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Résumé. Soit A une sous algèbre de Banach commutative, régulière (pas forcément semi-simple) de

l’algèbre des opérateurs d’un espace de Banach X . Pour tout x ∈ X et a ∈ A, on introduit leur

spectre local Sp(x) et Sp(a) dans l’espace M des idéaux maximaux de A et pour tout Λ ⊂ M
le sous-espace spectral X(Λ) des x ayant un spectre dans Λ. Le résultat principal est de montrer que

dans ces conditions l’algèbre A est décomposable i.e. pour tout recouvrement d’ouverts U1, ..., Un de

M , l’espace X est décomposable en une somme de sous-espaces spectraux X(Uk), 1 ≤ k ≤ n, i.e.

X = X(U1) + ... + X(Un).

Abstract. Let A be a commutative algebra of operators on a Banach space. For each x ∈ X and

a ∈ A, we introduce their local spectra Sp(x) and Sp(a) as subsets of the maximal ideal space M of

A, and for each subset Λ ⊂ M we define the spectral subspace X(Λ) consisting of x with Sp(x) ⊂ Λ.

The main result of the paper states that if A is a regular, not necessarily semisimple commutative Banach

algebra of operators on a Banach space X , then A is decomposable in the sense that for every open cover

U1, ..., Un of M , the space X is decomposed into a sum of closed spectral subspaces X(Uk), 1 ≤ k ≤ n,

i.e. X = X(U1) + ... + X(Un).

1. Introduction. The theory of non-quasianalytic representations of locally compact
abelian groups was constructed in [LMF]. In this theory, Banach algebra methods
(developed, in particular, by Domar [D])) have played an important role. It is related
to the general theory of decomposable operators [CF] (see also [DS], [EL], [V], [L]) ,
which has received an extensive development in the last thirty years and is still an
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active area of research. The literature on this subject is too vast, so we refer the
reader to the cited monographs for details.

In recent years there has been a considerable interest in non-quasianalytic groups
and semigroups of operators on Banach spaces (see e.g. [BY], [Vu], [H], [HNR],[HN],
[DV]. ). This has inspired us to reexamine the original papers of Lyubich and Mat-
saev [LM] and Lyubich, Matsaev and Feldman [LMF]. In particular, we have paid
attention to the role that the semisimplicity condition of the underlying operator al-
gebras plays in guaranteering the corresponding decomposability properties. It turns
out that the semisimplicity property does not hold, in general, for operator algebras
generated by non-quasianalytic (or even by isometric) representations of locally com-
pact Abelian groups (see [MV], [FV]). On the other hand, results of Colojoara-Foias
([CF, Chapter 6, Section 2]) and of many other authors on decomposability of mul-
tiplication operators or multipliers on Banach algebras (cf. [Fl], [Fr], [Ne], [ELN]) all
depend heavily on the semisimplicity condition (aside from the regularity, which is
the natural condition for decomposability).

During our work, we have found a general algebraic framework for constructing
spectral subspaces for regular, not necessarily semisimple, algebras of operators on a
Banach space X. Thus, our approach gives a unified treatement of the cases consid-
ered in the above mentioned papers [LMF], [CF] and, moreover, describes some new
situations when the semisimplicity condition does hot hold. More precisely, given a
commutative regular subalgebra A (with unit) of the algebra L(X) of all bounded lin-
ear operators on a Banach space X, we introduce, for each element x ∈ X and a ∈ A,
their local spectra Sp(x), Sp(a) as generalized Beurling spectra, i.e. as hulls of closed
ideals generated by x (respectively, by a). The closure M0 of the union of Sp(x), for
all x, is called the support of the algebra of operators A. For each closed subset F of
the support M0 (or the Gelfand space M) of A, we introduce the spectral subspace
X(F ) which consists of all elements x such that Sp(x) ⊂ F and prove that X(F )
is a closed hyperinvariant subspace. Using the regularity of the algebra A, we show
that for every open cover Ui, i = 1, 2, ..., n of the support M0 (or of M), the space X
is decomposed into a sum of the corresponding spectral subspaces X(Ui). Although
our approach provides a (joint) spectral decomposition property for families of oper-
ators in the algebra A, as well as for individual operators T ∈ A, which is to some
extent analogous to the well known spectral decomposition properties for operators
and commuting families of operators that the reader can find in the numerous articles
cited above, it should be emphasized that the decomposition property introduced in
this paper is, in general, different from the well known decomposition properties con-
sidered in the traditional theory of decomposable operators. For instance, if T is a
bounded linear operator on X and x ∈ X, x 6= 0 , then the local spectrum σT (x) is a
non-empty subset of IC, while Sp(x) is a subset of the Gelfand space M and in general
it can happen that Sp(x) = ∅ for x 6= 0. As a consequence, X(∅) can be a non-zero
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subspace, in our definition, but in the context of decomposable operators we must
have X(∅) = {0}. Despite these differences, it is hoped that our results shed some
new light to the decomposability theory for regular, non-semisimple commutative
Banach algebra of operators.

We will use standard notions and basic results from the theory of commutative
Banach algebras as presented, for instance, in [G], [N]. Given a commutative Banach
algebra A, we denote the spectrum or the Gelfand space of A by M and we denote
its radical (i.e. the set of topological niltopent elements) by R. For each a ∈ A, we
denote by â : M → IC its Genfand transform which is a continuous function on M .
The kernel of the homomorphism a 7→ â is in fact the radical R. Recall that the
algebra A is called regular if for every closed subset F ⊂ M and every γ0 ∈ M \ F
there exists an element a ∈ A such that â|F = 0, â(γ0) = 1. If A is regular, F ⊂ M
is closed and γ0 /∈ F , then there exist an open set V ⊃ F and a ∈ A such that
â|V = 0, â(γ0) = 1.

This paper was written during a visit of Quoc-Phong Vu to Fourier Institute,
University of Grenoble, during December, 2002 - January, 2003. He is grateful to the
Institute for financial support and hospitality.

2. A preliminary result. Let A be a regular commutative Banach algebra, R ⊂ A
its radical. Let M be the Gelfand space of A, and F ⊂ M a closed subset. Define

I0(F ) := {a ∈ A : â|U = 0 for some neighborhood U ⊃ F}.

It is clear that I0(F ) is an ideal in A. For an ideal I, let h(I) denotes its hull, i.e.
the set of all maximal ideals containing I. In other words,

h(I) := {γ ∈ M : â(γ) = 0 for all a ∈ I}.

If F is a hull, that is a closed subset in the Gelfand space M , then its kernel k(F ) is
by definition the intersection of all maximal ideals in F , i.e.

k(F ) := {a ∈ A : â(γ) = 0 for all γ ∈ F}.

Clearly, k(F ) is a closed ideal, k(h(I)) ⊃ I for every ideal I, and k(F ) = ∩γ∈F I({γ}).

The following is a modified version of a well-known result for commutative Banach
algebras (see [N, p.225, Theorem 4]).

Theorem 1. For any closed subset F ⊂ M , we have h(I0(F )) = F and I0(F ) is the
smallest ideal among those ideals I ⊂ A such that I ⊃ R, h(I) = F .

Proof. It is clear that I0(F ) ⊃ R and h(I0(F ) ⊃ F . On the other hand, if γ /∈ F
then there exist an open set U ⊃ F and a ∈ A such that â|U = 0 and â(γ) = 1. Thus,
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a ∈ I0(F ) and â(γ) = 1, so that γ /∈ h(I0(F )). Therefore, h(I0(F )) = F . Now let I
be an ideal such that h(I) = F and I ⊃ R. We show that I ⊃ I0(F ). Let y ∈ I0(F ).
Then there exists a neighborhood U of F such that ŷ|U = 0. Let F1 = M \ U . Then
F ∩F1 = ∅, and there exists z ∈ A such that z ∈ I and ẑ|F1 = 1 (see e.g. [N, p.223]).
Therefore, ŷ(γ) − ŷ(γ)ẑ(γ) for all γ ∈ M , which implies that y = yz ∈ R. Hence,
y ∈ (yz + R) ⊂ I + R ⊂ I, i.e. I0(F ) ⊂ I.

Remark that if F = ∅, then I0(F ) = I0(∅) consists of elements whose Gelfand
transforms have compact support. If F = M , then I0(F ) = I0(M) = R, the radical.
Note also that a set F is called a set of spectral synthesis or a S-set if I0(F ) = I for
every closed ideal I such that h(I) = F .

3. The local spectrum .

Now let X be a Banach space, L(X) the Banach algebra of all bounded linear
operators on X, and let A ⊂ L(X) be a commutative Banach subalgebra. We also
assume that A contains the identity operator I. This is not a restriction since we can
always consider the algebra Ã generated by A and the identity operator I.

Let R denote the radical of A, and put

X0 := span{Nx : x ∈ X, N ∈ R}. (1)

It is clear that X0 is a closed invariant subspace for every operator in A. Note
that if X0 = {0} if and only if A is semisimple.

For each element x ∈ X let

Ix := {a ∈ A : ax ∈ X0}.

Then Ix is a closed ideal of A, Ix ⊃ R, hence

R0 := ∩{Ix : x ∈ X}

also is a closed ideal and R0 ⊃ R.
For each element a ∈ A, let

Ia := {b ∈ A : ab ∈ R0}.

Then Ia is a closed ideal of A such that Ia ⊃ R0.

We define the local generalized Beurling spectrum, or simply the spectrum, Sp(x)
of the element x (with respect to A) by

Sp(x) := h(Ix) = {γ ∈ M : â(γ) = 0 for all a ∈ Ix},
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and, similarly, the local generalized Beurling spectrum, or simply the spectrum, Sp(a),
of the element a by

Sp(a) := h(Ia) = {γ ∈ M : b̂(γ) = 0 for all b ∈ Ia}.

For a subset Λ ⊂ M , let

X(Λ) := {x : Sp(x) ⊂ Λ},

and
A(Λ) := {a ∈ A : Sp(a) ⊂ Λ}.

Further, let
M0 := ∪{Sp(x) : x ∈ X}, M1 := ∪{Sp(a) : a ∈ A}.

The algebra A is called decomposable, if
(i) For every closed subset F ⊂ M0, the corresponding subspace X(F ) is closed;
(ii) If Ui, i = 1, 2, ..., n is an open cover of M , then

X = X(U1) + X(U2) + ... + X(Un).

The main result of this paper states that any regular commutative subalgebra A of
L(X) is decomposable (Theorem 8).

As we will see, Sp(x) 6= ∅ if and only if x /∈ X0 (and similarly Sp(a) 6= ∅ if and only
if a /∈ R0). Thus, if X0 6= X, then there are elements with non-empty spectrum, a fact
which is a crucial condition for a spectral decomposition. In general, it may happen
that X0 = X, which implies that every element x has an empty spectrum, or M0 = ∅,
so that our analysis will give no information about decomposability. On the other
hand, if X0 = {0}, then A is semisimple and decomposability is possible, provide that
the algebra A is regular. This case has been considered in [CF, chapter 6], [Fr], [Fl]
(cf. [ELN], [Ne]). Our results even in this semisimple case, although very natural,
do not seem to have been stated in the literature. When X0 is a nontrivial subspace,
i.e. X0 /∈ {{0}, X}, which is a case of non-semisimple algebras, our approach gives a
decomposition of X into corresponding spectral subspaces.

We next give some illustrating examples.

Examples.

1. Let A ⊂ L(X) be a semisimple regular commutative subalgebra containing
the identity operator I. Then, as noted before, X0 = {0}. From Proposition 2-v it
follows that R0 = R = {0}. In this case, Sp(x) and Sp(a) are the standard Beurling
spectra.

2. Let X = IC3, and

A =








a b 0
0 a 0
0 0 c


 : a, b, c ∈ IC





.
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Then

R =








0 b 0
0 0 0
0 0 0


 : b ∈ IC





.

and
X0 = {x = (x1, 0, 0) : x1 ∈ IC}.

It is easy to see that, for a vector x := (x1, x2, x3), we have I
x

= A if x2 = 0 and
I
x

= R if x2 6= 0. Hence, R0 = R.

3. Let Y1, Y2 be Banach spaces, N : Y1 → Y1 be a quasinilpotent operator such that
NY1 = Y1, and B be the Banach algebra generated by N and IY1

. Put X = Y1 ⊕ Y2

and

A =

{[
A 0
0 λIY2

]
: A ∈ B, λ ∈ IC

}
,

Then X0 = Y1, and for each x = (y1, y2), we have I
x

= B if y2 6= 0 and I
x

= A if
y2 = 0. Therefore, R0 = B 6= R.

4. The spectral decomposition of regular operator algebras.

Now assume that A ⊂ L(X) is a commutative regular Banach subalgebra which
contains the identity operator I.

Proposition 2. Let a, b ∈ A, x ∈ X. Then
(i) Sp(x) = ∅ if and only if x ∈ X0;
(ii) Sp(a) = ∅ if and only if a ∈ R0;
(iii) If C ∈ {A}′, then Sp(Cx) ⊂ Sp(x);
(iv) Sp(ax) ⊂ Sp(a) ∩ Sp(x);
(v) Sp(ab) ⊂ Sp(a) ∩ Sp(b);
(vi) If U ⊂ M is an open subset and â|U = 0, then Sp(a) ⊂ U c;
(vii) If Y ⊂ X is a dense subset, then Sp(a) = ∪{Sp(ax) : x ∈ Y };
(viii) If B ⊂ A is a dense subset, then Sp(x) = ∪{Sp(ax) : a ∈ B};

Proof. (i) If Sp(x) = ∅, then h(Ix) = ∅. By Theorem 1, Ix ⊃ I0(∅) = A. Hence
Ix = A, or x ∈ X0. Conversely, if x ∈ X0, then Ix = A, hence Sp(x) = ∅.

(ii) If Sp(a) = ∅, then h(Ia) = ∅, hence Ia ⊃ I0(∅) = A, i.e. Ia = A, or a ∈ R0.
Conversely, if a ∈ R0, then Ia = A, hence Sp(a) = ∅.

(iii) is obvious since Ix ⊂ ICx.
(iv) If b ∈ Ia, then ba ∈ R0, so that ba ∈ Ix, or bax ∈ X0 for all x, hence b ∈ Iax.

Therefore, Sp(ax) ⊂ Sp(a). By (iii), Sp(ax) ⊂ Sp(x), hence Sp(ax) ⊂ Sp(a)∩Sp(x).
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(v) If c ∈ Ia, then ac ∈ R0 or ac ∈ Ix for all x ∈ X. Hence abc ∈ Ix for all x ∈ X
or abc ∈ R0, so that c ∈ Iab. Thus, Ia ⊂ Iab, which implies Sp(ab) ⊂ Sp(a), so that
Sp(ab) ⊂ (Sp(a) ∩ Sp(b)).

(vi) Let b ∈ I0(U
c). Then there is a neighborhood V of U c such that b̂|V = 0.

Therefore, âb̂ = 0, i.e. ab ∈ R, hence b ∈ Ia. Thus, I0(U
c) ⊂ Ia, and an application

of Theorem 1 gives Sp(a) = h(Ia) ⊂ h(I0(U
c)) = U c.

(vii) The inclusion
∪x∈Y Sp(ax) ⊂ Sp(a)

follows from (iv). To show the converse inclusion, we assume the contrary, i.e. there
exists γ0 ∈ Sp(a) such that γ0 /∈ F := ∪x∈Y Sp(ax). Then there exist a neighborhood
U of F and element b ∈ A such that b̂|U = 0 and b̂(γ0) = 1. It follows from (vi) that
Sp(b) ⊂ U c, hence

Sp(abx) ⊂ U c ∩ Sp(ax) = ∅, for all x ∈ Y,

so that abx ∈ X0 for each x ∈ Y . Since Y is dense, this implies abx ∈ X0 for each
x ∈ X, hence ab ∈ Ix for all x, or ab ∈ R0, so that b ∈ Ia, which in turn implies
b̂(γ0) = 0, a contradiction.

(viii) The inclusion E := ∪{Sp(ax) : a ∈ B} ⊂ Sp(x) follows from (iv).
To show the converse inclusion, we assume the contrary, i.e. there exists γ0 ∈

Sp(x) such that γ0 /∈ E. Then there exist b ∈ A and a neighborhood U of E such
that b̂|U = 0 and b̂(γ0) = 1. By (vi), Sp(b) ⊂ U c and

Sp(abx) ⊂ U c ∩ Sp(ax) = ∅, for all a ∈ B,

hence abx ∈ X0, for all a. Therefore, bx ∈ X0, or b ∈ Ix, so that b̂(γ0) = 0, a
contradiction.

Proposition 3. The following statements hold:
(i) M0 = M1.
(ii) M0 = ∩{F : F is closed and X(F ) = X}.
(iii) M0 = ∩{F : F is closed and A(F ) = A}.
(iv) M = M0 if and only if R = R0;
(v) If X0 = {0}, then M0 = M and hence R0 = R.

Proof. (i) Let γ ∈ M1. Then for every open set U such that γ ∈ U , there exists
a ∈ A such that U ∩ Sp(a) 6= ∅. By Proposition 2-vii, there exists an element x ∈ X
such that U ∩ Sp(ax) 6= ∅. This implies γ ∈ M0, so that M1 ⊂ M0. The proof of the
inclusion M0 ⊂ M1 is analogous.

(ii) Since X(M0) = X, we have M0 ⊃ (∩{F : F is closed and X(F ) = X}).
The converse inclusion follows from the fact that if F is a closed subset such that
X(F ) = X, then Sp(x) ⊂ F for all x ∈ X, so that M0 ⊂ F .
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(iii) The proof is analogous to (ii).

(iv) Assume R = R0 and γ0 ∈ M \ M0. Then there is a neighborhood U of M0

and an element a ∈ A such that â|U = 0, â(γ0) = 1. By Proposition 2-vi, Sp(a) ⊂ U c,
hence Sp(a) = ∅ so that a ∈ R0 = R, a contradiction to â(γ0) = 1.

Conversely, assume that R 6= R0. Then there is a ∈ ∩{Ix : x ∈ X}, and a /∈ R.
Therefore, â(γ) = 0 for all γ ∈ M0, but â is not identically zero. It implies M 6= M0.

(v) Assume that there exists γ0 ∈ M \M0. Then, since A is regular, there exist an
open set V ⊃ M0 and a ∈ A such that â|V = 0, â(γ0) = 1. It follows, by Proposition
2-iv, that Sp(a) ⊂ V c, hence Sp(ax) ⊂ V c ∩ M0 = ∅, so that ax ∈ X0 = {0} for all
x ∈ X. Thus, a = 0, a contradiction.

The set M0 = M1 is called the support of the operator subalgebra A of L(X).

Proposition 4. The following statements hold:
(i) For any x, y ∈ X we have Sp(x + y) ⊂ Sp(x) ∪ Sp(y);
(ii) X(Λ) is a linear hyperinvariant subspace, X(∅) = X0, X(M) = X(M0) = X

and X(Λ) ⊃ X0 for every Λ ⊂ M ;
(iii) If Λ1 ⊂ Λ2, then X(Λ1) ⊂ X(Λ2). If Λα is a family of subsets of M , then

X(∩αΛα) = ∩αX(Λα);
(iv) Let Λ be a closed subset. Then x ∈ X(Λ) if and only if ax ∈ X0 for every

a ∈ I0(Λ);
(v) If Λ is a closed subset, then X(Λ) is a closed hyperinvariant subspace;

Proof. (i) Let γ0 /∈ Λ := Sp(x) ∪ Sp(y). Choose a neighborhood V of Λ and
an element b ∈ A such that b̂|V = 0, b̂(γ0) = 1.Then Sp(bx) = Sp(by) = ∅, hence
bx ∈ X0, by ∈ X0, so that b(x+y) ∈ X0. Hence b ∈ Ix+y, and therefore γ0 /∈ Sp(x+y).

(ii) This follows from (i) and Proposition 2-(i),(iii);
(iii) is obvious;
(iv) If x ∈ X(Λ), then Sp(x) ⊂ Λ, i.e. h(Ix) ⊂ Λ. By Theorem 1, Ix ⊃ I0(Λ), or

ax ∈ X0 for all a ∈ I0(Λ). Conversely, if ax ∈ X0 for all a ∈ I0(Λ), then I0(Λ) ⊂ Ix,
hence Sp(x) = h(Ix) ⊂ h(I0(Λ)) = Λ.

(v) Follows immediately from (iv).

Proposition 5. The following statements hold:
(i) Sp(a + b) ⊂ Sp(a) ∪ Sp(b);
(ii) A(Λ) is an ideal of A; A(∅) = R0, A(M) = A(M1) = A, and A(Λ) ⊃ R0 for

all Λ;
(iii) If Λ1 ⊂ Λ2, then A(Λ1) ⊂ A(Λ2). If Λα is a family of subsets of M , then

A(∩Λα) = ∩A(Λα);
(iv) If Λ is a closed subset, then a ∈ A(Λ) if and only if ab ∈ R0 for every b ∈ I0(Λ);
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(v) If Λ is a closed subset, then A(Λ) is a closed ideal;

Proof. (i) We show that if γ0 /∈ F := Sp(a) + Sp(b), then γ0 /∈ Sp(a + b). Let U
be a neighborhood of F and c be an element in A such that ĉ|U = 0, ĉ(γ0) = 1. Then
Sp(ca) = Sp(cb) = ∅, hence ca ∈ R0, cb ∈ R0, or c(a+ b) ∈ R0. Thus, c ∈ Ia+b. Since
ĉ(γ0) = 1, we have γ0 /∈ Sp(a + b).

(ii) follows from (i) and Proposition 2(v).
(iii) is obvious.
(iv) Let Sp(a) ⊂ Λ, i.e. h(Ia) ⊂ Λ. By Theorem 1, Ia ⊃ I0(h(Ia)) ⊃ I0(Λ), or

ba ∈ R0 for all b ∈ I0(Λ). Conversely, let ba ∈ R0 for all b ∈ I0(Λ). Then I0(Λ) ⊂ Ia.
Hence Sp(a) = h(Ia) ⊂ h(I0(Λ)) = Λ.

(v) follows immediately from (iv).

Proposition 6. If a ∈ R0, then â|M0 = 0. Conversely, if there is a neighborhood
U of M0 such that â|U = 0, then a ∈ R0. In other words, I0(M0) ⊂ R0 ⊂ I(M0) or
k(R1) = M0.

Proof. Assume that a ∈ R0 := ∩{Ix : x ∈ X}. Then â(γ) = 0 for all γ ∈ h(Ix),
i.e. â|Sp(x) = 0, for all x ∈ X, which implies â|M0 = 0. Conversely, if â|U = 0 for
some open neighborhood U of M0, then a ∈ I0(h(Ix)) ⊂ Ix for all x, hence a ∈ R0.

Theorem 7. Assume that A ⊂ L(X) is a commutative regular subalgebra con-
taining the identity operator. Then the algebra of multiplication operators in A
is decomposbale. More precisely, if U1, U2, ..., Un form an open cover of M0, then
A = A(U1) + A(U2) + ... + A(Un).

Proof. Let V1 = U1 ∪ (M \ M0), Vk = Uk, 2 ≤ k ≤ n. Then (Vk)
n
k=1 is an

open cover of M . Since the algebra A is regular, there exist b1, b2, ..., bn ∈ A such
that b̂k|V

c
k = 0(1 ≤ k ≤ n), and

∑n
k=1 b̂k = 1. If V is a closed subset such that

V ⊃ Vk, then b̂k|V
c = 0, hence by Proposition 2-iv we have Sp(bk) ⊂ V . Therefore,

Sp(bk) ⊂ V k, k = 1, ..., n.
Let a ∈ A. Put ai = abi, i = 1, 2, ..., n and an+1 = a −

∑n
k=1 abk. Then Sp(ak) ⊂

Sp(bk) ⊂ Vk, or ak ∈ A(Vk) for all k = 1, ..., n. Since ân+1 = â −
∑n

k=1 âb̂k = 0, it
follows ân+1 ∈ R ⊂ A(Vk) for all k. It is easy to see that A(Vk) = A(Uk) for all k.
Thus, a =

∑n
k=1 ak + an+1 = is the required decomposition (we can include an+1 into

any of the ideals A(Uk), 1 ≤ k ≤ n).

Theorem 8. Assume that A ⊂ L(X) is a commutative regular subalgebra containing
the identity operator. Then A is decomposbale. More precisely, if U1, U2, ..., Un is an
open cover of M0. Then X = X(U1) + X(U2) + ... + X(Un).

Proof. Define Vk, k = 1, ..., n, and choose b1, b2, ..., bn ∈ A as in the proof of
Proposition 7, i.e. b̂k|V

c
k = 0(k = 1, ..., n), and

∑n
k=1 b̂k = 1. For each a ∈ A, let
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ak := abk, k = 1, ..., n, an+1 = a − (a1 + ... + an).
Fix x ∈ X. Put xk = bkx for k = 1, 2, ..., n and xn+1 = x −

∑n
k=1 bkx. Then

Sp(xk) ⊂ Vk, so that xk ∈ X(Vk) = X(Uk), 1 ≤ k ≤ n.
We have Sp(axn+1) = Sp((a −

∑n
k=1 abk)x) ⊂ Sp(an+1) = ∅, hence Sp(xn+1) = ∅

or xn+1 ∈ X0 ⊂ X(Uk) for all k = 1, 2, ..., and the required decomposition is obtained.

We recall the following well known result that in combination with Theorems 7
an 8 will give an alternative way of defining spectral decompositions.

Proposition 9. Let M be a locally compact Hausdorff space and let K be a compact
subset of M . For every open cover {Gi}

n
i=1 of K there is an open cover {Hi}

n
i=1 of K

such that the sets Hi are relatively compact and Hi ⊂ Gi, i = 1, ..., n.

For the proof, see [EL], p. 37.

From Theorems 7-8 and Proposition 9 we immediately obtain the following de-
composition property.

Theorem 10. Assume that U1, ..., Un is an open cover of M0. Then

X = X(U1) + X(U2) + ... + X(Un),

A = A(U1) + A(U2) + ... + A(Un).

Theorem 8 gives, in particular, the existence of nontrivial hyperinvariant subspaces
if the support of the algebra A contains more than one element.

Corollary 11. If M0 contains more than one point, then
(i) A has a non-trivial hyperinvariant subspace.
(ii) The algebra of multiplication operators on A has non-trivial hyperinvariant

subspace.

5. The algebra of multiplication operators on a regular commutative Ba-

nach algebra.

Assume that B is a commutative regular Banach algebra with unit. Denote by R
its radical. Let X := B and A consist of multiplication operators on X, i.e.

A := {Ta : B → B, a ∈ B, Tab := ab for all b ∈ B}.

Let X0 be the corresponding subspace of X(= B), R and R0 be the corresponding
ideals in A. It is easy to see that Ta ∈ R if and only if a ∈ R, and that X0 = R, R0 =
R. By Proposition 2, we have M0 = M . We can naturally identify A with B via the
isomorphism a 7→ Ta.
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Applying Theorem 8 to this case, we obtain the following result.

Theorem 12. The algebra of multiplication operators on a regular commutative
Banach algebra is decomposable.

The following proposition gives an equivalent description of the spectrum Sp(x)
for every x ∈ X(= B) in terms of the support of the function x̂. From this proposition
it follows, via Theorem 2.4 of [CF, p.200] (see also [Ne], Theorem 1.4), that for the
case of semisimple regular algebra B and a single multiplication operator Ta on B, our
spectral subspace X(F ) coincides with the spectral subspace in the sense of Foias.
Recall that if x ∈ B, then the support of its Gelfand transform x̂ is defined by
supp(x̂) = {γ ∈ M(B) : x̂(γ) 6= 0}. Thus, γ0 ∈ supp(x̂) if and only if for every open
neighborhood U of γ0, there exists γ ∈ U such that x̂(γ) 6= 0.

Proposition 13. For each element x ∈ B, we have Sp(x) = supp(x̂).
Proof. Assume that γ0 /∈ Sp(x). Then there exists a ∈ Ix such that â(γ0) 6= 0.

Since â is continuous, there exists an open neighborhood U of γ0 such that â(γ) 6= 0
for all γ ∈ U . Since a ∈ Ia, we have Tax ∈ R or ax ∈ R, hence âx̂ = 0. This implies
that x̂|U = 0 so that γ0 /∈ supp(x̂).

Conversely, assume that γ0 /∈ supp(x̂). Then there is an open neighborhood U
of γ0 such that x̂(γ) = 0 for all γ ∈ U . Let V be an open neighborhood of γ0 such
that V ⊂ U and, since B is regular, let a be an element of B such that â(γ0) = 1,
â|V c = 0. Then âx = âx̂ = 0, hence ax ∈ R, or a ∈ Ix. Since â(γ0) 6= 0, we have
γ0 /∈ Sp(x).

Remark that under the assumption that B is semisimple, and for the standard
spectral subspaces, the decomposability of multiplication operators on B in the stan-
dard sense has been shown in [CF]. Proposition 13 shows that our results include
this result of [CF] (for the case of semisimple algebras. Finally, let us note that in
[Fl] it is shown that if a bounded linear operator A on a Banach space X generates
a semisimple regular algebra, which satisfies one more additional assumption, then
there exists a nontrivial invariant subspace. Our result shows that the the operator A
is even decomposable without the additional assumption and the semisimplicity con-
dition, and hence possesses a nontrivial invariant subspace (of course, if the spectrum
contains more than one point).
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