100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Raoul Hallopeau

An introduction to D-modules
Thursday, 9 June, 2022 - 17:00
Résumé : 
The theory of D-modules is an algebraic approach to linear partial differential equations. It was developed in the 1970s for complexes varieties using algebraic geometry objects and Grothentieck point of vue. It has many applications. For example Masaki Kashiwara and Zoghman Mebkhout proved a general version of the Riemann-Hibert correspondence in this context in the 1980s. D-modules are also very useful tools in representation theory. Today the theory of D-modules extends to the arithmetic case for arithmetic varieties.
In my presentation I will expose some motivations of D-molules. I will explain why we introduce D-modules in order to solve partial differential equations. I will not talk about algebraic geometry. In a second time I will define the ring of differential equations with holomorphic coefficients and state some of its properties.
Institution de l'orateur : 
Université de Rennes 1
Thème de recherche : 
Salle : 
logo uga logo cnrs