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Introduction

This paper (1 2 3) is the second part of [2]. We want to study microlocally the
solutions of a self-adjoint system of semi-classical pseudo-differential operators
using normal forms. In our paper [2], we studied the case where the principal
symbol (called the dispersion matrix) is a real symmetric matrix. We will consider
here the case where the dispersion matrix Hclass is complex Hermitian. There are
several cases to consider depending on the rank of the restriction of the symplectic
form to the codimension 4 singular manifold Σ:

1. The symplectic case

2. The elliptic corank 2 case

3. The hyperbolic corank 2 case

4. The case of one degree of freedom with some parameters (avoided crossings)
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Our goal is to get local normal forms for these systems both for the principal sym-
bol (classical normal form) and for the pseudo-differential system (semi-classical
normal form). The classical normal form uses canonical transformations and
gauge transforms while the semi-classical normal form uses quantized version
of the previous (Fourier integral operators and pseudo-differential gauge trans-
forms). The semi-classical normal form can be used in order to describe the
solutions of the system near the singular manifold (Landau-Zener type formulae,
propagation of localized states, semi-classical measures). The reader is supposed
to have already a knowledge of [2]. Some arguments work the same way and are
only sketched.

1 The geometric setting

We will consider a d × d Hermitian system of pseudo-differential equations

Ĥ ~U = 0

in Rn near some point z0 ∈ T ?Rn (with the symplectic form Ω =
∑n

j=1 dξj ∧ dxj)
where the kernel of the principal symbol Hclass is of dimension 2. We will denote
by p = det(Hclass); the manifold {p = 0} (more precisely the principal ideal C∞.p)
is the dispersion relation. We can reduce the system near the point z0 to a 2× 2
system for which the principal symbol vanishes at the point z0. We will assume
that

(?) the mapping z → Hclass(z) is transversal at z0 to W2 = {A| dimker A =
2} ⊂ Herm(Cd).

The inverse image H−1
class(W2) is then a codimension 4 manifold Σ of the phase

space T ?Rn, the singular locus; we have

Σ = {z ∈ T ?Rn | dim ker Hclass(z) = 2} .

We will study 4 cases:

1. The symplectic case where Σ is a symplectic submanifold of T ?Rn.
It implies (see Lemma 1) that the linearization M of Xp at z0

admits 2 pairs of non vanishing eigenvalues ±λ, ± iω with λ >
0, ω > 0.

2. The hyperbolic corank 2 case where Ω|Σ is of corank 2 and M
admits 1 pair of real nonzero eigenvalues ±λ with λ > 0.

3. The elliptic corank 2 case where Ω|Σ is of corank 2 and M admits
1 pair of imaginary nonzero eigenvalues ±iω with ω > 0.

4. The case of one degree of freedom with parameters: in that case,
it is needed to have parameters in order to get the transversality
assumption (?).

2



The following result, used in 1., is easy to check:

Lemma 1 Let Q be a quadratic form on T ?R2 with signature (+,−,−,−). The
Hamiltonian linear vector field XQ associated to Q admits (±λ,±iω) with λ >
0, ω > 0 as eigenvalues.

If d = 2 and

Hclass =

(
p1 + p2 p3 + ip4

p3 − ip4 p1 − p2

)
,

we define:
ωi,j = {pi, pj} ,

Π = ω1,2ω3,4 − ω1,3ω2,4 + ω1,4ω2,3 (1)

(Π is the Pfaffian of the antisymmetric matrix (ωi,j)) and

δ =
1

8
Tr(M2) = ω2

1,2 + ω2
1,3 + ω2

1,4 − ω2
2,3 − ω2

2,4 − ω2
3,4 .

Proposition 1 We get the following classification:

1. The symplectic case corresponds to Π(z0) 6= 0

2. The hyperbolic corank 2 case corresponds to the vanishing of Π on Σ near
z0 and δ(z0) > 0

3. The elliptic corank 2 case corresponds to the vanishing of Π on Σ near z0

and δ(z0) < 0.

Proof.–

A basis of the image of M is the set of Hamiltonian vector fields
Xpj

, j = 1, · · · , 4. The restriction of Ω to ImM admits the matrix
(ωi,j) in this basis. We have det(ωi,j) = Π2. This gives the first
condition. The map M is given by

M = 2(dp1 ⊗Xp1
−

4∑

j=2

dpj ⊗ Xpj
)

so that the matrix of the restriction of M to ImM is 2(εi,jωi,j) with
ε1,j = 1 and εi,j = −1 if i ≥ 2. In the corank 2 case, the square of
any of the nonzero eigenvalues of M is then 4δ(z0).

�

Examples of these cases have been studied in various papers:

1. The symplectic case in [7]: it is the case where E.B 6= 0 with the notations
of that paper.
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2. The hyperbolic corank 2 in Born-Oppenheimer approximation, [11], [9] and
[8]. In [7], it is the case where E.B = 0 and |E| > |B|.

3. The case of one degree of freedom with parameters is studied in [3] (adia-
batic limit, hyperbolic case) (see also [12] and [15]) and in [5] and [6] (elliptic
case: band crossings).

2 The general strategy

We will proceed for each case along the same lines:

1. Reduction to a 2 × 2 system. This part is always the same and is recalled
in section 3

2. Finding a normal form for the dispersion relation: this part works by

• Finding a “Birkhoff normal form” along the singular manifold Σ

• Using Sternberg’s Theorem in order to get a normal form for the hy-
perbolic part

3. Using a general result stated in section 4 , we pass, using a gauge trans-
form J , from a normal for the dispersion relation to a normal form for the
dispersion matrix

4. In order to get the semi-classical normal form, we need to solve the following
type of homological equation

{S, H0} + C?H0 + H0C = R

where H0 is the classical normal form, R is given, S is an unknown real
valued function and C an unknown matrix valued function. Fortunately,
this equation is the linearization of the classical normal form, so that we
can solve it for free!

The realization of this program is more difficult than in [2], especially in the
corank 2 case which is not structurally stable.

3 Reduction to a 2 × 2 system

It is well known (see [1] or [2]) that near a point z0 ∈ T ?Rn such that

dim ker Hclass(z0) = 2 ,

we can split microlocally the system into a direct sum of a (d−2)×(d−2) elliptic
block and a 2 × 2 block whose principal symbol vanishes at z0.

4



The dispersion relations of the initial system and the small one are the same.
In what follows, we will always assume that this splitting has been done and
therefore we have a 2 × 2 system to study.

For convenience, the transversality hypothesis (?) has been formulated in
section 1 for the big system.

4 A lemma about gauge transforms

The following Lemma will be used several times:

Lemma 2 Let H : R4
X × RN

λ → Herm(2) be a smooth map such that

det(H(X, λ)) = X1X2 − (X2
3 + X2

4 ) .

There exist uniquely defined ε = ±1, α = ±1 and a smooth germ of map J :
R4 × RN → GL(2, C) such that

J?H(X, λ)J =

(
αX1 X3 + iεX4

X3 − iεX4 αX2

)

The proof follows exactly the same lines as the proof of Lemma 5 in [2].

5 The symplectic case

5.1 The normal form for the dispersion relation

Proposition 2 Assuming (?) and (1.) (we are in the symplectic case and both
pairs of eigenvalues do not vanish), near any point z0 of the singular set Σ, there
exists a canonical transformation χ and two invertible positive (> 0) germs e(z)
and b(τ, z′) so that:

det(Hclass) ◦ χ = e(z)
(
x1ξ1 − b2(x2

2 + ξ2
2 , z

′)(x2
2 + ξ2

2)
)

+ OY (∞)

where Y = {x2 = ξ2 = 0}, z = (x1, ξ1, x2, ξ2, z
′ = (x′, ξ′)) are canonical coordi-

nates near 0 ∈ T ?Rn.

Proof.–

We start using the same kind of arguments as in the proof of Theorem
2 in [2]. We get then a (formal) Birkhoff normal form along the
singular set Σ of the form:

A(x1ξ1, x
2
2 + ξ2

2 , z
′) + OΣ(∞) ,
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with A a smooth function which satisfies

A(τ1, τ2, z
′) = λ(z′)τ1 −

ω(z′)

2
τ2 + O(τ 2

1 + τ 2
2 ) .

There is a minus sign in front of the τ2 term because it is the only way
to get the appropriate signature (+,−,−,−) for p′′ along Σ. Using
Taylor formula, we can rewrite A as follows

A(τ1, τ2, z
′) = F (τ1, τ2, z

′)(τ1 − τ2b
2(τ2, z

′)) .

Using Sternberg’s linearization as in [2], we get the result. We use
the following version of Sternberg’s Theorem whose proof can be given
using the same arguments as in Nelson’s book [14]:
Theorem (Sternberg) Let X be a smooth vector field on T ?Rn and
Σ = {x1 = ξ1 = x2 = ξ2 = 0}. Let us assume that X = X0 + X1 with
X1 is compactly supported and X1 = OΣ(∞). We assume

X0 = x1∂x1
− ξ1∂ξ1 + Y0(x2, ξ2, z

′) ,

with Y0 tangent to all codimension 2 subspaces x1 = a, ξ1 = b. There
exists a diffeomorphism χ which is tangent of order ∞ to the identity
along Σ such that

χ?(X0 + X1) = X0 + OY (∞) .

Moreover, if X and X0 are Hamiltonian vector fields, χ can be
choosen to be symplectic.

�

Remark 1 The normal form is convergent in the case of 2 degrees of freedom
and analytic data. This is implied by a result of Moser [13].

5.2 The gauge transform

Using Lemma 2 with X1 = x1, X2 = ξ1, X3 = bx2, X4 = bξ2, we get a gauge
transform. The value of α can be changed to +1 using the canonical transforma-
tion (x1, ξ1) → (−x1,−ξ1).

Both signs of ε in the classical normal form give non equivalent Hamiltonians.
Using the notations of Equation (1) in Section 1, we have:

ε = sign(Π(z0)) .

So ε = 1 if the orientations of the normal bundle to Σ given by dp1 ∧ · · · ∧ dp4

and Ω ∧ Ω are the same and ε = −1 if they are not the same. It is clear that ε
is invariant by gauge transform, the group GL(2, C) being connected.
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Remark 2 We can see that in a more topological way: let us denote by λ− ≤ λ+

the eigenvalues close to 0 of the dispersion matrix. The open cones C± ⊂ p−1(0)
which correspond respectively to λ− = 0 < λ+ (λ− < λ+ = 0) are well defined near
Σ: Morse indices differs by 1 on those cones. Moreover, both cones are oriented by
p > 0. The spaces {z′ = constant} are co-oriented by the z ′ symplectic structure,
hence oriented. It follows that the basis of the cone C+ ∩ {z′ = constant} (a 2-
sphere) is a well defined homology class of the germ of C+. Hence the polarization
bundle have a well defined first Chern class on C+ and both signes in the normal
form gives both signes in the Chern class.

5.3 The classical normal form

Using the previous results, we get:

Theorem 1 We assume that Hclass satisfies (?) and 1. (the symplectic case).
Then there exists a canonical transformation χ and a gauge transform J ∈
GL(2, C) such that:

J? (Hclass ◦ χ) J := Hsymp + OY (∞)

where

Hsymp =

(
ξ1 b(x2

2 + ξ2
2, z

′)(x2 ± iξ2)
b(x2

2 + ξ2
2 , z

′)(x2 ∓ iξ2) x1

)

and b = b(x2
2 + ξ2

2 , z
′) > 0 is smooth.

5.4 The semi-classical normal form

Theorem 2 We assume that Hclass satisfies (?) and 1. (the symplectic case).
Using FIO and gauge transform, we get the following microlocal normal form:

Ĥ =

(
ξ̂1 B̂a

a?B̂? x1

)
+ R

where

• B̂ is an elliptic ΨDO whose total symbol is > 0 and depends only on x2
2 +ξ2

2

and z′

• a = ̂x2 ± iξ2

• The full symbol of R is flat on Y

Proof.–
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Using the same method as in the proof of Theorem 3 in [2] (Lemma
4), we need to solve the following homological equation:

{S, Hsymp} + C?Hsymp + HsympC = R

where R is given and S (real valued) and C (matrix valued) are un-
known functions. This can be done directly by solving the normal
form problem for Hsymp + εR which satisfy our basic hypothesis ((?)
and 2.) for all small ε (this case is structurally stable) and taking the
first order term in ε.

�

5.5 Microlocal solutions

We will study the + case of the normal form. The − case is similar. We will see
how to extend the method of [7] in order to solve the local model. We define

u =

∞∑

j=0

aj(x1, x
′)ϕj(x2), v =

∞∑

j=0

bj(x1, x
′)ϕj(x2)

where ϕj is the usual L2(R, dx2) orthonormal basis such that ϕj = cjα
jϕ0 with

cj > 0, ϕ0 = c0exp(−x2
2/2h) and α = −h∂x2

+ x2 is the creation operator.

We get the following systems, where B̂(j) is the pseudo-differential operator
in the x′ variable obtained by Weyl-quantizing the (> 0) symbol of B at the value
x2

2 + ξ2
2 = (2j + 1)h:

(
h
i
∂x1

√
2(j + 1)hB̂(j)√

2(j + 1)hB̂(j) x1

)(
aj

bj+1

)
= 0

and b0 = 0.

6 The corank 2 case

6.1 Singular perturbations and homological equations

6.1.1 Introduction

The corank 2 case is more difficult, because it is not structurally stable: a generic
perturbation of the dispersion matrix will be in the symplectic case. In the
subsection 6.1.3, we will find the space of infinitesimal deformations of the corank
2 case. In the subsection 6.1.4, we will look at a Birkhoff normal form for the
Taylor expansion along Σ of the dispersion relation. In the subsection 6.1.5 we
will look at the homological equation needed for finding the semi-classical normal
form.
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6.1.2 Singular deformations of Σ

Definition 1 Let Σ = {x1 = ξ1 = x2 = x3 = 0} ⊂ (T ?Rn, Ω). A smooth
deformation Σε of Σ is called singular if the corank of Ω|Σε

is constant (≡ 2).
A deformation (F, G, A, B) given by

Σε = {x1 = εF (σ), ξ1 = εG(σ), x2 = εA(σ), x3 = εB(σ) | σ ∈ Σ}

is called infinitesimally singular if it can be modified by O(ε2) terms so that the
new deformation is singular.

Lemma 3 The space of infinitesimally singular deformations is the space

(F, G,
∂T

∂ξ2
,
∂T

∂ξ3
)

where F, G, T are arbitrary functions on Σ.

Proof.–

Let us start with a singular deformation whose infinitesimal defor-
mation is given by (F, G, A, B). We see that the pull-back of Ω|Σε

on
Σ is given by:

Ωε = dξ′ ∧ dx′ − ε(dA ∧ dξ2 + dB ∧ dξ3) + O(ε2) .

We have

Ωn−1
ε = −(n − 1)ε(dξ ′ ∧ dx′)n−2 ∧ (dA ∧ dξ2 + dB ∧ dξ3) + O(ε2)

whose vanishing implies there exists T such that

A =
∂T

∂ξ2
, B =

∂T

∂ξ3
.

Conversely, let us start with the infinitesimal deformation given
by (F, G, T ). Let S = T + ξ1F − x1G. Let χε the flow at time ε
of the Hamiltonian vector field XS generated by S. The deformation
Σε = χε(Σ) is singular. It is easy to check that the infinitesimal
deformation associated to Σε is (F, G, ∂T

∂ξ2
, ∂T

∂ξ3
).

�
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6.1.3 Singular perturbations of the dispersion matrix

Let us denote by Hhyp (resp. Hell) some dispersion matrices given by

Hhyp =

(
ξ1 x2 + ix3

x2 − ix3 x1

)
+ OΣ(2)

(resp. Hell =

(
x2 x1 + iξ1

x1 − iξ1 x3

)
+ OΣ(2) ).

Definition 2 • We say that a smooth deformation

Hε = Hhyp (resp. Hell) + εK0 + O(ε2) (2)

is singular if it satisfies the hypothesis 2 (resp. 3) of section 1 for ε small
enough.

• An infinitesimal deformation K0 is singular if it can be embedded into a
smooth singular deformation

Lemma 4 • An infinitesimal deformation K0 is singular if and only if there
exists T : Σ → R so that

((K0)1,2)|Σ =
∂T

∂ξ2
+ i

∂T

∂ξ3
.

• The same result holds in the elliptic case by replacing the previous condition
by: {

((K0)1,1)|Σ = ∂T
∂ξ2

((K0)2,2)|Σ = ∂T
∂ξ3

Proof.–

Lemma 4 is an easy consequence of Lemma 3.

�

6.1.4 Homological equation to high order

We will give a Lemma in the hyperbolic case, the elliptic case works similarly:

Lemma 5 Let HN be the space of function homogeneous of degree N w.r. to
(x1, ξ1, x2, x3) and p0 = x1ξ1 − (x2

2 + x2
3). We can solve the following equation:

{U + W, p0} + V p0 + xN
3 τ(σ) = ρ + OΣ(N + 1) (3)

where ρ ∈ HN is given. The unknowns functions are:
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• U ∈ HN

• W ∈ HN−1 an homogeneous polynomial of degree N−1 w.r. to the variables
(x2, x3) with coefficients in C∞(Σ)

• V ∈ HN−2

• τ ∈ C∞(Σ).

Proof.–

The proof is very close to the proof of Lemma 2 in [2]. We decompose
everything into sums of monomial terms in (x2, x3). At the last step,
we fail to be able to solve unless we add a term xN

3 τ(σ) to ρ. A bit
more specifically, we decompose every function F into monomial w.r.
to (x2, x3):

F (x1, ξ1, x2, ξ2, x3, ξ3, z
′) =

∑
Fi,j(x1, ξ1, ξ2, ξ3, z

′)xi
2x

j
3

We then decompose equation (3) according to the powers of xi
2x

j
3 into

a system of equations (Ei,j), i + j ≤ N . We first solve equations
(Ei,j), i + j ≤ N − 1 recursively by increasing the values of i + j:

(Ei,j) {Ui,j, x1ξ1} = −Vi,jx1ξ1 + ρi,j + Vi−2,j + Vi,j−2

by choosing Vi,j so that there is no resonant term (powers of x1ξ1) in
the righthandside.

Then we are left with the following system:





(E0,N) −2
∂W0,N−1

∂ξ3
+ τ = ρ0,N + V0,N−2

(E1,N−1) −2
∂W0,N−1

∂ξ2
− 2

∂W1,N−2

∂ξ3
= ρ1,N−1 + V1,N−3

· · · · · · = · · ·

(EN,0) −2
∂WN−1,0

∂ξ2
= ρN,0 + VN−2,0

All equations involve only functions on Σ. We solve them recursively
from the last. The first one defines τ .

�

6.1.5 Matrix homological equation

Lemma 6 Let us consider the homological equation

{S, H0} + C?H0 + H0C = R + T (4)

where R (self-adjoint) is given and S (real-valued), B, T are the unknowns.
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• In the hyperbolic case H0 = Hhyp, equation (4) can be solved with

T = i

(
0 t(x3, ξ2, ξ3, z

′)
−t(x3, ξ2, ξ3, z

′) 0

)

with t real valued.

• In the elliptic case H0 = Hell, equation (4) can be solved with

T =

(
0 0
0 t(x3, ξ2, ξ3, z

′)

)

with t real valued.

Proof.–

It is enough to choose T so that R + T is an infinitesimal singular
deformation and to take the term in ε1 in the classical normal form
result for a singular deformation Hhyp + ε(R + T ) + O(ε2).

�

6.2 The normal form for the dispersion relation

Proposition 3 Assuming (?) and (2.) or (3.) (we are in the case where one
pair of eigenvalues does not vanish), near any point z0 of the singular set Σ, there
exists a canonical transformation χ, a smooth function a(x3, σ) and an invertible
positive germ e so that:

• In the hyperbolic case (2.):

det(Hclass) ◦ χ = e(z)
(
x1ξ1 −

(
x2

2 + x2
3(1 + x3a(x3, σ))2

))
,

where z = (x1, ξ1, x2, ξ2, x3, ξ3, z
′ = (x′, ξ′)) are canonical coordinates near

0 ∈ T ?Rn and σ ∈ Σ.

• In the elliptic case (3.) :

det(Hclass) ◦ χ = e(z)
(
x2x3 (1 + x3a(x3, σ)) − (x2

1 + ξ2
1)
)

+ OΣ(∞) .

The proof follows exactly the same lines as in [2].
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6.3 The classical normal form

Using the same tools as before and [2], we get

Theorem 3 Assuming (?) and (2.) or (3.) (we are in the case where one pair
of eigenvalues does not vanish), near any point z0 of the singular set Σ, there
exists a canonical transformation χ, a GL(2, C) valued gauge transform J(z) and
a smooth real valued function a(x3, σ) so that:

• In the hyperbolic case (2.):

J? (Hclass ◦ χ) J =

(
ξ1 x2 + ix3(1 + x3a(x3, σ))

x2 − ix3(1 + x3a(x3, σ)) x1

)
(= Hhyp)

where z = (x1, ξ1, x2, ξ2, x3, ξ3, z
′ = (x′, ξ′)) are canonical coordinates near

0 ∈ T ?Rn.

• In the elliptic case (3.) :

J? (Hclass ◦ χ) J =

(
x2 x1 + iξ1

x1 − iξ1 x3(1 + x3a(x3, σ))

)
+ OΣ(∞) (= Hell) .

6.4 The semi-classical normal form

From the previous subsections, we deduce the following semi-classical normal
forms

Theorem 4 • In the hyperbolic case (2.):
(

h
i
∂x1

x2 + ix3(1 + x3a(x3, σ)) + ihγ
x2 − ix3(1 + x3a(x3, σ)) − ihγ x1

)

where γ is a self-adjoint pseudo-differential operator of order 0 whose Weyl-
symbol is independent of (x1, ξ1, x2).

• In the elliptic case (3.) :
(

x2 x1 + h∂x1

x1 − h∂x1
x3(1 + x3a(x3, σ)) + hγ

)
+ OΣ(∞)

where γ is a self-adjoint pseudo-differential operator of order 0 whose Weyl-
symbol is independent of (x1, ξ1, x2).

The microlocal solutions of the previous models can be studied following the
same lines as in [2]. The main property is that they look like:

• (
h
i

∂
∂x1

Q

Q? x1

)(
u
v

)
= 0

where Q commutes with x1 and ∂
∂x1

in the hyperbolic case
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• (
Q x1 + h ∂

∂x1

x1 − h ∂
∂x1

R

)(
u
v

)
= 0

where Q and R commute with x1 and ∂
∂x1

in the elliptic case.

7 One dimensional systems with parameters

7.1 Normal forms

In this section we will consider the case of a system

Ĥ(λ)~U = 0

where Ĥ(λ) is a d × d self-adjoint system in one variable x1 and depending
smoothly of an external parameter λ ∈ RN , N ≥ 2. Usually λ contains some
spectral parameter.

We will assume that

• (x1, ξ1, λ) → Hclass(x1, ξ1, λ) satisfies the transversality hypothesis (?) of
section 1 at (0, 0, λ0).

• (x1, ξ1) → det(Hclass(x1, ξ1, λ0)) admits at the origine a non degenerate
critical point. We have two cases the elliptic one and the hyperbolic one.

The hyperbolic case is strongly related to [3] (see also [15]) while the elliptic
normal form has been introduced as a model in [5] and [6]. Using the previous
methods, one can show the following

Theorem 5 • Elliptic case: near (0, 0, λ0), one can reduce the system using
a λ-dependent gauge transform and FIO’s to

(
ah(λ) x1 + iξ̂1

x1 − iξ̂1 bh(λ)

)
~U = 0

• Hyperbolic case: near (0, 0, λ0), one can reduce the system using λ-dependent
gauge transform and FIO’s to

(
ξ̂1 ah(λ)

āh(λ) x1

)
~U = 0

The proof is as follows: first apply the isochoric Morse lemma [4] to the
dispersion relation. The gauge transform is obtained from Lemma 2. We can
then solve the homological equation by linearization of the classical normal from.
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7.2 Solutions of the elliptic normal form

For completness, we reproduce here the solution of the normal form in the elliptic
case which is studied in [5] and [6].

We want to solve near (0, 0) ∈ T ?R the folllowing system:

{
ahu + (x1 + h∂x1

)v = 0
(x1 − h∂x1

)u + bhv = 0

We get, using the notations of subsection 5.5:

• If ah = 0, bh 6= 0, no admissible solution

• If bh = 0, u = 0, v = cϕ0

• If ahbh 6= 0,

– If ahbh 6= 2(n + 1)h, n ≥ 0, n ∈ N, no admissible solution

– If ahbh = 2(n + 1)h, n ≥ 0, n ∈ N,

u = cϕn, v = −
c
√

2(n + 1)h

bh

ϕn+1

Let us assume that N = 2 and λ = (E, t) where E is a spectral parameter
and λ0 = (E0, t0). We have ah = fh(E, t), bh = gh(E, t) where (E, t) → (ah, bh)
is a diffeomorphism. We assume ∂fh

∂E

∂gh

∂E
> 0. Then we have a macroscopic (h-

independant) gap in the spectrum for t < t0 as well as for t > t0, but we get that
one eigenvalue is moving from one band to the next one as t passes through t0
(see Figure 1).

7.3 Hyperbolic normal form and avoided crossings

The hyperbolic case allows to recover the results of [3] (see also [12] and [15]) on
the adiabatic limit. We consider a system:

h

i

dX

dt
= A(λ, t)X

where A(λ, t) is an Hermitian matrix and A(λ0, t0) admits an eigenvalue λ0 of
multiplicity 2. The previous results apply near the point (t0, λ0) of the phase
space. We can recover that way a Landau-Zener formula.
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t

E

ah = 0

bh = 0

Figure 1: one eigenvalue is moving from the upper band to the lower one
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