.1 with α = 1, β = 0 and ε = 2|z1 − z2|
1
2 , after integration in λ, we have

J”2 =
∑

I∈I′(k)

∫
(ζ,λ)∈ω×∆I•

|ζ−z1|≥2|z1−z2|
1
2

A(z2, ζ, λ)[
1

Φn−1−k−s
∗ (z1, ζ, λ)Φk+s+1(z1, ζ, λ)

−
1

Φn−1−k−s
∗ (z2, ζ, λ)Φk+s+1(z2, ζ, λ)

]

≤ C|z1 − z2||z1 − z2|
− 1

2 (1 + | log |z1 − z2||)
k+1

≤ C|z1 − z2|
1
2 (1 + | log |z1 − z2||)

k+1.

It follows then J2 ≤ C|z1 − z2|
1
2 (1 + | log |z1 − z2||)

k+1, which finishes the proof of the
theorem.

Proposition 3.2.3. Let f be a continuous (n, r + 1)-form on ω and γ ⊂ bω a complex
tangent curve in bω, then

∫
ζ∈bω f(ζ) ∧ [GM ]n,r(ζ, z)|γ defines a form of class C1−ε, 0 <

ε < 1, on γ.
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Proof. The proof is analogous to the proof of Theorem 3.2.2. We will cut the integrals in
the following way

|G̃Mf(z1) − G̃Mf(z2)| ≤

∫
ζ∈Ω

|ζ−z1≤2|z1−z2|

|f(ζ) ∧ (GM (z1, ζ) −GM (z2, ζ))|

+

∫

ζ∈Ω
|ζ−z1≥2|z1−z2|

|f(ζ) ∧ (GM (z1, ζ) −GM (z2, ζ))|.

To estimate the first part we use Lemma 3.1.1 with ε = 2|z1 − z2|. To study the
second part we notice that the function Φ(z, ζ, λ) and Φ∗(z, ζ, λ) are of class C∞ in z and
moreover their gradient vanishes to order 1 in z = ζ along the complex tangent curve γ;
consequently

|Φ(z1, ζ, λ) − Φ(z2, ζ, λ)| ≤ |z1 − z2|O1

|Φ∗(z1, ζ, λ) − Φ∗(z2, ζ, λ)| ≤ |z1 − z2|O1.

Then using Lemma 3.2.1 with α = 1, β = 1 and ε = 2|z1 − z2| we get the estimate of the
second part.

4 Lp estimates of the solution

4.1 A new solution kernel

In this section we assume, as in the previous one, that ω is the intersection of M with a
strictly pseudoconvex domain Ω with C3 boundary. Let ρ∗ be a C3 strictly plurisubhar-
monic defining function for Ω such that the Hessian of ρ∗ is positive definite on ω.

For any f ∈ C(n,s)(ω), we let

I1f =

∫

ζ∈ω
f(ζ) ∧ [RM ]n,s−1(ζ, .)

and

I2f = (−1)n+s

∫

ζ∈bω
f(ζ) ∧ [GM ]n,s−1(ζ, .)

be the operators constructed in Section 2.3. In order to facilitate the estimates, we shall
derive another solution operator for ∂̄b. The integral I1 has integrable kernel and can be
estimated easily. We shall rewrite I2f as an integral on ω to facilitate the Lp estimates.
To do this, it is necessary to modify the kernel [GM ]n,s−1 so that Stokes’ theorem can be
applied.

As in section 3.1, we associate to ρ∗ a Leray map ψ∗ = w∗

Φ∗
, where the support function

Φ∗ satisfies

Re Φ∗(ζ, z) ≥ ρ∗(ζ) − ρ∗(z) +
β

2
|ζ − z|2. (4.1.1)

We define a new support function Φ̃∗ for ρ∗, by setting

Φ̃∗(ζ, z) = Φ∗(ζ, z) − 2ρ∗(ζ)
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It follows from (4.1.1) that

Re Φ̃∗(ζ, z) ≥ −ρ∗(ζ) − ρ∗(z) +
β

2
|ζ − z|2. (4.1.2)

for all ζ, z ∈ ω. Thus Re Φ̃∗(ζ, z) vanishes only when ζ = z and ζ, z are both in bω. Also
we have

Φ̃∗(ζ, z) = Φ∗(ζ, z), when ζ ∈ bω and z ∈ ω.

Define the new kernel [G̃M ]n,s−1(ζ, z) by modifying [GM ]n,s−1(ζ, z) with Φ̃∗ substituting

for Φ∗. More explicitly, a typical term in [G̃M ]n,s−1(ζ, z) is of the following form

∫

λ∈∆I•∗

∑

0≤s≤n−2−k
0≤m≤k

1

Φ̃n−1−k−s
∗ Φk+s+1

(O0 +
O1 ∧ ∂ρ∗(ζ) +O2

Φ̃∗

)n−2−k−s

∧ (Ok+1−m ∧ ∂ρ∗(ζ) ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ) +Ok+2−m ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)).
(4.1.3)

where 1 ≤ s ≤ k.
Since

[G̃M ]n,s−1(ζ, z) = [GM ]n,s−1(ζ, z), when ζ ∈ bω and z ∈ ω,

we shall substitute [G̃M ]n,s−1(ζ, z) in I2f for [GM ]n,s−1(ζ, z). The advantage is that

[G̃M ]n,s−1(ζ, z) and its first derivatives are integrable for each fixed z ∈ ω since Φ̃∗ satisfies
(4.1.2). Thus for any z ∈ ω, by Stokes’ theorem and a limiting argument (substituting
Φε = Φ+ ε for Φ and letting ε↘ 0), we can write, for any f ∈ C(n,s)(ω) such that ∂̄bf = 0
on ω,

I2f(z) = (−1)n+s

∫

ζ∈bω
f(ζ) ∧ [G̃M ]n,s−1(ζ, z) = (−1)n+s

∫

ζ∈ω
∂ζ(f(ζ) ∧ [G̃M ]n,s−1(ζ, z)

=

∫

ζ∈ω
f(ζ) ∧ ∂ζ [G̃M ]n,s−1(ζ, z).

Define

T̃s−1f = (−1)(n+s)(k+1)+
k(k−1)

2 [

∫

ζ∈ω
f(ζ)∧ [RM ]n,s−1(ζ, .) +

∫

ζ∈ω
f(ζ)∧ ∂ζ [G̃M ]n,s−1(ζ, .)].

(4.1.4)
We have derived the following:

Proposition 4.1.1. (Second solution operator for ∂̄b.) Let M be a strictly q-concave
manifold in C

n and 0 ∈ M . Let Ω be a sufficiently small strictly pseudoconvex domain
containing 0 in C

n with C2 boundary and ω = M ∩ Ω. For any f ∈ C(n,s)(ω), where
n− k − q + 1 ≤ s ≤ n− k such that ∂̄bf = 0 on ω, we have

f(z) = (−1)(n+s)(k+1)+ k(k−1)
2 ∂b[

∫
ζ∈ω f(ζ) ∧ [RM ]n,s−1(ζ, .) +

∫
ζ∈ω f(ζ) ∧ ∂ζ [G̃M ]n,s−1(ζ, z)]

= ∂̄bT̃s−1f. (4.1.5)

Moreover T̃s−1f is continuous on ω.



22 C. Laurent-Thiébaut and M.C. Shaw

Notice that ∂̄ζΦ = O(|ζ − z|) and ∂̄ζΦ̃∗ = O(|ζ − z|) − ∂̄ζρ∗. From (4.1.3), it follows

that ∂ζ [G̃M ]n,s−1(ζ, z) can be bounded by sums of terms of the form
∫

λ∈∆I•∗

∑

0≤s≤n−2−k
0≤m≤k

1

Φ̃n−1−k−s
∗ Φk+s+1

(O0 +
O1 ∧ ∂ρ∗(ζ)

Φ̃∗

)

(O0 +
O1 ∧ ∂ρ∗(ζ)

Φ̃∗

+
O1 ∧ ∂ρ∗(ζ)

Φ̃∗

+
O0 ∧ ∂ρ∗(ζ) ∧ ∂ρ∗(ζ)

Φ̃∗

)

∧ (Ok−m ∧ ∂ρ∗(ζ) ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ) +Ok+1−m ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)).
(4.1.6)

or
∫

λ∈∆I•∗

∑

0≤s≤n−3−k
0≤m≤k

1

Φ̃n−2−k−s
∗ Φk+s+1

(
O0

Φ̃∗

+
O1

Φ̃2
∗

+
O0

Φ
+
O1

Φ2
+
O0 ∧ ∂ρ∗(ζ)

Φ̃2
∗

+
O0 ∧ ∂ρ∗(ζ)

Φ̃2
∗

+
O−1 ∧ ∂ρ∗(ζ) ∧ ∂ρ∗(ζ)

Φ̃2
∗

)(O0 +
O1 ∧ ∂ρ∗(ζ)

Φ̃∗

+
O1 ∧ ∂ρ∗(ζ)

Φ̃∗

+
O0 ∧ ∂ρ∗(ζ) ∧ ∂ρ∗(ζ)

Φ̃∗

)

∧ (Ok+1−m ∧ ∂ρ∗(ζ) ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ) +Ok+2−m ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)).
(4.1.7)

or ∫

λ∈∆I•∗

∑

0≤s≤n−2−k
0≤m≤k

1

Φ̃n−1−k−s
∗ Φk+s+1

(O0 +
O1 ∧ ∂ρ∗(ζ)

Φ̃∗

+
O1 ∧ ∂ρ∗(ζ)

Φ̃∗

+
O0 ∧ ∂ρ∗(ζ) ∧ ∂ρ∗(ζ)

Φ̃∗

)

∧ (Ok−m ∧ ∂ρ∗(ζ) ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ) +Ok+1−m ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim(ζ)).
(4.1.8)

where 1 ≤ s ≤ k.
Setting α = 1 or 2 and using that |Φ̃∗(ζ, z)| ≥ |ζ−z|2, we can control ∂ζ [G̃M ]n,s−1(ζ, z)

by finite sums of terms of the following type
∫

λ∈∆I•∗

Ok+1−m

Φ̃n−α−k−s
∗ Φk+s+α

∧ Θm,

where Θm is a monomial of length m in ∂ρi1 , . . . , ∂ρim , ∂ρ∗(ζ), ∂ρ∗(ζ), 1 ≤ m ≤ k + 2.
Let σ be a monomial in dζ1, . . . , dζn, dζ1, . . . , dζn, λ1, . . . , λk some points in ∆I•, which

are linearly independent as vectors in R
k+1. After integration in λ, |σ∧∂ζGM | is dominated

by

J =
|σ ∧ Θm|

|Φ̃∗|Πk
ν=1|Φ(z, ζ, λν)||ζ − z|2n−3k+m−3

, (4.1.9)

with 1 ≤ m ≤ k + 2.

4.2 Lp estimates for the kernel

Next we shall estimate T̃s−1f in Lp spaces. To estimate the solution kernel, it suffices to
estimate the kernels K(ζ, z) and J(ζ, z) defined in (2.2.12) and (4.1.9) respectively.
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Since all the kernels only have singularities when ζ = z, we shall estimate the kernels
when U = {|ζ − z| < ε} are sufficiently small. To estimate K(ζ, z), we use the following
change of coordinates ζ → t such that tν = ImΦ(z, ζ, λν), ν = 1, ..., k, t = (t1, ..., tk, t

′).
This is possible since dζΦ(ζ, z, λν)|ζ=z = ∂ρλν (ζ) and ∂ρλν = −∂ρλν on ω, it follows that
∂ρλν (ζ) = 1

2(∂ρλν − ∂ρλν ) = idζ ImΦ(ζ, z, λν)|ζ=z. Thus,

∂ρλν (ζ) = idζImΦ(ζ, z, λν) +O(|ζ − z|).

Thus, since M is generic, if λ1, . . . , λk are independent vectors in R
k+1 and ζ ∈ ω,

dζImΦ(ζ, z, λ1)) ∧ ... ∧ ImΦ(ζ, z, λk)|ζ=z

= ik∂ζρλ1(ζ) ∧ ... ∧ ∂ζρλk(ζ)

6= 0.

We get then

|σ ∧ ∂ρi1(ζ) ∧ · · · ∧ ∂ρim | ≤ C
∑

0≤|L|≤m

|σL ∧l∈L dtl| |ζ − z|m−|L|,

where L = (l1, . . . , l|L|) is a multi-index of length |L| ≤ k contained in (ν1, . . . , νk) and C
some constant.

Using these coordinates for K(ζ, z), it suffices to show that the functions

K0(t) =
1

|t|2n−k−1
, |t| < 1

and, for 1 ≤ s ≤ k,

Ks(t) =
1

Πs
i=1(|ti| + |t|2)|t|2n−k−s−1

, |t| < 1

are of weak type 2n−(k−s)
2n−(k−s)−1 , where t = (t1, ..., tk, ..., t2n−k).

To estimates J , we note that the kernel is more singular at the boundary point. Thus
we assume that ζ ∈ bω and omit the others.

Let Σ denote the set of the characteristic points, i.e., points where ∂ρ1 ∧ ∂ρ2...∧ ∂ρk ∧
∧∂ρ∗ = 0 on bω. We first assume that ζ is not a characteristic point. We may assume
that U ∩ Σ = ∅ for sufficiently small U . We choose special coordinates for ω ∩ U .

Let tν = ImΦ(ζ, z, λν), ν = 1, ..., k + 1 as before and (ν1, . . . , νk) be a multi-index
contained in (1, . . . , k + 1). We set t∗ = ImΦ∗ = ImΦ̃∗. For ζ ∈ bω, we have

∂ζρ∗ = idζImΦ̃∗(ζ, z) +O(|ζ − z|).

Thus, if ζ ∈ bω \ Σ,

dζImΦ(ζ, z, λν1) ∧ ... ∧ ImΦ(ζ, z, λνk) ∧ dζImΦ̃∗(ζ, z)|ζ=z

= ik+1∂ζρλν1 (ζ) ∧ ... ∧ ∂ζρλνk (ζ) ∧ ∂ζρ∗(ζ)

6= 0.
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Also, using dρ1 ∧ ... ∧ dρk ∧ dr 6= 0 on bω, we can choose ρ∗(ζ) as a coordinate function
near bω in U ∩ ω such that ti = ImΦ(ζ, z, λνi), i = 1, ..., k, tk+1 = ImΦ∗ = ImΦ̃∗ and
tk+2 = ρ∗(ζ). Under these coordinates, the kernel J(ζ, z) is bounded by

Ks(t) =
1

Πs
i=1(|ti| + |t|2)|t|2n−k−s−1

, 1 ≤ s ≤ k + 2.

Lemma 4.2.1. For 0 < A <∞, we have

∫

|t|<A
Ks(t) dt1...dt2n−k =

∫

|t|<A

dt1...dt2n−k

Πs
i=1(|ti| + |t|2)|t|2n−k−s−1

<∞

where 0 ≤ s ≤ k + 2. Moreover
∫

|t|<A
[Ks(t)]

p dt1...dt2n−k <∞,

for p < 2n−(k−s)
2n−(k−s)−1 , and the function Ks(t), |t| < A, is of weak type 2n−(k−s)

2n−(k−s)−1 .

Proof. The first assertion can be verified easily by integrating over ti variables for i =
1, ..., s. Let t′ = (ts+1, ..., t2n−k). We obtain

∫

|t|<A

dt1...dt2n−k

Πs
i=1(|ti| + |t|2)|t|2n−k−s−1

≤

∫

|t′|<A

(log |t′|)sdts+1...dt2n−k

|t′|2n−k−s−1

<∞.

In the same way, we get for 1 < p < 2n−(k−s)
2n−(k−s)−1 ,

∫

|t|<A
[Ks(t)]

p dt1...dt2n−k =

∫

|t|<A

dt1...dt2n−k

Πs
i=1(|ti| + |t|2)p|t|(2n−k−s−1)p

≤

∫

|t′|<A

dts+1...dt2n−k

|t′|2s(p−1)|t′|(2n−k−s−1)p

<∞.

Let Ss
λ be the subset

Ss
λ = {t ∈ R

2n−k, |t| < A, | Ks(t) > λ}, λ > 0,

and let m be the Lebesgue measure in R
2n−k. We shall show that there exists a constant

c̃ > 0 such that

m(Ss
λ) ≤

(
c̃

λ

) 2n−(k−s)
2n−(k−s)−1

, for all λ > 0.

Set t′ = (ts+1, . . . , t2n−k), then we have

m(Ss
λ) ≤ m({t ∈ R

2n−k, |t′|2n−k+s−1 ≤
1

λ
, |ti| ≤

1

λ|t′|2n−k+s−3
, i = 1, . . . , s})
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Consequently

m(Ss
λ) ≤ c

∫ ( 1
λ
)

1
2n−k+s−1

0

r2n−k−s−1dr

λsrs(2n−k+s−3)
=

(
c̃

λ

) 2n−(k−s)
2n−(k−s)−1

.

Lemma 4.2.2. The kernels RM (ζ, z)and ∂ζGM (ζ, z) are of weak type 2n
2n−1 and 2n+2

2n+1
respectively on ω uniformly in ζ and in z.

Proof. From the previous discussion, the lemma follows from Lemma 4.2.1 near the non-
characteristic points when ζ /∈ Σ. Near the characteristic points, we can apply again the
Range-Siu’s trick and estimate the integrals J as a finite covering of the integrals discussed
in the previous lemma. This proves the lemma.

To get Hölder estimates for T̃s−1f , by the Hardy-Littlewood lemma, we need to control
the gradient ∇zT̃s−1f .

It follows from the definition of the kernel RM and ∂ζGM that ∇zRM is controlled by
∫

λ∈∆I•

(
Ok−m

Φn
+
Ok+1−m

Φn+1
) ∧ Θm,

where Θm is a monomial of length m in ∂ρi1 , . . . , ∂ρim , and that ∇zT̃s−1f is bounded by
∫

λ∈∆I•∗

(
Ok−m

Φ̃n−α−k−s
∗ Φk+s+α

+
Ok+1−m

Φ̃n−α−k−s+1
∗ Φk+s+α

+
Ok+1−m

Φ̃n−α−k−s
∗ Φk+s+α+1

) ∧ Θm,

where Θm is a monomial of length m in ∂ρi1 , . . . , ∂ρim , ∂ρ∗(ζ), ∂ρ∗(ζ), 1 ≤ m ≤ k + 2.
Choosing the same coordinate system as before, we have to estimate, for 1 ≤ s ≤ k+3,

the integrals

Js =

∫

|t|<A

dt1...dt2n−k

Πs
i=1(|ti| + d+ |t|2)|t|2n−k−s

Hs =

∫

|t|<A

dt1...dt2n−k

(Πs
i=1(|ti| + d+ |t|2)|t|2n−k−s)

2n+2
2n+1

for each z ∈ DI ∩ Ω, with d = dist(z, bDI ∩ Ω).
Using estimates similar to p.289 in [6], for 1 ≤ s ≤ k + 3, we get

Js ≤ C d−
1
2
−ε, ε > 0,

Hs ≤ C d−
4n−(k−s)−1

4n+2 .

Consequently, from Hölder’s inequality,

|∇zT̃s−1f | ≤ C ‖f‖∞dist(z,bω)−
1
2
−ε, ε > 0

|∇zT̃s−1f | ≤ C ‖f‖2n+2dist(z,bω)−1.

Thus by interpolation, we have the following estimates for smooth ∂ b-closed forms.
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Proposition 4.2.3. (Lp estimates of ∂̄b for smooth forms.) Let M be a strictly q-concave
generic CR manifold in C

n and 0 ∈M . Let Ω be a strictly pseudoconvex domain contain-
ing 0 in C

n with C2 boundary and ω = M ∩ Ω. For any f ∈ Cn,s(ω), 1 ≤ p ≤ ∞ and

n− k − q + 1 ≤ s ≤ n− k, T̃s−1f defined by (4.1.4) satisfies the following estimates:

(1) ‖T̃s−1f‖
L

2n+2
2n+1−ε

≤ C‖f‖L1 , for any small ε > 0.

(2) ‖T̃s−1f‖Lp′ ≤ C‖f‖Lp , where 1
p′ = 1

p − 1
2n+2 and 1 < p < 2n+ 2.

(3) ‖T̃s−1f‖Lp′ ≤ C‖f‖Lp , where p = 2n+ 2 and p < p′ <∞.

(4) ‖T̃s−1f‖Cα−ε ≤ C‖f‖Lp , where 2n+ 2 < p <∞, α = 1
2 − n+1

p and ε > 0.

(5) ‖T̃s−1f‖ 1
2
−ε ≤ C‖f‖L∞, ε > 0.

In order to prove Theorem 1.0.2, we need the following density lemma:

Lemma 4.2.4. Under the same assumption as in Theorem 1.0.1, the set of ∂ b-closed
forms in C(n,s)(ω) is dense in the set of ∂b-closed Lp

(n,s)(ω) forms in the Lp
(n,s)(ω) norm

where 1 ≤ p <∞, n− k − q + 1 ≤ s ≤ n− k.

Proof. Let α ∈ Lp
(n,s)(ω) and ∂bα = 0 on ω. We approximate α by C1 smooth (0, s)-forms

αl ∈ C
1
(n,s)(ω) such that αl → α in Lp

(n,s)(ω) and ∂bαl → 0 in Lp
(n,s+1)(ω). This is possible

by Friedrichs’ Lemma. When s = n − k, the lemma is already proved since every form
is ∂b-closed. We assume that s < n − k. Since ∂bαl is a continuous ∂b-closed form on a
slightly larger set ωl ⊃ ω where l → ∞ and ∩lωl = ω, we can apply Proposition 4.2.3 to
∂bαl on ωl (since n− k − q + 1 ≤ s < n− k, ) to find (0, s)-forms vl such that

{
∂bvl = ∂bαl on ωl,

‖vl‖Lp

(n,s)
(ωl)

≤ cp‖∂bαl‖Lp

(n,s+1)
(ωl)

,

where cp is a constant independent of l. This is true since the constant proved in Propo-
sition 4.2.3 is independent of small perturbation of ω. We set

α′
l = αl − vl,

then α′
l ∈ C(n,s)(ω). It follows that α′

l is ∂b-closed and α′
l → α in Lp

(n,s)
(ω). This proves

the lemma.

Theorem 1.0.2 can be proved for any ∂b-closed α with Lp(ω) coefficients using an
approximation argument.

Using Lemma 4.2.4, there exists a sequence of ∂b-closed forms α′
m ∈ C(n,s)(ω) such

that α′
m → α in Lp

(n,s)(ω). We can apply Proposition 4.2.3 to α′
m to find (0, s − 1)-form

um such that

∂bum = α′
m on ω,

and

‖um‖
Lp′

(n,s−1)
(ω)

≤ cp‖α
′
m‖Lp

(n,s)
(ω).
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Thus, some subsequence of um must converge weakly to some (0, s− 1)-form u such that
u satisfies ∂bu = α on ω and

‖u‖
Lp′

(n,s−1)
(ω)

≤ cp‖α‖Lp

(n,s)
(ω).

Assertions (1), (2), (3) of Theorem 1.0.2 are proved. In order to prove (4) and (5) of
Theorem 1.0.2, the above argument cannot be used. Going back to the definition of the
operators T̃s, it is easy to prove that for any f ∈ C1

n,s(ω)

f = ∂bT̃s−1f + T̃s∂bf + (−1)(n+s)k+
k(k−1)

2 ∂b

∫

ζ∈ω
∂bf(ζ) ∧ [G̃M ]n,s−1(ζ, z). (4.2.1)

By Friedrichs’ lemma, the relation (4.2.1) extends to any f ∈ Lp
(n,s)(ω) such that ∂bf ∈

Lp
(n,s+1)(ω), p > 2n + 2, since all the kernels involves in the formula are of weak type at

least 2n+2
2n+1 . Consequently if f ∈ Lp

(n,s)(ω), p > 2n + 2, satisfies ∂bf = 0, we still have

f = ∂bT̃s−1f and the estimates can be done as in Proposition 4.2.3.
Corollary 1.0.3 follows easily. The proof of Corollary 1.0.3 is exactly the same as in

Shaw [19] for the strongly pseudoconvex case. As usual, the Hodge decomposition and the
existence of the ∂b-Neumann operators given in Corollary 1.0.4 can be deduced from the
classical Hilbert space theory.
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