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Abstract

We give an explicit upper bound of the minimal number of balls of radius 1/2 which

form a covering of a ball of radius T > 1/2 in R
n, n > 2.

1. Introduction

Let T > 1/2 and νT ,n the minimal number of (closed) balls of radius 1/2 which can

cover a (closed) ball of radius T in R
n , n > 2. In [R1] (pp 163-164 and theorem 2) Rogers has

obtained the following result.

T 1.1. — (i) If n > 3, with ϑn = n ln n + n ln(ln n) + 5n, we have

1 < νT ,n 6







eϑn(2T )n if T > n/2,

nϑn(2T )n if n
2 ln n

6 T < n
2

.
(1)

(ii) If n > 9 we have

1 < νT ,n 6
4e(2T )nn

√
n

ln n − 2
(n ln n + n ln(ln n) + n ln(2T ) +

1

2
ln(144n)) (2)

for all 1/2 < T < n
2 ln n

.
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The assertion (i) can easily be extended to the case n = 2 by invoking Rogers [R] (p 47) so

that the strict upper bound ϑn = n ln n + n ln(ln n) + 5n of the covering density of equal balls

in R
n is still a valid one in this case. Thus the inequalities (1) are still true for n = 2. In the

case n = 2, see also Kershner [K]. On the other hand, the result (ii) does not seem to have been

improved since then, see for instance [Hand], Fejes-Toth [Ft], Schramm [Sc], Raigorodski [Ra]

or Bourgain et al [BL]. This problem is linked to the existence of explicit lower bounds of the

packing constant of equal spheres in R
n [MVG] and to various problems [MR] [IM] [FF] [Ma].

In this contribution we give an improvment of the upper bound of νT ,n given by the asser-

tion (ii), i.e. when the radius T is less than n/(2 ln n). Namely, we will prove

T 1.2. — Let n > 2. The following inequalities hold:

(i) n < νT ,n 6

74(ln 7)/7

4

√

π

2

n
√

n

[

(n − 1) ln(2T n) + (n − 1) ln(ln n) + 1
2

ln n + ln

(

π
√

2n√
πn−2

)]

T (1 − 2
ln n
)(1 − 2√

π n
)(ln n)2

(2T )n

if 1 < T <
n

2 ln n
(3)

(ii) n < νT ,n 6

√

π

2

√
n

[

(n − 1) ln(2T n) + (n − 1) ln(ln n) + 1
2

ln n + ln

(

π
√

2n√
πn−2

)]

T (1 − 2
ln n
)(1 − 2√

π n
)

(2T )n

if 1/2 < T 6 1 (4)

The following question seems fundamental: what are the integers νT ,n when 1/2 < T, 2 6

n and the corresponding configurations of balls of radius 1/2 when they form the most eco-

nomical covering of the closed ball B(0, T ) of radius T centred at the origin ?

2. Proof of the theorem 1.2

The idea of the proof is simple: (i) when T is small enough, it amounts to show that the

sphere S(0, T ) can be covered by a collection of N balls of radius 1/2 suitably placed at

equidistance from the origin, and that this covering to which we add the central ball B(0, 1/2)

actually covers the ball B(0, T ) itself; in the subsection 2, an upper bound of the minimal

value of N is calculated from the results given by the lemmas of subsection 1; (ii) when T is

larger, we proceed recursively using (i) to give an upper bound of N . The configuration of

balls of radius 1/2 covering B(0, T ) is then ordered by layers, the last layer of balls of radius

1/2 being at an optimal distance from the origin so as to cover the sphere S(0, T ).

1. Caps and sectors.— Let T > 1/2 and n > 2 in the following. If the closed ball B(0, T ) is

covered by N smaller balls of radius 1/2, the smaller balls will intersect the sphere S(0, T ),
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for a certain proportion of them. The intersection of a closed ball of radius 1/2 and the sphere

S(0, T ), if it is not empty, is called a (spherical) cap. For fixing the notations let us define prop-

erly what is a cap and the sector it generates in B(0, T ).

Let h > 0 and u be a unit vector of Rn. Let us denote by Hh,u the affine hyperplane

{z + hu | z ∈ R
n, z · u = 0} of Rn. Assume that Hh,u intersects the ball B(0, T ), i.e. h 6 T .

We will denote

CT ,h,u := {z ∈ S(0, T ) | z · u

‖z‖ >
h

T
}

The n−2-dimensional sphere Hh,u ∩CT ,h,u admits x =
√

T 2 − h2 for radius. The correspon-

dence between x ∈ [0, T ] and h ∈ [0, T ] is one-to-one. We will say that CT ,h,u is the cap of

chord 2x and of centre T u. If a subset Y of S(0, T ) is such that there exists h > 0 and u a

unit vector of Rn such that Y = CT ,h,u, then we will say that Y is a cap of chord 2x of S(0, T ).

Every cap CT ,h,u of chord 2x of S(0, T ) generates a sector in B(0, T ). We will denote it by

S (T, h, u) := {z ∈ B(0, T ) | z · u

‖z‖ >
h

T
}

We will denote by V(T ,x) (indexing with x instead of h) the volume of a sector generated by a

cap of chord 2x in S(0, T ) with x 6 T . Let ωn := πn/2/Γ(1+n/2) so that the (n-dimensional)

volume of a ball of radius T in R
n is ωnT n.

L 2.1. — We have

ωn−1

ωn

>
1√
2π

√
n(1 − 2√

πn
) (1)

Proof. — The following inequalities are classical ([Va] p 171):

ωn−1

ωn
>















1√
2π

√
n

(

1 +
(

n
2e

)n/2 1
(n/2)!

)−1

if n is even

1√
2π

√
n + 1

(

1 −
(

n+1
2e

)(n+1)/2 1
((n+1)/2)!

)

if n is odd
(2)

By Stirling’s formula we deduce the result.

L 2.2. — Let 0 < x < T . Let n be odd and put γ = (n − 1)/2. The volume V(T ,x) of a

sector in B(0, T ) ⊂ R
n generated by a cap of chord 2x in S(0, T ) is equal to

ωn−1xn−1







√
T 2 − x2

n
+

2(T −
√

T 2 − x2)

n + 1

γ∑
j=0

γ!(γ + 1)!

(γ + 1 + j)! (γ − j)!





T −
√

T 2 − x2

T +
√

T 2 − x2





j






(3)

It satisfies the relations

(i) V(T ,x) = xnV(T /x,1) (4)

(ii)
T

n x
6

2n(T /x) + (1 − n)
√
(T /x)2 − 1

n(n + 1)
6

1

ωn−1
V(T /x,1) (5)
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Proof. — Let us show (3). The first term ωn−1xn−1

√
T 2−x2

n
is the volume of the truncated

cone {z ∈ S (T, h, u) | z · u 6 h} with h =
√

T 2 − x2. The second term in (3) is the volume

of {z ∈ S (T, h, u) | z · u > h}: any point of C
T ,
√

T 2−x2 ,u
which is at distance t from

H√
T 2−x2,u

is at distance
(

x2 − t 2 − 2t
√

T 2 − x2
)1/2

from the line Ru. Hence, this volume

equals to ∫ T −
√

T 2−x2

0

ωn−1

[

x2 − t 2 − 2t

√

T 2 − x2

](n−1)/2

dt

It is obtained by integration by parts, γ times, of the integral

ωn−1

∫ α

0

(α− t )γ(t − β)γdt (6)

with α = T −
√

T 2 − x2 and β = −T −
√

T 2 − x2.

The relation (4) is obvious. Let us show (5). We deduce it from the fact that the summation

in (3) has positive terms and is greater than its first term which is 1.

L 2.3. — Assume n > 2 even and 0 < x < 1. The volume V(T ,x) of a sector in

B(0, T ) ⊂ R
n generated by a cap of chord 2x in S(0, T ) satisfies the relations:

(i) V(T ,x) = xnV(T /x,1) (7)

(ii)
T

n x
6

2n(T /x) + (2 − n)
√
(T /x)2 − 1

n(n + 2)
6

1

ωn−1
V(T /x,1) (8)

Proof. — The equality (7) is obvious. In order to prove (8), let us observe that the function

t → (α − t )(t − β) defined on the interval [0,α] is valued in the interval [0, 1] since it lies

below the horizontal line of y-coordinate −αβ = x2 < 1. We deduce the following inequalites

(α− t )
n+1

2 (t − β) n+1
2 6 (α− t )

n
2 (t − β) n

2 6 (α− t )
n−1

2 (t − β) n−1
2

for all t ∈ [0,α]. From (6) in the proof of lemma 2.2 we deduce a lower bound of the volume

of the convex hull of C
T ,
√

T 2−x2,u
for n even using the preceding n odd case of lemma 2.2:

changing n to n + 1 now odd in the computation of the lower bound of the summation in

(3). Let us note that the computation of the volume of {z ∈ S (T, h, u) | z · u 6 h} with

h =
√

T 2 − x2 still gives ωn−1xn−1

√
T 2−x2

n
for n even so that the first term of V(T ,x) remains

the same as in the n odd case. We deduce the inequality (8).

L 2.4. — Let 0 < x 6 1/2. Let D be a point of the cap C
T ,
√

T 2−1/4,u
⊂ S(0, T ) ⊂

R
n at a distance x from the line Ru. Let B denote the unique point which lies in the intersection

of C
T ,
√

T 2−1/4,u
∩ H√

T 2−1/4,u
with the plane (0, D, T u) with the property that it is the closest

to D. If η denotes the distance between D and the line OB, we have the following relation

between x, T and η:

x =
1

2

√

1 −
(

η

T

)2

− η

2

√

4 − 1

T 2
equivalently η =

1

2

√

1 −
(

x

T

)2

− x

2

√

4 − 1

T 2
(9)
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Proof. — Let ψ be the angle between the lines OB and OD, ψ′ the angle between the

lines OD and Ru, so that sin(ψ) = η/T and sin(ψ′) = x/T . Since sin(ψ + ψ′) = 1/(2T ) we

obtain

1 = 2 x
√

1 − (η/T )2 + 2 η
√

1 − (x/T )2.

This expression is symmetrical in x and η. It is now easy, from it,to deduce the expression of

x as a function of η, as stated by the eq.(9).

L 2.5. — Let us assume that a collection of N balls (B(c j , 1/2)) j=1,2,··· ,N of Rn is

such that (i) for all j = 1, 2, · · · , N , B(c j , 1/2) ∩ S(0, T ) is a cap of chord 1 in S(0, T ) and (ii)

these N caps form a covering of S(0, T ). Then (i) if T >
√

2/2, the union

N
⋃

j=1

B(c j , 1/2) covers the annulus {z ∈ Rn | T − 1

2T
6 ‖z‖ 6 T }

of the ball B(0, T ); (ii) if 1/2 < T 6
√

2/2 this union covers B(0, T ).

Proof. — Any such ball B(c j , 1/2) covers the part of the sector

{z ∈ S (T,
√

T 2 − 1/4, Oc j/‖Oc j‖) | αT 6 ‖z‖}

with α to be determined. To compute α, let us consider two adjacent balls, say B(c1, 1/2) and

B(c2, 1/2), such that the intersection of the respective caps B(c1, 1/2)∩S(0, T ) and B(c2, 1/2)∩
S(0, T ) is reduced to one point. Then, on the line O c1+c2

2
, it is easy to check that all the points

z such that T − 1/2T 6 ‖z‖ 6 T are covered. This gives α = 1 − 1/2T 2. Now, since the

caps B(c j , 1/2) ∩ S(0, T ) form a covering of S(0, T ), the balls B(c j , 1/2) form a covering of

the annulus {z ∈ Rn | αT 6 ‖z‖ 6 T }. The last assertion is obvious.

Let us consider N (> 1) distinct points M1, M2, · · · , MN of S(0, T ) ⊂ R
n. We will con-

sider that they are the respective centres of caps of chord 2x of S(0, T ). We will denote by

θ(T ,x)(M1, M2, · · · , MN ) the proportion of S(0, T ) occupied by these caps. In other terms,

with ui :=
OMi

‖OMi‖ for all i = 1, 2, · · · , N , we have

θ(T ,x)(M1, M2, · · · , MN ) :=

Voln−1(
⋃N

i=1 C
T ,
√

T 2−x2,ui
)

Voln−1(S(0, T ))

L 2.6. — Let N > 1, x ∈ (0, 1/2]. The mean Eθ(N , T, x) of θ(T ,x)(M1, M2, · · · , MN ) over

all possibilites of collections of N distinct points (M1, M2, · · · , MN ) of S(0, T ) is equal to

Eθ(N , T, x) = 1 −
(

1 − V(T ,x)

ωnT n

)N

Proof. — Let M1, M2, · · · , MN be N points of S(0, T ). We define

pi =

Voln−1(C
T ,
√

T 2−x2,ui
)

Voln−1(S(0, T ))
, i = 1, 2, · · · , N ,

the probability that a point M ∈ S(0, T ) belongs to the cap of chord 2x of centre Mi . It is

the probability, hence independent of i, that Mi belongs to the cap of chord 2x of centre M .
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We have pi =
V(T ,x)

ωnT n . Therefore, the probability that M belongs to none of the caps of chord

2x of centre Mi for all i = 1, 2, · · · , N is, by the independence of the points, the product of

the probabilities that none of the Mi ’s belongs to the cap of chord 2x of centre M , that is the

product
(

1 − V(T ,x)

ωnT n

)N

This value is independent of the collection of points {Mi}. We deduce the mean Eθ(N , T, x) by

complementarity.

2. Proof of the theorem 1.2.—

P 2.7. — Let 0 < x < 1/2. With η(x) = 1
2

√

1 −
(

x
T

)2 − x
2

√

4 − 1
T 2 , if

N >
ωnT n

V(T ,x)

ln

(

ωnT n

V(T ,η(x))

)

(10)

then there exists a collection of N distinct caps of centres M1, M2, · · · , MN of chord 1 of

S(0, T ) ⊂ R
n satisfying

ln

(

1

1 − θ(T ,x)(M1, M2, · · · , MN )

)

> N
V(T ,x)

ωnT n
(11)

which covers S(0, T ).

Proof. — Given x ∈ (0, 1/2] there exists at least one collection of caps {C
T ,
√

T 2−x2,ui
| i =

1, 2, · · · , N} of centres M1, M2, · · · , MN , where the unit vectors ui := OMi/‖OMi‖ are all

distinct, such that the relation (11) is true since, after lemma 2.6, the mean Eθ(N , T, x) is

equal to 1 −
(

1 − V(T ,x)

ωnT n

)N

and that

ln

(

1

1 − Eθ(N , T, x)

)

= − N ln

(

1 − V(T ,x)

ωnT n

)

> N
V(T ,x)

ωnT n
. (12)

Let us note that the points M1, M2, · · · , Mn depend upon x. Keeping fixed the centres

M1, M2, · · · , MN and putting around them caps of chord 1 instead of 2x, we obtain a new

collection of caps. Let us show that this new collection of caps of chords 1 of S(0, T ) forms a

covering. We will assume that it does not and will show the contradiction.

Then there exists a point M ∈ S(0, T ) such that

M 6∈
N
⋃

i=1

C
T ,
√

T 2−1/4,ui

Let us write u := OM/‖OM‖ for the unit vector on the line OM . At worse, M lies close

to the boundary of the domain
⋃N

i=1 C
T ,
√

T 2−1/4,ui
, hence close to the boundary of one of the

caps C
T ,
√

T 2−1/4,ui
of chord 1. We can now apply lemma 2.4 as if M were on this boundary:

η = η(x) is strictly positive since x < 1/2 by the eq.(9). Therefore the cap C
T ,
√

T 2−η(x)2 ,u
is

not trivial and is disjoint from the union

N
⋃

i=1

C
T ,
√

T 2−x2,ui
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This means that

1 − θ(T ,x)(M1, M2, · · · , MN ) > θ(T ,η(x))(M) > 0

Therefore

ln

(

1

1 − θ(T ,x)(M1, M2, · · · , MN )

)

< ln

(

1

θ(T ,η(x))(M)

)

From the eq.(12) we deduce the relation

N
V(T ,x)

ωnT n
< ln

(

ωnT n

V(T ,η(x))

)

Hence the contradiction.

By lemma 2.1 and the eq.(4), (5), (7), (8), we deduce

ωnT n

V(T ,x)

ln

(

ωnT n

V(T ,η(x))

)

=
ωn

ωn−1

n T n

xn

ωn−1

n V(T /x,1)

ln

(

ωn

ωn−1

n T n

(η(x))n

ωn−1

n V(T /(η(x)),1)

)

6

√

π

2

√
n (2T )n (1 − 4η(x))−n/2

T

(

1 − 2√
πn

)



−(n − 1) ln(η(x)) + (n − 1) ln T + ln





√
2π n√
πn − 2









(13)

In the proposition 2.7, we can take any x, hence any η, in the open interval (0, 1/2) such

that the condition (11) is satisfied. We will chose η and x = x(η) as functions of n only with

η tending monotonically to zero when n goes to infinity, hence x tending to 1/2. This will

give a minimal integer

bωnT n

V(T ,x)

ln

(

ωnT n

V(T ,η(x))

)

c + 1

for obtaining the covering property of S(0, T ) as a function of n and T only.

The problem consists now in finding, in the set of strictly positive monotone decreasing

functions f (x) defined on (1/4, +∞) such that limx→+∞ f (x) = 0, one function for which

−(1 − 4 f (x))−x/2 ln( f (x)) goes the slowest to +∞ when x tends to +∞. We will not solve

this problem here. We will simply take f (x) = 1/(2xu(x)) with u(x) an increasing monotone

continuous function such that limx→+∞ u(x) = +∞, in particular u(x) = ln x. By reporting

this function in the eq.(13) we take η = 1/(2n ln n), n > 3. This gives an expression of x as a

function of n from the eq.(9). This function represents a fairly good compromise.

The second member of the inequality (10) appears as a configurational entropy which has

to be exceeded for the existence of (at least one) a certain configuration of equal caps of chord

1 for covering S(0, T ). But the condition (11) is non-constructive.

We will now explicit the second member of the inequality (13) with η = 1/(2n ln n). Thus,

for all n > 2, since (1 − 2/(n ln n))−n/2 < (1 − 2/(ln n))−1, we obtain

√

π

2

√
n

T







(2T )n

(1 − 2
ln n
)(1 − 2√

π n
)









(n − 1) ln(2T n ln n) +
1

2
ln n + ln





π
√

2n√
πn − 2







 (14)

for 1/2 < T 6 1.
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By lemma 2.5, if 1/2 < T 6 1, then, in order to cover the ball B(0, T ) by balls of radius 1/2,

it suffices to put a ball of radius 1/2 centred at the origin (not necessary if 1/2 < T 6
√

2/2)

and to put a collection of N balls (with N chosen minimal) given by the proposition 2.7

around such that their intersections with S(0, T ) are caps of chord 1 which cover S(0, T ).

This total number of balls, N + 1, is certainly exceeded by (14). This proves the assertion (i) in

the theorem 1.2.

Let us prove the assertion (ii) in the theorem 1.2. If T > 1, we proceed inductively using

the lemma 2.5. We will cover B(0, T ) as follows. We put a ball of radius 1/2 centred at the

origin. Then we put balls of radius 1/2 in such a way that their intersections with the spheres

S(0, Tm) are caps of chord 1 which cover S(0, Tm), where the decreasing sequence {Tm} is

defined by T0 = T, T1 = T0 − 1
2T0

, · · · , Tm = Tm−1 − 1
2Tm−1

, · · · with m ∈ {0, 1, · · · , m0} and

m0 defined by the condition that Tm0
6 1 and Tm0−1 > 1. Since, for all integer m ∈

{0, 1, · · · , m0}, we have

T − m

2T
> Tm

the total number of balls of radius 1/2 disposed in such a configuration required for covering

B(0, T ) is certainly less than

m0∑
m=0

(

2

(

T − m

2T

))n
√
πn

(

1 − 2
ln n

)−1

T
√

2

(

1 − 2√
π n

)



(n − 1) ln(2(T − m

2T
)n ln n) +

ln n

2
+ ln





π
√

2n√
πn − 2









6

√
πn

(

1 − 2
ln n

)−1

T
√

2

(

1 − 2√
π n

)



(n − 1) ln(2T n ln n) +
ln n

2
+ ln





π
√

2n√
πn − 2









m0∑
m=0

(2(T − m

2T
))

n

But
m0∑

m=0

(2(T − m

2T
))

n
6 (2T )n

m0∑
m=0

e
− n m

T 2 6 (2T )n
+∞∑
m=0

e
− n m

T 2 =
(2T )n

1 − e−n/T 2

Since T < n/(2 ln n), we have

en/T 2

en/T 2 − 1
<

e4(ln n)2/n

e4(ln n)2/n − 1
<

n

4(ln n)2
e4(ln n)2/n

The function t → (ln t )2/t reaches its maximum on [2, +∞) at t = e2. Hence, for all integer

n > 2, we have (ln n)2/n 6 (ln 7)2/7. We deduce that

m0∑
m=0

(2(T − m

2T
))

n
6

e4(ln 7)2/7

4

n (2T )n

(ln n)2

with a constant e4(ln 7)2/7/4 = 2.176... This gives the assertion (ii).

As for the strict lower bound n in the eq.(3) and (4), it obviously comes from the dimen-

sion of the ambiant space: n balls being placed along the n coordinates axis of any basis of

R
n never cover B(0, T ) when T > 1/2.
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