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1 Introduction

In this paper we study the local solvability of the tangential Cauchy-Riemann equation 0
on an open neighborhood w of a point zg € M when M is a generic C'R manifold of real
codimension k in C", where 1 < k <n — 1. We assume that M is g-concave near zq (see
Definition 2.2.1). Our method is to first derive an homotopy formula for 9, in w when
w is the intersection of M with a strongly pseudoconvex domain. The homotopy formula
gives a local solution operator for any dj-closed form on w without shrinking. We obtain
Hoélder and LP estimates up to the boundary for the solution operator.

Let C*(w), 0 < a < 1, be the space of Hélder continuous functions of order « in @. We
use Cpy (W) to denote the space of (n, s)-forms with C'%() coefficients The norm in Cy ()
is defined to be the sum of C*(w) norm of each coefficient. We also denote by Ll()n,s) (w)

the space of (n,s)-forms with LP(w) coefficients, 1 < p < co. The norm in Ll()n,s) (w) is

denoted by || ||z» for (n,s)-forms. Our main results are the following:

Theorem 1.0.1. (Homotopy formula for d;.) Let M be a strictly g-concave generic CR
manifold in C™ and zg € M. Let Q) be a strictly pseudoconver domain containing zg in C"
with C? boundary and w = M N Q. For any s, n —k —q+1<s <n—k, there exists a

(@) such that for any f € C, (W) with

1
5—€

continuous operator Ts_y from Cy, (W) into C? ,_4

gf S Cn7s+1(w), _ _
f=0Ts1f +Ts0f.

Theorem 1.0.2. (Holder and LP estimates for 0y.) Let M be a strictly g-concave generic
CR manifold in C" and zo € M. Let 2 be a strictly pseudoconver domain containing
2o in C™ with C? boundary and w = M N Q. For any f € Lfms)(w) wizfvh Of =0 in
w,1<p<ocandn—k—q+1<s<n-—k, there exists an operator Ts_; satisfying
OTs_1f = f inw and the following estimates hold:
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() | Ter fIl gz < Clfllzr,  for any small e > 0.

(2) | Te1fllp < Cllfllee,  where L =1 — doand 1 <p<2n+2.

(3) Hi_lfHLp/ <C|fllze, wherep=2n+2 andp <p < cc.

(4) | Tsc1 fllca—e < C||fllze, where 2n+2 < p < o0, a = i- "Tfl and € > 0.

(5) | Ts=1fll yy-c < Cllf L=, for any € > 0.
Corollary 1.0.3. Under the same assumption as in Theorem 1.0.2, the range of Oy is
closed in Lfn’s)(w) spaces for 1 < p < oo.

The L? estimates will give the Hodge decomposition theorem for d;, and the existence
of the dp-Neumann operators.

Corollary 1.0.4. Under the same assumption as in Theorem 1.0.2, the following strong
Hodge decomposition theorem holds: Forn —k —q+1 < s <n —k, there exists a linear
operator Ny : L% )(w) — L% )(w) such that

n,s n,s

(1) Ny is bounded and Range(Ny) C Dom([p).
(2) For any f € L%n 5) (w), we have

f =00, Ny f ® 0,0 Ny f.

(3) If f € L? )(w) with Byf = 0, then f = 8,0, Nypf. The solution u = 3, Nyf is called

(n,s

the canonical solution, i.e., the unique solution orthogonal to Ker(0y).

Though our theorems are stated for (n, s)-forms, it is clear that they can be extended
to any (7, s)-forms for 0 <r <n.

It is well known (see [7]) that on a hypersurface, if the Levi form satisfies Kohn’s condi-
tion Y'(s) at one point, then the Poincaré Lemma holds for (r, s)-forms in a neighborhood
of the point. Local solvability for 9, on hypersurfaces has also been investigated in earlier
works of Andreotti-Hill [2], Treves [21], Boggess-Shaw [5] and Laurent-Thiébaut-Leiterer
[11]. When M is strongly pseudoconvex, homotopy formulas were first obtained by Henkin
[8] using integral kernels. Local solvability was also studied in Laurent-Thiébaut-Leiterer
[13] and Shaw [19] for C'R hypersurfaces with mixed Levi signatures.

In this paper we obtain an homotopy formula for 95 on w with Holder and LP estimates
on C'R manifolds with higher codimension. The g-concavity assumption can be viewed as a
generalization of condition Y (s) for appropriate degree s to higher codimension case. The
local solvability of the 0; equation in g-concave C'R manifolds goes back to Naruki [15],
Henkin [9], Airapetyan-Henkin [1] and Nacinovich [14]. Homotopy formula for ; for forms
with compact support on g-concave manifolds was constructed earlier by Barkatou [3] and
Barkatou-Laurent-Thiébaut [4]. A microlocal version of the local homotopy formula for 9,
on g-concave manifolds was studied by Polyakov [16]. Optimal Holder and LP estimates
for O, have been proved using Campanato spaces in Shaw-Wang [20]. All these are results
on the interior regularity for 9, and ;.
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The previously known results for the boundary regularity for 9, are for strongly pseu-
doconvex or g-concave hypersurfaces. If M is a strongly pseudoconvex hypersurface and
w is a domain in M such that bw is the intersection of M with a Levi-flat hypersur-
face, then one can construct a solution operator which is bounded in LP. It was proved
in Shaw [18] that, in this setting, LP estimates for the local solutions for 9, up to the
boundary are best possible. If M is a g-concave hypersurface and w is the intersection of
M with a bounded strictly pseudoconvex domain, a solution operator is constructed in
Laurent-Thiébaut-Leiterer [13] and Holder C%*, € > (0 estimates up to the boundary are
obtained.

For g-concave C'R manifolds of higher codimension, it follows from the the results in
Barkatou-Laurent-Thiébaut [4] that for any given continuous form, the regularity of the
solution inside the domain is actually C2. The regularity up to the boundary proved in the
Theorem 1.0.1 is € less than the interior regularity. It is not known if one can remove the
¢ for the boundary regularity. This phenomenon is similar to the case of the 0 equation
in domains with piecewise strictly pseudoconvex or g-convex boundary (see [17] and [12]).

In contrast to the Holder regularity discussed above, the solution operator we con-
structed in the Theorem 1.0.2 has also a gain of regularity in LP spaces, but the gain is

strictly less than the interior regularity. Actually the interior regularity is given by an

operator of weak type 23711 and the boundary regularity is given by an operator of weak

type 321? This phenomenon is new and has not been observed before.

The plan of this paper is as follows: in section 2 we construct the homotopy formula
for the local solution of 9;, on w for smooth J;-closed forms. In section 3, Holder estimates
are obtained. We also obtain better Holder regularity in the complex tangential directions.
In section 4.1, a new homotopy formula for the kernel which involves only integration on
w is derived to facilitate the estimation of the kernels in LP spaces. The estimation for
smooth J,-closed forms and the approximation argument necessary to pass from a priori
estimates to actual estimates are carried out in subsection 4.2.

Part of the work was completed while the first author was visiting the University
of Notre Dame and the second author was visiting the Institut Fourier, Université de
Grenoble, France. The authors would like to thank both institutes for their hospitality
during their visit.

2 Homotopy formula on C'R manifolds

2.1 Kernels attached to a generic C'R manifold

~

Let M be a generic C'R manifold of class C? in C", U an open subset in C" and py, ..., Dk
some functions of class C3 from U into R such that

MU ={zeUlpi(z) = --- = pk(z) = 0}

and satisfying 9p1(2) A -+ A Opp(z) #0 for € M NU.
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Let C > 0 be a fixed constant, we set, for j =1,...,k,

k
pi=0i+CY 1

v=1

. (2.1.1)
pj=—0j+C> P
v=1
We define 7 as the set of all subsets I C {£1,...,+k} such that |i| # |j| for all 4, j € I
with ¢ # j. For I € Z, |I| denotes the number of elements in I, then Z(1), 1 <[ < k, is
the set of all I € Z with |I| =1 and Z'(l), 1 < < k, is the set of all I € Z of the form
I=(i1,...,5) with |iy| =vforv=1,... 1L
IfIe€Zandve{l,...,|I|}, then i, is the element with number v in I after ordering
I by modulus. We set I(v) =1\ {i,}.
If I € Z, then
sgnl = 1 if the number of negative elements in [ is even
sgnl = —1 if the number of negative elements in [ is odd.

Let (eq,...,ex) be the canonical basis of RF, set e_j = —e;j for every 1 < j < k. Let
I={(i1,...,5) bein Z(I), 1 <1 <k, set

! !
Ar= {Z)‘jeij’)‘i >0,1<1< Z’Z)\i — 1}.
i=1 i=1

For each A € A, we denote by py a defining function of M in the direction \,
px = A1piy + o+ Agpiy-

A C%map ¢ : U x U — C" such that (¥,((,2),( — z) = 1 is called a Leray section
in the direction .

From now on, we assume that ¥, depends smoothly on A.

We denote by D a relatively compact open subset of U and for I € Z, I = (i1,...,i),
we define

Dr={pi, <0}n---N{pi, <0}ND

D7 ={pi, >0} n---n{p;; >0 ND

Sr=A{piy =0,...,pi,, =0} N D
These manifolds are oriented as follows : Dy and D7 as C" for all I € 7, Sy;; as the
boundary of Dy;y for j = +1,...,4k, S; as the boundary of S, — N D{im} for all I € 7,

|[I| >2,and M N D as Sy with I ={1,...,k}.
If I € Z(l), | < k, we set for z € Dy, ¢ € D} with z # ¢ and A € A;

¢I(C’ 2, )‘) = 11[})\(4-7 Z)‘

(10

We denote by X a C®-function from [0,1] into [0, 1], which satisfy X (A =0, if
0<A<1/4,and X (\)=1,if1/2< A< 1.
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f1eZ(l),1<I<k, for A € Aoy with \g # 1, let i be the point in A; defined by

o )‘il, B
)\iuzm (I/—].,...,l).
We set _
Yor(¢, 2, A) =X (Ao)ﬁ + (1= X (M))®br(C, 2, 0) (2.1.2)

for every I € Z(1), 1 <1<k, z€ Dy, C € E; with z # ¢ and A € Agp;. One may notice
that 17 is a function of class C?.

We can now define the kernels Ko7 (¢, z,\), for z € Dy, ¢ € E; with z £ Cand X € Agy,
by
(_1)n(n—1)/2

Kor(¢,z,\) = Wﬁboud@ A {((Dc,z + dx)tbor, dO)™ (2.1.3)
ANd(Cr—21) A Ad(Gn — 2n),
and the kernels K;((,z, \) by
(1=t .
Ki(¢,2,A) = W@/}IadC) A {(0¢,z + dx)¥r,dC) (2.1.4)

/\d(Cl —21)/\---/\d(Cn—2’n).

The kernels Ko; and K are differential forms of class C! and degree 2n — 1 and, from
Proposition 3.9 in [10], we have

(Oc,- + dr)Kor (¢, 2,A) = 0. (2.1.5)
Finally we set, for z € Dy, ¢ € 3; with z # (,

COI(C’Z) = /)\eA KOI(C’Zv )‘)

CI(Cvz) = \ea KI(Cvzv)‘)

Proposition 2.1.1. The kernels Cor(¢,2) and CI(C,z)_are differential forms of degree
o2n—|I|—1 and 2n— |I|, respectively, of class C' for z € Dy and { € D} with z # ¢, which
satisfy the partial differential equation

9-Cor + 0¢:Cor = Cos(ry — Cr,

. I y
with Cos(ry = S (=1)* T Corpy -
The next lemma is proved in [4].

Lemma 2.1.2. Let f be an (n,r)-form of class C' with compact support in D\ M. Then
f<651 f(¢) AN Cor(¢, 2) defines an (n,r — 1)-form of class C2¢ on Dy.

Now set

Bu(¢z)= > sen(I)Cor(¢,2) (2.1.6)

1€T/ (k)
for (,z € M N D with ¢ # z, and denote by [Bs]p s the part of By, which is of bidegree
(p,s) in z.
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2.2 Fundamental solution for the tangential Cauchy-Riemann operator
on g-concave generic C'R manifolds

In this part we assume that the generic C'R manifold M is g-concave.

Deﬁnition 2.2.1. A generic C'R manifold M in C" of real codimension k is g-concave,
1 <q <2k ifforall z € M and all A € R” the restriction of the Levi form of the defining
function ,0)\ in the direction A to the complex tangent space TCM of M at z admits at
least ¢ negative eigenvalues.

It follows from Lemma 3.1.1 in [1] that we can choose the constant C' in (2.1.1) such
that the functions p;, —k < j <k, j # 0, have the following property : for each I € Z'(k)
and every A € Ay, the Levi form of the defining function py of M in the direction A has at
least q + k positive eigenvalues on U’ CC U. Then using the method developed in section
3 of [12], we can construct for each A a Leray section in the direction A, which has some
holomorphy properties and depends smoothly on A. Let us recall the main steps of the
construction.

Denote by F)\((,.) the Levi polynomial of p) at ( € U. For ( € U, z € C",

n 2
—zza” > (G- 26— )

Let G(n,q + k) be the grassmannian of all subspaces of C" of dimension ¢ + k, we
consider for all I € Z(k), a smooth map

Tr : A — G(n,q+ k)

such that the Levi form of the defining function p) of M in the direction A is positive
definite on T'(X) for all A € Aj.

Denote by P the orthogonal projection from C™ onto T7()\) and set Q* = Id — P*.
Taylor’s theorem implies that there exist a domain D CC U’ and two positive constants
a and A such that

ReF)((,2) = pa(Q) = pal2) + af¢ = 2> = A|QN(¢ — 2))? (22.1)
for {,z € D.
Since py is of class C? on U, we can find C* functions ajk, j,k=1,...,n, on U’ such
that for all ¢ € U’
9?px o)
- —— —. 2.2.2

Then setting

0
_22 8? — %) - Z a;k (G — 2j)(Ck — 2k),
J :
it follows from (2.2.1) and (2.2.2) that

ReF\ (¢, 2) = pa(Q) — palz) + %IC — 22 = A|QMN¢ - 2)? (2.2.3)



Estimates on CR manifolds 7

for (,z € D.
Denote by (Q]k,)J 4, the entries of the matrix Q*, and set for (¢, 2) € C" x U’

w}(¢,2) —22—?—2%19 2) + A QNG — 21)
J k=1

wA(Cv z) = (wl (<7Z)7 e 7wn(€v 2))
q))\(Cvz) - <'U})\(<,Z),C - Z>

a(¢,2) = %ig? 3

Since Q* is an orthogonal projection, we have

D7(C,2) = FA(C, 2) + AlQMN¢ — 2)?

and it follows from (2.2.3) that

Re®(C,2) = pa(€) = pal2) + 51 — =P (2.2.4)

for (,z € D.

We shall say that a map f defined on some complex manifold X of complex dimension
n is [-holomorphic if, for each point £ € X, there exist holomorphic coordinates h1, ..., A,
in a neighborhood of £ such that f is holomorphic with respect to hq,..., h;.

Lemma 2.2.2. For every ( € U’, the map wy((, z) and the function ® (¢, z) defined above
are (q + k)-holomorphic in z.

This holomorphy condition implies the following vanishing properties of the kernels
Cr.

Lemma 2.2.3. We assume that for I € I(l), 1 <1 <k, the functions 11, are (¢ + k)-
holomorphic with respect to the variable z, then for each fized ¢ € D;

[C1(¢,2)lpr =0 si 0<p<n e n—k—q+1<r<n-—k
EZ[CI(C, Z)]p,n—k—q =0 si 0< p<mn,

on Dy \ {C}, where [C1(C, 2)]pr denotes the part of bidegree (p,7) in z of Cy.

It is proved in [4] that the kernel By defined by (2.1.6) is a fundamental solution for
the 0y operator on M, i.e.

— — k(k+1)
0:[Bulpr—1 + O¢c[Bulpr = (=1) 2 [AU)], (2.2.5)
for0O<p<nandn—k—q+1<r<n—k,if [A(U’)] denotes the integration current on
the diagonal of U’ x U’.
For all I € Z'(k), we denote by Ie the multi-index (i1, ..., i, o), where I = (iy,...,ix),
and by Z'(k, e) the set of all multi-indexes Ie, with I € Z’(k). We set ps = +(p1+- -+ p)
and py = A1p1 4+ + Apk + Aepe for A= (A1,..., Ak, Ae) € Ape.
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Let E, be the larger linear subspace in C" on which the Levi form of p, on U is
positive definite. It follows from the g-concavity of M and the choice of the defining
functions p1, ..., pr that dimF, > ¢ + k.

We get some functions w® and ®, associated to the function pe by setting

w369 =230 = Yo anlC)G — ) + B Y QG — )
J k=1 k=1

w.(C,Z) = ('UJI(C,Z), .- 7w;L(C72))
@.(C,Z) = <’LU.(C,2),C - Z>7

where the function aly, yk=1,...,nis of class C*° on U and satisfies for all { € U
° a2p0 Ck.

and Q° is the orthogonal projection on the orthocomplement of the subspace F,.
We set

n

—228’” G = 3 a0 — )G — ),
aCJ 7,k=1

then N
Pa(2,¢) = Fu(C.2) + BIQ*(C — 2)|
and consequently
Re @u(2,0) 2 pa(¢) = pa(2) + G1¢ — I

If A= (M,..., A Ae) € Afs, is such that A\g # 1, we denote by A’ the point in Aj
defined by
A,
N, = 1_@)\. v=1,...,1).
Let us consider a function x. of class C* from [0,1] into [0, 1], which vanishes in a
neighborhood of 0, is equal to 1 in a neighborhood of 1, and moreover satisfies |y (t)—t| < &

for all t € [0,1]. For A € Aj,, we set

n

(¢, 2, ) Z O ()G — ) — 3 ()G — 2)(Cx — 24)

J,k=1

+ (1= xe(A AZQ (Ck — 2k)

n

Z g’;’ —2z) = Y aS(OG = 2) (G — 2)
J 7,k=1

+x=(A\e)B Z Q% (Ck — 21)

k=1

DBre(C, 2, N) = (w®(C, 2, M), ¢ — 2).
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The function ®;, has the following expression
(I)I'(Ca 2 )‘) = ﬁ)\((? Z) + <P)\(C - Z)»Z - z>a

where P is the linear operator defined by (1—x< (X)) AQ™ +xc(Xe)BQ®. If ¢ is sufficiently
small, then there exists v > 0 such that

Re @14(C,2,A) = pa(C) —m(z)+%|g‘—z|2. (2.2.6)

We define (¢7) sez/(r,e) in U’ by setting, for J = le,

Ie A
wJ(Cvzv)‘) - g[ogg,i,)\;

Notice that ¥ |y xuna@wnxa, = Pr1- To these maps, we associate the kernels Kore((, 2, A)
and Kre(C,2,N), for (¢,2,\) € U' x U\ A(U’) x Agre, defined by

(_1)n(n71)/2

_ - A n—1
Kore(C,2,A) = @in) (Yore, dC) A {(O¢.= + dx)tore, dC) (227)
ANd(G = z1) A Ad(Gn = 2n),
and by
K N = EU ) A (B + d)ibra, de)
1e(¢,2,0) = WW)I., ¢) AN(O¢,z + dx)vre, dC) (2.2.8)
ANd(G—z1) A Ad(Cn — 2n).
We set also for ((,2) e U' x U\ A(U"),
Core(¢, 2) =/ Kore(C, 2, M),
AEApT.
CI.(C’Z) = / KI'(C’Zv)‘)‘
)\EAIQ
As in Proposition 2.1.1 we have
547200[. = 005(1.) - C].. (2.2.9)
We set
Ey = Z sgn(l)Core and Ry = Z sgn(I)Cre.
IeT! (k) I€T! (k)
In [4], it is proved that
d¢Enm(¢,2) = (=1)*Bu(¢,2) = Rue(¢,2) (2.2.10)

holds in the sense of currents on U’ x U’. The relation (2.2.5) associated to (2.2.10) shows
then, that the kernel Rj; is also a fundamental solution for the dj operator on M.
This implies immediately the following integral representation formulas :
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Theorem 2.2.4. Let w CC MNU’ with piecewise smooth C* boundary and f a (n, s)-form

of class C* on @, then
1) Forn—k—q+1<s<n-—k,

(—)mF DG oy — (C1F [ O A Radlas(G2) + [ Fof(Q) A [Ratlns(C, 2)

¢ebw (Ew

H(=DM0, [ F(O A [Ra]n,s—1(C, 2).

(Ew

2) For0 <s<gq-—1,

(— )(N+S)(k+1)+ REED () = (-1)k f(2) NMRulon—k—s-1(C, 2)

z€bw

/ O f(2) A [Rarlon—t—s—1(C, 2) k+13b/ f(2) N [Rarlon—k—s(C, 2).

We can describe the singularity of the kernel Ry in the following way.

A form of type Oy (or of type O4((,2,\)) on Dy x Dj x Ap, is, by definition, a
continuous differential form f((, z, \) defined for all (¢, z,\) € E; x Dy x Ajq with z # ¢
such that the following conditions are fulfilled :

1. All derivatives of the coefficients of f which are of order 0 in ¢, and of order <1 in
z and of arbitrary order in A are continuous for all ((,z,\) € 5; x Dy x Aj, with

z # (.

2. Let V%, k = 0,1, be a differential operator with constant coeflicients, which is of

order 0 in (, of order x in z and of arbitrary order in A\. Then there is a constant
C' > 0 such that, for each coefficient ¢((, z, \) of the form f((,z, \),

IVZe(C, 2, ) < CIC— 277"
for all (¢,z,\) € 57 x Di x Are with z # C.
Assume ¢ is a monomial in d(y,...,d¢,,dCy,. .., dC,, then

ARG = 3 sl [ o n Kra(e & N s

1€T' (k) AE€ALe

Okt1—m (2.2.11)
- 22 [ S non)

@n
IeI’(k) 0<m<k
AAAAA im€l
As the manifold M is supposed to be g-concave with ¢ > 1 and consequently n > k + 1.
The integration with respect to A allows us to control |0 A Rys(z, ()|, by a finite sum of
terms of the form :

H’”%Ifb( CONIC = oprsk4m—s’ (2.2.12)

where A,..., A+ are points in Ar,, I € Z’(k), which define a system of independent
vectors of RFFL,
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2.3 Homotopy formula for the tangential Cauchy-Riemann operator on
g-concave C'R generic manifolds

Let ©Q be a domain in U with C3 boundary such that the intersection of M with the
boundary b2 of € is transversal and that w = M N Q is relatively compact in M NU’.
We assume also that  admits a Leray section 1. ((,z), which is holomorphic in the
variable z. For example if  is convex and defined by {¢ € U| p.({) = 0}, one may take

(¢
w* (¢, 2) = (B(0), -, S0, @u(C,2) = (W*((,2),¢ — 2) and 4 (C, 2) = 1.
For each I € 7'(k), we denote by I+ the multi-index (i1, . . ., ik, *), where I = (i1,... i),
and by Z'(k, ) the set of all multi-indexes I'*, when I describe Z'(k). Let p« be a defining
function for Q in U, we assume that dp;, A -+ Adp;, Adp, # 0 on Q.
Let v, be a Leray map for the function p.. If A = (Aq,..., Ak, Ax) € A, is such that
A« # 1, we denote by )\ the point in A; defined by

i,

o
Let X be a C*°-function as in section 2.1, then we set for A € Ay,

Ure(Cy 2, A) =X (A)tha(C 2) + (1= X (A))eor(C, 2, V),

To these maps, we associate the kernels Koy, ((, 2z, \) and K1.((, 2, ), for (¢,2,\) € U’ x
U\ A(U’) x Agjx, defined by

(_1)n(n71)/2

Kors N = (o, dCO) A (D¢, + d L doynt
or+(C, 2, A) (2im)" (tors, dC) AN ((O¢.= + dx)ors, dC) (2.3.1)
ANd(C1 —z1) N ANd(Cr — 2zn),
and by
K = EU ) A (B + d)ibra, de)
*\Sy <y = T o n * 9 A z * 9 "
(¢, 2, ) i) (W1, dC) A {(O¢, 2 + dr)rs, dC) (2.3.2)
ANd(G —z1) A Ad(Cn — 2n)-
We set also for ((,2) e U' x U\ A(U"),
Cors+(¢,2) =/ Kor«(¢, 2,A)
AEAI«
C[*(C,Z) =/ K]*(C,Z,A).
AEAI*
It follows from Proposition 2.1.1 that
EC’ZC(]]* = 005(1*) — Cy. (2.3.3)

We set

FM: Z Sgn(I)C()[* and SM: Z Sgn(I)C[*,
IeT'(k) Ie1/(k)
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then we get that if ,z € U’, with 2z # ¢
9¢-Far(C,2) = (=1)* Bur(¢, 2) — Smr (G, 2). (2.3.4)

Replacing I by J = le, we can define in the same way as before the kernels Cyre+ and
by Proposition 2.1.1 we get

d¢,:Corex = Cos(ryes + (—1)"Cor + (—=1)"Core — Cras. (2.3.5)

Let us introduce the kernel G = 3~ 7/ 581(I)Crex, then

5<7ZGM(<7 Z) = (_1)k547Z(FM(C7 2) - EM(C? Z))a
which implies, using (2.2.10) and (2.3.4), the relation

9c-Gu(¢,2) = (=1 (Rm (¢, 2) — Sm(¢, 2)). (2.3.6)

Theorem 2.3.1. Forn—k—q+ 1< s <n—k, there exist bounded operators Ts from
Cn s4+1(@) into Cp s(w) such that for each (0,s)-form f of class C' on @ we have

f = ngs—lf + ngbf-
The operator Ty is the integral operator

Tyg = (=1) D+ / GO ARl (C, )+ (—1ymHs+1 / 9O AGrlns(C, ).
(Ew (Ebw

Proof. Using (2.3.6), we get for z € w
(0% [ FOABulns(C2) = (=1 [ Q) A Salns(C,2)

(ebw (Ebw

+ ceb f(C) A [EC[GM]TL,S(Ca Z) + gz[GM]n,sfl(Ca Z)]

Since 14 (C, z) is holomorphic in z, the Leray maps ¢y, are (¢ + k)-holomorphic in z in
C", then [Sar]n,s, the part of bidegree (n,s) in z of [Sy], vanishes if s > n —k —q+ 1.
Moreover we have

£ ABGMIna(6:2) = (1" [ Be(F(Q) A Garhnsl€. )

Cebw

S /C BN GlaslC.)

Cebw

and by Stokes’ formula

/C O A Garla(6.2) =0

which proves the homotopy formula using part 1) of Theorem 2.2.4.

The continuity on w of the integral [ cewt (OA[RM]n,s(C, .) follows from the integrability
of the kernel Rj;, moreover as the kernels G s are of class C! on U’ x U"\ A(U’) the integral
f(ebw (O A [Gumlns(C,.) is of class C in w, which proves the regulatity of the operator
T.. 0
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3 Holder estimates up to the boundary

3.1 A first description of the singularities of the kernel G,

In this section we will describe the singularities of the kernel G ;s in the case when the
domain (2 is strictly pseudoconvex. We use the notation of the previous section. Let us
recall that Gy = 3~ ey 580(1)Crex, With

CI.*(<7Z) = / KIO*(<7Z7A)

AEA e«
and
(_1)n(n—1)/2 ] n—1
W@plo*, dC> A <(8C,z + d)\)wlo*, dC>

/\d(Cl —21) /\---/\d((n—zn).

KI.*(C’Zv )‘) = (311)

Let p. be a strictly plurisubharmonic defining function for Q. Let F.((,.) be the
Levi polynomial of p, at a point ¢ in a neighborhood of b§2. It follows from the strict
plurisubharmonicity of p, that there exists a positive constant § such that

ReF, (¢, 2) > po(C) — pu(2) + BIC — 2| (3.1.2)
for (¢,z) € b2 x Q.
We set
w; (¢, 2) = 25¢, (Q) = > (O — 2)
J k=1
w* (¢, 2) = (wi((, 2), - ., wy (¢, 2))
Q*(CVZ) = <7U*(<7Z)7C - Z>7
where the functions a;fk, J.,k=1,...,n, are of class C* on U and satisfy for all ( € U
* 62p* ﬁ*
540~ 555 (Ol < 31
We have 5
Re @.(2,¢) > pa(C) = pa(2) + 51¢ — 2I (3.1.3)

The map ¢, = ;"% defines a Leray map for the function p,, which is holomorphic in the
variable z.
IEA= (A, o Ay Aey M) € Afes is such that Ay # 1, we denote by A’ the point in Ay,
defined by
/ >‘iu

)\iuzl_—)\* (I/Zl,...,k,.).

[}
Let X be a C°°-function as in section 2.1, then we set for A € A jq4

Dres(C 2, A) =X (A )a(C2) + (1= X (A)re(C, 2, V), (3.1.4)



14 C. Laurent-Thiébaut and M.C. Shaw

We use the following notation
W:W(C,Z,)\,) = <wIO(C’27)‘/)’dC>7 (I):@Io(é_aza)\,)

and

for ( € bw and z € W with z # ¢ and A € Ajes \ A..

Let f be an (n,r)-form on w, we set

F(Q) = f(QdCy A=+ A dGy.
It follows from (3.1.4), that

(Wrew, dC) =X N + (1— i)g

(8Z,< +d )W
)

= W o o — o
(@= + dr)¥res dC) = (G = N) Ad X + X Do cN + (1= X)

o W
+ (1- x)@(az,g + dy)®.

The kernels Cre are obtained after integration on Ajes, though we have only to
consider the part of bidegree k 4+ 1 in A of the kernel Kje.. The differential forms

(02, +d\)® and (0., + dy)W are pullback of differential forms on @ x @ x Ay, by the

map (z,(,A) — (z,(, 3\)7 consequently since Aj, is of real dimension k, for all s = 1,2,...,

we have [((0z¢ + da\)W)*aegr=k+1 = 0 and [((9z,¢ + dx)W)* A (0z¢ + dr) Placgr=k+1 = 0,
which implies

[(res, dC) A (D¢ + d2)¥rax, dO)™ ™ Maegrtt1
o o W w o
=X N+([1=X)F)A(n=1)(F —N)AdXx

(3%( + d)\)W
d

o W — _
+ (1_ X)_(az,c + d}\)q))n 2]deg/\:k-

A(X BN + (1= X) 32

Noting that W AW =0 and N A N =0, because W and N are 1-forms, we get

[F(O) A Krex(2,C, N dogamis1 = af(g)N (AI)W nd ¥
A (>O< 0, N+ (1—- )%)ai%w)n2k A (1= )"()d)\TW)k’

where a is a constant.
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BX the definition of differential forms of type O, we have d 90(: Og, Og /\EZ,CW = Oy,
Op N\ O, ¢®, = O; and also

OQ/\WZZOO/\apj(C)—I—Ol

jE€le
O Ad\W =~ 09 A 8p;(¢) + O
jel
O AW A (daW)F = Z Oky1-m A 9piy (C) A=+ A 9pi,, (C)
0<m<k
(SR im€el
0o ¥ = Qo020+ O
O N3, N = 20 9110 (I*)go 0
and consequently
1 O1NO0p«(C) + 02 19 s

[f(C) A K[.*(Z, Ca )‘)]deg)\:k—‘rl = Z (OO + ' £ (C) 2) 2k

q)gflfkfsQ)qusH D,

0<s<n—2—k
0<m<k

A (Ops1—m N Ops(C) A Bpi, (O) A - AN Bpi, (C) 4 Opyo—m A Bpi, (O) A - ADpi. (C)).
Using that |®,(¢, 2)| > [¢ — z|?, we get

Ok+2-m
[f(ONK1ex(2,(, N)]dega=r+1 < - ;2_k ST h-sghiarl Npiy (O)A- - -NIpi,, (C)-

i1yeeerim €%, 0<M<k+1
(3.1.5)

It follows from section 6 and Lemma 7.4 in [12] that, after a partial integration in A, we
can control f({) A Cre«(2,¢) by a finite sum of terms of the form :

o A 8piy () A -+ ADpi,, (€]
D (¢, 2)IE_ |®(C, 2, AV)|[¢ — 2|3kt +m—1"

(3.1.6)

where AL, ..., \F are points in Aj,, I € T'(k), which define a system of independent vectors
of R and iq,... iy € I*.

Let o be a monomial in d(y, . ..,d¢y,dCq,...,dC,, X', ..., \F some points in Aj,, which
are linearly independent as vectors in RF*1, ¢, = Im ®({, z, \¥) and dt,, = delm (¢, 2, \Y).
By the definition of ®, we have

dt, (¢, 2) = i(Dpar(C) — par () + On,
and consequently .
0p2e(Q) = pre() + LG, 2) + O

As dpi|pr = 0 for ¢ = +1,...,+k, there exists some constant C' and some monomials o,
in d¢y,...,d¢y,dCy,...,dC, such that for all 41,...,4, € [, m <k,

(o ADpiy () A+ AN Opi, arl < C Y low Ner dt] | — 2™ 1.
|LI<m
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Set tg41 = Im ®,(¢, 2) and dty41 = dcIm @,((, 2). By the definition of ®,, we have

dtr1(C,2) = ’L(gp*(g) —0p«(€)) + O1,
and consequently ) .
0p+(C) = 3dpu(C) + 5dtr41(C,2) + Or.

As dpilp, = 0, there exists some constant C, and some monomials o7 in d(i,...,dC,,
dCq,...,dC, such that for all iy,... iy, € Ix, m < k+ 1,

[(0 A Opiy (O) A+ A Opiy, ) lbw| < C Z oL Nier dty] | — 2™ 1EL
|L|<m

We deduce that |f(¢) A Gar(C, z)| is dominated by a finite sum of differential forms of
the type :
|os A5y dt|
Hf/:l(’tl/’ + ’C - Z|2)‘C — Z’2n—(k+1)_s_17

(3.1.7)

where 1 < s <k+1.
Let X denote the set of the characteristic points of bw, i.e., points where dp1 A Opa A
-+ AN Opp A dpsx =0 on bw.

Lemma 3.1.1. For any continuous (n,r)-form f on w in C", we have for all z € W\ X
and ¢ such that EN{¢ €bw | | — 2| <e} =0

/cez)w |£(O) A [Garlnr (¢, 2)| < Ce(1 4 |log el )1 (3.1.8)

[¢—z|<e
with a constant C, which does not depend on z.

Proof. If ( € bw \ X,

deIm®(C, 2, A" ) A .o AIm®P(C, 2, A7*) A deIm®P,(C, 2)| =

_ ik+13<px,1 (C) Ao A agpA"k (C) N 8¢p*(C)
#0.

We can choose coordinates on {( € bw | | — 2| < &} such that t; = Im®((, z, \"),
1=1,..,k, and tgy; = Im®,.

Then the assertion follows from the estimate (3.1.7) of the singularity at ( = z of the
differential form f(¢) A [G (€, 2). O

3.2 Holder estimates up to the boundary

We are now ready to prove some regularlty up to the boundary for the integral operator
Ic(k

T.f = (=1)Hnhs fcew NMBRutlnr (6 )+ (=1 [egy, FOAGMn e (€]

Let f be a continuous (n,r + 1)- form on w. Let us notice that by (2.2.11) and (3.1.5)

the integrals [ ., f(C) A [Rm]nr(C,2) and [.o, F(Q) A [Galn,y(C, 2) are of the same type.
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Since w and bw are respectively of dimension 2n — k and 2n — (k + 1), and I and Ix
respectively of length k& and k 4+ 1, we can deduce the regularity of one of the integrals
from the other by exchanging k and k + 1. As bw may have characteristic points we will
study fCbe f(Q) AN [Grmlny(C, 2). As before we will denote by 3 the set of characteristic
points in bw.

Lemma 3.2.1. Let I € T'(k), a and b two integers such that a+b = n+a with « = 0 or 1,
B €Z and e > 0, then

Op42— _
Jo = LD iy A+ N Opi,, < Cr(ePH2 4 Co)(1+ [log )
¢Ebw AEA ¢a¢

e<|¢—z|<C Tox *

foralliy,...,im €Ix,0<m < k+1.

Proof. Outside X, we can choose t; = Im®((,z,\"), i = 1,....k, and txy; = Im®, as
coordinates. This is not possible nearby the characteristic points. However, following a
device used in Range-Siu [17], one can replace these functions by second-order polynomial
approximation.

It follows from [12] that, after integration in A, J, g is bounded by some integrals of
the type :

dX
Z /X6R2n—(k+1) Hi:1(‘Xu‘ + ]XP) ’X‘Qn—(k+1)—s—1+2a—,6

1<s<k+17  e<|x|<c

< dX
> Z xer2n—(k+1) TS (|X | + |X'|2) |X/|2nf(k+1)7871+2a7,3
1<s<k+1" e<|x’|<c, |x|<c — v=1UTY
1 dX
t< Z e_u/)(€R2n(k+1) IE_ (|X,] + [X']2) | X2 (D) —s—1+20—F—p’
1<s<k+1 X! |<e v=1 v
with X = (X1,..., X, X’) and p such that 1 is inte-

Hi;l(‘XV‘+|X/‘2) ‘X/|2n—(k+1)—s—1+2a—,6—p
grable at zero.
Then we get

dX
xer2n—(k+1) Hf/:1(’Xu’ 4 ‘X’P) ’X/‘2n7(k+1)7571+2afﬂ

e<|X’|<C, |X|<C

< ¢ (log(C + 1"2) — log r2)5dr
— ). r2a—p

< C/(EB+1_2a o Cﬁ+1—20¢)(log(c + CQ) . lOgEQ)S

and

1 dX
el [ xer2n—(k+1) TS 1(’X1/’ 4 ’X/‘Q) ’X/‘Qn—(k+1)—s—1+2a—ﬁ—u

|X'|<e v=

< 1 /5 (log(C + 1r?) — log r?)*dr
0

T eH r2a—f—p
< C'ePTI722 (1 4 | loge|)®.
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Theorem 3.2.2. The integral operators T,., 1 < r < n—k, are continuous operators from

1_
Cor(@) into C2, " (w).

n,r—1
Proof. Let z; and zo be two points in w. We have
Guf(z1) — G f(z) = o FION(Gum(21,6) — Gu(22,())-
€

and consequently

Gaf(21) = Gurf(22)] < / e PO A(GM(21,0) = Gur(22,0))]

1
[¢—211<2]21 —23] 2

f[ e OG0~ G )L

1
[¢—21>2]21 —22| 2

As Gjs is a linear operator, we may assume that f is of the form f = fa, with f a

continuous function and ¢ a monomial in d(1,...,d¢,,dCq,...,dC,. Then we get

Guuf(e) = Curf ) Il [ s oA G (1.0~ G, )
\C—Z1\S2I21—z2\%
e [ e 1o A Gu1,0) = Gaer, O

[¢—211>2]21 —23]

Thus we have to estimate the integrals

J = lo A (G (21,¢) — Gu(22,Q))|

(Ew
1
[¢—211<2]21 —22] 2

Jo = ‘U/\(GM(ZLC)_GM(Z%C))"

(Ew
1
[¢—211>2|21 —22] 2

Without loss of generality we may assume that |27 — 23| < 1. Note that

ne [ lenGua ol [ e AGu(adl.

1 1
[¢—211<2|z1 —22]2 [¢—22]|<3|z1 —22] 2

It follows from Lemma 3.1.1 that, away from the characteristic points of bw, we have
J1 < Clz1 — 29| (1 + log |21 — 2] )"

Near the characteristic points, one again use the Range-Siu’s trick to prove the estimates.
We deduce from the definition of Jp and from (3.1.5) that

A(z1,¢,A)

Jo = E ‘
(CN)EWwXAT, n—1—k—s k+s+1
I€T' (k) \C*zl\22|z1fzz\% P, (217<7>‘)(I) s (Zl?C?A)

_ A(Z2a C’ )‘)
DU (29, ¢, ) PR (29, ¢, \)

llo A Opiy (Q) A -+ N Dpi, (),
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where A(z,(, \) is a smooth function in z, which is Ok19_m, i1, 0m € Ix, 0 < m < k+1
and 0 < s <n—2—k. We may write
A(ZhC?A) A(227<7>‘)

@11—1—16—8(21’ C? A)@k—’—s—’_l(zh Cv )\) N @Q—l—k—S(ZQ’ C? A)@k—’—s—’_l(z&’ C’ )\)
_ A(21,¢,0) — A(z2,C,\)
TR (2, (AR (2, ¢, )

1 1
+ A(z9,(, A —
( ’ C )[q):}_l_k_s(zl’Ca)‘)q)k—i_s-i_l(zlag’)‘) (I)Zkl_l_k_s('z?,ga)‘)(I)k+s+1(z2ag’)‘)

-

Using Lemma 3.2.1 with « =0, § = —1 and & = 2|z; — 22]%, we get

J/ _ Z | A(Zlag,)‘) - A(ZQaC,)‘)
2= (GA)EwX AL n—1—k—s k+s+1
IeT!(k) ‘4_21‘22‘Z1_Z2‘% (I)* (ZlaC,)‘)q) (Zl’Ca)‘)

1
< Clar — 2|2 (1 + |log 21 — 22 )",

since [A(z1, ¢, A) — A(z2, (, A)] < |21 — 22| Ok 41—
The function ®(z,(, ) and ®.(z,(,\) are of class C*™ in z and consequently

|(I)(Zl’<a)‘) - (I)(ZQaCa)‘” < C|Zl - Z2|’

1 _
moreover noting that if [¢ — z1| > 2|21 — 22|z, then % < Igé;} <2, we get

1 1
(I)Z:flfkfs(zl’ ¢, )\)q)kJrerl(Zl, ) o (I);Lflfkfs(@’ ¢, )\)<I>k‘+s+1(zg, ¢, A)

|21 — 2o
<C .
a+;z+1 DY (22, ¢, \)P(22,C, A)

Using Lemma 3.2.1 with o« =1, § =0 and € = 2|z — 22\%, after integration in A\, we have

1

S = Z evewxan, A2 GA)—=
A)EwxArq n—l—k—s kts+1
IGI/(IC) \Q*Zl\22|21722\% ¢* (217C7)\)® (217C7)\)
1

OIS (2, ¢ N DR (29, C, M)
1
< Clz1 — 22|21 — 22|72 (1 + | log |21 — 22|

]

)k+1
1
< Clz1 = 22|72 (1 + | log |21 — 2o
It follows then Jo < Clz; — 22]%(1 + |log |21 — zo||)¥*!, which finishes the proof of the
theorem. O

Proposition 3.2.3. Let f be a continuous (n,r + 1)-form on @ and v C bw a complex
tangent curve in bw, then f(ebw F(O) A Gurlnr(C,2)|y defines a form of class C1=2, 0 <
e <1, on~.
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Proof. The proof is analogous to the proof of Theorem 3.2.2. We will cut the integrals in
the following way

Garf(z1) = Garf(z2)] < e O A Gz, 0) = Gurlz2,0))]
[¢—21<2[21 — 23]
w[ o HOAGMELO - Gulan O

[(—21>2[z1 — 22|

To estimate the first part we use Lemma 3.1.1 with ¢ = 2|z; — 29|. To study the
second part we notice that the function ®(z,{,\) and ®.(z,{,\) are of class C* in z and
moreover their gradient vanishes to order 1 in z = ( along the complex tangent curve ~;
consequently

|(I)(215C’)‘) - @(ZQ,C’)\” < ‘Zl - Z2|Ol
|(I)*(215C,)‘) - é*('z%(?)‘” < ‘Zl - Z2|Ol’

Then using Lemma 3.2.1 with « = 1, § =1 and € = 2|21 — 23| we get the estimate of the
second part. O

4 [P estimates of the solution

4.1 A new solution kernel

In this section we assume, as in the previous one, that w is the intersection of M with a
strictly pseudoconvex domain 2 with C3 boundary. Let p, be a C? strictly plurisubhar-
monic defining function for {2 such that the Hessian of p, is positive definite on @.

For any f € C(, 5 (W), we let

Ilf = f(C) A [RM]n,s—1(<7 )

(Ew

and

Lf = (-1)""* FQ) N Garln,s-1(C, )

Cebw

be the operators constructed in Section 2.3. In order to facilitate the estimates, we shall
derive another solution operator for d,. The integral I; has integrable kernel and can be
estimated easily. We shall rewrite I5f as an integral on w to facilitate the LP estimates.
To do this, it is necessary to modify the kernel [G /], s—1 so that Stokes’ theorem can be
applied.

As in section 3.1, we associate to p, a Leray map ¢, = gi, where the support function
®, satisfies

g
Re ®.(¢, 2) Zp*(g“)—p*(z)—FE]C—z\Z. (4.1.1)
We define a new support function ®, for P«, by setting

D,(C,2) = Bu(C, 2) — 2pu(C)
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It follows from (4.1.1) that

Re 8,(C.2) 2 —pu(C) — pa(2) + S1C — 2P (4.1.2)

for all ¢,z € w. Thus Re <AIS*(C, z) vanishes only when ¢ = z and (, z are both in bw. Also
we have

E&(C,z) =®,.(¢,2z), when ¢ € bw and z € w.
Define the new kernel [CNJM]n,S,l(C,Z) by modifying [Gas]n,s—1(¢, 2) with ®, substituting
for ®,. More explicitly, a typical term in [Gar]n,s—1(¢, 2) is of the following form

/ — - (OO + 1 PN(C) 2 )n 2—k—s
A€EA ek g<s<n—2—k (I) Phtst P,

0<m<k

A (Okt1-m A 9p«(C) A Opiy (Q) A -+ N Dpiyy, (C) + Opga—m A Opiy (O) A+ A 80%(%))- )
4.1.3
where 1 < s < k.
Since

[éM]n,s—1(C,Z) = [Gumln,s—1(¢,2), when ¢ € bw and z € w,

we shall substitute [CNJM]n,S,l(C,z) in Iof for [Garln,s—1(¢,2). The advantage is that
G Mn,s—1(C, ) and its first derivatives are integrable for each fixed z € w since D, satisfies
(4.1.2). Thus for any z € w, by Stokes’ theorem and a limiting argument (substituting
¢ = @ + ¢ for @ and letting € \, 0), we can write, for any f € C, (@) such that Of =0
on w,

Lf(z) = (=)™ FO N Culns-1(¢,2) = (=)™ | Be(f(C) N Gralns—1(C, 2)

(€ebw (Ew

= /C€ f(C)/\EC[éM]n,s—l(<7z)'

Define

k(k 1)

Toorf = (1) DEDETZ20 0 FOA [Rudns—1(C) + [ (O ADeGatlngs-1(C, ).

CEw (Ew
(4.1.4)
We have derived the following:

Proposition 4.1.1. (Second solution operator for 0,.) Let M be a strictly q-concave
manifold in C" and 0 € M. Let Q be a sufficiently small strictly pseudoconvexr domain
containing 0 in C™ with C? boundary and w = M N Q. For any f € Cln,5)(@), where
n—k—q+1<s<n-—k such that Opf =0 on w, we have

k(k 1) —

ab \[CEW [RM]TLS 1 + f(gw /\EC[GM]n,sfl(C’Z)]
— 0T f. (4.1.5)

f(Z) _ ( )(n+s)(k+1)+

Moreover Ts_1f is continuous on w.
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Notice that 9,® = O(|¢ — z|) and 5C;IV>* = O(|¢ — 2|) — O¢cps. From (4.1.3), it follows
that 0¢[Gar)n,s—1(¢,2) can be bounded by sums of terms of the form

1 O1 A Ops
/ Z Fn—1—k— (Oo + L (C))
AEA o 0<s<n—2—k (pib 8(bk+8+1 (b*
0<m<k
O1 A Ops O1 A Ops Op A 9ps(C) A Dps
0y + 21 MP(C)Jr 1 MP(C)Jr 0 p(f) p(C))
A (Ok—m N 9p«(C) A Opiy (C) A+ AN Dpiy, (C) + Okg1—m A 9piy (C) A= -+ A Opi,, (€))-
(4.1.6)
or
1 Oy O Oy 01 OgAdpi(C)  OpA gp*(C)
- (=+t=+—+= - + —
NEALer gesinsi PF Spktstl g, o2 & @ P2 P2
0<m<k
O_1 N 9p«(C) A Dps O1 A 9p, O1 A Ops Op A 9ps(C) A Dps
L 0 p+(Q) f’<<>><oo+ 1 ~P(C)+ 1 ~P(<)+ 0 A\ 9ps () p(C))
P2 o, o, D,
A (Ogg1-m N Op+(C) A Opiy (C) A=+ AN Opi,,, (C) + Orga—m A Opiy (C) A -+ A Dpi,, (€))
(4.1.7)
or
> 1
NeAren 05 52—1—k—s¢k+s+1
0<m<k
O1 A Ops O1 A Ops Op A 9ps(C) A Dps
0y + 21 MP(C)Jr 1 MP(C)Jr 0 p(f) p(C))
A (Ok—m N 9p«(C) A Opiy (Q) A+ AN Dpiy, (C) + Okg1—m A 9piy (C) A= -+ A Opi,, (€))-
(4.1.8)

where 1 < s < k. B o
Setting v = 1 or 2 and using that |®.(¢,z)| > |¢—z|?, we can control 9¢[Gar]n,s—1(¢, 2)
by finite sums of terms of the following type

O41—
/ _ k+1—m A (_)m7
NI i
where ©, is a monomial of length m in dp;, ;... ,_@pim,ﬁp*(g),gp*(o, 1<m<k+2.
Let o be a monomial in d(y,...,d¢n, dCq,...,dC,, A\, ..., \F some points in Are, which
are linearly independent as vectors in R**1. After integration in A, [0 Ad¢G | is dominated

by
|0 A O

J = = )
ISy |z, € A — 2f2n- 3t

(4.1.9)

with 1 <m <k + 2.

4.2 P estimates for the kernel

Next we shall estimate Ts_; f in LP spaces. To estimate the solution kernel, it suffices to
estimate the kernels K (¢, z) and J(C, z) defined in (2.2.12) and (4.1.9) respectively.
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Since all the kernels only have singularities when ( = z, we shall estimate the kernels
when U = {|¢ — z| < €} are sufficiently small. To estimate K ((,z), we use the following
change of coordinates ( — t such that t, = Im®(2,(,\"), v = 1,..,k, t = (t1, ..., tk, t').
This is possible since d¢®((, 2z, \)|¢=. = Opy»(¢) and Jpyv = —0pyv on w, it follows that
Ipar(¢) = 2(9pav — Opyv) = idIm® (¢, 2, \Y)|¢=.. Thus,

Ipav(C) = idIm®(C, 2, A”) + O(|¢ — 2|).
Thus, since M is generic, if AL, ..., \* are independent vectors in R¥*! and ¢ € w,

dc Im®(C, 2, A) A oo ATm®(C, 2, AF) |,
=%y (C) A oo A Bepar(€)
£ 0.

We get then

[0 AOpi (C) A -+ ANDps,,| <C Z o Ner dty] ¢ — 2™,

0<|L|<m

where L = (I1,...,[|z|) is a multi-index of length |L| < k contained in (v1,...,vx) and C
some constant.
Using these coordinates for K ((, z), it suffices to show that the functions

Ko(t) It < 1

= t2nF-1’

and, for 1 < s <k,

1
" (T PP

K(t) It <1

are of weak type %, where t = (t1,..., g, .oy ton—k)-

To estimates J, we note that the kernel is more singular at the boundary point. Thus
we assume that ¢ € bw and omit the others.

Let ¥ denote the set of the characteristic points, i.e., points where dp; A dpa... A Opg A
ANOp, = 0 on bw. We first assume that ¢ is not a characteristic point. We may assume
that U N'Y = () for sufficiently small U. We choose special coordinates for w N U.

Let t, = Im®((,2,\), v = 1,...,k + 1 as before and (v1,...,v;) be a multi-index
contained in (1,...,k+1). We set ¢, = Im®, = Im®,. For ¢ € bw, we have

Ocp. = idcIm,(C, 2) + O(C — =),
Thus, if ¢ € bw \ %,

dAm®(C, 2, 1) A o ATm®(C, 2, A7) A deIm®, (€, 2) |e-

_ ik+1agp>\”l (C) A A a(p)\"k (C) A 8Cp*(o
#0.
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Also, using dp1 A ... Adpp A dr # 0 on bw, we can choose p«(() as a coordinate function
near bw in U Nw such that t; = Im®((, z, \"), i = 1,..,k, txy1 = Im®P, = Im®, and
ti+2 = p«(¢). Under these coordinates, the kernel J((, z) is bounded by

1
K (t) = L 1<s<k+2.
O = T T+ P
Lemma 4.2.1. For 0 < A < oo, we have
dtq...dtoy_,

< 00

K(t) dty...dton_p, :/

- lt]<A 5 (|ts] + [¢]?) [e)?r—F—s—1

where 0 < s < k + 2. Moreover
[Ks(t)]p dty...dtop_1 < 00,
[t|<A

forp < %, and the function K4(t), |t| < A, is of weak type %

Proof. The first assertion can be verified easily by integrating over ¢; variables for i =
1,...,s. Let t/ = (ts41, .-, ton_x). We obtain

/ dtl---dth,k
t<a Ty (8] + [t[?)[t[>n—h=s—1

</ (log’t/‘)sdts_i_l...dtgn,k
— <A |t/|2nfkfsfl

< 0.
2n—(k—s)
In the same way, we get for 1 < p < P
dty...dtop_p
[Ks(t)]P dty...dto, _j :/
/|t<A ) " e T (] + [E2)P[e]Cr—F=s=Dp
< dtsiq...dton_
~ Jjr|<a |t/ |2s(p—1) || (2n—k—s—1)p
< 0.
Let S5 be the subset
Sy =A{te R2n—k [t < A, | Ks(t) > A}, A >0,

and let m be the Lebesgue measure in R?*~*. We shall show that there exists a constant
¢ > 0 such that

B 2n—(k—s)

s ¢\ 2n—(k—s)—-1
m(Sy) < X , for all A > 0.

Set t' = (ts41,--.,ton—_k), then we have

_ hds— 1 1 )
m(83) < m({t € RFE, PR < Sty < N ' L.}
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Consequently

N E— 2n—(k—s
i (X)2=FFs=T on—k—s—1 4, & 2717(15775)21
m(S3) < C/O Nops@n—kts—3)  \ )\ :

O

Lemma 4.2.2. The kernels Ry(C,2)and 0.Gu (¢, z) are of weak type 225 and ngﬁ
respectively on w uniformly in ¢ and in z.

Proof. From the previous discussion, the lemma follows from Lemma 4.2.1 near the non-
characteristic points when ¢ ¢ 3. Near the characteristic points, we can apply again the
Range-Siu’s trick and estimate the integrals J as a finite covering of the integrals discussed
in the previous lemma. This proves the lemma. U

To get Holder estimates for Ts 1 f, by the Hardy-Littlewood lemma, we need to control
the gradient V,Ts_1f. B
It follows from the definition of the kernel Rj; and ;G that V. Ry is controlled by

Ok:fm OkJrlfm
( + ) A O,
~/)\EA1. on q)nJrl m

where ©,, is a monomial of length m in 0p;,,...,0p;,,, and that szs,lf is bounded by

/ Ok—m Ok-i—l—m n Ok—l—l—m
AEA ey @Q*Q*k*S@k‘i’S‘i’a (I)Qfafkfs+lq)k+s+a q)gfafkaq)kJreraJrl

) A\ O,

where O,, is a monomial of length m in dp;,,...,0p;, ,0p«(C),0p«(¢), 1 <m < k+2.
Choosing the same coordinate system as before, we have to estimate, for 1 < s < k+3,
the integrals
g / dty...dto, g
T Jigea T (Iti] + d + [t]2)[t[n—h=s
dty...dto, i
<A (L (It + d + [e2) |2 b=o) 253

H, =
for each z € D; N Q, with d = dist(z,bD; N Q).
Using estimates similar to p.289 in [6], for 1 < s < k + 3, we get
J,<Cd 3% >0,
dn—(k—s)—1
H, <Cd —Tan+2

Consequently, from Holder’s inequality,

IV.Too 1 f| < C ||f|lsodist(z,bw) 275, >0
V-To 1 f] < C [|fll2n+2dist(z, bw) .

Thus by interpolation, we have the following estimates for smooth 9j-closed forms.
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Proposition 4.2.3. (LP estimates of Jj, for smooth forms.) Let M be a strictly g-concave
generic C R manifold in C™ and 0 € M. Let Q) be a strictly pseudoconvexr domain contain-
ing 0 in C" with C? boundary and w = M NQ. For any f € Cp (), 1 < p < oo and

n—k—q+1<s<n-k, Ts_lf defined by (4.1.4) satisfies the following estimates:
(1) | Tsor fI| 2042 < C||fllp2, for any small € > 0.

[2n+1 "€

(2) | Ts-1 fll < Cllfllre,  where L = and 1 < p < 2n +2.

1
p’ P 2n+2
(3) Hi_lfHLp/ <C|fllzrs, wherep=2n+2 andp <p' < cc.
(4) | Ts—1fllca— < C||fllrr, where2n+2<p< oo, a =12 and e > 0.

p
(5) ITs-1flly_. < Cllf [z, & > 0.
In order to prove Theorem 1.0.2, we need the following density lemma:

Lemma 4.2.4. Under the same assumption as in Theorem 1.0.1, the set of Oy-closed
forms in C, 4(©) is dense in the set of Op-closed Li’ ( ) forms in the L(n 8)( w) norm

where l <p<oo,n—k—q+1<s<n-—k.

Proof. Let a € LI() )(w) and Jya = 0 on w. We approximate o by C'' smooth (0, s)-forms

o € C( )(w) such that oy — « in L’(’ S)( w) and dyoy — 0 in L( +1)( w). This is possible

by Friedrichs’ Lemma. When s = n — k, the lemma is already proved since every form
is Op-closed. We assume that s < n — k. Since dpqy is a continuous dp-closed form on a
slightly larger set w; D w where | — oo and Njw; = w, we can apply Proposition 4.2.3 to
Opay on wy (sincen —k —q+1<s<n—k,) to find (0,s)-forms v; such that

{gbvl = gbal on wy,

loillze () < eollPpcullrr

(n,s) (n, s+l)(wl)

where ¢, is a constant independent of /. This is true since the constant proved in Propo-
sition 4.2.3 is independent of small perturbation of w. We set

/
ap = o — vy,
then o € C,, 5 (@). It follows that o is dp-closed and o — o in Lzé)n,s) (w). This proves
the lemma. O

Theorem 1.0.2 can be proved for any dj-closed a with LP(w) coefficients using an
approximation argument.

Using Lemma 4.2.4, there exists a sequence of 9j-closed forms o, € Cln,s)(W) such
that o), — « in Ll()n,s) (w). We can apply Proposition 4.2.3 to o/, to find (0,s — 1)-form
Uy, such that

Optlyy, = ), on W,

and

/
ol < colnlzg, o
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Thus, some subsequence of u,, must converge weakly to some (0, s — 1)-form u such that
u satisfies Opu = o on w and

Assertions (1), (2), (3) of Theorem 1.0.2 are proved. In order to prove (4) and (5) of
Theorem 1.0.2, the above argument cannot be used. Going back to the definition of the

operators Ty, it is easy to prove that for any f € C}L,S(E)

f=0Tsif + Tubpf + (—1) okt g, : Df (O A Crtlns1(C,2).  (4.2.1)
Cw

By Friedrichs’ lemma, the relation (4.2.1) extends to any f € Ll()n 9 (w) such that 9 f €

L?n . H)(w), p > 2n + 2, since all the kernels involves in the formula are of weak type at
least 321? Consequently if f € Li’n’s)(w), p > 2n + 2, satisfies O, f = 0, we still have

f= 0yTs_1 f and the estimates can be done as in Proposition 4.2.3.

Corollary 1.0.3 follows easily. The proof of Corollary 1.0.3 is exactly the same as in
Shaw [19] for the strongly pseudoconvex case. As usual, the Hodge decomposition and the
existence of the 9p-Neumann operators given in Corollary 1.0.4 can be deduced from the
classical Hilbert space theory.
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