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Abstract

12 Tn the Born-Oppenheimer approximation context, we study the propagation
of Gaussian wave packets through the simplest type of eigenvalue avoided cross-
ings of an electronic Hamiltonian C* in the nuclear position variable. It yields a
two-parameter problem: the mass ratio €* between electrons and nuclei and the
minimum gap ¢ between the two eigenvalues. We prove that, up to first order, the
Landau-Zener formula correctly predicts the transition probability from a level to
another when the wave packet propagates through the avoided crossing in the two
different regimes: ¢ being either asymptotically smaller or greater than ¢ when
both go to 0.

1 Introduction

The Hamiltonian for a molecular system with K nuclei and N — K electrons has the

form
K 4 N

€ 1
HE == g = 2 5B+ X Viwi = 2) W
j=1 j=K+1 1<

where z; € R denotes the position of the j™ particle, the mass of the 5™ nucleus is
e~ M; (for 1 < j < K), the mass of the j™ electron is m; (for K +1 < j < N), and V;;
is the potential between particles ¢ and j. The role of the parameter € is to make the
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reduced mass M; of each nucleus be of a comparable order of magnitude with the mass
m; of any electron. For convenience we assume M; =1 for 1 < j < K. Set d = K[ and
let £ = (z1,...,74) € R? denote the nuclear configuration vector. We decompose H (¢)
as

H(e) = —%Aw + h(z) . (2)

This defines the electronic Hamiltonian hA(x) that depends parametrically on z. The
time-dependent Schrodinger equation that we study is

50

= Hie (3)
for ¢t in a fixed interval. The factor €2 on the left-hand side of this equation indicates
a particular choice of time scaling. Other choices could be made, but this choice is the
“distinguished limit” [1] that produces the most interesting leading order solutions as
all terms in the equation play significant roles.

Nowhere in this paper do we require the Hamiltonian to have the particular form

(1). We only require the Hamiltonian to be of the form (2). The mechanism behind the
Born-Oppenheimer approximation is the following :

e the electrons remain approximately in a quantum mechanical bound state depend-
ing on the position of the nuclei which move relatively slowly because of their large
masses,

e the electronic energy level plays the role of an effective potential for the semi-
classical dynamics of the nuclei.

Approximations of solutions of (3) with errors of order n in £ can be found in [6]
and [7] for hamiltonians of regularity C*™2. When h(z) is analytic, exponentially precise
results have been obtained in [13]. However, the validity of these approximations is
dependent upon the assumption that the electron energy level of interest is well isolated
from the rest of the spectrum of the electronic Hamiltonian.

In the case of the propagation of wave packets through generic crossings of two
different electron energy levels, [9] is a good reference. In the C* case, similar results
has been recently obtained in a microlocal context in [2] and from a Wigner measure
point of view in [4] (and references therein).

In some realistic systems, h(z) may have two electron energy levels that approach
one another with a minimum gap of size § that is of a comparable order of magnitude
with the relevant value of € but without actual crossing. For this reason, we generalize
the form (2) to allow the electronic Hamiltonian to depend on § as well as z. We study
solutions to equation o

-2
ety = H(b, &)y, (4)
with Hamiltonians of the form

4
H(6,¢) = —%Am + h(z,6) on LA(R:H)



where H is a separable Hilbert space and with the assumption that h(x, d) has an avoided

crossing according to the following definition with an extra generic condition (see type
I below).

Definition 1 h(z,9) is a family of self-adjoint operators with fized domain D in any
separable Hilbert space H, uniformly bounded from below and whose resolvent is strongly
C* for (x,6) € Qx| — 289,28 where Q is an open subset of R?. Suppose h(z,d) has
two eigenvalues E 4(z,8) and Eg(z,d) that depend continuously on (x,0) and are uni-
formly isolated from the rest of the spectrum of h(x,0). Moreover, assume the set
[:={z € Q/E4(z,0) = Eg(z,0)} is either a single point or a non-empty connected
proper submanifold of Q but that for all x € Q, E4(x,0) # Eg(x,d) when § # 0. In such
a situation, we say that h(x,6) has an avoided crossing on T .

Remarks

1. Realistic molecules have Coulomb potentials which give rise to electronic Hamilto-
nians that do not satisfy the smoothness assumptions of this definition. However,
one should be able to accomodate Coulomb potentials by using the regularization
techniques of [7] and [17].

2. H(4,¢) is naturally defined on the domain D := C?(Q; H)NF(Q; D) of functions C*
on € with compact support and values in D, h(z, d) acting on each fiber. If h(x, 9)
is supposed to be uniformly bounded from below, H(6,¢) becomes a symmetric
operator, bounded from below, then Friedrichs extension theorem (cf [16]) gives
us the existence of a self-adjoint extension to H(d,¢) because D is dense in the
Hilbert space L?(2;H). In what follows, we work with any self-adjoint extension

also denoted by H (9, ¢).

3. In our case, the set €2 in the definition plays no interesting role, so we henceforth
assume §) = R? and drop any further reference to it. The wave packets we con-
struct are supported on sets in which the nuclear coordinates are restricted to a
neighbourhood of a compact classical nuclear orbit. Our techniques apply to any
) and any classical path, provided the time interval is restricted to keep the nuclei
inside €. In realistic systems, {2 may be a proper subset of R?¢, since electron
energy levels may cross one another or be absorbed into the continuous spectrum
as the nuclei move.

Let P(x,0) be the spectral projector of h(z, ) associated with E 4(z, ) and Eg(z,0),
and denote hj(z,6) = h(z,0)P(z,0).

In type I avoided crossing (cf [11] for a classification of non-degenerate minimal
multiplicity avoided crossings), I' is of codimension 1 and both eigenvalues are simple.
After a convenient change of variables and a reduction process (mentioned in [12] and
described in section 8.1 for the adiabatic similar case), we know that there exists an
orthonormal basis {1 (z, ), %2(z,8)} of P(x,8)H, C* on R% x| — 24y, 20¢[ in which the
restriction of hy(x,d) to P(z,d)H takes the following form

h(z,6) = hi(z,9)+ E(z,0)

_ b(x, 6) c(z,0) + id(z, 8) X
B ( c(z,0) — id(z, 0) —b(z, 6) ) + E(z,6) . (5)
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Here E(z,6) = {Tr(h(z,0)), b(z,6), c(z,0) and d(z, §) are real-valued functions, C* on
R4 x] — 24y, 28q[, with asymptotics

b(z,8) = rxy+O(||z]|* + 6?)

c(z,8) = ré+O(||z]?*+ %) (6)
d(x,8) = O(||z]]* + %)

E(z,0) = 0(Q1)

where 7 > 0 and the O are to be understood in the limit ||z|| and ¢ going to 0.

In practice, type I avoided crossings occur for diatomic molecules, where the electron
energy levels depend only on the distance between the nuclei because of rotational
symmetry.

Our main result is the determination of what happens when a standard time-depen-
dent Born-Oppenheimer molecular wave packet propagates through those avoided cross-
ing if the gap size § is either asymptotically smaller or greater than £. Our analysis,
together with the results of [12] where the critical case 6 = ¢ is considered, allow to
get a complete picture of the dynamics through those avoided crossings for all ranges
of (§,€) — 0 with a regularity of order C* only on the electronic Hamiltonian h(z,d).
Using matched asymptotic expansions already used in [12], we compute approximate
solutions to the molecular Schrodinger equation. We observe that, to leading order in ¢
and e, the Landau-Zener formula (see [15]) correctly describes the probabilities for the
system to remain in the original electronic level or to make a transition to the other
electronic level involved in the avoided crossing (Theorem 1 in Section 7). To apply the
Landau-Zener formula in this case, one treats the nuclei as classical point particles to
obtain a time-dependent Hamiltonian for the electrons. More precisely, suppose there
is a generic type I avoided crossing at nuclear configuration z = 0. In an appropriate
coordinate system, the gap between the electron energy levels is

2ry/x? + 62 + O(||=||* + 6%) ,

with » > 0. Suppose that a semi-classical nuclear wave packet passes through the
avoided crossing with velocity u, whose first component is p; # 0. Then the Landau-
Zener formula predicts that the probability of remaining in the same electronic state is
1 — e ™/(1e) and the probability of making a transition to the other electronic level
involved in the avoided crossing is e~ ™0*/(me®)  This formula yields a transition proba-
bility, at leading order, 1 (respectively 0) when §/¢ — 0 (respectively +oco). Mimicking
our analysis in the Born-Oppenheimer context, we also get results for the following sim-
pler problem in the adiabatic context: we want to solve the time-dependent Schrodinger
equation

0
i52a¢ = H(t,6)¢ (7)

where H(t,0) is a family of self-adjoint operators with fixed domain D (in any separable
Hilbert space H) and whose resolvent is strongly C* in (¢,0) €]ty — 2T + to + 2T [x] —
209,200[. We assume that H(t,d) displays the simplest case of avoided crossing at t
(see section 8.1 for details) and establish the validity of the Landau-Zener formula to



leading order for the two same regimes ¢ either asymptotically smaller or greater than e
(the critical case where ¢ = € can be found in [8] for H(t,J) real symmetric). The result
is stated in Theorem 2 of Section 8.

In a C* context, similar microlocal results based on pseudodifferential techniques
can be found in [3].

The organization of the paper is as follows. Section 2 gives usual tools for construct-
ing the leading order Born-Oppenheimer approximation with ¢ fixed (the eigenvalues do
not cross, are simple and isolated). Section 3 deals with the asymptotics of the classical
quantities of the problem. Sections 4 and 5 give the different Ansétze used respectively
far from and close to the crossing surface I'. Section 6 makes the matching of those dif-
ferent Ansitze in an overlapping region, and Section 7 states the main result. Finally,
Section 8 deals with avoided crossings in the adiabatic context.

2 Coherent States and Classical Dynamics

We recall the definition of the coherent states (A, B, ki, a,n,x) that are described in
detail in [10]. A more explicit, but more complicated definition is given in [5].

We adopt the standard multi-index notation. A multi-index [ = (Iy,...,[4) is a d-
tuple of non-negative integers. We define |I| = S0 I, 2t =2l ...zl 11 = (1!)... (L)),

1 alll
and D' = ooy

Throughout the paper we assume a € R?, n € R? and A > 0. We also assume that
A and B are d X d complex invertible matrices that satisfy

A'B-B'A = 0, ®
A*B+B*A = 2I.

These conditions guarantee that both the real and imaginary parts of BA™! are
symmetric. Furthermore, the real part of BA~! is strictly positive definite and has
inverse AA*.

Our definition of ¢;(A, B, ki, a,n, z) is based on the following raising operators defined
forj=1,...,d by

d d
1 S — 0
A;(A, B, li,a,n) = — E Byj(wr — a) — i E Ay <—’ih— - Uj)] :
V2h k=1 k=1 Oz,

The corresponding lowering operators A;(A, B, fi, a,n) are their formal adjoints.

These operators satisfy the following useful commutation relations : the raising
operators A;(A, B, k,a,n)* for j = 1,...,d commute with one another, the lowering
operators A;(A, B, ki, a,n) commute with one another, however, for j,k =1,...,d

Ai(A, B, h,a,n)Ax(A, B, h,ya,n)" — Ap(A, B, h,a,n)" A; (A, B, h,a,n) = 6 .

For the multi-index | = 0, we define the normalized complex Gaussian wave packet
(modulo the sign of a square root) by

— —1(r— —
i, By ,) = ()9 et )2 e (L= BEEZ )
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Then, for any non-zero multi-index [, we define

1

gpl(Aa B, ha a,nn, ) = —Al(Aa Ba h, a, U)*ll s Ad(Aa Ba ha a, n)*ld(pO(Aa B: ha a,n, ) )

Vi
QSZ(A,B,y) = QDl(A,B, 170a0ay) :

We have the following properties

1.

For A=B=1,h=1and a=n=0, the ¢,(4, B, k,a,n,-) are just the standard
harmonic oscillator eigenstates with energies |I| 4+ d/2.

For each admissible A, B, i, a and 7, the set (y;(A, B,h,a,n,-)),cne i an or-
thonormal basis for L?(R%; C).

In [5], the state ¢;(A, B, ki, a,n,z) is defined as a normalization factor times

HZ(A, h_l/Z‘A|_1(x — G,))QD()(A, Ba ha a, 1, CC) -

Here H;(A;y) is a recursively defined |I|* order polynomial in y that depends on

A only through Uy, where A = |A|U,4 is the polar decomposition of A.

When the dimension d is 1, the position and momentum uncertainties of the
oi(A, B, h,a,n,-) are /(1 +1/2)h|A| and /(I + 1/2)h|B|, respectively. In higher
dimensions, they are bounded by +/(|l| + d/2)k| Al and +/(|l| + d/2)R||B||, re-

spectively.

. When we approximately solve the Schrodinger equation, the choice of the sign of

the square root in the definition of ¢o(A, B, ki, a,n,-) is determined by continuity
in time after an arbitrary initial choice.

. The behaviour of ¢;(A, B, ki, a,n,-) through small perturbations of parameters A,

B and a is the following

||S0l(Aa B, h, a,n, ) - Qpl(AOa BOa ha Qo, 1, ')”L?

a—a
< Cy(Ag, Bo, ao) |||A — Ao|| + ||B — Bol| + lla = aol|

v

for (A, B) in a neighbourhood of (Ag, By). This estimation is already mentioned in
[12], but the proof needs some modification (we cannot treat each matrix variable
separately) : generalize the one-dimensional formulae of propositions 4 and 7 of
[14] and give asymptotics when A, — A; and B, — B; are small.

If we fix a cutoff function F' € C*(R,;[0,1]) (with F(z) = 1 for x < 1 and
F(z) =0 for z > 2), we have the following estimates

11 = F)YD (2 lyl?)du( A, B, y)llr2geay
< Cun |1+ ([AIN"] ([AI)*? em AT (9)



11— B (llyl1)y-Vyu(4, B, y)|
< CLIAIIBIL L+ (A" 2] (A2 e A (10)

for n > 0 and I € N* when ~ tends to 0.

In the Born-Oppenheimer approximation, the semi-classical dynamics of the nuclei
is generated by an effective potential given by a chosen isolated electronic eigenvalue
E(z,68) of the electronic Hamiltonian h(z,dy), z € R¢ (we keep ¢ fixed). For a given
effective potential E(z, §y) we describe the semi-classical dynamics of the nuclei by means
of the time dependent basis constructed as follows. Associated to E(z,dg), we have the
following classical equations of motion

a(t) = n(t),

i) = ~V.B(a(t), %),

Alt) = iB(t), (11)
B(t) = iHess,E(a(t),d)A(t) ,

S@) = sln®I* - E(a(t),d) -

We always assume the initial condition (A(0), B(0)) satisfies (8).
The matrices A(t) and B(t) are related to the linearization of the classical flow
through the following identities

da(t) da(t)

Alt) = JHGA@ +iglEBO) .
B(t) = gz—(é))B(O) - 7;22((8,4(0) .

Furthermore, it is not difficult to prove that conditions (8) are preserved by the flow.
The usefulness of those wave packets stems from the following important property.
If we decompose the potential as

E(.?S, 50) = Wa(.T, 50) + [E(.T, 60) - Wa(.’E, 50)]
where W, (x,dy) denotes the second order Taylor expansion

Wz, 60) = Ea,6) + VaE(a,60) (& — a) + (z — a, %(“’5")(:5 o)

then for all multi-indices [,

B[SO (A1), (1), B, alt), n(t) 2)]
h2

N (_EAI + Wa(t) (.Z‘, 50)) [eiS(t)/hQDl(A(t)’ B(t)’ h’ a(t)’ n(t)’ .T)}

if a(t), n(t), A(t), B(t) and S(t) satisfy (11). In other words, those semi-classical wave
packets ¢; exactly take into account the kinetic energy and quadratic part We (, do)
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of the potential when propagated by means of the classical flow and its linearization
around the classical trajectory selected by the initial conditions.
Then, the leading order Born-Oppenheimer approximation for (4) is

¢(ta €, 50) = e%S(t)SDl(A(t)’ B(t)’ h’ a’(t)’ n(t)a x)(I)E(az, 50) (12)

where ®p(z,dy) denotes a particular smooth normalized eigenvector associated to the
eigenvalue E(x,dq) (see [6]).

3 Asymptotics of Classical Quantities

In our case, we have a supplementary parameter § and we deal with two eigenvalues
isolated from the rest of the spectrum but that do approach one another. This leads to
two different classical dynamics (one for each eigenvalue). Close to the crossing surface,
those two dynamics almost reduce to the one corresponding to the mean of those two.
For each of those three, we will now give their asymptotics in a neighbourhood of the
crossing surface T'.

We define

p(z,08) = \/b(x,6)? + c(x,0)? + d(z,0)? ,
Ee(x,6) := E(x,6) + v“p(x, )

where v4 = 1, 18 = —1 and we choose 7%, 7% € C%([—do, &); R?) with °(8) = n° + O(6)
and 7% (6) = n° + O(8) where the first component of the vector n° satisfies 70 > 0.
We solve the following systems with the corresponding initial conditions

a(t,0) = n(t,9) a(0,6) = 0

ﬁ(tvd) = —VIE(a(t,é),(S) 77(076) = 770(6)

A(t,8) = iB(t,0) : A(0,8) = A ., (13)
B(t,6) = iHess,E(a(t,d),8)A(t,d) B(0,6) = By

S(t,0) = 3ln(t6)|* - E(a(t,6),4) 5(0,0) = 0

a(t,0) = n°(t,9) a(0,6) = 0

1°(t,6) = —VgEe(a®(t,6),0) 1€(0,8) = 1°(5)
AC(t,6) = iB(t,9) : A€(0,8) = A

B¢(t,6) = iHess,Ec(aC(t,d),8)A(t,d) B¢(0,6) = B

S€(t,8) = 3lln°(t 6)I1> — Ee(a®(t,6),0) 8€(0,6) = 0

(14)
We note that the initial momenta can differ by a term of order O(6) ; we will explain
why in section 6.1.
As in [12], Picard fixed point theorem techniques yield

Proposition 1 The solutions of differential systems (13) and (14) have the following
asymptotics when t and § tend to 0



a(t,§) = n°(0)t— V.E(0, 5) +O( %),
nt,0) = n°6) - VEE(O,é)t-f—O(tZ)

(those two are uniform in §) ;

1
c _ 3 2 r 0
a”(t,0) = n° (J)t—V E(0, 5) +O(\t| +0t%) — 2ﬁ?c(5) )
0

W L (FO AT )

1€(t,6) = 1% (8) = V4E(0,8)t + O + 6lt))

s || [V e ee -]
0

59) = (GO - B0.0)) 1= 1) VaE0.0) + O(F)

S€(t,6) = (%Ilnoc (6)]1* — E(0, 5)) t— 1% (6).VoE(0,8)t + 1576t + O + 6%t)
S8 d)t + \/ °(6)t)? + 62
[¢ T ( )

AC(t,0) = Ap+O(@1),

b

10 0
00 --- 0

B(t,6) = By+vSr| . | | 4o ! +O([t] +9)
: . : 055t2+52
I BRVCOD

Throughout the rest of this paper, we will drop the d-dependence of those quantities
(in the notation only).
4 Away from the Crossing

We fix a cutoff function F' € C*°(Ry;[0,1]) with F(z) =1 for x < 1 and F(z) = 0 for
T > 2.



4.1 Crossing Surface vs Cutoff Zone

We introduce the following sets that are suggested in figure 1.

Figure 1: Classical propagation of the nuclei through the crossing surface

For § €] — 24y, 20y, we define

7 () = {x € RY/b(z, 5) < %p(x,é)} Z.(0) = {x € RY/b(z,0) > —%p(x,é)}

the two overlapping zones where h;(z,d) avoids some diagonal form,

J(5) = {x € RY/p(x,6) > g\/m}

the zone where the gap is well bounded from below,

3

US(t,6,e,7) = {x eRY/||lz — a(t,6) |00 < ﬁ;}
for t € [T, T] the cutoff zone at time ¢, and finally
Wet,6,e,9) = |J US(ré,6,9), Wit,6,6,9) = |J US(r.6,¢,7)

TE[-T,t] TE[t,T]
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the two disjoint cutoff zones in the incoming and outgoing time intervals.
Anticipating estimates required for the proof of Proposition 2, we give a precise
statement of how close to the crossing surface we can approach if we want to control

e the gap between the two eigenvalues E(z, 6) and E®(z,9),

e the deformation of the eigenvectors ®f(x,d) defined in section 4.2 for C = A, B
and * = +, —.

Lemma 1 If 6y and T are small enough, then for all § in 10, do], € and 7 in ]0,1], and
t in 0, T] such that

7582
we have WE(—t,d,£,7v) C (Z_(8) N J(0)) and WS(¢,6,e,7) C (Z4(6) N J(6)).

Proof We prove only the first part, the other is analogous. We denote by C,, C,,
Cy, C,, Cq and C, strictly positive constants such that for every (t,z,0) € [-T,T] x

B(0, k) x [0, o], we have
02, 8) — 1 ()l < Cut® , 0% (5) —°ll < b
b(a,8) — raa| < Culllalle +62) . (e, 6 — (22 + )] < Cylllalle + 692
If z € WE(t,6,¢,7), we have
_,0 c c 0¢ 0¢ 0
xy =mt+ (xl —a; (1, 5)) + (a1 (t,0) —my (5)t> + (771 ()t - 771t> )
but

g
21— af (6,0)| < V2 10 (8,0) =i () < Gt I (8) = ni] < Cyd

hence, if /v < nd|t|/(8v/2), |t| < nY/(8C,) and § < n?/(2C,),

0 0 0 0
M Uit Uit Uit
<oy Ay Ay Ay N .
T <Nt 8t 8t 2t 4t<0

Moreover,

z=n"t+ (z —a(t,0)) + (ac(t, §) — noc(é)t) + (n"c (6)t — not) :

hence
£ 3
2]l < 117° oo |t] + \/% + Cat® + Cydlt] < (In°]] oo + Tl)ltl = Dylt| .

Let us show first condition W¢(¢,4d,¢,v) C J(§) : from above, we have

P8 . Cyllall + 8 | C, (D3 + )

r2(z? +62) 7 r2 (2?2 4+682) 7 r2 %tz 152

11



hence, if £ + 62 < (r*min(1, 7" /256))/(4C? max(1, D)),

7,2

p(2,0)* 2 (a7 +07) .
Let us show now condition W¢(t,6,¢,v) C Z_(9) :
2 2 16D7\ 5 | o
b(z,0) = ray + (b(x,0) — rxy) < Co(||z||5, +0%) < Cpymax [ 1, —= | (a7 + 0°)
Ui

02
1

2 16D?
< pla0)" b max <1Tt> 1o 4 g
n 16

hence, if m 2 + 6% < r/(4Cymax(1,16D7 /1Y), b(x, 8) < Lp(=,d).
Flnally by diminishing 7" and dy, the only remaining constraint is ¢/ < n%[t|/(8v/2),
as expected. [

2
Remark By the way, we note that p(z,d) > £4/ %tQ + 62 > R(Jt| + 9) for every z
in UC(t,d,¢,7) and that a¢([-T,T7],6) C J(4).

4.2 Construction and Asymptotics of Selected Eigenvectors

For (z,6) € R¥x]0, 20¢[, we define

_ b(z,9) 2 8) = c(x,9) 2 8) = d(z, )
B(Q?, 5) - ,0(3?,5) I C( 75) - ,0(33, 5) ) D( aé) p(l‘,d) ’
_ /1= B(=z,9) _ o) = C(z,0) +iD(x,0)
when B(z,d) < 1, and
n 1+ B(z,6) £ 8) = C(z,0) +iD(x, )

when B(z,d) > —
We define static eigenvectors by
D y(z,0) = g (z,0)Yn(2,0) + [ (2,6)¢2(z,0) ,
Oy(z,0) = —f(2,8)¢1(x,8) + g~ (x,0)4n(x, )
when B(z,d) < 1, and
h(z,0) = [fT(z,0)¢(z,0) + g7 (z,0)¢(z,9) ,
@E(.’L‘, 5) = _g+($’ 5)¢1($’ 5) + f+($7 5)%(% 5)

when B(z,d) > —
We now turn to the asymptotics of those static eigenvectors around (z,d) = (0,0).
First in the same asymptotic time regime as in [12], we have

12



Lemma 2 When 0, € and t tend to 0, we have, uniformly in v < 1, |e/(vyt)] < M and
|0/t| < M', fort <0,

[P (e lle = a*0)|) [®a(w, 6) — w2, 0)] || o = 0(

P = ) [85(2:8) + 12,8 e = O 1+
and for t > 0,

|FE >z~ a* @) [@4(x, 8) = v(,8)] | . = O

|F (77|l — a®()|%) [@F (z,6) = vhs(2,0)] ||, = O

Proof If z; # 0,

6" + Gy (lallf, + )"
7|z .

|p(x,0) = rlz|] <

Thus, for x € WE(t,6,e,7) with * = +, —,

|B(x,0) —sgn(t)| = sgn(t)b(z, ) — p(, 5)‘

p(z,6)
o [b(z,0) —rai| + |p(z,0) — iz
h 5171
< 27“Cb|961|(||96||§o4-52)4-7‘252+Cp(||-’1?||§o+52)3/2 ,

2,.2
rx]
hence

B(x,8) — sgn(t) = O (|t| + f—z) .

Moreover, similar calculations yield
)
C(z,0) +iD(z,0) = O <|t\ + ‘gD

which leads to the result. [J
By similar considerations, we get also in the opposite asymptotic case

Lemma 3 When 0, € and t tend to 0, we have, uniformly in v < 1, |e/(vyt)| < M and
[t/6| < M', fort <0,

Pl — a*0)) [‘I’Z(%fs)—§(¢1($a5)+¢2(%5))- = o(3)
P 7o~ a*O)F) [@Bu,a)—?(—wlm,&wz(x,@): = o(F)
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and for t > 0,

Pl e~ a(0)1P) [cm,&)—?(wx,é)wz(x,a»: = o(oF)
Pl - o)) [cbz(x,a)—?(—wmm,&wz(x,ani =03

We introduce now dynamical eigenvectors
O (t,,6) = = (x, 8)

for C = A, B and x = 4+, — in order to fulfill the orthogonality condition
* a C *
<(I)c(t,l',5), a‘i‘n (t)vm (PC(taxad)) =0.
Introducing the new variables s = ¢, 2 = z — a(t), we have the sufficient condition

%&Jé(s, 2,0) = i{®%5(a(s) + 2,6),1°(5). V@5 (a® (s) + 2,0)) (15)

where &} (s, z,0) = wi(s,a®(s) + z,0). If we suppose w; (=T, z,0) = wl (T,z,8) =0, we
have the following result

Lemma 4 When 6, € and t tend to 0, we have, for C = A, B and x = 4+, —,
. 1
F -2 2 _ C t 2 (p* t 6 _ ch(t,ac(t),ﬁ)é* 5 i|H — O i] -
|FEe 2tz = @) [@e(t,2,0) — e @0 |y = O (S 5
uniformly in v < 1 and |e/(yt)] < M.

Proof Because of (15), we try to compare with the situation at z = 0. We treat
only the case (C,*) = (B, —), others are analogous. Dropping the parameters ¢, x and
0, we get

(@5 (x,0),7°(t). V@5 (z,0))
T ) _ o
=P (f Vel T+ 9 Ve )+ T Aulg A — g A2 — g A
where \;;(t,z,08) = (¢i(x,8), n?(t). Vi (=, 5)).

Short calculations show that we have to estimate the difference between L(z,d) and

L(d®(t),06) for x € UB(t,6,¢,v) where L is one of the following quantities : p, B, C, D,

V¢, Vid and N;j. Set [L]? = L(z,08) — L(a®(t),d). Further computations show that,
for z € UB(t,d,¢,7) :

L [plf =0 (v(ﬁl\i«s) + (1t + 5)) :

2. [B]g”:O(m) :

14



3. [ClF=0 (% + ﬁ) with same estimate for D ;

4. [L]F = O(%) for Ve, Vd and \jj ;

5. [f"Vef 49 Vag [ =0 (W)
Finally

5 _ £
#5°9:95) =0 (S5
and the claim is obtained by integration on [—7',¢]. O
Now we have constructed those dynamical eigenvectors ®}(t,z,d) and given the
classical dynamics of (14), we want to use the approximation (12) and to estimate how

good it is. We just recall the following abstract lemma of [10]

Lemma 5 Suppose H(h) is a family of self-adjoint operators in any separable Hilbert
space H for i > 0 and let v be a strictly positive real number. Suppose 1(r, k) belongs
to the domain of H(h), is continuously differentiable in r, and approzimately solves the
Schrédinger equation

o

v
! or

= H(h)y , (16)

in the sense that
oY

ih or

o (1, h) = H(R)y(r, k) + C(r, h)

where ((r, k) satisfies
1C(r, W)l < plr, 1)

If W(r,h) denotes the solution of the Schrédinger equation (16) with initial condition
U(rg, h) = ¥(ro, h), then
/ 1(p ﬁ)dp‘ :
To
4.3 Outer Ansatz

Carefully analyzing the time when the usual Born-Oppenheimer approximation (12)
actually breaks down and setting for C = A, B and [ € N*

SE(t) | 1)y
©f (t,y,€) = exp (z i

| (r, k) — (r, B)|| < B

) 640, 5°0.0)
we get the following result

Proposition 2 In the incoming outer region =T < t < —t,(d,¢) < 0, if

z —aC(t
brolt.a,86) = 3 4762 PE e =)ot (1, 2

9
C=AB

,8) O (t,x,0) (17)

15



where Ag (6,€) = O(1) and if (-, 0,€) denotes the solution of (4) with initial condition
w(_Ta ) (57 ‘S) = ¢10(-T, ) 5, 5), we have

1 g2 et
t,x,0,e) — t,x,0, 2.y = O | + +
2 P 20) ot ey = 0 (el g+ )

when 0 and € tend to 0 and where vy(d,€) and t,(d,¢) are chosen to tend to 0 with

e/(v(8,€)t,(d,€)) bounded.

Remarks

1. If we fix § > 0, we recover the usual Born-Oppenheimer approximation with an
error of order O(g).

2. There is a similar result in the outgoing outer region 0 < ¢,(d,¢) < t < T sub-
stituting ¢r0(t, z,0,€), ®; (t,2,0) and AZ(,¢) by Yoo(t, z,6,¢), ®F(t,z,0) and
AL (6, ) respectively.

3. When stating this proposition, the cutoff function F' can not be removed because
a priori ®; (¢,z,0) is not well defined near the crossing surface I'.

4. T has to be chosen small enough such that a®(t) is close to I' only when ¢ goes
to 0, but if we take it as an additional hypothesis, the usual Born-Oppenheimer
approximation gives estimates for the error between any finite time —7" and time
—T mentioned above.

We introduce the multiple scale notation often used in such a situation: y = x_g(t).

In term of variables ¢,z,y (thought of as independent), the Schrédinger equation (4)
reads

i52§w = H(t, 0,e)¥ (18)

where H(t,6,¢) = —5 A, —£3V,.V, — 2 A, +ien(t).Vy + E(a(t) + ey, 8) + h(z, §) with
hg(z,0) = h(x,6) — (x (5) We 1mmed1ately check that if ¥(¢, z, y, €) satisfies equation
(18) then ¥(t,z,e) =¥ (t,x, x_g(t),e> satisfies equation (3).

Let us now give a sketch of the proof in the case where A (4,¢) =0 and Az (d,e) =1
The multiple scale second order Ansatz established in [6] in absence of crossing is:

U(t,a,y,0,6) = F (7292 2 = a®(1)[|*) b (1,0,

{% + i (ﬁ@@@ﬂ + (3, 0) Pz, 5)) (% + nB(t).Vx) @B] (19)

where P+(z,d) = 1 — P(z,d) is the spectral projector on the orthogonal of the eigen-
spaces associated to eigenvalues E4(z,d) and Eg(z,d), rg(x,d) is the restriction to
P+(z,6)H of the resolvent of h(z,d) taken in Ex(z,d) and we have dropped the variables
in the dynamical eigenvectors ®; (¢, z,d) and in the eigenvalues E(z, ) for C = A, B.
Terms that involve derivatives of the cutoff function turn out to be exponentially small

16



and we can neglect them comparing with others. Thus we only treat the remaining
terms following the same method as on pages 108-110 of [9].

The quantity exp (—5S5(t) — LnB(t).y) [ie?2 — H(t,6,¢)] ¥(t, z,y,6,) is the sum
of 35 product terms. Performing brute force estimates on each product with the L?-norm
for y-dependent factors and the L*°-norm for z-dependent ones, we need the following
estimates of the singular terms on the support of F' :

e successive derivatives of the gap between eigenvalues

e =° (mﬁ) Ve (ﬁ) =9 (ﬁ) ’

> (5mm) =0 ()

e successive derivatives of the dynamic eigenvectors

vwcbc(t,x,a):o(w%) , <§t+n v) O(m%) |
(%) 2 =0 (75 - 02 =0 ()
(i) 95 =0 (qreap) v (5 +5+) 9% =0 (i)

o (g =92 ) % =0 (i) -

Finally || [ie?5; — H(5,)] ¥ (t,, =20, 5,¢ is bounded by a constant times
o o)
g2 et 23 \
L+ Vil @0
( (|¢] +5)2) [(|t|+6) Pell 2y \t| +(5” yOullL2) +€ H||y|| ¢ZHL ] (20)

To conclude, we apply lemma 5 with estimate (20) and note that the e2-term of (19)
is of order O ( CERIE )

5 Near the Crossing

We now need an Ansatz around the crossing time (when the semi-classical dynamics of
the nuclei reach the crossing surface I') where the eigenvectors are not well defined, so
we make this Ansatz essentially live in the two-dimensional eigenspace P(z,d)H of the
two eigenvalues.

17



Proposition 3 In the inner region |t| < t;(d,¢), we set

(6,2, 6.) = exp (iS(t) +n(t)-(z — a(t))> > (g fc—Ta(t),é’ 8) b(z.8) (21)

£2
k=12

with
( 91(y, 0, 6)6‘"(”?%“‘”)

( fl(Sayaé, 6) > _ 92(y, (5, E)eir("l(l)%'i'syl)
fQ(S) y7 5, 6) gl(y’ 67 g)e—i'l‘gs _ g2(y’ 5, 8)6”‘%5 Zf 5/6 . +OO
91(y,6,€)e™""=% + go(y, 6,)e™ e

) if 0/e = 0

where gi(y, 0,¢€) satisfy
o g1 € H*(RY) N (1+ |lyll*) ' L*(R?) if /e — 0,

o gp € HARY) N (1+ [lyl*)*2L2(RY) and Vyge, Ayge € (1 + [lyl*)7 /L2 (R?) if
d/e = +o0,

and (1 — F(v?||yl|*) gk (v, 6, &) with their spatial derivatives up to second order are expo-
nentially small in .

If (t,-,0,e) denotes the solution of (4) with initial condition at t = 0, 1;(0,-,0,¢),
then the quantity

sup ||w(ta z, 0, 5) - wl(ta z, 0, 5) ||L2(Rd;7-£)
tE[—ti,ti]

18 bounded by a constant times
3 2
o ti+ 5+ 4L f5le 0,

t;62
o L

12§ ) t2 3 4 .
+ S+ E b+ S if6/e = o0
when 6 and € tend to 0.

Remarks

1. In the expression of the Ansatz (21), the cutoff function does not appear as the
vectors Y (z,d) are defined everywhere. But without extra knowledge about the
growth at infinity of some spatial derivatives of those vectors, we have to introduce
it in the proof or to impose some extra conditions on functions gx(y,d, ) that
balance this growth.

2. Note that in the proof below (equations (24) and (25)) and in section 6.1 (equations
(27) and (28)), we mention corrections for the fi(s,y,d,¢) that lead to a more
precise result.

18



Proof After rescaling time by € (s = t/¢), equation (4) becomes

A~

ze%@@ = H(6,e)Y

where Qﬁ(s, x,0,e) = (es,x,0,¢). Then, we substitute the Ansatz

bils,2,6,6) = Fle e - ales)|?) exp (z'S (¢5) + n(es)-(z - a<58>>)

g2

X fr (s, %M’é’ 5) Ui (xz,0) ,

in this equation. The error term exp (—z@ - z@) [is% — H(s, 0, 5)] 1/31(5,95, J,¢€)

is, removing the contribution of the cutoff function and its derivatives (which turns out
to be exponentially small),

Z (is%(s,y,é, e)p(x,0) — fr(s,y, 0, s)hl(x,é)wk(x,5)>

k=12

—[E(ey,d) — E(a(es),0) — ey. Vi E(a(es), )] Z fr(s,y,0,€)e(x, )

k=1,2

2
5 D0 Aufels,y,8,0)n(@,0) +ie? Y fuls,y,0,6)0(e8)-Vathn(2,0)  (22)

k=12 k=12

4
+‘53 Z vyfk(say’(sa &?)szpk(x,&) +% Z fk(say’(sa S)Awd]k(x’é)

k=1,2 k=12

where hi(x,6) is given in (5).
To reduce the error, the first term is already to be removed by a suitable choice of
the f;, i.e., we approximately solve

ieﬁ fi) bla(es) + ey, 9) (c+1id)(a(es) + ey, 9) f
Os \ fo (c —id)(a(es) + €y, ) —b(a(es) + ey, 0) fo )
Ignoring the five remaining terms in (22) leads to an error of order
O (21 + lylI*)fxl + €| Vyfil + Ay f]) -

From (6) and asymptotics of proposition 1, we approximate this system by

0 (f ) _ [ mesten 5 fi
a_<f>_< T —(n?es+6y1))(f2>' (23)

Doing so leads to an error term of order O ((e2s* + €2||y||*> + 6%)|fx|)-
We now deal with two situations :
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1. 6/e — 0 and the system is almost
()= (e 0 ()
ds \ f2 0 —(nis + 1) f2 )

a2
f1(87y75:6) = gl(y:575)6_zr(n?7+syl)

082
fa(5,5,8,6) = gy, 6,e)e T Hom)

with solution

which leads to an extra error term of order O(d| fx|) ;

2. §/e = 400 and the system is almost

~
Pl
~
el
N~—

I

<
N\
oo O
O o>
SN—
~
ol
N—

with solution

fl (87 Y, 5: 8) = 0 (ya 67 g)efzrgs - g?(ya 57 5)6
fo(5,9,0,6) = gi(y,0,e)e7"e

irgs
2t gy, ,)emE
Unfortunately, if g; and g, are chosen uniformly bounded in (4,¢) for the L2-

norm, this approximation yields an error of order O (Lﬂ + g) and we have shown

in section 4.1 that the outer Ansatz imposes the condition £/(yt) bounded with =y
tending to 0. We go further in solving system (23) substituting a formal expansion
ine/d

9

fk(S,y,é,g) = flg(say: 5,8) + 5

f,i(s,y,é,s) + -
for fr. We solve successively

'a fO _ fO

G(i) (5 0) (%)

)(f%>+ré(n‘fs+y1 0 )(f?)
fs £ 0 — (s + 1) L)

ol O
O o

and

201) -
s \ fs
Hence the solutions
[+ 12 (s,9,6€) = iy, 6,€)
[0+ f3] (s,9,0,6) = go(y,0,€)e”
[+ 1] (5,9,0,6) = hu(y,8,6)e™=" = go(y, )
X _%?se"gs — <%?% — z'y1> sin <r§s)] (24)

[_fll + f21} (Sa Y, 5: 8) = h’2(y: 55 E)Girgs + gl(ya 5, 8)
[0 ) 08 ) ) 5
X _%se‘“‘gs — (77_215 + zyl) sin (r;s’)} . (25)
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We choose hy = hy = 0 and stop to first order. We obtain an extra error term of

order O (5 (15| + Ilyl) 7).

For each case, we have

1.
fe = O(gk),
Vyfi = O(IVygi| + Is|.|gkl)
Ay fr = O(|1Aygi| + |5 Vyge| + s%|gk]) ;
2.

=0l +lgl)
Vyfi =0 (IVyai| + [Vygal) |
Ayfe =0 (1A +18y92)) |

ft =0 ((Is+ =+ ll) (onl + lga))) -
Vofi =0 ((Isl+ 5 + Iwll) (Vy01] + [Vy02)) + (2] + lga)))
Aufe =0 ((Isl+ 2 +llsll) (185011 + 18,21) + (Vo1] +19,02])) -

Thus, with the conditions of the theorem, the error term is bounded by a constant
times
e2(1+s+s%)+94 if §/e =0
(€25 +62) (1+88) + (1 + 5+ 7) if /e — +oo

To conclude in the §/e — +o00 case, we just drop the terms % f; (s, y,d,€) but add

an error of order O (% + %’) O

6 Matching Procedure

We now try to match the outer and inner Anséitze. We begin with the incoming outer

Ansatz (17) where A;(6,¢) = 0 and A5z (d,¢) =1 and we ask how to choose Af(d,¢) in

the outgoing outer Ansatz. In each matching (incoming outer with inner Anséitze and

inner with outgoing outer Ansétze), we make use of the equality between the first terms

in the asymptotic expansion of each Ansatz in the overlapping region where both exist.
Rigorous statement of the procedure is

Lemma 6 Suppose H(0,¢) is a family of self-adjoint operators in any separable Hilbert
space H. We choose three times t,(0,€) < t,(0,¢) < t,(0,€) and two initial conditions
a(d,¢) and . (6,¢) of order O(1) in the domain of H(6,¢) when § and € tend to 0. Let
Y. (t, d,€) denote the solution of (4) with initial condition o, (d,€) at t.(d,¢) for x =1, r
and we suppose that

[41(tm (6,€), 0,) — ¢r(tm (6, €),6,€)]| = o(1)
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when 6 and € tend to 0.

_ Then there exists a function 3(d,€) = o(1) in the domain of H(d,€) such that, if
Y(t,0,€) denotes the solution of (4) with initial condition a,.(d,€)+ B(6, ) in t,(6,¢), we
have Y (t,0,¢) = . (t,9,€) for every t in the interval [t,(d,€),1,(J,¢€)].

Remark This lemma remains true if we substitute O(A(d,¢)) for o(1) where A is
any function tending to 0 when 0 and ¢ tend to 0.

Proof Self-adjointness of H(d,¢) gives us the existence of a unitary propagator
U(t,t',0,e) associated to the Schrodinger equation (4) (see [18]). Thus left and right
solutions are given by

djl (ta 5a ‘S) = U(ta Zl;l((sa ‘5)7 6a 8)al (5a 6)
U (t,0,) = Ul(t, t,(d,€),6,¢)a,(d,¢€)

Ue(t,0,6) = (t,0,e) +U(t, t.(0,¢),0,€)5(,¢€).

Then B(6,e) = U(t.(5,€),tm(0,€),0,€)[th(tm(0,€),0,€) — ¥ (tm(d,€),d,€)] makes the
lemma true. [

6.1 Narrow Avoided Crossing (6/¢ — 0): we use the |t|/§ — +©
regime.

First, by proposition 1, we have the following asymptotics
4

1

af(t) —a(t) = (7700(5)—770(5)>t+0(\t\3+—;1>—ryc 0

0

) (o, 2 (O

[2 (t+2?2+90(5)21n< ( )) 6t],
1
0 - =16 - #®) - D5 | | -9+ 0 (45

0

FOa) -a0) = (#6)-16) e +0 (1 + %)

sgn(t) [ o2, 0 62 2" (6) 1]
+ | 2 P+ 5+ 1 — 8t
T”[2 GI 2y e\ o
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[SE() + 1 (1).(z — a“(1)] = [S(®) + 0(t)-(x — a(t))]
= (S°(1) = S(®) +n°(1). (a(t) — a°(1)) + (n°(t) — 0(t)) -y
__rSsen(t) [ o, 0 6 20" (9) |t
__T (nt +2—770+’1’]?C(5) In 5 )) (26)

2

#0 (14 S (4 ) elll) + (10 = #0)) e+ s (5 =)

AC(t) = Ap+0(1),

irv sgn( )

52
B(t) = By+ PA0+O(|t\+t—2>

1

= Bg(sgn(t))+0<|t|+i—j) :

We note that (Ag, B§(£1)) satisfies conditions (8), if (A4y, By) does. Moreover, we have
that

is bounded by a constant times [¢| + % ; + tz + ‘52 In |L].

a(t) — af(t)

o (AC@, BE(t), y + ) ~ (Ao, BS (sen(t)), v)

L2

Incoming Outer Asymptotics.

Yro(t,z,6,e) = F (72”x —a “2) < ) O, (t,x,0)

_ (S (e—alt Lyt tun) giwg (1,05 (1),0)

<in (Ao, BE(-1), )w
X [1+ O (en(t,0,¢,7) +e¢(t d,€) +es(t,0) +eolt,e) + e,(t, d,¢,7))]
where
[t 6% |t ) _ 2 2 8 |t
e,(t,0,e,7) = = +57 521 5 +67 ey(t,0,¢) = |t|+ + + ln 5|
) 1| e & de e |1
= — =c¢ln In |-
eq(t,0) = |t| + rk eo(t,e) t‘ +5+s ek eu(t,0,e,7) = |t| + n t‘

are errors due respectively to the phase S(t)+n(t).(x—a(t)) (cf (26)), the Gaussmn wave
packet ¢, (see the end of the preceding paragraph), the eigenvector ®;(z,d) (cf lemma
2), the incoming outer Ansatz (cf proposition 2) and the corrected phase wg (¢, z,9) (cf
lemma 4).
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Inner Asymptotics.

A i g2
Dr(s,y,0,6) = e CEITADD N g, (5, 6) el T F )y (a(e5) + ey, 0)
k=1,2

x[1+0 (61(55a 6,€))]

where ef(t,6,¢) = |t| + \tlz + W + £ is the error term given by proposition 3.

Matching for t < 0. We can match those two Ansétze with an error of order
O (e,(t, 0,e,7) + e4(t,0,¢) +ea(t, ) + er(t,e) +e,(t, d,e,7) +er(t,d,¢))
by choosing

g1(y, 5’ 8) — _(bl(AOa Bg(—l), y)eiwg(ftm(6,5),a3(7tm(6,s)),5)
gQ(y: 6) 5) = 0.

Outgoing Outer Asymptotics.

’(/Joo(t Z, 5 6) =
o2z (S+n(t)-(z—a(1)) Z AL (S, £)e” eir(n) i+ £u1) giwd (1,0 (1),0)
(C,k)=(A,1),(B,2)
c z — a(t)

X¢l AOaBO (+1)af 1[1]9(.’13,6)

X [14 0 (ey(t,6,6,7) + ey(t; 6,€) + ea(t,0) + eolt, &) + ew(t, 6,€,7))] -
Matching for t > 0. We can match the two preceding Ansétze with an error of same
order as for ¢t < 0 by choosing

Ajﬁ—t 5’5 — ei[wl;(_tm(JﬂE)ﬂaB(_tm(‘5:5));5)_“-’1(tm(‘saf)aGA(tm((s,E)),J)}
Af(6,e) = 0.

Then, the error term is of order o(1) if we choose t = t,,,(d,¢) € [t,(6,¢),t;(d, €)] and
v = v(d,¢) tending to 0 with

2 )
max ((5, E) < t < min (52/3, Ve ,%) and max (51/3, E) 7K1
Y

(which is a non-empty zone).

First Order Matching. By choosing 1% (8) = 7°(6) — TT’L; .| 6, we substitute
1 .

0

the error term of order =~ in ex(t,0,e,7) by | 7 (by the way, total energy conservation
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1z _

A B
at 0, |ZQIF _ E, (0, 5)] - [”"‘)% Ex(0, 5)] = O(6?), is now fulfilled up to first

order) ; we go further in solving (23) by taking
(s, ,8,6) = emrt s Fom

_ 5 .
X gl(ya 5’ 6) + g (h’l(ya 5: 5) - ng2(y: 6) 8) /

—0o0

S

ei’r(n?g2+20y1)do.> :| (27)

fo(s,y,0,¢) = e"(’)?%—l—syl)

) 5 |
X |g2(y,0,€) + (hz(y,é,s)ﬂrm(y,é,e)/

€ -0

S

e—ir(n?g2+20y1)d0_):| (28)

with gg, by € H?(R?) N (1 + ||y||?) *L?(R?), thus we substitute the error term of order

g in e;(t,9,¢) by 65_2 ; matching for t < 0 can be performed by choosing

= (Ao, B (=1),y)etnl tm09e nlDd

matching for ¢ > 0 can be performed too (we use the identity ¢;(Ag, BE(—1),y) =
exp(—izryt)éi(Ao, Bg (+1),y)) by choosing

Ajc—t(éa 5) — ez’[wg(—tm(d,a),aB(—tm(J,g)),(S)—wj(tm(6,5),aA(tm(6,a)),6)] \/1 _ |AE((5, 8)‘2

A+(5 5) — _é ﬁei%ei[wg(ftm(6,6),aB(ftm(5,5)),6)7w§(tm(5,5),a8(tm(5,5)),6)] .
o e\ ’

thus global error is of order o(%) if we can choose t = ¢,,(d,£) and v = (8, ) tending

to 0 with j
3/2 _5/3

e et 87 ¢ ) §
hd : /3.1/3 Y
max (5,7, (5’(51/2’(51/3) < t < min (5 € ,\/5%8)

and
£2/3 10/3 3 8 2
max (m,m,ﬁ,g,g,é) <71

which is a non-empty zone with the extra condition 6/¢7/5 — +o0o (a natural condition
would be §/e? — +o0: the predicted first order term is of order O (g) and the general
Born-Oppenheimer error is of order O(¢) ; the technical condition follows from unknown
second order terms of the operator hi(z,d) and from the choice of the phase in (21):
with more regularity on h(z,d), one can improve this technical condition but the choice
of the phase seems to be the limiting factor of improvement).
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6.2 Wide Avoided Crossing (6/¢ — +o0): we use the ¢/§ — 0
regime.

Similar calculations lead to estimates
[SC(t) +n°(t).(x — a®(1))] = [S(t) +n(t).(x — a(t))] =

02,3 2 4 4
mt nVt2e t t
- . 0 (52|t| + T <53 + 5|t\) 5||y||>

+
we remove the last term which would lead to an error of order O(%) by choosing

o+ 65 25 N

+ (0 (0) =) e

n°(8) = n°(5) (an extra choice compared to the narrow avoided crossing case) ; and

a(t) — a(t)

(405004 ) - 4u,Buy)

L2
is bounded by a constant times [¢| + 6 + \tl Eltl + %.

Incoming Outer Asymptotics.

Vro(t, 2,0, ) = oo (SEHND-(-a(w) girt £ iwg (1a® ()0

Tz — alt 2
<o (0,5, Z= ) L2 0,0) + (0,0
X [14 0 (ey(t,6,6,7) +eg(t, 6,7) + ea(t, 0) +eo(t,e) + eu(t, 6,6,7))]
where
it %t [P de e, 1
< - YR wl\ly Uy, = 1 —1In - )
ey(t,0,€) = |t|—|—<5+5+ +(5s , ew(t,0,e,7) 7|t‘+7n6
el P, |t]
€¢(t,5,8,7)—8—2+@+a+87 (t5)—5+5

2

1 ¢
(tf)—glnd-i‘ﬁ

are error terms analogous to the narrow avoided crossing case.

Inner Asymptotics.

Bi(s,y,6,¢) = ez S+
X g1 (y’ 63 ‘5)6_”58(1/}1 + ¢2) + 92(2/, 5’ E)eirgs(_wl + 1/}2) (a(as) + ey, 6)
x[1+ 0 (er(es, 6, €))]

Itl

where ef(t,0,¢) = ” |t| + 5+ = 2 ~ + ?'z is the error term given by proposition 3.
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Matching for t < 0. We can match those two Ansdtze with an error of order
O (ey(t, 0,e,7) + e4(t,0,¢) + ea(t, ) + er(t,e) +e,(t,d,e,7) +er(t, d,¢))
by choosing

gi(y,0,e) = 0

02(0,6,6) = Y2 0i(A0, By, )i GG
7 ) 2 7 ? -

Outgoing Outer Asymptotics.

Voot a,b,¢) = 4SO (4, 7, 2= 20
15
+ (—Dkirst iwd (t,a(t) 5)\/§ k-1
XY MG e)el rEeere TN 22 ((—1) My (2, 0) + tha(w, 6))
(C,k)=(A,1),(B,2)
X [14 0 (ep(t, 0,6,7) + €4(t, 6,€) + €a(t, 0) + eo(t, €) + ew(t, 6,€,7))] -

Matching for ¢ > 0. We can match the two preceding Ansitze with an error of the
same order as for ¢ < 0 by choosing

Af(6e) = 0
A;(5,6) = elwn(Ttm0)0"(tm(3e)0)wh (im(3,),05 (tm (32) )]

Then, the error term is of order o(1) if we choose t = t,,,(d,¢) € [t,(6,¢),t;(d,€)] and
v = v(d,¢) tending to 0 with

1/3
% < t < min (5, v/ o€y, ?,51/352/3, \%) and max (%,

(which is a non-empty zone). Note that a first order result in this regime can not be
expected with this method, again because of the choice of the phase in (21).

\/5><<7<<1

7 Main Result

With the preceding notations, we have

Theorem 1 Let h(x,0) be a Hamiltonian that satisfies the hypothesis above, and let
Y(t, x,0,e) denote the solution of (4) with initial condition at t = =T

3 AZ(Ge)F (72 o= “C(_T)“2> o (—T, o “C(_T),e) ®; (~T, ,0)

2
€ €
C=AB
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with [A4(6,€)> + |Az(6,€)|* = 1, then we have, in the limit § and ¢ tending to 0,

Hq/)(T,x,é, £) — Z AF(5,6)¢f (T, @,5) & (T,x,6) =o(1) (29)
c=AB L2(R4 ;)
where
A% (8¢ A7 (6, ¢
(365) == (3565 )
with,
e ifd/e — 0,

0 eiwas(d,e)
S((S, 5) == ( ein.A((S’E) 0 ) )

o if §/e = +o0,
eiw.A((saE) O
S((sa ‘5) = ( 0 ein(d,s) >

where each phase only depends on the choice of an initial phase for dynamic eigenvectors
®%(t,x,0) (the matriz S(d,¢€) is unitary).

Moreover, in the case §/e — 0, with the extra condition §/e"/® — +oo, (29) holds
with o (g) on the right-hand side and

g /;’r_geiwA(é,s) 1— 77;(3222’ ez’wAB(zS,s)
1— 77;3;52 einA(5:5) g %ein(‘s:g)
9 V m

8 Landau-Zener Transitions for Eigenvalue Avoided
Crossings in an Adiabatic Limit

S(6,¢) =

In the Born-Oppenheimer approximation, we saw that the z-variable was relevant only
around the semi-classical position a(t,d) so that the molecular Hamiltonian essentially
behaved like

5 In(t,8)IF + h(a(t, ), )

and equation (4) essentially turned to equation (7) with this time-dependent Hamilto-
nian. This time-dependent reduced situation leads to a purely adiabatic problem (we
have dropped the semi-classical approximation for the nuclei by saying that they exactly
follow their classical trajectory) with an avoided crossing for the two eigenvalues

5 (e, 8)| + B(a(t,5),8) + pla(t,5),5)

at t = 0. Let us now treat a case of a general purely adiabatic problem for equation (7)
with an avoided crossing of variable width §.
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8.1 Avoided Crossings and Normal Form for the Generic Case

Definition 2 Suppose H(t,0) is a family of self-adjoint operators with fized domain D
(in any separable Hilbert space H) for |ty — 2T, 1y + 2T[x]| — 209, 20¢[. Assume that for
every 6 > 0, H(t,0) has two distinct eigenvalues E4(t,0) and Eg(t,d) uniformly isolated
from the rest of the spectrum with E4(t,d) < Eg(t,0) and that E4(ty,0) = Ep(ty,0). In
such a situation, we say that H(t,0) has an avoided crossing at 1.

From now on, we suppose both eigenvalues have multiplicity one and we reproduce
the reduction process presented in [8].

Let P(t,6) be the spectral projector associated to the two eigenvalues E4(t,0) and
Ep(t,0). We set successively H|(t,6) = H(t,0)P(t,0), E(t,6) = $TrH)(t,6) and
Hi(t,0) = H(t,0) — E(t,6)I. Let {11,152} be an orthonormal basis for P(ty, 0)H, for
(t,0) around (tp,0). We set

P(t’ 5)¢1
(| P(t,0)4)

1ﬁ2(t 5) — P(ta 5)1/]2 - <'¢)1 (ta 6)|P(t7 5)¢2>¢1 (ta 5)
’ ||P(t: 5)1[)2 - <¢1(t7 5)|P(ta 5)¢2>¢1(t7 5)” '
In such an orthonormal basis the restriction of Hy(t,0) to P(t,0)H has the form

1/]1 (t, 6) =

A(t — to) + BS + M(t, )

where M is a C® matrix-valued function with M(¢,6) self-adjoint and of trace zero,

M (ty,0) = 0, 22 (¢,,0) = 0 and ZZ(¢,,0) = 0.

Definition 3 We say that H(t,6) has a non-degenerate, multiplicity one avoided cross-

ing at to if {A, B} is a set of independent self-adjoint matrices with trace zero.

Then, by a (¢,0)-independent successive rotation of the basis and rotation of the
second vector of the basis, we can assume that A is diagonal and that both non-diagonal
coefficients of B are equal to a same strictly positive real number, thus

a=(5 %) m=(0 %)

where a, c are strictly positive real numbers and b is real. We introduce the new variables

t=t—ty+ 26 5= 55
a a

so that the restriction of H|(¢,6) to P(t,5)H takes the form, in a C* orthonormal basis,

_ b(t, 9) c(t,6) +1d(t, 0)
1060 = (oo nn g ) A
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where b, ¢, d and E are C? real-valued functions and satisfy

bt,0) = rt+ O+ %)

ct,8) = r6+O0(t*+4°)
dt,8) = O+ 4%
E(t,0) = 0O(1)

with r > 0.

In what follows, we forget the underlined notation for those variables. Finally, we
set p(t,0) = \/b(t,0)% + c(t,9)? + d(t,6)? and E¢(t,8) = E(t,8)+1Cp(t, ) where v =1
and I/B —1.

8.2 Away from the Crossing
Let

26) = {t € I/b(1,5) < 3o(t,5)} . Z,(5) = {t € I/b(t,6) > ~3p(t,5)}

J(6) = {t € I/p(t,6) > g\/tQ o2} .

Mimicking section 4.1, we get that if 7" and dy are chosen small enough, for every
6 € [0,00], [=T,0] € (Z-(8) N J(0)) and [0, T] € (Z4(6) N J(5)).

The definition of normalized eigenvectors is similar to section 4.2 substituting ¢ for x.
Then we have the same asymptotics as in lemmas 2 and 3 dropping the cutoff function
and substituting ¢ for z.

We still transform the eigenvectors with ®%(¢, ) := e™e(® ‘”@*( 9) for C = A, B and
* = +, — in order to fulfill the orthogonality condition < @} (%, (5)\8@ o(t,6) >=0 and
we choose initial conditions w; (=7, §) = 0 and wg (T, §) = 0.

By analogy with proposition 2, we can prove

Proposition 4 In the incoming outer region —T < t < —t,(d,¢) < 0, if

Yio(t,6,e) = 3 AZ 5eexp(——/Ec(7'(5)d7') 2 (1,0)

C=AB

where A; (0,€) are chosen with order O(1) and if ¥(t,0,¢) denotes the solution of (7)
with initial condition (=T,0,¢) = Y10(—T,0,¢), then there exists a strictly positive
constant C', such that

2

€

t,0,€) — t,0,8)]| < Co—= .
009 it < O
Remarks

1. If we fix § > 0, we recover the classical adiabatic theorem with an error of order

O(e?).

2. There is a similar result in the outgoing outer region 0 < t,(6,¢) < t < T sub-
stituting Yoo(t, 6,¢), AZ(d,€) and @F(¢,6) for ¥i0(t,d,e), A7 (6,¢) and D (¢,9)
respectively.
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8.3 Near the Crossing

Once again, we have an analog of proposition 3

Proposition 5 In the inner region |t| < t;(9,¢), if

r(t,6,€) = exp (—;/ (7, 6) dT) Z fk( 6,) Yi(t, 0) (30)

with

( (01(5,6

02(,8

A(s.00) ) _ ) QD g+ Cole) 5Dy NP
<f2(8a5’€>)_‘ ( C(wﬁD_g_ﬁcQ(s)D%)<-<1+z>ﬁs> ifo=c¢

)e—irs2/2

)eir52/2

) if §/e >0

1( ) —irds/e _ 02(5 8) irds/e .
1(5 g) —zr65/5+0 ((5 6) irds/e if (5/5 — 400

SRS

where Cy(6,¢) are chosen with order O(1) and if ¥(t,0,¢) denotes the solution of (7)
with initial condition 1(0,9,e) = 1;(0,0,¢), then there exists a strictly positive constant
C such that

Clti+5+4) ifs/e—0
sup [|v(t,6,€) — i (t, 6,¢)|| < Cti+5) ifo=c
tE[—ti,ti] 2 )
C(z%-i-t?; ) if §/e = 400 .

The case 0 = ¢ for H)(t,d) real symmetric is treated in [8§].

8.4 Matching
8.4.1 Narrow Avoided Crossing (6/¢ — 0): we use the |t|/0 — +o0 regime.

We have

t
—D +O(|t]? + 6%,

t 2 52
/0 p(7,0)dr = sgn(t)r (5 +5 In 5

Yro(t,6,€) = —exp (—% /tE(T, 5)d7’)

£
rt?

X exp (_2—) exp ity (t, 6) b1 (¢, 8) [1 + O(eol(t, 6,))]

Y1(t,6,¢) = exp (—612/0 E(T, (5)d7'>

< 3 Culsie)exp ((-1)4igts ) ()1 + Ofer (1.8, 2)]

k=12
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x Y A(e)exp ((—1) —2> exp(iwd (t,6)) ¥ (t, 6) [L + O(eo(t, 6, €))]

2¢e
(C.k)=(A,1),(B,2)

with eo(t,6,¢) = S In | L] + 5+ & 4 ¢ + 8] + 5 and ef(t,6,¢) = [¢| + U + 142,
Matchings Wlth an error of order O(eo(t d,€) +er(t,6,¢)) can be performed by
choosing successively

Ci(d,e) = —e™p (=tm(de):0)
02(5, 8) = 0
and
A4(6,e) = —elonim(G0) wiltn(be)0]
AE(& 5) = 0.

2

The global error is now of order o(1) if ¢ = ¢,,,(6, ) tends to 0 with ¢ < ¢ < min(?/?, £).
To make a first order matching, we choose

fi(s,0,e) = e_"% [01(5, €) +g (Dl(é, g) — irCs(9, ¢) /s e""zd0>} :

— o0

fols,b6,6) = &% [02(5 42 (D2(5,5)+i7«01(5,g) / s era)]

with Ck(d,¢) and Dy(d,¢) of order O(1) in (30). The error term of order O ('g) in
er(t, d,¢) now turns out to be O (‘tl's ) We obtain

A;(é" 8) = _ei[wl;(_tm(é’g)’é)_wj(tm(615)56)] \/1 — |A‘£ (5, 6) |2

AE((S, 8) — _g /ﬂ_,r,ei%6i[wg(ftm(5,6),5)7w?3'(tm(5,5),6)]

with an error of order o (2) if t = ¢,,(6,¢) tends to 0 with

g3/2 13 0 €
. /3
max (—51/2,5) < t < min (((55) 25 )

which implies the extra technical condition 6/¢7/®> — 400 (the expected condition is
§/e® — +o0, the technical condition can be improved by introducing more terms in the
asymptotics but the calculations are lengthy).

8.4.2 Critical Avoided Crossing (6 = ¢): we use the |t|/¢ — +00 regime.

The computations for H(t,d) real symmetric are made in [8], we only add that the
error is of order O(g'/*) if we choose t,,(g) = £%/4.
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8.4.3 Wide Avoided Crossing (§/¢ — +00): we use the [t|/0 — 0 regime.

We have . A
t
/0 o(T, 5)d7‘—7‘t5+0<62> ,

. t
bro(t,8,¢) = exp (; | =0 5)dr)
0

12 e (1,8)) 7 [ (1, 6) + alt, ] [L+ Oleol, )]

.t
$ir(t,6,) = exp (812 | e 5)dT> 11+ O(er(t, 8,2))]
x| C1(6, €)% (Y (t,8) + (1, 6)) + Co(6,2)e™™% (=1 (1,6) + va(t,9)) |
.t
Yoo(t,d,€) = exp (%/ E(r, (5)d7> [1+ O(eolt,d,¢))]
€ Jo
X Z Aé‘ (5’ 5)6(—1)kirt5/62 exp(iwé“(t, 5))@ (
(C,k)=(A,1),(B,2) 2

(=1 "1 (t,0) + ¢a(t, 0))

with eO(t 5 8) 52 2 +6+ ‘ |+ 52 and 6](t 5 8) = —|— |t|62_

Matchings with an error of order O (eo(t,0,¢) +eI(t (5 e)) can be performed by
choosing successively

01(5, 8) = 0 ,
\/§ iwe (— £
02(5, 8) = 7@ 5 (—tm(d,6),9)
and
Aj‘(é’ 8) = 0 I
As(5,e) = els (—tm (8,),6) ~wg (b (8,6),0)]

The global error is now of order o(1) if ¢t = ¢,,(d,¢) tends to 0 with ¢ < min (e, =

First order matching can be performed without extra calculations if the technical

condition §/e*/2 — 0 is satisfied. As expected, no extra term (of order £) appears.

8.5 Main Result

Theorem 2 Let H(t,6) be a Hamiltonian that satisfies the hypothesis above, and let
W(t,0,¢) denote the solution of (7) with initial condition

“T,66)= 3 A7(6,) exp (——/_ EC(T,a)dT>@g(—T,5)

C=AB
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where [A4(6,¢)|*> + |Az(6,€)|* = 1, then we have

=o(1) (31)

‘¢az&s)— 3 Agwgﬂemg(—iiﬁTEk@y®d%>QgUZ&

2
€
C=AB

where A% (6, 2) AL(5,€)
A% ) = 55, ( atse >
(Aa9 ) =sea (2269 ).
with,
e ifd/e — 0, wan(62)
0 ezw.AB €
S((S’ 5) = ( eiwBA(:€) 0 > ’
o ifd=c¢,
6_% VT eiwA(s) e—%reiwAB(E)
S0 =¢,¢e) = s
’ e 5 eiwnale) e~ T YT giws(e) ’

r(1+%)

e if /e — 400,
eiwA(J,e) 0
S(éﬂ E) = ( 0 eiwg(&,a) )

where each phase only depends on the choice of an initial phase for eigenvectors ®;(t,0)
(the matriz S(6,¢€) is unitary).
Moreover,

e if 6/ = 0 and §/e"/® — +oo, (81) holds with o (%) on the right-hand side and

4 iwA(d,e) 02 Liwap(6,e)
c\/mre ’ 1—nrze ’
S(6,e) = ¢ ¢
’ 82 iwp.a(0,€) s iwp(,€) ’
1 — mrS;e"BAY S/ mret B

e if §/e = 400 and §/e'/? — 0, (31) holds with o (5) on the right-hand side with
the same S(9,¢€).
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