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These notes are from a talk given in the Number Theory Seminar at the
Fourier Institute, Grenoble, France, on 04/05/2017. These notes are based on
a talk given in the Algebra Seminar at Universiteit Leiden, the Netherlands on
14/11/2016 and in the Number Theory Seminar at EPFL, Lausanne, Switzer-
land on 24/11/2016. The contents of the talk include research from the PhD
thesis of the author, which was written under the supervision of Dr Marco
Streng, and research from an article which was started at the AGC2016 work-
shop at UCLA, as joint work together with Sean Ballentine, Aurore Guillevic,
Elisa Lorenzo-Garcia, Maike Massierer, Ben Smith, and Jaap Top.

1 Motivation: elliptic curves

In curve-based cryptography, it is important to develop fast algorithms for
counting points on curves defined over finite fields Fp, where p is a very large
prime. All of this research was inspired by previous research into elliptic curves,
and so we first recall definitions and results for elliptic curves as a motivation
for the genus 2 case.

Definition. Suppose that E and E′ are elliptic curves over a field k. An isogeny
φ : E → E′ is a surjective morphism with finite kernel that sends the identity
to the identity.

Remark. Some people consider the constant-zero morphism to be an isogeny,
which is not consistent with the above definition. As this morphism will not
play a role in our work, we do not include the constant-zero morphism in our
definition of isogeny.

Definition. Suppose that φ : E → E′ is an isogeny of elliptic curves over a
field k. This induces an injective morphism of function fields

k(E′) −→ k(E).

We define the degree of φ to be

deg(φ) = [k(E) : k(E′)].
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Question 1. A natural question to ask at this point is: given an elliptic curve
over a field k, and an integer `, can we enumerate all the elliptic curves E′ over
k such that there exists an isogeny E → E′ of degree `?

There is more than one way of answering this question; we give the answer
that will help us eventually with point counting. Also, in this talk, we only
answer this question for k = Fp, as we are ultimately interested in counting
points on curves over Fp. We first need to define a number associated to an
elliptic curve over any field, the j-invariant.

Definition. For an elliptic curve E defined over k with char(k) 6= 2, 3, let

y2 = x3 +Ax+B

be a Weierstrass form for E, with A,B ∈ k. Then if 4A3 + 27B2 6= 0, we define
the j-invariant of E to be

j(E) = 1728
4A3

4A3 + 27B2
.

This number determines E up to isomorphism (i.e. birational transformation
of x and y).

Definition. For each ` ∈ Z≥2, the modular polynomial of level ` is a non-
constant-zero polynomial

Φ`(X,Y ) ∈ C[X,Y ]

such that, given any 2 elliptic curves E and E′ over C, there exists an isogeny
E → E′ of degree ` if and only if Φ`(j(E), j(E′)) = 0.

Remark. If ` ∈ Z≥2 is prime, then the degree of Φ`(X,Y ) in both X and Y is
given by `+ 1.

Remark. In fact the coefficients of Φ`(X,Y ) are integers, not just complex
numbers. This allows us to reduce the coefficients modulo a prime p, so that
furthermore, given any elliptic curves E and E′ over Fp, there exists an isogeny
E → E′ of degree ` if and only if Φ`(j(E), j(E′)) ≡ 0 mod p.

For small `, equations for Φ`(X,Y ) can be found for example at LMFDB.
These equations can also be thought of as models for the modular curve X0(`)
of level `.

We can now answer Question 1: given an elliptic curve E/Fp, compute
j(E) ∈ Fp, and compute the Fp-vauled polynomial in Φ`(j(E), Y ) mod p in Y .
The roots of this polynomials then give us the j-invariants of each curve E′/Fp
for which there exists an isogeny E → E′ of degree `.

Question 2. Another natural question about elliptic curves over finite fields
is, given E/Fp, what is the most efficient way of counting #E(Fp) for a large
prime p?
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To answer this question, we first need to know the following 2 facts for an
elliptic curve E/Fp with trace of Frobenius t:

1. #E(Fp) = 1 + p− t, and

2. |t| < 2
√
p.

Then the beautiful theorem of Schoof, Elkies, and Atkin gives us a polyno-
mial time algorithm for computing t, and hence #E(Fp).

Theorem (Schoof, Atkin, Elkies). Let E be a non-supersingular elliptic curve
over Fp such that j(E) 6= 0, 1728, and write the modular polynomial of level `

Φ`(j(E), Y ) = f1(Y ) · · · fn(Y )

as the product of irreducible polynomials in Fp[Y ]. Then (up to ordering) the
polynomials fi satisfy one of the following:

1. n = 2, deg(f1) = 1, and deg(f2) = `.

2. deg(f1) = deg(f2) = 1, and for every i > 2, deg(fi) = r > 1, for some
r ∈ Z.

3. for every i, deg(fi) = r, for some r ∈ Z.

Furthermore, there exists a primitive rth root of unity ζ ∈ F` such that

t2 ≡ (ζ + ζ−1)2p mod `,

where in case (1) we set ζ = 1.

We unfortunately do not have time to prove this theorem, although the proof
is beautiful and elementary. Schoof has written a report on this theorem, which
is referenced as [Sch].

We can now answer Question 2 in the following way: given an elliptic curve
E over Fp, we first compute t2 modulo ` for many different primes ` (perhaps
up to a root of unity). We then use the bound on |t| and the Chinese Remainder
Theorem to compute t2. Lastly, we check the sign of t, for example by multi-
plying a non-trivial point P ∈ E(Fp) by both 1+p− t and 1+p+ t. For large p,
this is much more efficient than any other known algorithm for counting points.
Which leads us to the topic of this talk: is there a way of generalising this
algorithm to higher genus curves or abelian varieties to do fast point-counting
there?

2 Counting points on genus 2 curves

First, to give some intuition for those who are unfamiliar with genus 2 curves,
one should have in mind that any genus 2 curve C over a field k such that
char(k) 6= 2 has a hyperelliptic model

C : y2 = f(x),
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where f(x) ∈ k[x] has degree 5 or 6, and also that there is an abelian variety of
dimension 2 associated to C, called the Jacobian of C, written as J (C), such
that C(k) ⊆ J (C)(k). These properties make genus 2 curves into a natural
stepping stone for generalising theory that has been developed for elliptic curves.
To generalise what we have seen in this talk so far, we must answer 3 questions.

Question 3. (a) How do we associate an isomorphism invariant to a genus
2 curve?

(b) How do we define a modular polynomial, and can we compute it?

(c) How will these modular polynomials factor, and does the method of Schoof,
Elkies, and Atkin generalise in a natural way?

2.1 Isomorphism invariants of genus 2 curves

We first (attempt to) answer Question 3(a). Perhaps the most well-known
isomorphism invariant for genus 2 curves is the Igusa invariant, which can again
be written in terms of the coefficients of the defining equation of the curve. That
is, given a genus 2 curve C over a field k with char(k) 6= 2, with hyperelliptic
model

C : y2 = f(x),

one can define rational functions

(i1, i2, i3) : k[x] −→ A3
k

such that the tuple (i1(f), i2(f), i3(f)) determines the curve C up to isomor-
phism. There is also an algorithm of Mestre which allows us to compute an
equation for the curve C corresponding to a given tuple of Igusa invariants. Un-
fortunately, the Igusa invariants are too general for our purposes, as using Igusa
invariants makes Questions 3(b) and 3(c) computationally unfeasible. Hence we
use invariants which ‘see’ the extra structure that comes with a curve over Fp.

Recall that for any abelian variety A over a finite field Fp, as well as the
endomorphisms on A corresponding to multiplication by some integer, there
exists the p-power Frobenius endomorphism

π : A −→ A
x 7→ xp.

In particular, the endomorphism ring of A satisfies

Z ( End(A).

Definition. A CM-field K is a totally imaginary degree 2 extension of a totally
real number field.

For a simple, ordinary abelian variety A over Fq, we have much more than
just Z ( End(A), we know that there exists a CM-field of dimension 2 dim(A)
over Q for which End(A)⊗Q = K; for completeness we include here the neces-
sary references for this fact.
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Lemma. Suppose that A is a simple abelian variety over Fq. Then the following
are equivalent:

(a) A is ordinary,

(b) K = End(A)⊗Q is a CM-field of degree 2dim(A) over Q,

(c) the characteristic polynomial of the q-power Frobenius endormorphism on
A is irreducible.

Proof. From Notation 9.1 in Oort’s article [Oor], we get (c) ⇔ (b). By Dipippo
and Howe, [DH], we have that A is ordinary if and only if p does not divide the
middle coefficient of the minimal polynomial of the characteristic polynomial of
the Frobenius. If (b) does not hold, then from Proposition 2.2 in [Oor] we have
that the characteristic polynomial of Frobenius is given by

(x− q1/2)2(x+ q1/2)2 = (x2 − q)2 = x4 − 2qx2 + q2,

and hence by Dipippo and Howe, (a) does not hold if and only if (b) does not
hold.

Definition. Suppose that A is an abelian variety such that End(A)⊗Q = K is
a CM-field, and denote by K0 the maximal totally real subfield of K. We then
say that A has CM by K, and A has RM by K0. Here CM stands for complex
multiplication, and RM stands for real multiplication.

So to specialise our invariants, we can fix a totally real quadratic number field
K0, and restrict to isomorphism invariants for simple, ordinary abelian varieties
of dimension 2 defined over Fp with real multiplication by K0. That is, given a
genus 2 curve C over Fp with p 6= 2 such that J (C) has real multiplication by
K0, for C : y2 = f(x), we want to define rational functions

j1, j2, j3 : Fp[x]|deg=5,6 −→ A3
Fp

such that the tuple
(j1(f), j2(f), j3(f))

determines J (C) up to (real-multiplication preserving) isomorphism. The only
fields K0 for which these functions are explicitly written down are K0 = Q(

√
5)

and K0 = Q(
√

8), in work by Müller. The equations for j1 and j2 are known for
all real quadratic fields, thanks to work by Lauter and Yang, but the problem
of finding a general equation for j3 is still open. The existence of such functions
is proven in the thesis of the author (and perhaps has been done elsewhere,
unknown to her).

2.2 Modular polynomials for genus 2 curves over finite
fields

Having answered Question 3(a) as far as possible with the current techniques, we
turn to Question 3(b): defining and computing modular polynomials in genus
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2. We will use the isomorphism invariants of the previous section, and so we fix
the prime p, the real quadratic number field K0, and an isomorphism invariant
(j1, j2, j3) for K0 throughout. In the elliptic curve case, the modular polynomial
of level ` told us about isogenies of degree `, otherwise known as `-isogenies.
We now want to look at isogenies for genus 2 curves, which we do by studying
isogenies of their Jacobians. The following definition is the same as the one for
elliptic curves:

Definition. A morphism of abelian varieties is an isogeny if it preserves the
identity, is surjective, and has finite kernel.

The generalisation of an `-isogeny to genus 2 that we use is quite complicated,
so we do not give the details here. The interested reader can find the definition
in the upcoming thesis of the author [Mar]. We again associate a prime to
the isogeny, but now a prime ideal in OK0

- we study ‘µ-isogenies’, where µ is
a totally positive element of OK0

which generates a prime ideal in K0. The
generalisation of the modular polynomial is given by the following theorem,
which is proven in the upcoming thesis of the author.

Theorem. There exists an algorithm to compute polynomials

Gµ(X1, X2, X3, Z1) ∈ Z[X1, X2, X3, Z1]
Hµ,2(X1, X2, X3, Z1, Z2) ∈ Z[X1, X2, X3, Z1, Z2]
Hµ,3(X1, X2, X3, Z1, Z3) ∈ Z[X1, X2, X3, Z1, Z3]

with

degZ1
(Gµ) = NormK0/Q(µ) + 1, degZ2

(Hµ,2) = 1, degZ3
(Hµ,3) = 1,

such that for ‘most’ genus 2 curves C/C with C : y2 = f(x), and C ′/C with
y2 = f(x)′, there exists a µ-isogeny J (C)→ J (C ′) if and only if

Gµ(j1(f), j2(f), j3(f), j1(f ′)) = 0
Hµ,2(j1(f), j2(f), j3(f), j1(f ′), j2(f ′)) = 0
Hµ,3(J1(f), j2(f), j3(f), j1(f ′), j3(f ′)) = 0.

For the precise definition of ‘most’, see the upcoming thesis of the author.
As in the genus 1 case, we can reduce these polynomials mod p to detect when
2 curves over Fp are µ-isogeneous. The algorithm has been implemented in the
cases for which j1, j2 and j3 are known, and the polynomials are computed up
to NormK0/Q(µ) = 19. As more polynomials are computed, they can be found
at www.martindale.info.
So, given a genus 2 curve C/Fp, we can enumerate all the (invariants of) genus
2 curves C ′/Fp for which there exists a µ-isogeny to J (C)→ J (C ′) in the same
way as we did for elliptic curves. That is, given C/Fp, given by C : y2 = f(x),
we can

1. Compute j1(f), j2(f), j3(f).
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2. Enumerate the solutions of Gµ(j1(f), j2(f), j3(f), Z1) = 0, which gives us
j1(f ′) for every C ′ : y2 = f(x)′ for which J (C ′) is µ-isogenous to J (C).

3. For each C ′, find the unique j2(f ′) and j3(f ′) that satisfy

Hµ,2(j1(f), j2(f), j3(f), j1(f ′), j2(f ′)) = 0

and
Hµ,3(J1(f), j2(f), j3(f), j1(f ′), j3(f ′)) = 0.

If one requires the equation of the curve, in the thesis of the author there are
formulae to find the Igusa invariants in terms of j1, j2 and j3, and we can then
use Mestre’s algorithm to find the curve. We now answer the remaining part of
Question 3, part (c).

2.3 Schoof’s algorithm in genus 2

This section is joint work with Ballentine, Guillevic, Lorenzo-Garcia, Massierer,
Smith, and Top. As before, we fix p, K0, j1, j2, and j3. We again need to
recall how the number of Fp-points on a genus 2 curves relates to the Frobenius
polynomial:
Let C be a genus 2 curve over Fp; then there exist integers s and t such that
the characteristic polynomial of the p-power Frobenius on J (C) is given by

X4 − tX3 + (2p+ s)X2 − tpX + p2.

Then in particular, we have the following facts:

1. #C(Fp) = 1 + p− t,

2. #J (C)(Fp) = 1− t+ 2p+ s− tp+ p2,

3. |s| < 4p, and

4. |t| < 4
√
p.

Given these facts, we hope for a Schoof-style algorithm to compute s and t, and
the following theorem gives us just that.

Theorem. Let C/Fp be a genus 2 curve, C : y2 = f(x), such that J (C)
is simple and ordinary and (End(J (C)) ⊗ Q) is some CM-field K, where the
maximal totally real subfield of K is K0 and the only roots of unity in K are
±1. Then for a totally positive element µ ∈ OK0

such that NormK0/Q(µ) = ` is
prime, the factorisation of

Gµ(j1(f), j2(f), j3(f), Z1) mod p = f1 · · · fn

into irreducible polynomials in Fp[Z1] satisfies one of

1. deg(f1) = 1, and for i > 1, deg(fi) = r,
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2. deg(f1) = deg(f2) = 1, and for i > 2, deg(fi) = r, or

3. for every i, deg(fi) = r.

Furthermore, there exist primitive 2rth-roots of unity ζ2r and ζ ′2r in F` such that

for η2r = ζ2r + ζ−12r and η′2r = ζ ′2r + ζ
′−1
2r , we have

t2 ≡ (η2r + η′2r)
2p mod `,

and
s ≡ ±η2rη′2rp mod `.

Here we define a ‘primitive `th root of unity’ to be 1.

Hence, our point counting algorithm now becomes, given a curve C/Fp with
real multiplication by K0 such that the only roots of unity in the endomorphism
algebra are ±1, with C : y2 = f(x),

1. Compute j1(f), j2(f), j3(f).

2. Compute t2 and s mod ` for many small ` using the theorem above.

3. Find t2 and s using the Chinese Remainder Theorem, and the bounds on
s and t.

4. Check the sign of t with your favourite method (eg. multiplying a random
Fp point in J (C) by the 2 options for #J (Fp)).
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