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Shape optimization is all about finding the best design of a mechanical structure according to a performance
criteria. This optimal design challenge arises whether it is for the conception of a thermal device, a pipe conveying
fluids or a pedestrian bridge. Those physical situations are described with the help of physical parameters such as
material coefficients or viscosity which are difficult to estimate. It’s an issue because the optimal design for a set
of parameters may worsen under a slight perturbation of these parameters.

Several models have been developed to handle this type of instability starting from worst case approaches [1]
where we consider that the uncertain parameters are known up to a certain amplitude. The main issue of these
approaches is the poor performance with respect to the reference parameters mainly because worst-case parameters
will usually be unlikely. That’s why, stochastic approaches have been considered [4] by assuming that these
parameters suffer from randomness. The addition of weights allows to balance the phenomenon of unrealistic worst-
case realisations. However, these stochastic models rely on the precise knowledge of the probability distribution of
the uncertain parameters which is usually inaccessible.

In the context of convex optimization, methods have been developed to overcome the lack of knowledge of
this probability distribution. In the distributionally robust optimization approach, the optimization is usually done
with respect to a worst case distribution close to the empirical law built from observations. The Wasserstein
distance has been used to characterize the notion of proximity [5] leading to an efficient tractable formulation under
reasonable assumptions [2]. Another approach is to consider an ambiguity set of distributions that are close in term
of moments.

In this talk, we will take a look at the domain of shape optimization from their motivations to the key tools used
in practice. We will also explore the use of distributionally robust optimization approaches in the context of shape
and topology optimization [3]. After that, we will observe the behavior of this model on numerical examples such
as cantilever or mast optimization. This will illustrate that optimal distributionally robust solutions indeed yield
good performances with respect to the reference parameters while handling likely worst-case realisations.
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