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ABSTRACT

In this note, the authors illustrate how compact embeddings between func-
tion spaces can be obtained using wavelet methods. They consider weighted
Hölder spaces and obtain optimal growth conditions on the wavelet coeffi-
cients for functions in these weighted spaces. These conditions lead to con-
tinuous embeddings between weighted Hölder spaces and certain weighted
l∞ spaces.

RÉSUMÉ

Dans cette note, les auteurs utilisent des méthodes d’ondelettes pour obtenir
des plongements compacts entre des espaces de fonctions. Ils considèrent
des espaces de Hölder à poids et obtiennent des conditions de croissances
optimales sur les cefficients d’ondelettes pour des fonctions dans ces espaces
à poids. Ces conditions donnent des prolongements continus entre les espaces
de Hölder à poids et certains espaces l∞ à poids.
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1 Introduction

The purpose of this note is to illustrate how compact embeddings between
function spaces can be obtained using growth conditions on wavelet coef-
ficients. While compact embeddings for weighted Hölder spaces are well
known , we offer a novel approach for obtaining such embeddings, which may
be applied to many other function spaces. We refer the reader to the work
of Haroske in [2] on compact embeddings between weighted Besov spaces.
Besov spaces are generalizations of the Hölder classes.

We define the weighted Hölder spaces Cs,σ, s > 0, σ ≥ 0, as the intersec-
tion of the usual Hölder class Cs with the collection of all functions f such
that (1+|x|σ)f(x) is bounded. It is well known that the inclusion C t,τ ⊂ Cs,σ

is compact if and only if s < t and σ < τ . In this note, we present an interest-
ing approach using wavelet methods for proving these compact embeddings.

Wavelets provide a “universal” decomposition for various classes of func-
tions or distributions f :

f =
∑
k∈Z

〈f, φk〉φk +
∞∑

j=0

∑
k∈Z

〈f, ψj,k〉ψj,k. (1)

Here, the functions φk(x) = φ(x − k), k ∈ Z, form an orthonormal set
in L2(R) while the wavelets ψj,k(x) = 2j/2ψ(2jx − k), j, k ∈ Z, form an
orthonormal basis for L2(R). The function φ is sometimes called the scaling
function while ψ is called the mother wavelet. For functions f and g defined
on R,

〈f, g〉 =
∫
R

f(x)g(x) dx

whenever the integral is defined.
In his book [5], Yves Meyer obtains characterizations of various function

spaces in terms of growth of wavelet coefficients. For the non-homogeneous
Hölder spaces Cs, boundedness of the sequences

{〈f, φk〉 : k ∈ Z}, {2−j(1/2+s)〈f, ψj,k〉 : j, k ∈ Z, j ≥ 0}

is equivalent to f ∈ Cs. This is our starting point for obtaining inclusions re-
lating the weighted Hölder classes and certain weighted l∞ spaces. Compact
embeddings for these weighted l∞ spaces are easily obtained.
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For 0 < s ≤ 1 and τ ≥ 0, we define Cs,τ as the Banach space of all
continuous functions f : R −→ C for which the norm ||f ||s,τ = Rs(f) +
Sτ (f) is finite where

Rs(f) = sup {|f(x) − f(y)| · |x− y|−s : x, y ∈ R, x 6= y}

for 0 < s < 1, while for s = 1

Rs(f) = sup {|f(x+ y) + f(x− y) − 2f(x)| · |y|−1 : x, y ∈ R, y 6= 0}.

For all τ ≥ 0, we define

Sτ (f) = sup
x∈R

(1 + |x|τ )|f(x)|.

For s > 1, we define Cs,τ as the Banach space of functions f which have
derivatives (in the usual sense) up to order N = bsc for which the norm

||f ||s,τ = Rθ(f
(N)) + Sτ (f) (2)

is finite, where θ = s − N , and bsc denotes the largest integer strictly less
than s.

2 Wavelet Coefficients of functions in

weighted Hölder spaces

In this section, φ denotes a scaling function for a multiresolution analysis
with regularity r + 1 where r is a fixed positive integer. In other words, φ
has derivatives up to order r + 1 which all have rapid decay; i.e., for each
α > 0, there exists a constant Cα such that

|φ(i)(x)| ≤
Cα

1 + |x|α

for i = 0, 1, · · · , r + 1 and for all x ∈ R. The corresponding mother wavelet
denoted by ψ is also r+1 times differentiable and all its derivatives also have
rapid decay. Moreover, it has the property that

∫ ∞

−∞
xkψ(x)dx = 0 for k = 0, 1, 2, · · · , r + 1.
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We refer the reader to [5] for the details.
Given a non-empty set I, and any strictly positive function w defined on I,

we let l∞(I, w) = l∞(w) denote the Banach space of all functions s : I −→ C
normed by

|s|w = sup{w(i)|s(i)| : i ∈ I}

We shall take I = {(j, k) ∈ Z × Z : j ≥ −1}. Given s > 0 and σ ≥ 0, we
define ws,σ : I −→ (0,∞) by

ws,σ(j, k) = 2j/2 max{2js, 1 + |k2−j|σ}, if j ≥ 0 (3)

and ws,σ(j, k) = 1 + |k|σ if j = −1. In this special case, the norm of c in
l∞(ws,σ) will be denoted by |c|s,σ

For a function f in some weighted Hölder class, we let Sf denote the
sequence of wavelet coefficients of f :

Sf = {fj,k : (j, k) ∈ I}

where fj,k = 〈f, ψj,k〉 if j ≥ 0 and fj,k = 〈f, φk〉 if j = −1.
On the other hand, for a sequence c = {cj,k : (j, k) ∈ I} in some weighted

space l∞(ws,σ), we define Tc to be the wavelet series

Tc =
∞∑

k=−∞

c−1,kφk +
∞∑

j=0

∞∑
k=−∞

cj,kψj,k.

Proposition 1 Let s > 0, τ ≥ 0 with s < r + 1. Then
A) S is a bounded operator from Cs,τ into l∞(ws,τ).
B) there exists a finite constant C (depending only on s, τ and φ) such

that whenever c ∈ l∞(ws,τ) ,

Rθ(D
N(Tc)) ≤ C |c|s,τ and |Tc(x)| ≤ C

|c|s,τ (1 + log |x|)

1 + |x|τ
(4)

for x ∈ R, where N = bsc and θ = s−N . In particular, given σ ∈ (0, τ), T
defines a bounded operator from l∞(ws,τ) into Cs,σ.
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Remark: The second estimate in (4) is optimal as demonstrated by the
following example.

Let ψ be a compactly supported mother wavelet with ψ(0) 6= 0. Suppose
that ψ(x) = 0 whenever |x| ≥ L. We define

f(x) =
∞∑

j=0

∞∑
n=j

(1 + 2nτ )−1ψ(2jx− 2j+n).

If 0 < s ≤ τ , then |Sf |s,τ ≤ 1.
Observe that if j ≥ 0, n ≥ 0 and M is a positive integer with 2M−1 ≥ L

and n 6= M , then ψ(2j+M − 2j+n) = 0. Therefore, for these values of M ,

f(2M) = ψ(0)(M + 1)(1 + 2Mτ )−1.

Finally, letting xM = 2M , we have

f(xM) = ψ(0)
1 + c0 log xM

1 + xτ
M

whenever 2M−1 ≥ L, where c0 = (log 2)−1. This shows optimality of the
second estimate in (4).

Proof of Proposition 1: We omit the proofs of (A) and the first part of
(B) which are both standard. The regularity r + 1 of ψ is used in the proof
of (A).

Let c ∈ l∞(ws,τ). We have Tc = a + d with a =
∑∞

k=−∞ c−1,kφk and
d =

∑∞
j=0 hj where

hj =
∑
k∈Z

cj,kψj,k. (5)

To prove the second part of (4), it is enough to consider large values of x.
We fix x ∈ R with |x| ≥ 2. Choose α such that α− τ > 1. If |k|2−j < |x|/2
with j ≥ 0 , then |2jx− k| ≥ 2j|x|/2 and therefore,

|ψ(2jx− k)| ≤
C

(1 + |x|τ )(1 + |2jx− k|α−τ )
. (6)

Here and in what follows, C denotes a constant depending only on s, τ, α
and φ, and may be different at each occurrence. We shall also also adopt the
notations

aτ (c) = sup{|c−1,k|ws,τ(−1, k) : k ∈ Z},
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ds,τ(c) = sup{|cj,k|ws,τ(j, k) : (j, k) ∈ Z × Z, j ≥ 0} ,

for a sequence c ∈ l∞(ws,τ).
Combining (6) with the rough estimate |cj,k| ≤ ds,τ(c)2

−j/2, we obtain,
for a fixed j ≥ 0,

|
∑

|k|2−j<|x|/2

cj,kψj,k(x)| ≤
C · ds,τ(c)

1 + |x|τ
. (7)

On the other hand, the estimate |cj,k| ≤ ds,τ(c)2
−j/2(1 + |k2−j|τ )−1 yields

|
∑

|k|2−j≥|x|/2

cj,kψj,k(x)| ≤
C · ds,τ(c)

1 + |x|τ
. (8)

Combining (7) and (8), we conclude that

|hj(x)| ≤
C · ds,τ(c)

1 + |x|τ
(9)

for any non-negative integer j.
Let m denote the positive integer such that

2m ≤ |x|τ/s < 2m+1.

In view of (9), we obtain

|
m∑

j=0

hj(x)| ≤
C · ds,τ(c) log |x|

1 + |x|τ
.

Meanwhile, from the estimates |cj,k| ≤ ds,τ(c)2
−j(1/2+s), we conclude that

|hj(x)| ≤ C · ds,τ(c) 2−js, for j ≥ 0 and obtain

|
∞∑

j=m+1

hj(x)| ≤
C · ds,τ(c)

1 + |x|τ
.

Combining these last two inequalities yields the desired estimate for d. For
|x| > 2,

|d(x)| ≤
C · ds,τ(c) log |x|

1 + |x|τ
. (10)

The estimate for a is obtained in the same way that we obtained (9). We
have

|a(x)| ≤
C · aτ (c)

1 + |x|τ
(11)

whenever |x| > 2. 2
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3 Compact embeddings between weighted

Hölder spaces

Lemma 1 below, applied to the weights defined in (3), implies that the in-
clusion

l∞(wt,τ ) ⊂ l∞(ws,σ)

is compact if t > s > 0 and τ > σ ≥ 0.

Lemma 1 Let w and v be strictly positive functions defined on I such that
for some finite constant C,

v(i) ≤ C w(i), i ∈ I.

Then the following are equivalent:
(i) the inclusion l∞(w) −→ l∞(v) is compact
(ii) for any ε > 0 , the set {i : v(i) > εw(i)} is finite.

For the reader’s convenience, the proof of the lemma is given in the last
section of this note. We can now easily obtain compact embeddings between
the weighted Hölder spaces.

Theorem 1 Let 0 < s ≤ t <∞ and 0 ≤ σ ≤ τ <∞.
(a) Suppose s < t and σ < τ . Then the inclusion C t,τ ⊂ Cs,σ is compact.
(b) The inclusions C t,σ ⊂ Cs,σ and Cs,τ ⊂ Cs,σ are not compact.

Proof of (a): Choose ρ ∈ (σ, τ). By Proposition 1, the linear mappings

S : Ct,τ −→ l∞(wt,τ) and T : l∞(ws,ρ) −→ Cs,σ

are bounded. Taking the composition of this mappings with the compact
inclusion

i : l∞(wt,τ ) −→ l∞(ws,ρ),

we obtain the compactness of

T ◦ i ◦ S : Ct,τ −→ Cs,σ.
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Meanwhile, for bounded continuous functions f , we have pointwise conver-
gence of its wavelet series:

f(x) =
∑
k∈Z

〈f, φk〉φk(x) +
∞∑

j=0

∑
k∈Z

〈f, ψj,k〉ψj,k(x),

for all x ∈ R. See, for instance, [4] . Therefore, the composition T ◦ i ◦ S is
precisely the inclusion C t,τ ⊂ Cs,σ. 2

Proof of (b): We shall only consider the case 0 < s ≤ t < 1. We retain
the notations

Rs(f) = sup
x6=y

|f(x) − f(y)| · |x− y|−s

for 0 < s < 1, while for any τ > 0,

Sτ (f) = sup
x∈R

(1 + |x|τ)|f(x)|.

To prove the non-compactness of the first inclusion in (b), we fix f ∈ C t,σ,
f 6≡ 0 and let Tnf(x) = f(x− n). We let

fn =
Tnf

||Tnf ||t,σ
.

If the first inclusion in (2) were compact, then there would exist g ∈ Cs,σ

and a subsequence fnk
such that ||fnk

− g||s,σ −→ 0 as k −→ ∞. Since
limn→∞ Sσ(Tnf) = ∞, we have

||fn||s,σ −→ 1, ||fn||∞ −→ 0.

Thus, g = 0. This implies ||fnk
||s,σ −→ 0, a contradiction.

To prove the non-compactness of the second inclusion in (b), we fix a
non-constant function h ∈ Cs,τ and define

hn =
Dnh

||Dnh||s,τ

where Dnh(x) = h(nx). Assuming compactness of the second inclusion in
(2), there would exist a function k ∈ Cs,σ and a subsequence hni

such that

||hni
− k||s,σ −→ 0, i −→ ∞.

Since Sσ(Dnh) ≤ ||h||∞ + Sσ(h) for n ≥ 1 and Rs(Dnh) = nsRs(h), we have

||hn||s,σ −→ 1, ||hn||∞ −→ 0

as n −→ ∞. This implies k = 0 and therefore ||hni
||s,σ −→ 0, a contradic-

tion. 2
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4 Proof of Lemma 1

To prove the implication (ii) ⇒ (i), it is sufficient to show that Ball l∞(w) is
totally bounded in l∞(v). We use the notation Ball X = {x ∈ X : ||x|| ≤ 1}
if X is a normed space.

Let ε > 0. For each i ∈ I, choose complex numbers a(i, j), 1 ≤ j ≤ n(i),
with |a(i, j)|w(i) < 1 such that

{z ∈ C : |z|w(i) ≤ 1} ⊂
n(i)⋃
j=1

{z ∈ C : |z − a(i, j)|v(i) < ε.}.

We write {i ∈ I : v(i) > εw(i)/2} = {i1, i2, · · · , iM} and consider the
Cartesian product

P =
M∏

k=1

{1, 2, · · · , n(ik)}.

For m = (m(1), · · · , m(M)) ∈ P , we define xm : I −→ C by xm(ik) =
a(ik, m(k)) for 1 ≤ k ≤M and xm(i) = 0 if i 6= ik for all k ∈ {1, 2, · · · ,M}.
Then xm ∈ Ball l∞(w) and

Ball l∞(w) ⊂
⋃

m∈P

Bv(xm, ε). (12)

To prove the implication (i) ⇒ (ii), suppose there is an ε > 0 such
that Aε = {i ∈ I : v(i) > εw(i)} is an infinite set. . Let {in}

∞
n=1

be a sequence of distinct elements in Aε. For n = 1, 2, 3, · · ·, define en :
I −→ C such that en(j) = w(j)−1 if j = in and en(j) = 0, otherwise.
Then ||en||w = 1. Assuming that (i) holds, there would exists a subsequence
{enk

}∞k=1 convergent in l∞(v), say to e. It is immediate that e = 0. Hence

w(ink
)−1v(ink

) = ||enk
||v −→ 0

as k tends to infinity. This contradicts the fact that {ink
}∞k=1 is a sequence

of elements of Aε. 2
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