UMR 5582 - Laboratoire de mathématiques
Published on UMR 5582 - Laboratoire de mathématiques (https://www-fourier.univ-grenoble-alpes.fr)

Accueil > Penghui Li

Penghui Li [1]

Some progress on Betti Geometric Langlands Conjecture in genus 1
Lundi, 6 Mai, 2019 - 14:00
Résumé : 

We recall the Betti Geometric Langlands Conjecture proposed by Ben-Zvi-Nadler. In genus 1 case, we use an uniformization method to calculate the ellitpic character sheaves in terms of Lusztig's character sheaves. And then construct a functor from the category of elliptic character sheaves (the semistable part of automorphic category) to the spectral category in the conjecture. The functor is fully-faithful if and only if certain conjecture of Hecke categories holds. We prove the analogous conjecture for Weyl groups. The construction uses three previous results: Ben-Zvi-Nadler's identification of character sheaves as trace of Hecke category, Bezrukavnikov's Langlands duality for affine Hecke category, and Ben-Zvi-Nadler-Preygel's gluing of the spectral categories (in genus 1). This is a joint work with D. Nadler.

Institution de l'orateur : 
IST Austria
Thème de recherche : 
Algèbre et géométries
Salle : 
4

Source URL: https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/penghui-li-0

Liens
[1] https://www-fourier.univ-grenoble-alpes.fr/?q=fr/content/penghui-li-0