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Abstract.! We introduce the notion of strictly f-sequence and apply this con-
cept to study the finiteness of asymptotic sets of attached prime ideals of local
cohomology modules of M, to study the polynomial property of the length of gen-
eralized fractions as defined by Sharp and Hamieh [SH], and to characterize pseudo
generalized Cohen-Macaulay modules defined in [CN].

1. Introduction

Throughout this paper, let (R, m) be a noetherian local ring, M a finitely gen-
erated R—module with dim M = d. For each artinian R—module A and a sequence
of elements (z1,...,z;) of R, R. Y. Sharp has proved in [Sh1] that [J,, Att(0 :4
(1,...,2K)"R) is a finite set. We also have known that the local cohomology mod-
ule HE (M) is artinian for all 4 = 1,...,d. Therefore, it is natural to ask whether

U  Attr(0:m:i () (274 ... 25" )R)and | Attr(H,(M/(27*, ..., zp*)M)
N1, T1,y...,Nk
are finite sets for all + = 1,...,d, where the unions run through all k-tuples of
positive integers (nqy,...,ng). However, M. Katzman [K, Corollary 1.3] has con-
structed a noetherian local ring (7,m) and two elements u,v € m such that
dim7T = 5, dim7T/(u,v)T = 4 and ASSH?U’U)T(T) is a infinite set. Therefore

it is not difficult to see that |JAttr(HL (T/(u",v™)T) is a infinite set for some

n
i € {1,2,3}. It should be note that (u,v) is not a part of a system of parameters of
T. Therefore we ask the following question.
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Question. Let (z1,...,zk) be a part of a system of parameters of M. Are the sets

U Attr(0:m: ) (277, 23" )R) and | Attr(HE(M/ (2. .. 2} ) M)

ni,...,Ng ni,...,Ng

finite for alli=1,...,d?

The purpose of this paper is to give a positive answer to this question for a
kind of sequences called strictly f-sequences. Then we use strictly f-sequences to
study the length of generalized fractions defined by Sharp and Hamieh [SH], and
to characterize pseudo generalized Cohen-Macaulay modules defined in [CN].

Definition. A sequence (qzl, ..., x) of elements in m is called a strictly f-sequence
ifrj1 ¢pforallp e U;i:_f Att(HL (M/ (21, .. ,zj)M)\{m} forallj =0,...  k—1.

Note that each strictly f-sequence is an f-sequence which was defined in [CST].
Therefore each strictly f-sequence of d elements is a system of parameters of M.
For each positive integer k, strictly f-sequences of k elements always exist, and if
(#1,...,2x) is a strictly f-sequence of M then (z7,...,z7*) is again a strictly
f-sequence of M for all positive integers nq,...,n; (Lemmas 3.1, 3.4).

The following theorem gives a positive answer to the above question for all strictly
f-sequences.

Theorem 1.1. Let (z1,...,xx) be a strictly f-sequence of M and {nq,... ,ng}
a set of positive integers. Then for all i = 1,...,d, both of sets Att(0 CHi (M)
(21, ...,z )R) \ {m} and Att(HL(M/(z7,... 2% )M) \ {m} are independent
of n1,...,ng.

In [SZ1], Sharp and Zakeri introduced the theory of modules of generalized frac-
tions. In this theory, for given positive integer k, the subsets so-called triangular
subsets of R* play a role as multiplicative close subsets of R in the usual theory of
localization of modules. Given a triangular subset U of R¥, Sharp and Zakeri con-
structed an R—module U~*M and they call it the module of generalized fractions
of M with respect to U. Especially, the set

U(M)d+1 = {(yla' -5 Yd, 1) € Rd+1 : El]ao SJ < da such that (yla' <. ayj)

form a subset of a system of parameters of M and yj41 =...=yq = 1}
is a triangular subset of R¥!. Let z = (21, ... ,z4) be a system of parameters of M
and n = (n1,...,nq) a set of positive integers. Denote by M (1/(z]*,...,z5%,1))

the submodule {m/(«7*,... 204 1) : m € M} of U(M)(;fl_lM. Then the length
of the modules M (1/(z7",...,z}?, 1)) is finite. Set

e () = L(M(1/ (21", ..., 2%, 1)))-

Following Sharp and Hamieh [SH|, gg.ar(n) is called the length of the generalized
fraction 1/(«7", ..., 254, 1).

Set Jg.m(n) = ni...nge(x; M) — qz.m(n), where e(z; M) is the multiplicity
of M with respect to the ideal generated by z. Consider Jg.a(n) as a function
in ni,...,nq. Sharp and Hamieh in [SH, Question 1.2] asked whether gg.as(n), or
equivalently Jg.ps(n), is a polynomial for n large enough. Unfortunately, Jz ()
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is in general not a polynomial, but it is a non-negative function and bounded above
by polynomials. Especially, the least degree of all polynomials in n bounding above
Jz:m(n) does not depend on the choice of z (see [CM, Theorem 3.2]). This least
degree is denoted by pf(M). When pf(M) > 0, it has shown in [CMN, Theorem
1.2] several special cases for which gg.ar(n) is not a polynomial for n large enough,
for some system of parameters z of M. By using strictly f-sequence, we can extend
this result to general case.

Theorem 1.2. Ifpf(M) > 0 then there always exists a strictly f-sequence (x1,...,2q)
of M such that the length of generalized fraction 1/(x7", ..., z}*, 1) is not a poly-
nomial for ny, ... ,ng large enough.

We stipulate that the degree of the zero polynomial is —oco. Following [CN], M is
called pseudo Cohen-Macaulay if pf(M) = —oo and M is called pseudo generalized
Cohen-Macaulay if pf(M) < 0. Note that if d < 1 or M is Cohen-Macaulay then
M is pseudo Cohen-Macaulay. Moreover, if d < 2 or M is generalized Cohen-
Macaulay then M is pseudo generalized Cohen-Macaulay. However, there are many
pseudo Cohen-Macaulay modules M such that M is neither Cohen-Macaulay nor
generalized Cohen-Macaulay. The class of pseudo Cohen-Macaulay and pseudo
generalized Cohen-Macaulay modules have been studied in [CN], and it was shown
that these modules have many good properties closely related to that of Cohen-
Macaulay and generalized Cohen-Macaulay modules respectively. As a consequence
of Theorem 1.2, we have the following characterizations for pseudo generalized
Cohen-Macaulay modules.

Corollary 1.3. The following statements are equivalents:
(i) M is pseudo generalized Cohen-Macaulay.
(ii) For each system of parameters (x1,... ,xq4) of M, the length of generalized frac-

tion 1/(z7,...,25%,1) is a polynomial for ni,... ,ng large enough.
(iii) For each system of parameters (z1,...,xq) of M which is a strictly f-sequence,
the length of generalized fraction 1/(z7*,... x5, 1) is a polynomial fornq, ... ,ng

large enough.

This paper is divided into 4 sections. In the next section we give some properties
on the secondary representation of Artinian modules which are used in the sequel.
Theorem 1.1 will be proved in Section 3. Theorem 1.2 and Corollary 1.3 will be
proved in Section 4.

2. Attached prime ideals of Artinian modules

Following I. G. Macdonald [Mac|, any Artinian R—module A has a minimal
secondary representation A = A; + ...+ A,, where A; is p;—secondary. The set
{p1,...,pn} is independent of the choice of minimal representation of A and is
denoted by Attr A. Note that if 0 < £(A) < oo then Att A = {m} and if 0 —
A — A — A” — 0 is an exact sequence of Artinian modules then

Att A" C Att A C Att A" U Att A”.



Lemma 2.1. Let 0 — P — A L3 B — Q@ — 0 be an eract sequence of
Artinian modules such that £(P) < oo and £(Q) < co. Then we have

Att A\ {m} = Att B\ {m}.

Proof. We get from the above exact sequence two short exact sequences
0—A/P—B—Q—0and0 — P — A — Imf —0.

Therefore
Att B C Att(A/P)U{m} C Att AU {m}

and
Att A C Att(Imf) U {m}.

Let B = By +...+ By + C be a minimal secondary representation of B, where C' is
zero or m—secondary. Since £(Q)) < oo, there exists a positive integer n such that
m”@ = 0. Since B/Imf = (@), we have

Bi+...+B; Cm"B C Imf.

Therefore
LAmf/(B1+ ...+ B)) <4B/(B1+ ...+ B)) < oc.

Hence
Att(Imf) C Att(B1 + ...+ By) UAtt (Imf/(B1+ ...+ B:)) C Att BU {m}.

It follows that Att A C Att BU {m} and the lemma is proved. O

Lemma 2.2. Let 0 — A’ — A — A" — 0 be an exact sequence of Artinian
R—modules with £(A’) < co. Then for any elements z1,... ,x € R we have

Att(O ‘A (.’171, e ,.’Bk)R) \ {m} = Att(O TAN (.’171, e ,.’Bk)R) \ {m}

Proof. We prove by induction on k. Let £k = 1. We have the following commutative
diagram

0 —— A s A s AV ——— 0
ol
0 —— A s A s A" ——— 0

with the rows are exact. So, we have by [AM, 2.10] the exact sequence

*) 0—>O:A1x1—>O:Ax1i)O:Auafl—>A'/a:1A'.

Since £(A’") < oo, £(0 :a 1) < oo and £(A’/z1A") < oo. Therefore we have by
Lemma 2.1 that Att(0 :4 1) \ {m} = Att(0 :4» z1) \ {m}. Thus, the lemma is
proved for the case k = 1. Let £ > 1. We get from (*) the two exact sequences

0—0:p021 —0:p27y —Imf —0
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00— Imf — Qg 21 — Al/.’L'lAI.

Since £(0 : 4 1) < 00, by using the induction hypothesis to the first exact sequence
we have

Att(0 4 (21, ... ,2x)R) \ {m} = Att(0 ity (22, ..., 2x)R) \ {m}.

Moreover, by applying the functor Hom(R/(zs, ... ,zx)R); —) to the second exact
sequence, with notice that £(Hom(R/(zs,...,zx)R); A'/z1A")) < oo, we have by
Lemma 2.1 that

Att(() Imf (.%'2, - ,.T:k)R) \ {m} = Att(O TAN (.Z'l, e ,xk)R) \ {m}
and the lemma, follows. O

3. Proof of Theorem 1.1
In order to prove Theorem 1.1 we need some auxiliary results as follows.

Lemma 3.1. Let k be a positive integer. Then there always exists a strictly f-
sequence of M of k elements.

Proof. We prove by induction on k. Let k = 1. Set C; = U?zl Att(HE (M)).
Let 1 € m such that x; ¢ p for all p € C; \ {m}. Then z; is a strictly f-
sequence of M. Let k > 1 and assume that (z1,...,2x_1) is a strictly f-sequence
of M. Let z € m such that xx ¢ p for all p € Ci \ {m}, where we set Cy =
Ule Att(HE (M/(x1, - .- ,k—1)M)). Then (z1,...,zx) is a strictly f-sequence of
M. 0

Lemma 3.2. Let (x1,...,xk) be a strictly f-sequence of M. Then
Att(HE (M) (21, ... ,z1)M)) \ {m} = Att(0 CEitE () (1,... ,25)R) \ {m}

foralli=1,...,d—k.

Proof. First it should be noted by the definition of strictly f-sequences that every
strictly f-sequence of M is a part of a system of parameters provided k < d = dim M.
Therefore we need only to prove the statement for the case k < d. We prove the
lemma now by induction on k. Let k = 1. We have Ass M C U;.i:O Att(HE (M) by
[BS, 11.3.9]. Hence z1 ¢ p for all p € Ass M \ {m}. So £(0 :ps 1) < co. Therefore
from the exact sequences

0—0:pp21 —M-—M/0:py 27 — 0

0 — M/0:pz1 = M — M/z1M — 0
we get the exact sequences

0 — Hyy (M) /21 Hy (M) — Hyy (M/z1M) — 0:gisi gy ©1 — 0,

foralli =1,...,d—1. Note that for each i € {1,...,d}, £(H: (M)/x1H: (M)) < oo
since z1 ¢ p for all p € Att H: (M) \ {m}. It follows by Lemma 2.2 that

Att(Hy, (M /21 M)\ {m} = Att(0 : iz ) 21) \ {m}
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for all 4 = 1,...,d — 1. Thus, the lemma is proved for ¥ = 1. Let £ > 1. Set
My =M and My = M/(x1,... ,2¢)M, t = 1,... k. It follows by the hypothesis
and by [BS, 11.3.9] that z; ¢ p for all p € Ass(M;_1) \ {m} for allt = 1,... k.
Hence (0 :pr, , ¢) < 00. Therefore from exact sequences

0—0:y, , 24— My_y — My_1/0:p, , ¢ — 0

0 — My 1/0:p, , T6 — My_1 — My — 0

we get the exact sequences

(1) HY (M) — 0 ‘L (My_1) Tt — 0,

(2) 00— Hy(My—r)/wiHy (My—1) — Hy(My) — 0 :pgiva gy |y @ — 0,

for t = 1,...,k and i > 1. Note that £(HE (M;_1)/z:HE (M;_1)) < oo by the
hypothesis on z;. So by applying Lemma 2.2 to all the exact sequences in (2) for
t=k,...,1 we have

Att(Hy, (M/ (21, - .., z)M)) \ {m} = Att(Hy, (My)) \ {m}
= Att(0 :givripg, 1y @) \ {m}
= Att(0 :give(py, ) (Tr—1,25)R) \ {m}

= Att(0 CHEER (M) (1., zk)R) \ {m}

forallz=1,...,d — k. Thus the lemma is proved. g

Lemma 3.3. Let (z1,...,z) be a strictly f-sequence of M. Then for all j =
0, k=1, @iy &p for all p € Ul Att(0 i (ary (21,...,25)R) \ {m}.

Proof. Note that (z1,...,x;) is a strictly f-sequence for all j =1,... , k. Therefore
by Lemma 3.2, the lemma is proved if we can show that

Att(O ‘Hi (M) (371, e ,ij)R) - {m},

for all 4 = 1,...,j. Let 4+ = 1. By replacing ¢t = 1 in the exact sequence (1)
of the proof of Lemma 3.2, we obtain £(0 :g1 (a) 1) < oo. Hence £(0 :g1 ()
(z1,.-.,2j)R) < oo since j > 1, and thus Att(0 :p1 (ary (21, ... ,75)R) C {m}. Let
1 < i < j. By applying Lemma 2.2 to all the exact sequences (2) fort =1,...,¢—1
we get

A0 gy (ary (@1, @) R) \ {m} = Att(0 : -1 5,y (@2,... @) R) \ {m}
= Att(0 :ri-2(ar,) (23, , i) R) \ {m}

= Att(0 THL (M;_,) x;) \ {m}.



By replacing ¢ = 4 in the exact sequence (1), we have Att(0 g1 (ar,_,) 7:) C {m}.
Hence Att(0 :gi (ar) (1, .- ,2i)R) C {m}. Since i < j, Att(0 :g:i (ar) (#1,--. ,75)R) C

{m}. O
The notion of a filter regular sequence was introduced in [CST]. Recall that a se-
quence (1, - . . , k) of elements of m is called a filter reqular sequence (f-sequence for

short) of M ifforall j =0,...,k—1, z;11 ¢ pforallp € Ass(M/(x1,...,z;)M)\
{m}. It follows by [BS, 11.3.9] that Ass N C U?:SN Att(HE (N)) for a finitely gen-
erated R—module N. Therefore each strictly f-sequence of M is an f-sequence of
M. Note that (x1,...,xk) is an f-sequence of M if and only if (Z1,...,T) is a
regular sequence of M, for all p € Supp M containing z1,... ,zs, where we denote
by Z;, i=1,...,k, the image of z; in R,. Therefore (z1,...,z) is an f-sequence
of M if and only if so is (27",...,z*) for all positive integers nq, ... ,ng.

Lemma 3.4. Let ny,...,ng be positive integers and (z1,...,xE) a strictly f-
sequence of M. Then (z7*,...,2*) is again a strictly f-sequence of M.

Proof. Let ny, ... ,ng be positive integers and j € {1,...,k}. Foreachi € {1,...,d},
we denote by D*(M) = Homg(H: (M), E), where E is the injective envelop of the
residue field R/m, the Matlis dual of H% (M). Note that D*(M) is a finitely gener-
ated R—module.

Firstly, it is implied by [Sh2] that

AttR(O Hi (M) (.’131, e ,.’Iij)R) = {/ﬁﬂ R: /ﬁ € AttR(O Hi (M) (.1'1, ee ,:L'J)ﬁ)}
(3) ={pPNR: p€Asszg(D'(M)/(z1,...,2;)D"(M)}.

Therefore we have by Lemma 3.3 and (3) that (z1,...,zx) is an f-sequence of
D*(M). Hence (z7*, ... ,zp*) is also an f-sequence of D¢(M). Therefore we get by
(3) that z; ¢ p for all p € Att(0 :5: (ar) (277, --- ,a:?i_ll)R\ {m}.

Next, we claim by induction on j, (j = 1,..., k) that
(4) Att(H: (M/(z7, ... ,x?J)M))\{m} = A6(0 : givi ) (217 ,x?j)R)\{m},
for all 4. In fact, let j = 1. Since z]' is also a strictly f-sequence of M, the

equation (4) follows by Lemma 3.2. Let j > 1. Set My = M and M,; =
M/(x7", ..., 2¢*)M, t =1,...,j. Then we have by induction hypothesis that

Att(HE (Mpt—1)) \ {m} = Att(0 CHEF () (7, .. 2t R) \ {m},

for all t = 1,...,j and all i. Therefore z; ¢ p for all p € Att(HL(Mps—1)) \ {m},
forallt=1,...,5 and all 4. Then as in the proof of Lemma 3.2, we have the exact
sequences

0 — Hy(My1)/weHey (My 1) — Hiy(Mp,) — 0 g (Myo_1) Tt — 0,

fort =1,...,7 and ¢+ = 1,...,d. By applying Lemma 2.2 to all these exact se-
quences, the equality (4) follows with the same method that used in the proof of
Lemma 3.2. The claim is proved.
Now, since x; ¢ p for all p € At6(0 :q:i a1y (277, .. ,x;-"i‘ll)R \ {m} for all
Jj=1,...,k, it follows by (4) that (z7*,...,2}*) is a strictly f-sequence of M. O
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Proof of Theorem 1.1. Let nj,...,n; be positive integers and i € {1,...,d}.
Denote by D¢(M) the Matlis dual of H:(M). As in the proof of Lemma 3.4,
(z1,...,m) is an f-sequence of the R—module D*(M). Now let

P € Assz(DH(M)/ (1, ... ,ox) D (M) \ {f}.

Then /ﬁﬁ/ﬁ € Ass(D*(M)/(z1, ... ,xx)D*(M));. Therefore Z1,... T is a maximal
regular sequence of D*(M )5 and hence so is Z7*, ... ,Z*. This implies that

PR; € Ass(D'(M)/(z7",... ,2{*)DI(M))s.

Hence
pe Assﬁ(Di(M)/(x’fl, e ,mZ’“)D’(M)) \ {m}.

Similarly, we have

Assg(DY(M)/ (23, ..., a¥) D' (M))\{M} C Assz(D*(M)/(21, - .. ,zk) D" (M))\{m}.
Therefore

Assp(D' (M) /(23 ..., ap*) D (M))\{f} = Assg(D"(M)/ (w1, ..., ) D*(M))\{m}.
It follows by the relation (3) in the proof of Lemma 3.4 that

AttR(0 i ary (@1, 2P R)\ {m} = AttR(0 s (ary (@1, .-, zx)R) \ {m}.

Note that (27", ... ,z.*) is a strictly f-sequence of M by Lemma 3.4. Therefore we
have by Lemma 3.2 and the above fact that

AL (M (. &) M)\ {m} = AS6R(0 :eseapy (3%, 2P )R) \ {m}
= AttR(O :H‘z;j-k(M) (.731, ... ,xk)R) \ {m}
= Att(H: (M/ (21, ... ,z)M) \ {m}.

The theorem is proved. O
The following corollary gives some characterizations of strictly f-sequences.

Corollary 3.5. Let (z1,...,zk) be a sequence of elements in m. Then the following
statements are equivalent:

(i) (z1,...,xk) is a strictly f-sequence of M.

(ii) (z1*,...,z.*) is a strictly f-sequence of M for all positive integers ny, ... ,ng.

(iii) zji1 ¢ p for all p € Uiy Att(0 s ary (@1,-..,7;)R)) \ {m} and all j =
0,... k—1.

(iv) 41 ¢ p for all p € U?Zl A0 g (ary (2775 ,x?j)R) \ {m}, all positive
integers ny, ... ,ng and all 5 =0,...  k — 1.

(v) (x1,...,zk) is an f-sequence of R—module DY(M) for all i = 1,...,d, where
D*(M) is the Matlis dual of H: (M) for alli=1,...,d.

Proof. (i)=-(ii) follows by Lemma 3.4. (ii)= (iv) follows by Lemma 3.3. (iv)=-(iii)
is trivial. (iii)<(v) follows by the formula (3) in the proof of Lemma 3.4. So we
8



need only to prove (iii)= (i). In fact, with the same method used in the proof
of Lemma 3.4, for all j = 1,...,k, we can prove the equality (4) for the case
ni1 =...=mnj = 1. Therefore (z1,...,xx) is a strictly f-sequence of M. a

4. Proof of Theorem 1.2
To prove Theorem 1.2, we introduce here the notion of permutable strictly f-
sequence.

Definition 4.1. A sequence z = (z1,..., k) of elements in m is called permutable
strictly f-sequence if it is strictly f-sequence of M in any order.

Lemma 4.2. Let k be an positive integer. Then there always exists a permutable
strictly f-sequence (x4, ... ,x) of M.

Proof. We prove by induction on k. Let £ = 1. Set Cy = U?Il Att(HEL (M)) \ {m}.
Let 1 € m such that z; ¢ p for all p € C;. It is clear that z; is a permutable
strictly f-sequence of M. Let £k > 1 and assume that there exists a permutable
strictly f-sequence (z1,...,zx—1) of M. Set

d
= U L A66(0 25 ary D @i R) \ {m}.

IC{1,...,k—1} =1 jel

Let x € m such that z; ¢ p for all p € Cy. We will prove that (zq,...,xx)
is a permutable strictly f-sequence of M. Let (yi,...,yx) be a permutation of
(x1,...,7k). Denote by D*(M), i = 1,...,d, the Matlis dual of H: (M). Then by
Corollary 3.5, the lemma is proved if we can show that (y1,...,yx) is an f-sequence
of R—module D{(M) for all i = 1,...,d. Assume that (y1,...,yx) is not an f-
sequence of D(M) for some 4. Then there exists an integer n,1 < n < k) such that
Yn € P for some prime ideal p € Assz(D*(M)/(y1, - - - ,yn—1)D*(M)) \ {Mm}. Then

PR; € Ass(D'Y(M)/(y1,- -+, yn—1)D(M))g.

On the other hand, we get by induction hypothesis and by the choice of x; that
z = y; for some j < n. Therefore (y1,...,Yj—1,Yj+1:--. Yn,Tk) is a strictly f-
sequence of M contained in p and hence (7, . . . 3 Yi—1:Yjt1r -+ 2 Uns Ty) is a regular
sequence of D*(M))g. Since any permutaion of a regular sequence is again a regular
sequence, ¥, is a regular element of D*(M)/(y1,- - ,Yn—1)D*(M)g. It follows that

PR; ¢ Ass(D'(M)/(y1,- - - , Y1) DI (M))5.

This gives a contradiction and the lemma is proved. g

For each artinian R—module A we recall now some notions from [SH]: The stabil-
ity index of A, denoted by s(A), is the least positive integer s such that m*A = m" A
for all n > s; we denote by RI(A) the length of A/m*(4)A and it is called residual
length of A. Note that if z € m is an element such that = ¢ p for all p € Att A\ {m}
then /(A/2™A) = RI(A) for all n > s(A).

Proof of Theorem 1.3. Let (z1, ... ,z4) be a permutable strictly f-sequence of M.

We will prove that the length of the generalized fraction 1/(z7",...,z}?, 1) is not a

polynomial for n large enough. Set My, o = M; My = M/(z7",... , 2" )M, k =
9



1,...,d. Since (z7*,...,z*) is also an f-sequence of M, it is derived from [CM,
Lemma 2.4] and [SH, Proposition 2.2] the following exact sequences

m

_ — Uy _ —
(5) — U(Mﬂ,k)djlj:_—ﬁl 1Mn,k == U(Mﬂ,k—l)dii:fz 2]V[ﬂ,k—l
forall k=1,...,d — 1, where U4_g2 is defined by

\pd—k+2(m/(uk+lu ey Ud,y 1)) = m/(xzka Uk+15 .- 5 Ud, 1)7

for all m € My, ;—1 and for all (ug41,...,uq,1) € U(Mpk)a—k+1 (here we denote
by m the image of m in My, ). Set

snk1=SHE*(Myr1)), k=1,...,d,

the stability index of HS*(M,, _1). Since (z7*,...,z]?) is again a strictly f-
sequence of M by Corollary 3.5, £(HI=*(M, j—1)/zp* HI % (M, r—1)) < oo for all
kE=1,...,d— 1. It follows that

Ker(Vy gy2) = Hp " (Mﬂ,k—l)/msﬁ’k_lﬂxi_k (Mp k1),

m

for ng > sy, k—1. Hence Ker(¥q_g2) is independent of ng for all ng > s, x—1. Note
that Ker(W4_g12) is of finite length, therefore there exist finitely many elements
fi,--., fo which generate Ker(V4_j42) for all ng > s, x—1. On the other hand, it
follows from [SZ2] that

U(Mngo) 755 T My i = U Mue(@/(ahtt .. 2l 1),

nk+17"'7nd20
Moreover, it is clear that if n; > m;, 1=k +1,...,d, then
Mﬁk(l/(azkmffl, oo, 1)) C Mﬁk(l/(xZiﬁl, oz, 1),

Therefore, given ny > s, x—1, there exists some integer (M, ) (depends on M, x)
such that

Ker(Va_i2) = (i, -+ fo) B C Mg (1/ (@5, ... 274, 1))

for all ng41,...,nq > 7(My,x). So, the exact sequences (5) imply the exact se-
quences

U,
0 = Ker(Wg—p42) = Mp i (1/ (x5, ... 2537, 1)) TE2 My o1 (1/ (2%, ... 204, 1)) — 0,
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for all k = 1,...,d — 1, for all ng > spk—1, and all ngy1,...,ng > r(Muk).
Therefore we have

QoM () = Qay,... wa)iMy1 (N2s - - - s na) — RUHE (M)

2
= Q(zs,... ,zq);Mn,2 (nBa <. ;nd) - Z Rl(Hﬁ_i(MQ,i—l))
=1

d—1
= Azq;Mp,q-1 (na) — Z Rl(Hgi_l(Mn,’t—l))
i=1
d—1
= nge(ra; Mn,a-1) = ) RI(Hy "(Mp,i-1))
=1
for all nq1 > sp0, n; > max{spj—1,7(Mpn,1)s-..,7(Mpj-1)},j=2,...,d—1, and
ng > r7(Mp,4—1). Since (z7*,...,25?) is an f-sequence of M, it follows that

ng e(Ta, My a—1) =ning...nq e(z; M).

Therefore
d—1
(6) Jem(n) =Y RIHE (My ;1))
i=1
for all ny > sp0, n; > max{spj_1,7"(Mpn1),...,7(Mpjj-1)},j=2,...,d—1, and
ng > 7(Mp,q—1). Now, assume that gz a(n) is a polynomial for nq,...,ng large

enough. Then there exists a polynomial f(Xq,...,Xy) of degree pf(M) such that

(7) JQ;M(nb < 7nd) = f(nh < 7nd)

for n1,...,nq large enough. It follows by (6) and (7) that for all n1 > sp.0,
n; > max{sy j—1,7"(Mpn1),...,7(Mpj—1)},j =2,...,d—1, and ng > r(Mp,4-1),
the polynomial f(nq,...,n4) does not depend on ny. Therefore the variable X; can
not appear in any term of f(Xy,...,Xy). For any m € M and any permutation 7
of {1,...,d}, we have by [SH, Corollary 2.5] that

m/(x7, ... 204, 1) = (sign(w))m/(a::’(rl(;), . ,a::’(’c(i‘;) ,1).
Therefore we can repeat the above process for the strictly f-sequence (z2, 23, ... , 24, 1)
and we get that the variable X; can not appear in any term of f(Xy,...,Xy4). Con-
tinue the above process for the strictly f-sequences (z1,...,%j-1,%j41,.-. ,%d, Z;)
for j = 2,...,d — 1, none of the variables X5,...,X;_; can appear in any term
of f(Xy,...,Xq4). Therefore f(Xi,...,X4) must be a constant, a contradiction
because the degree of f(X1,...,Xg) is pf(M) > 0. O

Proof of Corollary 1.3. (i)=-(ii). Suppose that M is pseudo generalized Cohen-
Macaulay, i.e pf(M) < 0. Let z be a system of parameters of M. Since Jz.pr(n) is a
increasing function and bounded above by a constant, Jg.ar(n) must be a constant
for nq,...,ng large enough. Hence gz as(n) is a polynomial for n large enough.
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(ii)=>(iii). Trivial.

(iii))= (i). Suppose that M is not pseudo generalized Cohen-Macaulay. Then
pf(M) > 0. It follows by Theorem 1.2 that there exists a strictly f-sequence z of
M such that gz;p(n) is not polynomial. This gives a contradiction. O
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