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Résumé: Dans le cadre Kihlérien les équations d’Einstein généralisées (équations d’Einstein “avec
sources” pour les physiciens) peuvent étre regardées comme des équations cohomologiques & intérieur
de la premiére classe de Chern. En introduisant une classe secondaire (ou source) a deux paramétres
pour prescrire cette relation cohomologique, on caractérise la région dans 'espace de ces paramétres pour
laquelle ’équation associée admet au moins une solution. Quand la premiére classe de Chern est positive,
la constante de Aubin-Tian et les bornes pour la concavité et convexité pluriharmonique de la source
caractérisent les bornes de cette région. En tenant compte de la régularité minimale de la classe secondaire
pour assurer l'existence des solutions classiques, on observe, en particulier, une amélioration des résultats

cités dans la littérature dans le contexte de la conjecture de E. Calabi.

Abstract: Generalised Einstein equations (Einstein equations with sources in the physicist’s grammar)
can, in the Kédhler setup, be seen as cohomological equations within the first Chern class. Introducing a
two parameter secondary class (or source term) to prescribe such a cohomological relation, we characterise
regions for those parameters to ensure that the associated equation admits at least one solution. When
the first Chern class is positive, the Aubin Tian constant and the bounds for the pluriharmonic concavity
and convexity of the source term characterise the bounds of that region. Taking into account the minimal
regularity of the secondary class to ensure the existence of classical solutions, we observe, in particular, an

improvement of the results quoted in the literature in the context of E. Calabi’s conjecture.

1 Introduction

A. Einstein’s equations of General Relativity are, in the Riemannian context, written
as Ric(g) —gS(g)/2 = 9T, where 9 is a suitable constant, 7' denotes the energy momentum
tensor (a function of nongravitational effects, say), while Ric(g) and S(g) denote the
(symmetric) Ricci tensor and the scalar curvature of the underlying metric background or
gravitational field g, respectively. That equation has many variants.

Let V be a closed Kéahler manifold of complex dimension n, j a complex structure
compatible with some Kihler form w. Assume that the first Chern class ¢'(V,j) of the
anticanonical bundle is represented by Aw/27, where A is either —1,0 or 1: one says that
the anticanonical bundle is negatively curved, flat, or positively curved, respectively (see
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the Section Preliminaires for more details). Let X denote a Banach space where the (real)
test functions on V' (namely D(V')) are dense. We will study the equation

V—1Ric(wg) — My = V—1d"0d° ((t — N)z — s2) (1)

on V. The eventual solution to the equation is z, a real valued function on V' that belongs
to a certain X. In the equation z denotes a given real valued function on V, ¢ and s are
real numbers, and w, is an abbreviation for w + v/—1d'%d%'z. It is important to note that
if t =X and z =0 (or s = 0), then we have the equation associated to the problem of
Kahler Einstein forms extensively treated in the literature ([1], [7], [13], [28], [32]). If also
A = 0, then the equation is equivalent to the equation associated to E. Calabi’s conjecture.
Recall that the case when A is positive still remains open ([2], [8], [13], [15], [28], [29]).

That family of equations also has a natural interpretation in terms of prescribed (or
directed) cohomology for the first Chern Weil form: if F' is a GL(n,C) invariant polynomial
of degree p on the set of n by n hermitean matrices, and if R(w) denotes the curvature
form associated to the Kahler form w (seen as a End(TV) valued form of type (1,1)),
then F(v/—1R(w)/27) is a closed form of type (p,p) on V, an example of a Chern Weil
form. That form depends on w. If w, is another Kéhler form, then F(v/—1R(w;)/2)
and F(v/—1R(w)/27) differ by the d'°d®' of a form on V (|20]). The simplest example
of that generality is when F is the usual trace: then F(y/—1R(w)/2m) coincides with
vV/—1Ric(w) /2w, and represents the first Chern class of (V, ). Under our hypothesis on w
one has that (1) is equivalent to

V—1Ric(wz) — V—1Ric(w) = vV—1d°d° (tz — y, — s2), (2)

where v/ —1Ric(w) — Aw = v/—1d*%d%y,,.

Important: The reader should imagine himself moving in the ¢ versus s plane in front
of a screen. On the screen he probably sees, as he moves in certain directions and within
certain zones, deformations of metrics that have a certain regularity, symmetry and further
properties (that could eventually be read from the equation). We assert that if he moves
within certain zones (and in certain directions), he will certainly see something. That is
the naive content of

Theorem 1.1. The equation (1) or (2) has at least one solution in C*+2*(V) provided
that z belongs to C**(V) for k > 2 and a €]0, 1] and:

i) s is any real number and t is smaller than 0. The solution will be unique.

ii) s is any real number and t is equal to 0. The solution will be unique up to a constant.

iii) X is equal to 1, t is bigger than 0 but less or equal than min(1l,k), where Kk <
(n+ Dy /n and: t+sK- < 14fs<0,t+sK; <1i4f0<s. Here apyy) is what is
known in the literature as the Aubin Tian constant, while K_ and Ky are the bounds for
the (pluriharmonic) convezity and concavity of z with respect to w.

The proof of Theorem 1.1 will be completed in Section 4, where the definitions for
a(vj), K- and K will be found. In fact i) can be considered as a Corollary of

Theorem 1.2. Assume that the anticanonical bundle is negatively curved, that the sign of
ct(V, 5) is identified with X (so X is equal to —1). Then whenever z belongs to C**(V') for
k> 2 and «a €]0,1], the equation (2) admits a unique solution in C*+2%(V) provided that
t=M\ands=—1.



Note that (1) when ¢t = A and s = —1 becomes
E)\(z) = v—1d"d"' 2, (3)

where E)(z) is an abbreviation for v/—1Ric(w;) — Aw,. That is a natural generalisation
of the problem of K&hler Einstein forms.

We observe that the regularity needed for the term z is lower than the £ > 3 that
appears explicitly in the work of T. Aubin ([1], [3]) and implicitly in other works ([7], [32])
in the context of E. Calabi’s conjecture. The k = 2 could be considered as being implicit
in the work of Y.T. Siu ([28]) that modifies, in a paticular way, results from the theory of
second order fully nonlinear elliptic equations in real domains. Those results were obtained,
among other people, by L. Evans ([16]), N. Trudinger (|19]), and N. Krylov (|9]). Y. T. Siu
performs a possible adaptation of those results to the complex setup. As far as we know,
however, the minimal requirements for the regularity of z that we propose have not been
mentioned before (see [3] or [22] for statements about the state of the subject). This is
relevant in (1): the eventual solution parametrises connections, curvatures and geodesics.

The regularity characterisation of the solutions follows from the chain of estimates
proposed in Section 3, where the proof of Theorem 1.2 is given. That chain of estimates
(and the subtleties involved) is obtained following (and clarifying) the work of many people,
among them T. Aubin ([1]), J.P. Bourguignon ([7]), E. Calabi, L. Evans ([16]), Y.T. Siu
(|28]), N. Trudinger ([19]), and S.T. Yau ([32]). That chain of estimates is essentially the
same for i), ii), and iii) in Theorem 1.1, modulo different uses of the implicit and inverse
function theorem within B manifolds 2 to proceed in the methods of continuity proposed,
where a bound for the oscillation is needed. The estimate for the oscillation required in
statement ii) is the same as the one proposed by S.T. Yau ([32]) and later clarified by T.
Aubin ([1]), J.P. Bourguignon and his collaborators (|7]), and then further by Y.T. Siu
(]28]) and G.Tian ([31]), so it will not be written here. The reader interested in details on
the history of the subject can consult [28]. To ensure a bound for the oscillation in iii),
we proceed via a constructive generalisation of Aubin’s contant ([2], [5], [27]), its relation
with Tian’s constant (or invariant) ([30]), and their relation with comparative estimates,
functionals and concavity constants.

The proof of Theorem 1.2 could be read in a sequential order, noting that each e is
associated to a subroutine that assumes the following subroutine (and so on). Equivalently,
the reader can begin from the last ® and then read the preceeding subroutine (that assumes
the one preceeding it), and so on (noting that the symbol o denotes only a subsubroutine).
In fact it is better to read the proof in both directions.

The proof of the bound for the oscillation needed in iii), Theorem 1.1, should, in
principle, be read following the sequential order in the script. As one proceeds, definitions
and results that are needed will require to go forward and backwards, but everything is
numbered in a clear way.

We will be concerned in proving existence of solutions to Monge Ampére type equations,
leaving for a future work relations and estimates to complete the picture.

The reader interested in other Generalised Einstein equations and their relation with
ideas that could be relevant for physicists (and geometers) can consult [26].

2The letter B is an abbreviation for Banach, thus B space means Banach space, for example.



2 Preliminaires and Notation

Let V be a Kahler manifold of (complex) dimension n. One chooses a complex struc-
ture j therein compatible with some Kéhler form w. Identifying A and O with the sheaf
of germs of real and complex analytic functions on V respectively, one notes that O is a
subsheaf of A¢ := A ® v/—1A. Related to w and j are the hermitean, riemannian and
symplectic forms h,g and f in 3

Homgoo (@2TV,CE), Homgeo (©2TV,C*®) and Homge (ATV,C™)
respectively, that one introduces, recursively, through

_g+vV-1f
\/i ’

Whenever O is the domain of a local parametrisation on V, (Zi € (1...n)) denotes
the set of (canonical) generators of the (CZ)o free module /\égo (TV,C®)o.* There-

n

fore h is on O expressed through Ez’,j:l
doij=1 V—1Z' A Zih;j. Decomposing Abe (TV, C&) into the direct sum Af% (TV, CX) @
/\001(,o (TV,C&) making use of the complex structure, one then separates the mapping
d: C® = Ao (TV,C) in d'° + d%, obviously ruled by matching the 10 and 01 in-
dexes.

Ifh=ht:=h' denotes the element (hijli,j € (1..n)) in M(n,C), and T' denotes the
local section in Abe (End(TV)) associated to the hermitean connection V for (w, ) (see
[20] for example), one has the identity (d'°h)h~! = I'. Identifying R(w) := VV locally
with R(w) and after deducing that R(w) = dI' — T"' AT, one readily infers the equality
R(w) = d**((d*®h)h 1) between local sections in Aldio (End(TV)).

The trace of R(w) with respect to T'V is a section in /\}jio TV, usually denoted by Ric(w)
(because in the Kahler setup different traces of the curvature tensor are equivalent), and
known as the Ricci tensor of the Kéhler form w. Expressing the 2n vectorfield describing
the orientation of V, say 7, locally as A", (—v/—1Z; A Z;) (where (Z;|i € (1..n)) U (Z;]i €
(1...n)) denotes the set of generators of (T'V ® C)p), one deduces that Ric(w) is equal to
d*'d"0log(7, ‘;’Z—T,L) (recall that (7, “T’l—T) = det h), always regarding the local parametrisation.
One verifies that /—1Ric(w)/27 is a closed real form of type (1,1), defining thus a class
in H%'(V,R), known as the first Chern class for (V,j), and usually denoted by c!(V, j).
If V is closed, the d'°d®! Lemma (see [20]) enables us to conclude that such a class is
independent of the connection and of the K&hler form.

h: =f-(j,1),and f:=—w.

7' ® ﬁhij, if and only if w on O is given by

From a different perspective: if ¢ : O — C" denotes a representative of an atlas or
parametrisation, then we have an associated cocycle ¥ = ¢ - ¢ !, and therefore the (in-
ductive limiting) cocycle DU ~! denotes the element in H'(V,GL(n,C)) that represents
TV. Thus A,DU~! denotes the element in H'(V,0*) that represents K‘jl, the anti-
canonical bundle for (V, j) (sometimes written as det TV'). Any Kéhler form on (V ), say
w, induces a metric on K‘jl in the usual way: the curvature form of that metric is also
Ric(w) (see [20], [12]). Moreover, if V' is closed, then different Kéhler forms on (V, j) give,

3The reader not familiar with this notation should compare with the nomenclature introduced in Chap-

ter 1 of [17]. _ '
4Some authors write dz® instead of Z°.




thanks to the d'%d°! Lemma, cohomologous curvature forms on K;l. That leads to the
equality ' (V,j) = c¢'(K,') in H“'(V,R), enabling us to endow K;,' with some curvature
properties of (V, j).
Let X denote a B space where D(V) is dense. Then we identify Px(V,w) with X N
(z | wy > 0), where w, is an abbreviation for w + /—1d'%d°'z. Therefore if h is the
hermitean matrix associated locally with w, then the hermitean matrix associated with w,, is
h+ D2z =: hy, where D%z denotes the complex hessian of z. If M(z) (the complex Monge
Ampére operator) is given by det hy/det h, one deduces, assuming that Aw/27 represents
ct(V,5), that Ey(0) = v/—1d*%d"'y,, together with E)(z) = v/—1d*%d" ((t — \)z — sz) are
equivalent to
M(.’E) — Cewatw+sz (4)

provided that X is contained in C*(V'), where Ej(z) := v—1Ric(w;) — Aw,, and C is a
constant related to the distortion in the total volume induced by the factor in the expo-
nential.

3 Proof of Theorem 1.2

The equation (1) when ¢ = A and s = —1 becomes
Wl = Cele 272N (5)

whenever z is in C*(V'), where C is explicitly given by

n ' n

w Wy g W
=|V| = . Yo—2— AT
/ [ | | _/ Y C/ e’ P
v n: v n: v .

By a well known argument that uses the convexity of Px(V,w) and that finally appeals
to the classical maximum principle (see [26] for example), one deduces that the equation
(5) has at most one solution.

e One then considers, as ¢ varies within [0, 1], the family of equations
M(z) = Cpelo—2)=2a,
where C; is a normalising constant that varies with z. With the help of the map
Fy : Pgrroa(Viw) — CF(V)
z — log M(z) + Az,
the family of equations can then be rewritten as

Fy(z) = t(yw — 2) + log C. (6)

o In what follows (7, Dy) will denote the Fréchet derivative of ¢ in the direction of 7
whenever ¢ belongs to C'(U, Z), Y and Z are complex B spaces, U is an open subset in Y,
and 7 is an arbitrary direction in Y ([17]). This notation will be used in various contexts.

The linearisation of F at z (that we denote by DFy(z)) is
DFy\(z) : CF™2V) — CP(V)



where A is the (negative and divergence free) Laplacian with respect to the form w,. If A
is smaller than zero, the linearised map is invertible whenever z is in Poky2,0 (V,w). Thus,
by the Inverse Function Theorem, F) is an invertible map from an open neighborhood of x
in Pgokt2,q(V,w) to an open neighborhood of Fy(z) in C*<(V'). This is valid for all values
of k and «.

o But (6) has 0 as a (unique) solution when ¢ is equal to zero (since Cj is equal to 1).
Due to the last arguments, there exists an ¢ bigger than zero such that (6) has a unique
solution in C¥*2%%(V) for all ¢ in [0,¢[ provided that z belongs to C*(V): this is still
valid for all values of k and a. We choose € as big as possible.

Let (¢(¢)|2 € N) be an increasing sequence in [0, €[ so that lim; ., (i) = €, and assume
that (z4(;)]i € N) is a bounded sequence in C¥+%%(V') so that Fj(zy;)) = (i) (4w — 2) holds
whenever ¢ belongs to N. If ¢ > 1, then z; is the solution that we are looking for.

Being the embedding C*¥+2*(V) — C*¥*28(V) equibounded and equicontinuous (thus
compact) whenever 0 < # < a < 1, there exists a subsequence of (zy(;)|7 € N) in Ck+28(v),
say (Tys))li € N), such that lim;,coTy(s(i)) = Ze in Ck+28(V), where z, is a solution to
(6) when ¢ = & (that obviously belongs to C¥*2#(V)). But, considering the arguments
given in the next subroutine (or the next ), one deduces in particular that z. also belongs
to Ck¥+22(V) (to achieve that, the requirements k > 1 and a > 0 must be satisfied, as
will be seen). If ¢ < 1, we arrive at a contradiction, since the Inverse Function Theorem
ensures us that there also exists a solution for ¢ in neighborhood of €.

We conclude, as expected (taking into account the arguments given in the next sub-
routine), that to ensure the existence of a solution for (3) in C*¥*2%%(V), it suffices to
have a finite upper bound for the set of real numbers (up to now with the yet mentioned
restrictions on (k, @)

(I7t|(k+2,a,0) [Tt solves (6) for all ¢ in [0,1], © is any open ball in a local chart).

By a local chart we understand any chart in a system of charts (or an atlas) for V satisfyng
the conditions described in the Section Preliminaires, and: the distance d,, induced by the
Kéhler form w on a local chart is equivalent to the standard distance | |c» in C?, i.e.
if o : O — C" is a local parametrisation, then there exists a constant C' > 0 such that
whenever z; and 2z, are in the open subset of C" that corresponds to O, one has

C Moy — zo|on < dule H(z1), 90 '(22)) < Clz1 — 2acn

e Let the pairing [-|-] denote the euclidean (not the hermitean!) inner product in
M(n,C). Let hy := h + D%z, where D2z denotes the element in M(n,C) associated
to the complex hessian of z. Let h™! denote the one associated to the inverse of h. Let
H:= M(n,C) N (h|/h = h'), and let H[y, A] denote the subset of H whose elements have all
their eigenvalues in the interval [y, A] .

Remarks: Within this framework:
i) z belongs to P(V,w) if and only if hy(v) belongs to Hy := UesoH[e, +00] for each v in V.
ii) The ellipticity constants for A, on  are v and A if and only if h,* belongs to (H[y, A])%.
iii) Some of the results of the theory of fully nonlinear elliptic equations can be naturally
used in complex geometry, and viceversa.

Note: In the following the index Q will be sometimes omitted. If there is no dependence
on t in the estimates, that means that we set ¢ to be equal to 1.



Noting then that the differentiation in any direction in C" (that we omit) of F)(z) is
Dlog M(z) + DAz = [h;'|Dh,] — [h~!|Dh] + ADz,
we then differentiate the equation (6) once, to get the equality
[h,!|DZDz] + A\Dz = [h™' — h'|Dh] + tD(y,, — 2), (7)

where [h;?|D2Dz] should indeed be identified with Az Dz.

Assume now that a bound for (|z|2,q|z solves (6) for ¢ = 1) has been obtained. If |y, —
z|o is bounded, then (6) ensures that we have a bound for |(h;')ijlo,. for each (4,5) €

(1..n) x (1...n), thus a bound © for |[h~" — h;!|Dh]|g4, of course for the ellipticity
constants v and A of A, and obviously for |Dz|o.

If also |D(y, — 2)|0,a is bounded, one has, due to the equality (7) and E. Schauder’s
estimate (see Chapter 6 of [19] for example), the inequality

[Dzfz,0 < C(n, 0,7, A, 0, X)(|Dzfo + [D (Yo = 2)l0,a),

hence a bound for |z|3,4.

If the bound for |z|3, is obtained, then one has a bound for |(h;')ij|1,. for each
(1,7) € (1...n) x (1...n). If also |z|2,o (thus |D(y, — 2)|1,e) is bounded, then one has (due
to E. Schauder’s estimates and (7)) a bound for |Dz|3 4, hence for |z|44, and so on.

One concludes that if K > 1 and a > 0, z solves (6) at ¢ = 1 and z belongs to C**(V),

then if one has a bound for |z|2 o, a bound for |z|y2,4 is obtained.

e Assume now that |D,7z(v)| is bounded whenever 7 is a vector in C* and v is in V'
(where D,z := (1, Dz), for example), that z belongs to C?(V). Rewriting (6) at ¢ = 1 on
Q as

log det h, = ¢(2) — Az, (8)
where ¢(z) is an abbreviation for y,, — z — logdet h — log C, we choose a vector 7 in C",
to then differentiate (8) twice, first in the direction of 7, then in the direction of 7, to get
the equality

[D;h;'|Drhg] + [hy'|D7hy] = Drg(2) — ADyr.

But [h;'|D,7h,] is equal to [h;'|Dzh] + [h;'|DZD;#z], and [Dzh;!|D;h,] is less or
equal than zero (to check the last inequality one can choose coordinates so that (hy);; is
equal to zero unless 1 = j). We obtain thus the inequality

[, '|DED,7z] > Dy7¢(z) — ADy=z — [h, ' |D,7h. 9)

o Being logdet a concave function on H; (and being (M (n,C),[-|-]) a Hilbert space),
from the graph of log det one infers that

logdet hy(ve) < logdet hy(v1) + (hy(ve) —hy(v1), Dlogdet(hy(vy)))

whenever v; and vy belong to €.

Since (hy(v2) — hy(v1), D logdet(hg(v1))) is equal to [hy ! (vi)|hy(ve) — hy(v1)], from
the previous expression and ( 8) we deduce

[ (v1)|Dga(v1) — Dga(va)] <



$(2) (v1) — ¢(2) (v2) — Mz (v1) — 2(v2)) — [hy " (v1)h(v1) — h(v2)]. (10)

o Having the inequalities (9) and (10), we can make the natural link with the theory of
real Fully Nonlinear Elliptic equations to obtain the Holder estimate for the second deriva-
tives (the similitudes between Nonlinear Elliptic equations in real and complex domains
seem to indicate that a traduction of all the known results would be unnecessary). We
briefly explain how to do that in a slightly different form as done by Y. T. Siu in [28] (using
the d'%d°! Poincaré Lemma (see [20])) and by N. Trudinger ([19]) (in real domains) with
the purpose of clarifying the regularity issues (that otherwise would have remained
in the shadows). The reader should consult [28] and [19] for a complete exposition of
some subroutines of what follows.

Remark: Y. T. Siu considers essentially the Fully Nonlinear operator F(D2z) =
det(DZz), as done by N. Trudinger in real domains. We are essentially considering
F(D2%z) = det(1 + D2z) instead. Although the real analog of this case is contained in a
much more general result of N. Trudinger, our argument, when restricted to this case, is
much simpler. That might be of value for some real analysts and real differential geometers
([11]).

o Fixing R € R small enough, setting M(sR,7) := supp(,p) D7z whenever B(sR)
(the open ball of radius sR centered in the origin of the local parametrisation) is contained
in © (that contains B(2R) at least), we observe that (9) is equivalent to

[h,'|DE(M(sR,T) — Dr7x)] < —Dr7(¢(2) — Az) + [, !|D;7h), (11)
to then note that the | |o B(2r) norm of the right hand side is bounded since both

|Drrgp(2) — )\DT?IE|0,B(2R)

and
_ —1
| [h;'|Ds#h] |o,5r) < VRA| [Dr7h|D7h]? |o pog)

are bounded by assumption.

After those observations one can invoke the Harnack type estimate of N. Krylov and
M. Safanov for non negative supersolutions (see Chapter 9 in [19]) of Elliptic Equations,
and use it on (11) for fixed 7 in C" and for s = 2, yielding

(R~2n o (M(2R,7) — Dyrz)Pdv)? <

C1{M(2R,7) — M(R,7) + R?*Y(DZz, D%z, D3h)(1)}, (12)

where dv is the measure induced by w in the local parametrisation, p and C are positive
constants that depend only on n and A /v, and where | D,z(¢(2) —Az)+[h; | D7h] lo,B2R)
has been abbreviated by Y(DZ%z, D2z, DZh)(t).

o Now something should be done with (10) to couple it afterwards with (12). Since

h;! belongs to H, we can certainly express it in the form szzl(hw_l)ijZi ® Z with

(hzY)ij = (hz')ji- If hy! belongs also to H[y, A] for some 0 < vy < A < oo (something
that happens under our actual assumptions), then in virtue of the result in Linear Algebra
of T. Motskin and W. Wascow (that was obtained to approximate Real Linear Elliptic

equations by Difference equations ([25])) we can choose a finite set of unit vectors in



C*, say (rg|k € (1...N)), so that h;! can be written also as Z,iv:l(h;l)km ® Tk, where

Th = Do 1TkZ and 0 < 5% < (hg ) < A for every k in (1...N). Identifying Dz with

doii=t 7' ® ZiD, Z; %, e conclude that [hy | D2z] is equal to Yo, (hy g Dy -
Therefore (10) gives

DTITT‘T(Ul) — Dy z(v2) < —{AZ (2R, 7%) DTkﬁ‘T(UI))""
k£l

3R( |A|Dzlo,pi2r) + |Dd(2)l0,B2R) + \/EA”DhHO,BQR) )}

for every [ in (1...N), since

bz (v1)[B(v1) = h(v2)] < v/AA| [a(v) — h(v1)[B(v2) = B(©1)]? |0, pr)

with

| Ia(v2) = h(vr)[B(v2) = B(v1)]2 |0, pem) = [[B(v2) = h(v1)llo k) < 3RI|Dhlo pan)s

for example.

Abbreviating now

( |)‘HD$|O,B(2R) + \D¢(2)|0,B(2R) + \/EAHDhHo,B(QR) )

by ®(Dz, Dz, Dh), introducing m(sR, 7) := infp(;g) D7z and choosing vz so that
m(2R, ;) = Dy 7x(v2), one gets from the previous inequality

Dyma(v)) —m(sR,7) < —{AZ (2R, ;) — Dy, 7o(v1)) + 3R®(Dz, Dz, Dh)}. (13)
k£l

o Defining finally w(sR) := Z,chzl(M(sR, T,) —m(sR, 7)), integrating (13) over B(R),
putting that together with the sum over k # [ of the inequalities (12) (one for each 7y),
adding then over [ and after a little algebra

w(2R) < Co{w(2R) — w(R) + R®(Dz, Dz, Dh) + R? sup Y(D2z, D%z, D3h)(1)}
TeCr

is obtained. Then an iteration procedure a la J. Moser begins, to yield (after some recursive
and logarithmic relations) the desired Holder estimate with an exponent « that depends
only on n, v and A.

One concludes that if one has a bound for |D,7z(v)| as v varies in V' and 7 within C",
and z belongs to C%(V) (in fact slightly less is needed), then a bound for |z|s 4 is obtained,
where a > 0.

e Assume now that a bound for oscyz := supy z — infy = has been obtained.

Differentiating the equality (6) twice, using normal coordinates at the point in V' where
the estimate that one will obtain is valid, computing Az(e™%*(n + Apz)) for any ¢ in Ry
that satisfies

¢+ inf inf K(m, o) > 0
veV m#£n2€Gre((1,1),Ty(V)) (771 7]2)( )



(where K (n1,m2)(v) denotes the bisectional curvature associated to the planes at v defined
by the (simple) elements 7; and 7, in the Grassmann bundle of type (1,1) vectorfields (see
[24] for other definitions of curvature operators)), using some arithmetic inequalities and
putting all that together as S.T. Yau did ([32], [7], [31]), one gets for each v in V

Ag(e™®O) (n + Aoz (v))) >

=) ((A(v) + B(n + Doz(v)) + C(0)(n + Dow(v)) 1 ), (14)
where
A = \n — 2 inf K ’ +A w ’
(U) nen m#nzeGréI(l(l,l),Tu(V)) (771 772)('0) O(y Z) (v)
B :=—(A+cn),
and
. _ Qe=z=2a)()
C(v):=(c+ inf K(n1,m2)(v))e o >0

m#n2€Gre((1,1), Ty (V)

Assume now that e%*(n + Agx) achieves a maximum at a certain point in V', say vy.
Then by one side one gets, whenever v belongs to V', the obvious comparisons

0 < (n+ Apz(v)) < e“@O=20)) (1 4 Agz(vp)) < e“OVE(n 4+ Agz(vy)),

(the first inequality is due to the fact that 0 < [h=!|hy] = [h~!|h] + Aoz whenever z is in
P2 (V,w)). By other side the estimate (14) gives at that maximal point, the inequality

0> A(vg) + Bs + C(wg)sw 1,

where
s:=n+ Doz(vg).

Hence everywhere 0 < n + Agz < e“*V?K,, where K := (n + sup,cy Doz(v)) is
bounded in virtue of the polynomial inequality. Considering that z is in P(V,w), we
obtain the (pointwise) uniform bounds —1 < D, 7z < Ky < oo for each i € (1...n) (recall
that we are using a special normal coordinate system at every point), where Ky depends
only on K; and n. As an outset the desired bound for (1, d'°d®'z) as n varies within the
bounded sections in Gre((1,1),TV) follows.

Omne concludes that if z belongs to C%(V) (in fact slightly less is needed) and if one has
a bound for oscyx, then a bound for |Dzz(v)| for all v € V and 7 in C" is obtained.

e Thus a bound on oscyz is finally required. It is very easy to obtain this bound:
assume that = solves (6) at ¢, that it achieves a minimum at a certain point in V', say vy.
Being then M (z)(vg) bigger or equal than 1, one deduces that

i%f:c > —(yw — 2)(vo) — log C.

An analogous argument enables us to obtain an upper bound for supy z . Therefore
oscy z is bounded provided that so is y,, — 2. q.e.d.

The modifications for the case when X is equal to 0 lead to

Corollary 3.1. Assume that the canonical bundle is flat, that the sign of c'(V,j) is iden-
tified with X (so X is equal to 0). Then whenever z belongs to C**(V) for k > 2 and « is
in 10, 1[, the equation (3) admits a unique (up to a constant) solution in C*+2(V).

10



The main differences between the negative and the flat case (the uniqueness is similar
as for the negative case) is the estimate for oscy z. But, as seen, when ) is negative, the
term z plays a passive role there, say: something similar happens when A is zero, as one
can verify ([32], [1], [7], [28], [31])-

4 Proof of iii), Theorem 1.1

Observe first that the equation (4) could be written as
Fy(z) = F(z,1) = sz +, (15)

where y = y,, + log C and Fy(z) = log M(z) + tx, C being the usual normalising constant.

When ¢ is less than zero (equal to zero), we have proved in Section 3 that there exists
a unique (up to a constant) solution z in C*¥*%%(V) for (15) whenever z is in C**(V) for
any s in R, provided that £ > 2 and a €]0,1[. Those are the statements i) (and ii)) in
Theorem 1.1.

The statement concerning the Holder regularity in iii) follows from the chain of esti-
mates explained in Section 3. Therefore, without any danger of confussion, we will identify
the B space to which z belongs with Z, while the one to which z belongs with X. The
additional features that appear in this Section are the difficulties that arise in the Method
of Continuity and the longer procedure to obtain a bound for the oscillation of the eventual
solution. Roughly speaking, z does not play a passive role when ¢ is positive.

We will see that if A is equal to one and a(y,;) is greater than n/(n + 1), then the
equation (15) has at least one solution whenever ¢ <1 and s = 0 ([30]). This implies that
(V,7) admits at least one Einstein form. All those forms are then in a single orbit under
the natural action on functions of the identity component Aut’(V,j) of Aut(V,j), the
group of j holomorphic automorphisms of V' ([4]|). Therefore if w is an Einstein form and
Stab(w) denotes the isotropy subgroup of Aut®(V, ) at w, one certainly has that the set of
Einstein forms for (V, j) is isomorphic to Aut®(V, j)/Stab(w). Moreover, if (V, j) carries an
Einstein form, then the relation between Lie algebras aut(V,j) = stab(w) + /—1stab(w)
holds ([23]) (note that aut(V,j) is the Lie algebra of j holomorphic vector fields on V).
Those results seem to be useless to prove the existence of Einstein forms, but in some
(Fano) models they enable us to assert: (V,j) cannot support an Einstein form, therefore
av ) s less or equal than n/(n + 1) (see [18] for that and other criteria). If (V) is not
Einstein, one can characterise the singularities of the divisor associated to the anticanonical
bundle through its Lelong numbers, also through the complex singularity exponents and
Arnold multiplicity of the associated Kéhler potential, and relate it with a(y ;). Once those
relations are estabilished, one can give new conditions to ensure the existence of Einstein
forms: that is a Corollary of what J.-P. Demailly and J. Kollar did in [13].

In Subsection 4.1 we describe how to proceed in the Continuity Methods (two are
needed for ¢ that couple with another for s). In Subsection 4.2 we explain how to obtain
a bound for oscy z = supy z — infy z in terms of oy, ¢, s and 2, concluding the proof
in Subsection 4.3, where K_ and K, are defined.

11



4.1 Methods of Continuity

Consider the equation (15), namely F(z,t) = y + sz, where F': Px(V,w) xR — Z is
considered as a map between open sets in B spaces. We first note that if ¢ = 0 = s, then
we have the equation M(z) = €¥ that has a unique (up to a constant) solution in a certain
set (or Sub Category) of functions on V' (see the previous Section).

Consider a path (¢, s) in R? together with the associated path of equations. Consider the
subfibration of Px (V,w)x Z — R? whose fibre over (t, s) is Sol(F)(t, s) := ((z, 2)|F(t,z) =
y + sz). In the region where ¢ < 0 we have seen that each fibre is isomorphic to Z x Z,
i.e. Sol(F)(t,s) can there be seen as a single valued graph over Z, matching thus Px(V,w)
with Z. Along the line ¢ = 0 fibres are isomorphic to (Z + R) x Z, i.e. for all s in R one
can then identify Z with Px(V,w)/R.

If we follow the path between (0,0) and (0, s) along the s axis the associated equations
have always a unique (up to a constant) solution. However if we move in the positive
direction from (0, s) to (¢, s) a natural obstruction appears: the associated linearised map
might not be invertible. To avoid that obstruction we propose a particular route v :
R, xR — Sol(F) between (0,0) and (¢, s) as follows:

Step 4.1. Starting from (0,0), we follow the t azis up to the point (g,0), where € is in a
neighborhood of 0. This step is described in Subroutine 4.4.

Step 4.2. Starting from (,0), we continue along the t azxis up to the point (¢,0). This
step (and the obstructions that appear in it) are described in Subroutine 4.5.

Step 4.3. Starting from (t,0), we now move along the s azxis up to the point (t,s). This
step (and the corresponding obstructions) are described in Subroutine 4.6.

It might be possible to proceed along another route.

Subroutine 4.4. P. Delanoé showed how to proceed in Step 4.1 during his study of the
real Monge Ampére equation ([11], [2]). Consider the map

H : Px(Viw)xR—Z
(z,t) = log M(z) + tx + (z)o,

where (x)o is an abbreviation for the average of x with respect to w (see the Definition 4.7
in Subsection 4.2), together with its linearisation at (z,t)

DH(z,t) : XxR—2Z
(b,7) = ((b,7), DH(z,t)) = (b, D1H(z,t)) + (r, DoH (z,1)),

where (b, D1 H(z,t)) = Agb+ tb+ (b)g is the differential of H in the direction of b when
evaluated at (x,t). One verifies that D1H (z,0) is an invertible map in L(X,Z) whenever
z is in Px(V,w). Then, by the Implicit Function Theorem there exists, for every z, a
neighborhood of (z,0) so that the map (z,t) — (H(x,t),t) is a homeomorphism from there
to some open set in Z x R.

Consider the equation H(x,0) =y, i.e. M(x) = e¥=®)0. Since M(x) = ¥ has a unique
up to a constant solution, we infer that H(x,0) = y has a unique solution (choosing the
constant so that (x)g = 0): let that solution be L. Returning to the previous paragraph, we

12



conclude that there is implicit in H a homeomorphism nbhd(xy,0) = nbhd(y,0), therefore
an € > 0 so that H(z,t) =y has a unique solution, say Iy, for every t in [0,¢]. This is the
€ mentioned in Step 4.1... indeed, setting x; = Ty + (I1)o/t one notices that x4 is a solution
for F(x,t) =y.

Remark: One can use the same argument to show that for every s there exists a
neighborhood of ¢ = 0 such that H(z,t) = y + sz has a unique solution whenever ¢ is in
such a neighborhood. Since we do not know how to proceed further along the ¢ axis in all
those cases, we do not consider them in statement iii) in Theorem 1.1.

Subroutine 4.5. We now move from (g,0) further along the t azis in the positive direction.
We note that D1F(x,t) = Ay + t is invertible unless t is an eigenvalue of Ny. Ift < 1
and z satisfies (15) at (t,0) this is not possible (see Subsection 4.3). Appealing again to
the Implicit Function Theorem, we conclude that F(xz,t) =y has a solution for t in some
open neighborhood of €. That neighborhood is very important. It will be shown in the next
Section that such a neighborhood is at least of a certain size (given by a(v,j)). We observe
that F is of type C'.

Subroutine 4.6. Assume now that F(xz,t) = y has a solution, also that D1 F(z,t) is
invertible. By the Inverse Function Theorem Fy : X — Z induces a homeomorphism
nbhd(z) = nbhd(y). We choose s so that y + sz is within nbhd(y). One continues with
this procedure along the s azis until F(z,t) = y+ sz has a solution (thanks to the a Priori
Estimates) but the linearised map might not be invertble anymore (see Subsection 4.3).

4.2 Estimates for the Oscillation

Definition 4.7. To abbreviate, whenever ¢ is a scalar valued function on V and x belongs
to Px(V,w), we identify “the x weighted average of ¢” with (¢); = [, ¢wy/(nY|V|) =
<V,¢%%—)/|V|, where v is the locally rectifiable current of bidimension (n,n) associated to
the fundamental cycle for V (see [17]).

Definition 4.8. The functionals I,(z) and J,(x) are defined, whenever z is in Px(V,w),
through 1,(x) := (z)o — (z)z and J,(z) := f[o,l] I,(sz)/s.

Lemma 4.9. Whenever x belongs to Px(V,w) one has that I,(z) < (n+1)J,(z) < nl,(z).
Lemma 4.10. Assume that z is in C1([0,1], Px (V,w)). Then for each t in ]0,1[ one has
the identity %Jw(x) = (‘é—f)g — (%)m.

Those statements are well known. They follow from direct computations that can be
found in different form in either [2], [28], [30] or [26].

4.2.1 The Aubin Tian constant

We now give sufficient conditions to ensure that x solves (15), i.e. to obtain a bound
for osc z. This is done via a generalisation of what is known in the literature as the Aubin
Tian constant.

Rewriting the equation (15) as w?/n! = e¥T$*~1u" /n!  one readily deduces, after an
integration by parts, the simple equalities

\4 ::/ wt (27T)n<y’ (V) = /Vey+sz_t””w—n,

v n! n! n!
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thus the inequality

w’l’L

|V‘ < esupv(y+sz)<y’ etz

).

The previous inequality then becomes 1 < ¢o(s)e %%)o (e Ha—{2)0)) ) "where 0 < ¢y(s) :=
e*uPv (¥+52) < o0 under our assumptions.

n!

1
Therefore co(s)tet®o < (e=Ho=(z)o))y follows, where (e~H7=(z)o))y < (e~tP(z—(=)0)yp
whenever 1 < p in virtue of Hélder’s inequality.
Fix ¢t and » so that 0 < ¢t < k. Then % > 1. We obtain
t

We note that (z)o < supz and infz < z, whence (z)p — z < supz — infz = osc z.
Thus (e~?@={0))) < eb0sc = whenever b > 0 (independent of the equation (15)).

But from Lemma 4.15 we have the bound osc z < I,(z) + D(t, s) provided that x solves
(15). Under those assumptions for every b > 0 one has the estimate

<e—b(x—(x)0))0 < ebD(t,s)ewa(m).

After those remarks, from (16) we infer
co(s) Tt e o < (emrlem(®o)yy < rDhs) rlu (@) (17)

whenever 0 < t < k and z solves (15).

One is naturally led to

Definition 4.11. The real number Y(k,s) is defined as
inf(T>0](3CeR) {{e @@y, < Ce™® g solves (15) for t < k at s} ).

The number Y(k,s) is a generalisation of what is known in the literature as Aubin’s
constant ([2]). In particular, when s = 0, a different definition has been proposed by A. Ben
Abdesselem ([5]). The importance of this Definition is the following: it leads to Proposition
4.12, that in turn leads, thanks to the the Definition 4.13, to Corollary 4.14, as will be seen.

Important: It is fundamental to observe that if the quantified constant C in the Defi-
nition of Y(k,s) does not exist, then Y(k,s) = oo := inf (). That is the case if the equation
(15) has no solution.

From (17) and the Definition of Y (k, s) we deduce the inequality

(a0 < B L L1, )1, a) + o5 C ).

t

Setting H(k, s,t) := M + % the last inequality becomes
K

T (k, s)

Along a different perspective, we differentiate the equation (15) with respect to ¢ (since
z has a continuous derivative with respect to ¢ as observed in Subroutine 4.5, this can be
done) to note that

_Iw(‘x) < ( H(h:as,t) - <‘T>0 ) (18)

I
a1 =0= gyt =

-
|
—~
8
~
—~
-~
8
|
o~
Sl
8
S~—
S &
~



thus —t(%ac);C = (T)q.
From the Definitions of I,,(z) and J,(z), Lemma 4.10 and the last equality one deduces

the expression 5 .
57 (o (@) — (2)0) = S(@)o — Lu(2)) (19)

whenever 0 < t and z solves log M(z) +tz = ® for every function ® that does not depend
on .

Using (18) and (19) one gets

0 1 K
E(Jw(x) —{z)o) < E(T

Ky S)

K
H t l1— —/——~ ;
(ky5,0) + (1= ) oo
We recall that H(k,s,t) = log(co(s)%C%), to define

H(k,s) := sup(0,sup(H (k, s,t)|0 < e <t < k))

for a fixed € given by the Subroutine 4.4 in Subsection 4.1. This enables us to conclude
from the previous inequality the useful estimate

2 (Jula) — fa)o) < e e + - T (20)

valid whenever 0 < ¢ <t < & if z solves (15).
Invoking Jensen’s inequality one deduces el 520 < (e¥~t24s2)s — 1 if z solves (15),
to obtain the lower bound (z)¢ > (y + sz)o/t.

In virtue of the inequality that lead us to the Definition of Y(k,s) one observes that
a sufficient condition for the existence of the quantified constant C is the achievement of
a bound for D(t,s). If such a bound is achieved, one also observes that Y(k, s) must be
smaller or equal than x. If that is the case, then kH(k, s)/Y(k,s) is bounded. Taking into
account the bound for (z)¢ (and also that 1 — /Y (k,s) < 0 if the bound for D(¢,s) is
obtained), we get a bound for the right hand side of (20), say K(k,s) > 0, to infer

Ju(r) <tK(k,s) + (z)o < kK (K, s) + (z)o

after an integration from 0 to ¢, for 0 < e <t < k.

Plugging (18) in the previous inequality we note that

Ju(x) <T(k,s)+ T

where kK (k, s) + H(k, s,t) < kK (k,8)+ H(k,s) =: T(k,s) < oo has been used. But from
Lemma 4.9 we know that —=TI,,(z) < J,(z). As a conclusion the relation

n+1-w
1 Y(k,s)
(i~ )L (@) < Tis,s) (1)

is obtained.
We should state
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Proposition 4.12. For fized s, let t(s) be given by

K
T — ).
sup( 5 | Y(s,5) < )

Then log M(z) + tz = y + sz has a solution whenever t < t(s) if D(t,s) is bounded.

Proof: Given 0 < &, from (21) we infer that if T(x,s) < 5, then I,(z) is bounded
whenever ¢t < k. If moreover D(t,s) is bounded, then so is osc z in virtue of Lemma 4.15.
q.e.d.

Through a reasoning similar to the one that led us to the definition of Y(k,s), we

observe that whenever x > 0 and « < k one has

(e @ @0y < (ool (@)0)y) olna)(Tu(@)+D(t:s)

if = satisfies (15).

One arrives to

Definition 4.13. The real number oy ;) is defined as

sup(@>0|(3C,eR) (Vo e Px(V,w) ) ((e @ @)y <, ).

The constant oy j) is known in the literature as Tian’s invariant. The importance of this
definition 1is the following: the set on which the supremum is searched is not empty in
virtue of G. Tian’s result (Proposition 1.2 in [30]) that appeals to results of L. Hormander
(Theorem 4.4.5 in [21]).

Considering the Subroutines 4.5 and 4.6 in Subsection 4.1, and of course the defini-
tions of T(k, s) and av ;) (and the observations that drove us to those definitions), from
Proposition 4.12 one deduces

Corollary 4.14. Assume that oy ) > 755 Then log M(z) +tz =y + sz has a solution
whenever 0 < t < k if D(t, s) is bounded.

Proof: If K > 0, k —a < 0, @ < oy ) and D(Z,s) is bounded, the inequality that
led us to the definition of a(y ;) shows that the inequality (e rle=(@o))y < Celvm (@)

holds, where C < oo. Therefore (by construction) Y(k,s) < k — a. Moreover, if (v ;) >
(k m)/(n+1), then the conditions for Y(k, s) given in Proposition 4.12 are fulfilled. q.e.d.

4.2.2 The estimate osc z < I,(z) + D(¢,s) and the lower bound for the Green’s
function.

Let z belong to Px(V, 7). Let dv, denote the probability measure on V' that makes A,
self adjoint on Lo(V,dv;). Let G, denote the Green’s function for z, namely the mapping

Gy : V?\ diagonal — R
(v1,v2) = Go(v1,v2) = Gg(v2,v1)

that satisfies, whenever ¥ is in D(V'), the equality ¥ = (¥), — (Gy Ay ¥),. One observes
that G is determined uniquely up to a constant.
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Let z belong to Px(V,w), and assume that there exists a real number —c; so that
inf,, 2y, G(v1,v2) > —¢g > —00. Then U = (¥), — (G + ¢z) Ay T), for any U in D(V).

Recalling now that —n < Agz (since [ h™t|hy | > 0), and noting that n > A,z
whenever z is in Px(V,w) (since [ h;!'|/h, ] = n), one obtains, assuming that both cy
and ¢, exist, the useful inequalities (that are useless if either ¢y or ¢, cannot be found)
z < (x)o + ncy and —z < —(x), + ncy (where we have chosen (Gz)z = 0 = (Go)o)-

One concludes, if both ¢y and ¢, exist, that (nontrivially)
supz —infx = osc z < (z)g — (x)z + n(co + ¢z).
But (z)o — (z)z is equal to I,(z). We summarise what has being said in

Lemma 4.15. Assume that = satisfies (15) at (t,s). Then one has the estimate
osc z < I,(z) + D(t,s),
where D(t,s) is an abbreviation for

—n ( inf  Go+ inf G)
V2\diagonal V2\diagonal

Using standard relations between the Green’s function and the heat kernel S. Bando
and T. Mabuchi (see also [10] and [28] and the references therein) obtained the inequality

) diamg (V)2
f  G,>—B(n,K,) 24Ma\V )
V2\dlil(lzgonal = (n a)) |V‘

valid whenever z is in Px(V,w), where B(n, K,) is a positive constant that depends only
on the dimension of V and on a lower bound for v/—1Ric(w;)diam,(V)? ( [4]). That
inequality was also obtained by S. Gallot (unpublished) as a Corollary of his work with
P. Bérard and G. Besson ([6]) on isoperimetric profiles ([3]). Therefore to conclude the
proof of Theorem 1.1 we must give conditions for the pairs (¢,s) to ensure both a lower
bound for v/—1Ric(w,) and an upper bound for diam,(V) when z satisfies (15), taking
into account:

i) The critical points in the continuity method, namely those values of (¢, s) mentioned
in the Subroutines 4.5 and 4.6 in Subsection 4.1.

ii) The restrictions on ¢ obtained in Corollary 4.14.

iii) That the complex structure remains fixed in our discussion.
4.3 Final Step
We first observe that (15) with A =1 is equivalent to
V—1Ric(wg) = twy + (1 — t)w — sv/—1d%d" 2. (22)

We understand that w and z in (15) or in (22) are given. Thus there exist a unique
pair of (best) constants K_ < 0 < K for which the inequality

K_ < (/=17 AT,v/—1d"d" 2) /(—V/—17 AT,w) < K
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holds as 7 varies within A1¢T,V while v over V. It is important to choose the best possible
constants: K_ and K are the bounds for the (pluriharmonic) concavity and convexity of
z with respect to w, respectively.

After those remarks we can investigate the range of values for (¢, s) mentioned in the
Subroutines 4.5 and 4.6 in Subsection 4.1, considering also the restrictions on t obtained
in Corollary 4.14.

Recall that the critical points in the continuity method, say, are those pairs (¢, s) where
Az + t is not invertible anymore (where x solves (15) at (¢,s)): they are indeed related
with the first eigenvalue (or spectral gap) of —A,, that is usually denoted by A1(—A,).

Before travelling further in our continuity method, we recall two Basic Results that
will allow us to do that.

Basic Result 4.16. (Bochner Weitzenbock Lichnerowicz’) (see [7] for example)

If inf o (—v/=17 AT, /—1Ric(w;))

veV 1eA10TvV <—\/—1T AT, wz)

>t, then A\ (—AQy) > t.

Basic Result 4.17. (Bonnet Myers’) (see [14] for example)

/17 AT,V/—1Ri o — 1
If inf  inf TATVIRICW)) o 4 o then diamg(V) < n(2yE,
veV 1eEN TV <—\/—1T A T,w$> t

Hence whenever 0 < ¢t < min(l,(n + l)ary ;) /n) and s = 0 we can proceed via
Subroutine 4.5, because then for every 7 in section(A19TV) we have from (22) and the
Basic Result 4.16

(—V=17 AT,V/=1Ric(wy)) > t (—V—1T AT,wg), thus M (=Ag) >t,

(showing that the associated linearised map is at this stage invertible), and because then
we have found, also from (22) and the Basic Result 4.17, a bound for diam4(V'), thus for
D(t,0).

If avj) > n/n+ 1, then we can proceed along ¢ up to when ¢ is equal to 1 but not

further, since then (22) and the Basic Result 4.16 show that A;(—A,;) > 1, and therefore
the associated linearised map might not be invertible anymore.

So whenever 0 < t < min(1, (n + 1)y ) /n) and s = 0 we have that (15) has at least
one solution, and also what is fundamental for the next developments, that A, + ¢ is then
invertible. This last observation enables us to continue with the Subroutine 4.6 in our
multiple Method of Continuity.

For fixed ¢ in ]0, min(1, (n + 1)a(v j)/n)[ we consider the following values of s:

i) if s is positive, we require that ¢t + s K, < 1;

i) if s is negative, we require that ¢t + s K_ < 1.

Consider the case 1): the other is similar. Let ((¢,7)|r € [0, s]) be path from (¢,0) to
(t,s).

If s satisfies the conditions yet mentioned, then whenever 0 < r < s we have the

inequality
(1—1) (—V=1TAT,w) — 71 (—V/—=1T AT, \/—_ldlodmz) >0
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as T varies within A197,V while v in V. Evaluating (22) at —/—17 AT and inserting the
last inequality therein, we conclude, with the help of the Theorem of Bonnet and Myers,
that D(¢,r) is indeed bounded, i.e. that (15) has at least one solution at (¢,7) in virtue of
the Subroutines at the end of Subsection 4.2.2. We also conclude, with the additional help
of A. Lichnerowicz’ comparison, that if  denotes the solution to (15), then A;(—A,) > ¢,
i.e. that the linearised map associated to the equation at (¢,r) is invertible.

The continuity method concludes when r is equal to s. We have that D(t, s) is indeed
bounded, but we have an inequality with the possibility of equality for the spectral gap for
—/A\;, and the linearised map might not be invertible anymore.

Finally, considering all the allowed values of ¢ and the sequences of r’s converging from
0 towards the corresponding s, one should, without any need of further explanations, say
that the proof of Theorem 1.1 is complete. q.e.d.
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