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Abstract

We embed the Teichmüller space of the once punctured torus T(1,1) into the set of conjugacy
classes of groups generated by three anti-holomorphic involutions I1, I2 and I3 (Lagrangian triangle
groups), acting on the complex hyperbolic plane H2

C. We deform this embedding, and obtain a three
dimensional family E of discrete, faithful and type preserving representations of the fundamental
group of the once punctured torus.

AMS classification 51M10, 32M15, 22E40

1 Introduction

Triangle groups are among the most studied objects in two-dimensional complex hyperbolic geometry.
They are generated by three involutions, and may thus be seen as representations of Z2 ∗Z2 ∗Z2 into
the isometry group of the complex hyperbolic plane H2

C (see [Sch02] for a survey). One of the main
problems is to find conditions for such a representation to be discrete and faithful. A classical approach
to this problem is to begin with a representation ρ0 whose image stabilizes a two-dimensional totally
geodesic subspace, and to study the possible deformations of this representation. If ρ0 is flexible, and if
ρt is a deformation of ρ0, a natural problem is to determine the maximal τ such that ρt remains discrete
and faithful for t ∈ [0, τ ]. The usual obstruction for ρt to remain discrete and/or faithful is when a
loxodromic element turns elliptic during the deformation. This is the complex hyperbolic version of
a classical phenomenon for Kleinian groups (see [GP92], [FK00]). Our main result addresses this
problem of maximal deformation in the case of an embedding of the whole Teichmüller space instead
of a single deformation.

In this work, we are interested in triangle groups generated by three anti-holomorphic involutions,
each of which fixes pointwise a Lagrangian plane. We refer to these groups as Lagrangian triangle
groups. Examples of Lagrangian triangle groups are studied for instance in [FK00].
Throughout this paper, we will use the following notation:

• Γ1 is the group having presentation 〈i1, i2, i3 | i2k = 1〉.
• Γ2 is the group having presentation 〈a, b, c | [a, b] c = 1〉. It is the fundamental group of the

punctured torus. Γ2 is embedded (with index two) in Γ1 by a → i1i2 and b → i3i2.

• T(1,1) is the Teichmüller space of the once punctured torus (see section 2) .
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• ̂PU(2, 1) (resp. ̂PSL(2,R) ) is the full group of isometries of the complex hyperbolic plane H2
C

(resp. the complex hyperbolic line H1
C), including holomorphic and anti-holomorphic isometries

(see section 3).

In the case of the complex hyperbolic line H1
C, triangle groups have been used to study the repre-

sentations of the free group on two generators F2 = 〈a, b〉 into PSL(2,R)(see [Mat82], [Gil95]). Among
these representations are the punctured torus groups, that is, the discrete, faithful and type preserv-
ing representations of the fundamental group of the once punctured torus into PSL(2,R). If ρ is a
punctured torus group, it is possible to decompose the generators of its image under the form :

ρ(a) = I1 ◦ I2 and ρ(b) = I3 ◦ I2, (1)

where the Ik’s are half-turns. The commutator [ρ(a), ρ(b)] = (I1I2I3)
2 generates the cyclic subgroup

of the punctured torus fundamental group corresponding to a loop around the cusp.
We wish to generalize this approach to the case of two dimensional complex hyperbolic geometry,

using anti-holomorphic involutions instead of half-turns. We will call a discrete, faithful and type
preserving representation of Γ2 in PU(2, 1) an H2

C punctured torus group. The purpose of this work is
the following:

I. Describe the set R of ̂PU(2, 1)-conjugacy classes of Lagrangian triangle groups 〈I1, I2, I3〉 such
that the cyclic product γ = (I1I2I3)

2 is parabolic.

II. In R, identify a three dimensional family of groups containing an H2
C punctured torus group

with index 2. This family is obtained by deforming a natural embedding of T(1,1) into R.

All conjugacy classes of H2
C punctured torus groups are in M = Hom(F2, PU(2, 1))/PU(2, 1),

which has dimension 8. More precisely, they are in the open subset Mlox of M where the genera-
tors of F2 are represented by loxodromic elements. The subset of Mlox formed by those classes of
representations [ρ] such that the pair (ρ(a), ρ(b)) admits the same decomposition as in (1) where the
half-turns are replaced by Lagrangian involutions form a closed subset of dimension 7 (see [Wil05]).
If we add the condition that the commutator be parabolic, the dimension drops to 6. The main result
of this work is the following theorem:

Theorem 1. There exists a three dimensional subset F of R homeomorphic to T × [0, π
2 [ having the

following properties:

1. T is an embedding of T(1,1) into R.

2. If ρ ∈ E = T × [0, π
4 ], ρ (Γ1) is discrete and faithful, and contains an index two subgroup which

is an H2
C punctured torus group.

3. E is maximal in the following sense: for any π
4 < α < π

2 , there is a point m ∈ T such that any
group represented by (m,α) contains an elliptic element.

α has a geometric meaning, as explained in section 6 .

We start with a description of the Teichmüller space of the once punctured torus. This space
has been studied intensively as the simplest non-trivial Teichmüller space of a non-compact Riemann
surface of finite volume. Our description is based on the normalization of the parabolic cycle instead
of the fixed points of the generators. The coordinates on R, introduced in section 5, will follow along
the same lines.
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After a quick review of the basic properties of the complex hyperbolic plane in section 3, we study
the Lagrangian planes (also called R-planes) in section 4. We define the angle between two Lagrangian
subspaces of H2

C in section 4.3. The parameter α of theorem 1 is the measure of the angle between two
Lagrangian planes. In 4.4, we describe a special kind of R-sphere (i.e. a sphere foliated by Lagrangian
planes). These R-spheres are invariant under inversion in their leaves (see section 4.4, and [Sch05]).

In section 5, we deal with I. If ρ ∈ R, the fixed point of ρ(γ) gives rise to a cycle Cρ:

p2
ρ(i1)−−−→ p3

ρ(i2)−−−→ p1
ρ(i3)−−−→ p2.

R contains those classes of Lagrangian triangle groups such that p1, p2 and p3 are mutually distinct.
We normalize this cycle using Cartan’s angular invariant. From the ideal triangle ∆ having these
vertices one naturally obtains three R-planes, each of which corresponds to an order two symmetry
of ∆. We will refer to this triple as the ”base configuration”, and denote it (P1(A), P2(A), P3(A)),
where A is the Cartan invariant. All the configurations we are interested in are related to this base
configuration by three loxodromic isometries hz1

23, hz2
13 and hz3

12, where hzk
ij is the loxodromic isometry

fixing pi and pj with multiplier zk ∈ C (see (5) in section 3.4). Our coordinates on R will be the three
complex multipliers (z1, z2, z3) of the loxodromic isometries, and A, the angular invariant of the cycle.

In section 6, in which we focus on II, we prove Theorem 1. To that end, we make use of the R-balls
described in section 4.4. We describe a one parameter family of domains Fα (0 < α < π/4), bounded
by three R-balls, and having the property that for any m ∈ T , Fα is a fundamental domain for the
group (m,α) ∈ T × [0, π/4]. Each Fα is used to show discreteness and faithfulness of a two-parameter
family of groups. The main technical point is to show that the R-balls bounding Fα are disjoint as
long as α ∈ [0, π/4].

To put our work in perspective, note that a complete classification of the punctured torus groups
of PSL(2,C) has been established by Minsky in [Min99]. It is still out of reach in the case of PU(2,1).

I would like to thank Elisha Falbel for his constant support. Martin Deraux has kindly accepted
to read this work, I would like to thank him warmly for the many suggestions he made. I would also
like to thank Masseye Gaye, Julien Paupert and Florent Schaffhauser for useful discussions, and the
referee for his suggestions. All the pictures were realised using the computer program Maple.

2 Punctured torus and triangle groups in PSL(2,R)

2.1 The Teichmüller space of the once punctured torus.

We start with a classical proposition describing the subgroups of PSL(2,R) uniformizing a punctured
torus.

Proposition 1. Let A and B be two elements of PSL(2,R), and call G the group generated by A and
B. Assume that the following conditions hold:

1. A and B are hyperbolic, and their axes meet in precisely one point inside inside H1
C

2. the commutator [A,B] is parabolic

Then G is Fuchsian and the Riemann surface H1
C/G is a once punctured torus. Conversely, any once

punctured torus is uniformized by a group having these properties.

3



q3

q2

q1

axis(A)

axis(B)

axis(AB−1)

Figure 1: Decomposition of A and B.

For a complete proof of this proposition, see [Kee71].

Definition 1. A punctured torus group is a representation ρ : F2 −→ PSL(2,R) such that ρ(a) and
ρ(b) satisfy conditions 1 and 2 of proposition 1.

Recall that the Teichmüller space of the once punctured torus may be seen as the set

{ρ : Γ2 −→ PSL(2,R)} / ̂PSL(2,R),

where ρ is a discrete, faithful and type-preserving representation of Γ2 into PSL(2,R) and ̂PSL(2,R)
acts by conjugation. Note that in this case, type preserving means that the only non-hyperbolic
elements of ρ(Γ2) are parabolic and are conjugate to the powers of ρ([a, b]). Proposition 1 shows
that the Teichmüller space of the once punctured torus is the set of ̂PSL(2,R)-conjugacy classes of
punctured torus groups. Call A, B and C the images of a, b and c by ρ, and choose lifts Ã, B̃ of A and
B to SL(2,R) such that x = Tr(Ã) > 2, y = Tr(B̃) > 2 and z = Tr(ÃB̃) > 2. Then, the Teichmüller
space of the once punctured torus is parametrized by

x2 + y2 + z2 = xyz x > 2, y > 2, z > 2. (2)

See [Kee71] for details. This relation was already known in [FK26]. See [Wol83] for a description of
the associated moduli space, and a description of its Kähler structure.
The decomposition of the generators as products of involutions is a standard tool in the study of the
two-generator subgroups of PSL(2,R)(see [Gil95]). If G is a punctured torus group, it is possible to
find a group dectriG? generated by three half-turns such that G is of index two in G?, which is easier
to analyze. This decomposition is provided by the following classical lemma. (See figure 1).

Lemma 1. Let A and B be two elements of PSL(2,R) satisfying condition (1) of proposition 1. There
exists a unique triple of half-turns (E1, E2, E3) such that A = E1 ◦E2 and B = E3 ◦ E2.

Note that [A,B] = (E1E2E3)
2.

2.2 Classical triangle groups

Recall that ̂PSL(2,R) is the group generated by PSL(2,R) and the reflections in geodesics. Recall that
Γ1 is the group having presentation 〈i1, i2, i3 | i2k = 1〉. Γ2 is embedded as an index two subgroup of
Γ1.

4



Definition 2. A triangle group is a representation ρ : Γ1 −→ PSL(2,R).

In this section, we only consider triangle groups with holomorphic generators, that is, generated
by three half-turns. Such a triangle group is determined by the fixed point of each of the ρ(ik)’s. A
systematic analysis of the discreteness of groups generated by three half-turns in H1

C may be found in
[Bea83] or [Gil95].

Definition 3. Define

T =
{

ρ triangle group
the ρ(ik)’s are distinct half-turns
ρ(γ) is parabolic.

}
/ ̂PSL(2,R)

We now describe a special family of triangle groups that yields coordinates on T . Pick the following
three points in the upper-half plane:

p1 = 1, p3 = −1 and p2 = ∞.

Call γij the geodesic joining pi to pj (i 6= j) and ∆ the ideal triangle p1p2p3. Orient the boundary of
∆ as follows: γ12 toward p2, γ32 toward p3, and γ13 toward p1. We shall use the following notations:

• For distinct i, j, k let sk be the orthogonal projection of pk onto γij (s2 = i, s1 = −1 + 2i and
s3 = 1 + 2i).

• For r > 0 and r 6= 1, let hr
ij be the hyperbolic element having fixed points pi and pj and

multiplier r. Assume moreover that r > 1 corresponds to the case where hr
ij translates in the

positive direction along γij . If r = 1, define h1
ij = Id.

• Define qr
k = hr

ij(sk) for distinct i, j, k and r > 0, and Er
k the half-turn fixing qr

k.

The three points s1, s2 and s3 will play the role of a base configuration. These objects are depicted
on figure 2 in the unit disk model of H1

C.

Definition 4. To any triple (r1, r2, r3) of positive numbers, associate the triangle group T (r1, r2, r3)
defined by ρ(ik) = Erk

k (k = 1, 2, 3).

The three half-turns Er1
1 , Er2

2 and Er3
2 are distinct. The following lemma gives a necessary and

sufficient condition for T (r1, r2, r3) to be a representative of a point of T .

Lemma 2. Given a triple (r1, r2, r3) of positive numbers, the isometry (Er1
1 Er2

2 Er3
3 )2 is parabolic if

and only if r1r2r3 = 1.

Proof. For each m = u + iv (u ∈ R and v > 0) in the upper half-plane we write Em for the half-turn
fixing m. It admits as a lift to SL(2,R) the matrix

du,v =
[−u/v

(
u2 + v2

)
/v

−1/v u/v

]
.

In turn, we obtain matrices for the lifts of the half-turns Er
k :

qr1
1 = −1 +

2i

r2
1

, qr3
3 = 1 + 2ir2

3, and qr2
2 =

−1 + r4
2

1 + r4
2

+ i
2r2

2

r4
2 + 1

.

One verifies directly that (Er1
1 ◦Er2

2 ◦ Er3
3 )2 has matrix form

[
(r1r2r3)−4 τ

0 (r1r2r3)4

]
with τ = −

(
2 + (r1r2r3)

4 + (r1r2r3)
−4 + 2r4

2r
4
3 + 2r4

3 +
2
r4
1

+
2

r4
1r

4
2

)
.

Since τ is never zero, (Er1
1 ◦ Er2

2 ◦ Er3
3 )2 is parabolic precisely when the two diagonal entries of the

above matrix are equal to 1. The result follows.
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Figure 2: ∆, and T (r1, r2, r3) for r1 < 1, r2 < 1 and r3 > 1.

Remark 1. It would have been simpler to compute Er1
1 Er2

2 Er3
3 instead of its square. However, in the

case of PU(2, 1) the half-turns Ek will be replaced by anti-holomorphic involutions Ik, and the product
I1I2I3 will be anti-holomorphic, so that its square is more convenient.

Proposition 2. Any point of T is represented by a unique triple (Er1
1 , Er2

2 , Er3
3 ) with r1, r2, r3 > 0

and r1r2r3 = 1.

Proof. Let E1, E2 and E3 be three distinct half-turns. (E1E2E3)
2 is parabolic if and only if E1E2E3

is. Hence, if 〈E1, E2, E3〉 is a representative of a point of T , pick m2 the fixed point of E1E2E3. m2

gives rise to a cycle of length 3 :
m2

E3−→ m1
E2−→ m3

E1−→ m2.

This cycle is non-degenerate: if for instance, we had m1 = m2, then E1, E2 and E3 would stabilize
the geodesic m1m3, and the group generated by E1E2 and E3E2 would be Abelian, so we would have
(E1E2E3)

2 = 1. Now, conjugating the Ek’s by the unique element g of ̂PSL(2,R) such that g(mi) = pi

clearly doesn’t change the point of T . This shows the result.

Lemma 1 shows any punctured torus group is contained with index two a triangle group, wich by
the above proposition is conjugate to a unique T (r1, r2, r3) satisfying r1r2r3 = 1. Conversely, if ρ is a
point of T , the subgroup generated by Er1

1 ◦Er2
2 and Er3

3 ◦Er2
2 is a punctured torus when r1r2r3 = 1, as

showed by the classical Poincaré polygon theorem in PSL(2,R). As a consequence, given a punctured
torus group G, there exists unique r1 > 0 and r3 > 0 such that G is conjugate to the index two
subgroup of 〈Er1

1 , E
(r1r3)−1

2 , Er3
3 〉 generated by E1

r1
◦ E

(r1r3)−1

2 and Er3
3 ◦ E

(r1r3)−1

2 . Hence, (r1, r3) is a
set of coordinates on the Teichmüller space of the once punctured torus.

The (x, y, z)-coordinates of section 2.1 (relation (2)) describe a punctured torus using the length
of the geodesics representing generators of the fundamental group. This is done through the relation:
cosh2 (l/2) = Tr(g)2/4, where l is the translation length, and g a lift to SL(2,R) of the associated
isometry. The symmetric punctured torus is the one with coordinates x = y = z = 3. It is of index 2
in the element of T having coordinates (1, 1, 1).

3 The complex hyperbolic plane and its isometries

It is convenient to switch between two sets of coordinates for H2
C, analogous to the Poincaré disk and

the upper half-plane for H1
C. We describe first a set of coordinates for those two models. For more
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details, see [Gol99].
We denote by P the projectivization map C3 \ {0} −→ CP 2.

3.1 The ball model.

Define V the set of vectors of C3 having negative norm with respect to the Hermitian form
(X,Y ) = X̄T JY , where ·T is the transposition and

J =




1 0 0
0 1 0
0 0 −1


 .

In this model,

P(V ) = H2
C =

{
(w1, w2) ∈ C2

∣∣|w1|2+|w2|2< 1
}

.

3.2 The Siegel model.

It is obtained in the same way as the previous model, this time using the form given by

J0 =




0 0 1
0 1 0
1 0 0


 .

In this model,

H2
C =

{
(z1, z2) ∈ C2

∣∣ 2Re(z1) < −|z2|2
}

.

We will use horospherical coordinates (z, t, u), definied by:

z2 = z
√

2 ∈ C, t = Im(z1) ∈ R, 2u = −|z2|2−2Re(z1) ∈ R+.

In this model, a copy of H2
R corresponds to the set of points having horospherical coordinates (x, 0, u)

with x ∈ R and u ∈ R+. It is an example of an R-plane (see section 4). A lift to C3 of a point of H2
C

is given in horospherical coordinates by

(z, t, u) −→


−|z|2−u + it√

2z
1


 (3)

The boundary of H2
C is the set {u = 0}. It is equipped with a Heisenberg group structure, with

product
[z, t].[z′, t′] = [z + z′, t + t′ + 2Im(zz̄′)].

Note that the Heisenberg translations extend to isometries of H2
C (see section 3.4).

3.3 The Cayley transform.

The Cayley transform exchanges biholomorphically the above two models. It is the collineation c
associated to the linear automorphism of C3 with matrix:

c̃ =
1√
2




1 0 1
0

√
2 0

1 0 −1



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c̃ conjugates J to J0, and satisfies c̃2 = Id. In coordinates:

c : (w1, w2) −→ (z1, z2) =
(

w1 + 1
w1 − 1

,
√

2
w2

w1 − 1

)

We denote by π the restriction of c to the boundary of the ball which is the stereographic projection
from S3 onto the Heisenberg group :

π(w1, w2) =
[

w2

w1 − 1
;
−2Im(w1)
|w1 − 1|2

]
and π−1([z, t]) =

(−|z|2+it + 1
−|z|2+it− 1

,
2z

−|z|2+it− 1

)
.

3.4 Automorphisms of H2
C.

Definition 5. Let f be the polynomial

f(z) = |z|4 − 8Re(z3) + 18|z|2 − 27.

f provides a trace criterion for matrices of SU(2, 1) representing automorphisms of H2
C:

Lemma 3. Let M be in SU(2, 1), let τ be its trace, and A the isometry associated to M . Then,

· If f (τ) < 0, A is regular elliptic.

· If f (τ) > 0, A is loxodromic.

· If f (τ) = 0, then A is either parabolic or special elliptic.

By special elliptic, we mean an elliptic element whose lifts have repeated eigenvalues. See chapter
6 of [Gol99] for detailed statements and proofs.

Remark 2. If x, y ∈ R,

f(x + iy) = y4 + y2
(
x + 6− 3

√
3
)(

x + 6 + 3
√

2
)

+ (x + 1) (x− 3)3 .

Thus, as a consequence of Lemma 3, we see that if Re(Tr(M)) > 3, A is loxodromic.

The following special types of isometries will be useful later. They take a particularly simple form
in Heisenberg coordinates.

• The Heisenberg (left) translation by [z, t] admits the lift to SU(2, 1):



1 −√2z̄ −|z|2 + it

0 1
√

2z
0 0 1


 (4)

It is a parabolic element fixing ∞. Heisenberg translations and their conjugates are known as
“pure-parabolic” isometries.

• The Heisenberg dilation by reiθ : [z, t] 7−→ [reiθz, r2t] (r > 0) admits the lift to U(2, 1) given by



r 0 0
0 eiθ 0
0 0 1/r


 . (5)

It is a loxodromic element fixing [0, 0] and ∞ if r 6= 1, and a complex reflection if r = 1. Any
loxodromic element h of PU(2,1) is conjugate in PU(2,1) to a unique Heisenberg dilation by reiθ

with r > 1 and θ ∈ [0, π]. We will refer to the number reiθ as the complex multiplier of h.
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4 R-planes.

4.1 Definition.

We call R-planes the totally real totally geodesic subspaces of H2
C. R-planes are Lagrangian subman-

ifolds of H2
C, and we might sometimes refer to them as Lagrangian planes (or simply Lagrangians).

Every Lagrangian P is the fixed point set of a unique anti-holomorphic involution of H2
C, called inver-

sion in P . The intersection of a Lagrangian plane with ∂H2
C, called an R-circle, is homeomorphic to

a circle (see [Gol99]). Each R-circle bounds one and only one R-plane, and we shall call inversion in
an R-circle the action of the inversion in the corresponding R-plane induced on the boundary.

Definition 6. The R-plane H2
R is the set of points with real coordinates in the ball model of H2

C. We
call P0 the R-plane P0 =

{
(ix1, ix2) ∈ H2

C, xi ∈ R
}

= iH2
R. Let R0 be the R-circle associated to P0.

All R-planes are images of H2
R under PU(2, 1). For the next two definitions, we will only make use

of the Siegel model of H2
C.

Definition 7. Let R be an R-circle, and IR the associated inversion. the pointIR(∞) is called the
center of R.

Definition 8. Let R be a finite R-circle (that is, not containing ∞). There exists a unique parabolic
element T fixing ∞, and a unique Heisenberg dilation,

d : [z, t] −→ [reiθz, r2t]

such that T (R) = d(R0). The radius of R is defined to be r2e2iθ (see [Gol99]).

Remark that via stereographic projection, ∂H2
R is mapped to the x-axis of the Heisenberg group,

and that R0 has center [0, 0] and radius 1. For this reason R0 is sometimes called the standard R-circle.

4.2 Inversion in an R-plane.

We first describe the action of the inversion in the standard R-circle R0.

Definition 9. Let P be an R-plane, and IP the associated inversion. We will say that M ∈ U(2,1) is
a matrix for IP if for any z ∈ H2

C and any lift z̃ of z,

P
(
M.z̃

)
= IP (z) . (6)

(Recall that P is the projection C3 \ {0} → CP 2).

Remark 3. Given any h ∈ P̂U(2,1), by ”a matrix for h”, we mean either any lift of h to U(2,1) (if h
is holomorphic), or any matrix that satisfies relation (6) (if h is antiholomorphic).

In the Siegel model, the inversion in the standard R-circle R0 has matrix J0, and its action in
vectorial homogeneous coordinates is:




z1

z2

1


 7−→ J0




z̄1

z̄2

1


 .

Note that this gives J0 a double interpretation: it is both the matrix of the bilinear form defining H2
C

and a matrix for the inversion in P0.
If h is an isometry with matrix M ∈ PU(2, 1), then IR0 ◦ h has matrix J0M . This is used to show

the following lemma together with the matrices for Heisenberg translations (4) given in section 3.4.
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Lemma 4. Let R be the R-circle with center [z, t] and radius r2e2iθ. The inversion IR in R has matrix

JR =




a r2ac− b r2a2 + b2e−2iθ + r2

c r2c2 + e2iθ r2ac− b
1
r2 c a




where a = −|z|2+it
r2 , b = z̄e2iθ

√
2 and c = z

√
2

r2 .

Since r2 =
|b|
|c| and e2iθ =

b|b|
c̄|c| , JR actually depends only on a, b and c. Note that det (JR) = −e2iθ,

thus JR ∈ U(2,1), and, in order to work with traces, we will normalize JR to SU(2,1) by multiplying
it by −e−

2iθ
3 . The matrix relation corresponding to the fact that IR is a anti-holomorphic involution

is JRJR = Id.
We will need the following lemma from [FZ99]:

Lemma 5. Let P1 and P2 be two R-planes. Then,

1. IP1 ◦ IP2 is parabolic if and only if P1 and P2 intersect in one boundary point.

2. IP1 ◦ IP2 is loxodromic if and only if P1 and P2 are disjoint.

3. IP1 ◦ IP2 is regular elliptic if and only if P1 and P2 intersect in precisely one point inside H2
C.

Remark 4. 1. Note that if two Lagrangian inversions have matrices M1 and M2, then their product
has matrix M1M2.

2. In order to show that two R-planes are disjoint, we thus have to verify that the product of the
two inversions is loxodromic.

4.3 Angle between two intersecting R-planes.

4.3.1 Definitions.

Definition 10. Two pairs (L1, L2) and (L′1, L
′
2) of intersecting R-planes are said to have the same

angle if and only if there exits an element g of PU(2, 1) such that

L′i = g(Li), i = 1, 2.

To measure the angle between two R-planes, we use the following simple lemma:

Lemma 6. Consider two R-planes L1 and L2, intersecting at one point p inside H2
C. There exists an el-

ement g ∈ PU(2,1) such that g (P1) = H2
R = {(x, y) , x, y ∈ R}, and g (P2) =

{(
eiα1x, eiα2y

)
, x, y ∈ R}

,
with 0 ≤ α1 ≤ α2 < π.

Definition 11. Given a pair (L1, L2) of intersecting R-planes, the angle between L1 and L2 is denoted
by ̂(L1, L2). Define the measure of ̂(L1, L2) to be the pair (α1, α2) provided by lemma 6.

Remark 5. According to Lemma 6, the elliptic element f = IL2 ◦ IL1 has two stable complex lines, C1

and C2, and f acts on C1 (resp. C2) as a rotation through α1 (resp. α2). Hence, we will refer to α1

(resp. α2) as the angle between L1 and L2 “read in C1” (resp. “read in C2”). This terminology is
justified by the fact that both IP1 and IP2 stabilize C1 and C2, and thus, that both L1 and L2 meet
Ci along geodesics γi

1 and γi
2. The angle between γi

1 and γi
2 has measure αi. See also [FZ99].
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m

L1 γ1
1 = C1 ∩ L1

γ2
1 = C2 ∩ L1

Intersection of C1 and C2 with L1.

γi
1 = Ci ∩ L1

γi
2 = Ci ∩ L2

m αi

Intersection of L1 and L2 with Ci

Figure 3: Angle between L1 and L2 and stable complex lines of I1 ◦ I2.

front view side view

Figure 4: Torus of R-planes having angle
(π

4
,
π

2

)
with H2

R through the origin.

Lemma 6 together with the discussion in remark 5 shows that there is a circle of R-planes through
a point m ∈ L1 having a given angle with L1. When α1 = α2, the circle collapses to a point, since in
that case the product of the inversions commutes with all the elements of the stabilizer of m.

Example 1. Assume L1 = H2
R and m = (0, 0). The set of R-circles corresponding to R-planes having

angles
(π

4
,
π

2

)
is depicted figure 4. It is a torus foliated by linked R-circles (see lemma 8).

Example 2. The standard R-circle R0 corresponds to the R-plane iH2
R through (0, 0), using ball-model

coordinates. It has angle (π/2, π/2) with H2
R.

Example 3. Consider an R-plane P intersecting H2
R. ∂P is centered at the point p having Heisenberg

coordinates [x, 0] with x ∈ R if and only if IP (∞) = p. In this case, IP stabilizes the complex line C
spanned by ∞ and p, and its angle with H2

R read in C is π/2.
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4.4 Intersection of R-planes.

Lemma 7. Let P and P ′ be two R-planes. Call IP and IP ′ the respective inversions. If P ∩ P ′ = ∅,
then P ∩ IP ′ (P ) = ∅
Proof. Assume X ∈ P ∩IP ′ (P ) : X = IP ′(Y ), with Y ∈ P . If X = Y , then X ∈ P ′, which contradicts
the assumption. If not, the geodesic γ spanned by X and Y is stable under IP ′ , thus contains a fixed
point p for IP ′ . X, Y ∈ P , so γ is drawn in P , because P is totally geodesic. Hence p ∈ P ∩ P ′. This
is a contradiction.

Lemma 8 compares the different R-planes having the same angle with a given R-plane at a given
point.

Lemma 8. Consider three R-planes P , P1 and P2, all containing a point m, and so that

(̂P, P1) = (̂P, P2) = (α, β) with α 6= β.

Then P1
⋂

P2 = {m} if P1 6= P2.

The proof follows from the normalization in lemma 6.

Lemma 9. Consider two intersecting R-planes P and Q, having angle (α, β). Then IP stabilize Q if
and only if we are in one of the following cases :

1. α = β = 0. In this case P = Q.

2. α = 0 and β = π
2 . In this case IP |Q is the inversion in the geodesic P ∩Q.

3. α = β = π
2 . In this case IP |Q is a half turn fixing the point P ∩Q.

Proof. We use ball coordinates. We may normalize so that Q = H2
R, and P

⋂
Q 3 (0, 0). Then P is

parametrized by
P =

{(
eiαx1, e

iβx2

)
, x2

1 + x2
2 < 1

}
,

and IP is
(w1, w2) −→

(
w̄1e

2iα, w̄2e
2iβ

)
.

The result follows.

Lemma 10. Consider three R-planes Pi, i = 1, 2, 3, so that the following holds :

1. Pi ∩ P1 = {mi} for i = 2, 3, and m2 6= m3.

2. I2 ◦ I1 and I3 ◦ I1 both stabilize the complex line C containing m2 and m3.

3. ̂(P2, P1) =
(

π
2 , β

)
= ̂(P3, P1), and the π

2 angle is read in C.

Then P2 and P3 are disjoint.

Proof. If β = π/2, the result is clear because P2 and P3 are distinct fibers of the orthogonal projection
onto P1. If β 6= π/2, call R the complex reflection having mirror C and angle π/2 − β. P2 and P3

have angle (π/2, π/2) with P ′
1 = R (P1). The result follows.

Definition 12. An R-ball is a 3-dimensional ball foliated by R-planes.

See also [Sch01].
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Remark 6. Lemma 10 is the main tool to build a special type of R-balls, used in section 6 to describe
fundamental domains for the groups we are interested in. This is done in the following way:
Let γ be a geodesic, and C the associated complex line. Let ms (s > 0) a parametrization of γ, and
P some R-plane containing γ. For any s call Qs the R-plane through ms having angle (π/2, β) with
P , and such that IQs ◦ IP stabilizes C. Then S =

⋃
s>0 Qs is an R-ball.

Definition 13. We call the R-ball constructed in remark 6 the R-ball over γ with angle β with respect
to P , and we denote it by Sβ

γ,P .

The next lemma is one of the main tools in the proof of the theorem (see section 6).

Lemma 11. Let P be a Lagrangian, γ ⊂ P a geodesic. For any β, the R-ball Sβ
γ,P is invariant under

inversion in any of its leaves.

Proof. The proof of Lemma 10 shows that any Sβ
γ,P is the inverse image of γ under the orthogonal

projection onto a Lagrangian meeting P along γ. The result follows.

Remark 7. R-balls with constant angle are very similar to bisectors. The geodesic γ is the analogue
of the real spine, and P the analogue of the complex spine. It could be called a “Lagrangian spine”.
Contrary to the case of bisectors, γ does not determine uniquely P . Note that Sβ

γ,P contain only one

complex line, which is the one spanned by γ. The boundaries ∂Sβ
γ,P are so-called R-spheres, analogues

of spinal spheres for bisectors. Some examples are depicted on figures 5, 6 and 7.

5 Lagrangian triangle groups.

5.1 Introduction.

We now wish to generalize the approach of section 2 to the case of H2
C. A priori, the simplest way to

do so would be to study subgroups of PU(2, 1) generated by three holomorphic involutions, but this
would impose a restriction on the conjugacy class of the generators:

Lemma 12. If E1, E2 ∈ PU(2, 1) are two holomorphic involutions, then any lift of E1◦E2 to SU(2, 1)
has real trace.

On the other hand, if I1 and I2 are Lagrangian inversions, I1 ◦ I2 may be in any conjugacy class
of PU(2, 1). We will thus define an analogue of T , (the set of classical triangle groups described in
section 2) in the case of PU(2,1), using Lagrangian inversions.

5.2 Description of R.

Recall that Γ1 = 〈i1, i2, i3 | i21 = i22 = i23 = 1〉, γ = (i1i2i3)
2 and Γ2 is the fundamental group of the

once punctured torus, and F2 is the free group on two generators: 〈a, b〉.

Definition 14. 1. A Lagrangian triangle group is a representation ρ : Γ1 −→ ̂PU(2, 1) such that
ρ(ik) is a Lagrangian inversion for k = 1, 2, 3.

2. An H2
C-punctured torus group is a discrete, faithful and type-preserving representation of Γ2 into

PU(2,1).

Remark 8. A Lagrangian triangle group is fully defined by a triple of R-planes: given such a triple,
τ = (P1, P2, P3), ρ is the unique representation such that ρ(ik) = Ik, the inversion in Pk. Thus, we will
often refer to “the Lagrangian triangle group 〈I1, I2, I3〉”, where the Ik’s are Lagrangian inversions.
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We will be specially interested in the following set :

Definition 15. Let R be the set

R =



 Lagrangian triangle group ρ

the ρ(ik)’s are distinct
ρ(γ) is parabolic

ρ verifies condition (C)



/ ̂PU(2, 1).

(C) is a condition of non-degeneracy which is stated in remark 10 and definition 16 below.
There is a natural map from the set of Lagrangian triangle groups into Hom(F2, PU(2,1)) given

by:

H : ρ 7→ ρh =
{

a 7→ ρ(i1i2)
b 7→ ρ(i3i2)

}
.

ρh(F2) is the index 2 subgroup of ρ(Γ1) containing the holomorphic elements. We will call it the
holomorphic subgroup of ρ(Γ1).

Lemma 13. Let ρ be a Lagrangian triangle group. For any choice of matrices for the ρ(ik)’s, the
associated matrix for ρ(γ) is in SU(2, 1) and has real trace.

Proof. Let Jk ∈ U(2,1) be a matrix for Ik = ρ(ik). The action of Ik may be written in coordinates by
Ik(z) = P (Jk

¯̃z). Thus, ρ(γ) has matrix M = J1J̄2J3J̄1J2J̄3 (see remark 4) . Clearly, det(M) = 1, and
Tr(M) = Tr(M).

Proposition 3. Consider a Lagrangian triangle group ρ, with ρ ∈ R. Then, ρ(γ) is pure parabolic
(that is, conjugate to a Heisenberg translation).

Proof. According to Lemma 13, any lift of ρ(γ) to SU(2, 1) has real trace. Since it is parabolic, ρ(γ)
is either pure parabolic (Trρ(γ) = 3) or screw parabolic with rotation of angle π (Trρ(γ) = −1). Now,
ρ(γ) = h ◦ h, where h is the anti-holomorphic isometry having matrix form N = I1Ī2I3. h has at
least one fixed point in the closure of H2

C (by Brouwer’s theorem), and any point fixed by h is fixed
by ρ(γ). Hence, h has exactly one fixed point on the boundary of H2

C, which we may assume to be ∞
(using the Siegel model). Normalized in this way, the matrix N is upper triangular. NN̄ is a matrix
for ρ(γ). It is clearly upper triangular with positive real diagonal entries.

Remark 9. As a consequence, an H2
C punctured torus group generated by A and B such that [A,B]

is not pure parabolic can never be decomposed using Lagrangian inversions in the form A = I1 ◦ I2

and B = I3 ◦ I2. See [FP03] for an example of non Lagrangian decomposable punctured torus group
(contained with index 6 in a representation of the modular group). See [Wil05] for a necessary and
sufficient condition for decomposability.

Remark 10. 1. Let ρ be a Lagrangian triangle group such that ρ(i1i2i3) has a fixed point in ∂H2
C.

Calling this fixed point m2, we obtain an ordered triple (m2,m1,m3) of points Cρ contained in
∂H2

C, satisfying :

m2
ρ(i3)−−−→ m1

ρ(i2)−−−→ m3
ρ(i1)−−−→ m2. (7)

The fixed point argument in the proof of proposition 3 shows that this is the case for any ρ ∈ R.
This will be an important point to set coordinates on R.

2. We are only interested in the case where ] (Cρ) = 3 i.e. where Cρ is non-degenerate. Note that
when it is degenerate, it is easily shown that either ρ(Γ1) is contained in a maximal parabolic
subgroup of PU(2,1), or contains a complex reflection.

As a consequence of part 2. of remark 10, we set the following definition :
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Definition 16. Let ρ be a Lagrangian triangle group such that ρ(γ) is parabolic. We say that ρ
verifies condition (C) if ](Cρ) = 3.

If two Lagrangian triangle groups ρ1 and ρ2 are conjugate in PU(2, 1), say ρ2 = gρ1g
−1, then

g (Cρ1) = Cρ2 . Thus, in order to normalize the elements of R, we need some information about the
triples of points of ∂H2

C. Given a point q of ∂H2
C denote by q̃ the lift of q to C3 provided by (3) (see

section 3.2). Recall the

Definition 17. Given three points x1, x2 and x3 in ∂H2
C, the Cartan invariant of the xk’s is

A(x1, x2, x3) = −arg (〈x̃1, x̃2〉〈x̃2, x̃3〉〈x̃3, x̃1〉)

Recall that A = 0 (resp. ±π
2 ) if and only if the three points lie in an R-plane (resp. a complex

line).

Proposition 4. Let (x1, x2, x3) and (y1, y2, y3) be two triples of points of ∂H2
C. There exists g ∈

PU(2, 1) such that g(xi) = yi if and only if A(x1, x2, x3) = A(y1, y2, y3). This g is unique unless the
three points lie in a complex line.

See [Gol99] (theorems 7.1.1 and 7.1.2) for a proof of this proposition and a geometric interpretation
of the Cartan invariant.

Lemma 14. Consider a triple of pairwise distinct points of ∂H2
C, (m1,m2,m3), not in a common

complex geodesic. Then :

1. There exists a unique Lagrangian plane L1, with inversion IL1, such that

IL1(m2) = m3, IL1(m3) = m2 and IL1(m1) = m1

(see [Gol99] lemma 7.1.7).

2. Given any Lagrangian plane l1 such that the inversion in l1 exchanges m2 and m3, there exists an
isometry h1, which is either loxodromic or a complex reflection, fixing m2 and m3 and satisfying
h1 (L1) = l1. Moreover, h1 is unique up to an order 2 reflection in the complex geodesic generated
by m2 and m3.

Proof. The proof of 1 . is in [Gol99]. Let us prove 2 . Call h the isometry Il1 ◦ IL1 . h fixes m2 and m3,
thus is either loxodromic or a complex reflection. Write reiα for its complex multiplier (note that h is
a complex reflection if and only if r = 1). There are two isometries having the required property: h1

(resp. h′1), fixing m2 and m3 and having multiplier
√

reiα (resp.
√

rei(α+π)). The result follows.

The following corollary is a consequence of the first part of Lemma 14

Corollary 1. Given a triple (m1,m2,m3) ∈
(
∂H2

C
)3, there exists an elliptic element E of order three

such that E(m1) = m2 and E(m2) = m3.

Proof. Apply Lemma 14 to obtain two Lagrangian inversions I1 (resp. I2) fixing m1 (resp. m2) and
exchanging m2 and m3 (resp. m1 and m3). Then E = I1 ◦ I2 satisfies the above property. See also
[Gol99].
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5.3 Coordinates on R

In this section, we transpose the results of section 2.2 to the setting of H2
C. We first describe a family

of normalized Lagrangian triangle groups having a cycle of length 3. We then provide necessary and
sufficient conditions for an element of this family to be in R, and deduce a natural set of coordinates
on R. In section 2.2, the three points s1, s2 and s3 played the role of a base configuration, they are
replaced here by the three R-planes provided by Lemma 14.

From now on, we will call p1, p2 and p3 the boundary points having Heisenberg coordinates:

p1 = [0, 0], p2 = ∞ and p3(A) = [1, tanA].

These three points have lifts to C2,1:

p̃1 =




0
0
1


 , p̃2 =




1
0
0


 and ˜p3(A) =



−1 + i tanA√

2
1




and verify A (p1, p2, p3(A)) = A.
To simplify notation, we will replace p3(A) by p3 when this causes no ambiguity.
Applying Lemma 14, we obtain three Lagrangian inversions I1(A), I2(A), and I3(A) such that Ik(A)
fixes pk and exchanges the two other points. Call P1(A), P2(A) and P3(A) the associated R-planes.
This is the base configuration.

These three inversions have respective matrices :

J1(A) =



−e−iA 0 0√
2 cosA eiA 0
cosA

√
2 cosA −e−iA


 J2(A) =




1
√

2 −1 + i tanA
0 −1

√
2

0 0 1




J3(A) =




0 0 1/ cosA
0 −eiA 0

cosA 0 0




We call ∆ the ideal triangle p1p2p3, and γij the geodesic connecting pi to pj , with the orientation
described in section 2: γ12 toward p2, γ32 toward p3, and γ13 toward p1. We shall also use the following
notation :

• If |z| 6= 1, hz,A
ij is the loxodromic element fixing pi and pj , having multiplier z and such that

hz,A
ij translates along γij in the positive direction when |z| > 1. If |z| = 1, hz,A

ij is the complex
reflection fixing pi and pj having complex multiplier z.

• Call P z,A
k the R-plane hz,A

ij (Pk), for distinct i, j, k, and Iz,A
k the inversion associated to P z,A

k .

Writing z = reiθ and w = eiA cosA, the translations hz,A
ij admit the following lifts to U(2, 1) :

hz,A
32 ∼




r−1
√

2r−1 (1− z) 2eiθ − (rw̄)−1 − rw−1

0 eiθ
√

2r
(
1− z̄−1

)
0 0 r




hz,A
31 ∼




r−1 0 0
−wr−1 (1− z)

√
2 eiθ 0

2eiθ cos2A− rw̄ − r−1w −rw̄
(
1− z̄−1

)
r



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hz,A
12 ∼




r 0 0
0 eiθ 0
0 0 1/r




Finally, matrices for the inversions Iz,A
k are obtained by applying the relation:

Jz,A
i = hz,A

jk Ji(A)hz,A
jk

−1
(8)

Definition 18. For any (z1, z2, z3,A) ∈ C3 × ]− π

2
,
π

2
[, call R (z1, z2, z3,A) the Lagrangian triangle

group defined by
ρ(ik) = Izk,A

k for k = 1, 2, 3.

We now compute ρ(γ), in order to obtain conditions for a point of R (z1, z2, z3,A) to be in R.
Writing zk = rke

iθk for k = 1, 2, 3, we obtain for ρ(γ) the matrix



(r1r2r3)
−4 −√2ω1 ω3

0 1
√

2ω̄2

0 0 (r1r2r3)
4




with the notations

ω1 = (z1z̄2z3)
−2 (

1− z̄1
−2 + (z̄1z2)−2

)− (
1− z−2

1 + (z1z̄2)−2
)

ω2 = (r1r2r3)
4 ω1

ω3 = − (r1r2r3)
4 |ω1|2 + i (t + Im(z))

with

t = tanA
((

−1 +
1
r4
1

+
1

r4
1r

4
2

)
− r4

3

(−1 + r4
2 − r4

1r
4
2

))

and
z = +2 (z1z̄2z3)

2 (
1− z̄3

2 + (z2z̄3)2
)

+ 2 (z1z̄2)
−2 (−1 + z2

3 − z̄1
−2

)

+2 (z̄2z3)
2 (

z̄3
2 − 2 + z−2

1

)
+ 4z2

3 − 4z2
3z
−2
1 + 2z−2

1 .

Hence,
Tr(ρ(γ)) = (r1r2r3)

−4 + 1 + (r1r2r3)
4 .

Remark 11. 1. Tr(ρ(γ)) depends neither on the θi’s nor on A. When r1r2r3 6= 1, ρ(γ) is loxodromic,
and its trace fully determines its conjugacy class.

2. When r1r2r3 = 1, the expressions simplify: t vanishes, ω1 and ω2 satisfy:

ω2 = ω1 = −z̄3
2 − z2z3

2 − 1
z2
1z

2
2

− 1 +
1
z2
1

+ (z1z2z3)
−2 .

Thus, when r1r2r3 = 1, ρ(γ) does not depends on A anymore.

As a consequence:

Proposition 5. The ̂PU(2, 1) conjugacy class of R (z1, z2, z3,A) is in R if and only if:

|z1z2z3| = 1 and
(

z3

z1

)(
z̄2
−1 + z̄2

)
+ z1z̄2z3 /∈ R.
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Proof. Let ρ be the representation of Γ1 associated to R (z1, z2, z3,A). For simplicity, denote by Ik

the inversion ρ(ik). By construction, the cycle of ρ(Γ1) is non-degenerate and ρ is in R if and only if
ρ(γ) is parabolic. Thus, the condition |z1z2z3| = 1 is necessary. We still have to ensure that ρ(γ) is
not the identity. Call Mk a matrix form for Ik, and N = M1M2M3 ∈ U(2, 1). Then NN̄ is a matrix
for ρ(γ). As a consequence, ρ(γ) = Id if and only if N−1 = N̄ , that is, if I1 ◦ I2 ◦ I3 is a Lagrangian
inversion. Using the matrices above and the relation |z1z2z3| = 1, one verifies

N−1 − N̄ =




0 c 0
0 0 −c
0 0 0




The parameter c is given by

c = 2i
√

2ei(θ1−θ2+θ3)
(
r2
3 sin (θ1 − θ2 − θ3)− sin (θ1 − θ2 + θ3) + r−2

1 sin (−θ1 − θ2 + θ3)
)

where we have written zk = rke
iθk . The result follows, using the relation r1r2r3 = 1.

Proposition 6. Let [ϕ] be a point of R such that ϕ(Γ1) does not stabilize any complex line. Then,
[ϕ] is represented by a unique ρ : Γ −→ ̂PU(2, 1), defined by

ρ(ik) = Izk,A
k , k = 1, 2, 3,

and satisfying

|z1z2z3| = 1 and
(

z3

z1

)(
z̄2
−1 + z̄2

)
+ z1z̄2z3 /∈ R.

Here, denoting zk = rke
iθk , rk > 0, θk ∈ [0, π[, and A ∈ [0,

π

2
[

Proof. Consider a point of R, and choose a representative ρ of this point. As in section 5.2, consider
the cycle (m1,m2,m3). There exists a unique β ∈ [0, π/2] and a unique g ∈ ̂PU(2, 1) such that

g(m1) = p1, g(m2) = p2, g(m3) = p3(A) and |A (m1,m2,m3) | = β.

Conjugating ρ by g, and applying Lemma 14 and Proposition 5, we obtain the proposition.

Remark 12. (z1, z2, z3,A) is actually a set of coordinates on the set of conjugacy classes of Lagrangian
triangle groups such that ρ(i1i2i3) has at least one fixed point on ∂H2

C.

6 Proof of the theorem.

We first consider representations ρ such that ρ(Γ1) stabilizes an R-plane, which we normalize to be
H2
R. In this case, the cycle Cρ is contained in ∂H2

R. The R-planes fixed by the three Lagrangian
inversions generating ρ(Γ1) are orthogonal to H2

R, and the corresponding Lagrangian triangle groups
are embeddings of the classical triangle groups described in section 2. This step is described in section
6.1.
In section 6.2, we describe a one parameter deformation of all the embedded groups. We next decribe
fundamental domains for these deformed configurations having R-balls with constant angle for their
faces. The main point is to show that these hypersurfaces (called the Sα

i ’s) are disjoint. This is done
in Lemma 15. Last, in section 6.3, we prove the theorem. The main part is to show that the deformed
representations are type-preserving. This is done in section 6.3.2.
To simplify the exposition of the proof, we make the following change of notation: from now on Ir,α

k

will be the inversion Ireiα,0
k . Denote also by Jr,α

k the associated matrix form, and by P r,α
k the associated

R-plane. We will denote by Bc the closure in H2
C ∪ ∂H2

C of a set B.
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6.1 Step 1: Embedding of the classical triangle groups into R.

The third part of Lemma 9 provides a way to embed any triangle group of PSL(2,R) into P̂U(2,1).
This is done in the next proposition.

Proposition 7. Let T = 〈E1, E2, E3〉 be a triangle group of PSL(2,R). There exists a representation
ϕ0 of T into ̂PU(2, 1) having the following properties

1. ϕ0 (T ) is a Lagrangian triangle group. It stabilizes H2
R ⊂ H2

C, and ϕ0 (Ek)|H2
R

is a half-turn, for

k = 1, 2, 3.

2. ϕ0 is discrete, faithful, and type-preserving.

Proof. For i = 1, 2, 3, call qi the fixed point of Ei. Let h be an conformal embedding of H1
C into H2

C with
image H2

R. Call Π the orthogonal projection H2
C −→ H2

R, and define for k = 1, 2, 3, Pk = Π−1 (h(qk)).

Pk is an R-plane having angle
(π

2
,
π

2

)
with H2

R. Let Ik be the Lagrangian inversion in Pk. Define ϕ0

by ϕ0 (Ek) = Ik for k = 1, 2, 3. Then :

1. According to Lemma 9, the first part of the proposition is true.

2. Call d1 and d2 the distance functions on H1
C and H2

C. Since h is conformal, it is clear that for
any g ∈ T and m ∈ H1

C,

h (g.m) = ϕ0 (g) .h(m). (9)

Hence , if ϕ0 (g) = Id, d2 (ϕ0(g) · h(m), h(m)) = 0 = d1 (g ·m,m), thus ϕ0 is faithful. The same
kind of argument shows discreteness and preservation of types. This shows the second part.

Corollary 2. T is naturally embedded in R.

Proof. The normalization from sections 2 and 5, together with the previous proposition shows that
the mapping

Ψ : T −→ R

T (r1, r2, r3) 7−→ R
(
r1e

i π
2 , r2e

i π
2 , r3e

i π
2 , 0

)

is an embedding. From now on, we will thus identify T with Ψ (T ) ⊂ R.

Since the Lagrangian inversions preserve orthogonality, the 3 balls S0
i = Π−1 (γjk) (i, j, k, distinct)

are stable under I
ri,

π
2

i . As a consequence, F 0, the inverse image of ∆ by the orthogonal projection, Π,

is a fundamental domain for the groups R
(
r1e

i π
2 , r2e

i π
2 , r3e

i π
2 , 0

)
. Let us summarize the properties

of the S0
i ’s:

1. For distinct i, j, k, S0
i is S

π
2

γjk,H2
R
, the R-ball over γjk with angle π/2 with respect to H2

R (see
definition 13 of section 4.3).

2. I
ri,

π
2

i exchanges the two components of H2
C \ S0

i

3. (S0
i )c ∩ (S0

j )c = {pk} with i, j, k mutually distinct.

Definition 19. An R-ball S ⊂ H2
C is a 3-dimensional ball foliated by R-planes.
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6.2 Step 2: Deformation of the embedded groups.

All the R-planes we have used in step 1 were orthogonal to the R-plane H2
R. The idea of the deformation

of the embedding of T into R, is to move all the angles from (π/2, π/2) to (π/2, π/2 + α). This induces
a deformation of the balls S0

i into Sα
i , and we will check that if α ∈ [0, π/4], the deformed spheres

remains disjoint.
Definition of the deformed R-balls . For disjoint i, j, k , define Sα

i = S
π
2
+α

γjk,H2
R
, the R-ball over γjk

with angle π
2 + α with respect to H2

R. See definition 13 of section 4.3

Note that Sα
i =

⋃
ri>0 P

ri,
π
2
+α

i . Recall that from lemma 11 (section 4.3), we know that Sα
i is invariant

under inversion in any of its leaves. The following lemma is the essential tools to prove the theorem.

Lemma 15. For i = 1, 2, 3, and α ∈ [
−π

4
,
π

4
], (Sα

i )c ⋂
(Sα

j )c = { pk }
Proof. Because of the symmetry of order 3 described in Corollary 1 , it is sufficient to show that the
leaves of Sα

1 and Sα
3 are disjoint for these values of α. According to lemma 5, this is equivalent to

show that as long as α ∈ [
−π

4
,
π

4
],

I
r1, π

2
+α

1 ◦ I
r3, π

2
+α

3 is loxodromic ∀ (r1, r3) ∈]0, +∞[2

Using the matrices provided in section 5.3, one checks that I
r1, π

2
+α

1 and I
r3, π

2
+α

3 have matrices

M r1
1 (α) =



−r2

1 −√2
(
r2
1 + e2iα

)
r2
1 + r−2

1 + 2e2iα√
2r2

1 2r2
1 + e2iα −√2

(
r2
1 + e2iα

)
r2
1

√
2r2

1 −r2




and

M r3
3 (α) =




0 0 r2
3

0 e2iα 0
r−2
3 0 0


 .

The matrix M = M r1
1 (α)M r3

3 (α) ∈ SU(2,1) is a matrix for I
r1, π

2
+α

1 ◦ I
r3, π

2
+α

3 (see remark 4). To
show that the isometry associated to M is loxodromic, we compute its trace. A direct calculation
yields

Re(Tr(M r1
1 (α)M r3

3 (α))) = r2
1r

2
3 + 1 +

1
r2
1r

2
3

+ 2 cos 2α
(

r2
1 +

1
r2
3

)
+

r2
1

r2
3

and

Im(Tr(M r1
1 (α)M r3

3 (α))) = 2 sin 2α
(

r2
1 −

1
r2
3

)
.

As a consequence, as long as cos 2α remains positive,

Re(Tr(M r1
1 (α)M r3

3 (α))) >
1

r2
1r

2
3

+ r2
1r

2
3 + 1 ≥ 3,

and the isometry associated to M is loxodromic (see Lemma 2). This completes the proof of proposition
15.

Since Sα
i contains γjk, for distinct i, j, k, Sα

j and Sα
k are in the same connected component of

H2
C \ Sα

i .

Definition 20. For i = 1, 2, 3, let Bα
i be the connected component of H2

C \Sα
i not containing Sα

j and
Sα

k for distinct i, j, k.

The previous lemma shows that, for i, j, k distinct (Bα
i )c ∩ (Bα

j )c = {pk}, (Bc denotes the closure
of the set B). We go now to the proof of the theorem.
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6.3 Proof of the theorem

Let F be the subset of R defined by

F =
{
R

(
r1e

i(π
2
+α), r2e

i(π
2
+α), r3e

i(π
2
+α), 0

)
| (r1, r2, r3, α) ∈]0,∞[3×[0,

π

2
], r1r2r3 = 1

}
.

It is represented by the groups G(r1, r3, α) = 〈Ir1,α
1 , I

(r1r3)−1,α
2 , Ir3,α

3 〉 described above. Let E be the
subset of F where 0 ≤ α ≤ π

4
.

6.3.1 Part 1 of the theorem

F is homeomorphic to T × [0, π/2], and it follows from sections 2 and 6.1 that T = T × {0} is an
embedding of the Teichmüller space T(1,1) in R.

6.3.2 Part 2 of the theorem

The two lemmas 11 and 15 describe three balls in H2
C, Bα

1 , Bα
2 and Bα

3 , bounded by Sα
1 , Sα

2 and Sα
3

satisfying the following properties:

(i) Sα
k is invariant by Irk,α

k for rk > 0.

(ii) The two connected components of H2
C \ Sα

k are exchanged by Irk,α
k .

(iii) For α ∈ [0, π
4 ], Bα

k ∩Bα
j = ∅ and (Bα

k )c ∩ (Bα
j )c = {pi} .

1. Discreteness and faithfulness . Using the above balls, the standard proof for Schottky groups
works without changes (see [Rat94] for instance).

2. Type preserving property. Consider w = w1 · · ·w2n 6= Id, a holomorphic word of ρ(Γ1), and
conjugate it, so that w2n 6= w1. For any l, we will denote by Dl the ball Bα

kl
invariant by wl. The

properties (i), (ii), (iii) above show that D1 and D2n are stable under w. Hence w has at least
one fixed point in both Dc

1 and Dc
2n. But w has at most two fixed points or else, it would be

a complex reflection, and this would contradict either discreteness or faithfulness. Hence, there
are only two possibilities :

(a) w has two distinct fixed points q1 ∈ Dc
1 and q2n ∈ Dc

2n, and it is loxodromic.

(b) w fixes one of the pk’s.

If (b) happens and, for instance, w fixes p2, a standard argument shows that w is a (possibly
negative) power of γ.
This shows that the only non-loxodromic elements of the holomorphic subgroup of ρ(Γ1) are
parabolic, and are conjugate to powers of the cusp element. Thus the holomorphic subgroup of
ρ(Γ1) is an H2

C punctured torus group.

6.3.3 Part 3 of the theorem

Assume that r3 = r−1
1 . Then, as in the proof of Lemma 15, it is seen that

Re
(

Tr
(

Ir1,α
1 ◦ I

r−1
1 ,α

3

))
= 3 + r2

1

(
r2
1 + cos 2α

)
and Im

(
Tr

(
Ir1,α
1 ◦ I

r−1
1 ,α

3

))
= 0.
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Hence, if
π

4
< α <

π

2
, and r2

1 + cos 2α < 0, Ir1,α
1 ◦ I

r−1
1 ,α

3 is elliptic. To be more precise, if we set

r3 =
t

r1
, there is a neighborhood U(α, r1) of 1 such that:

t ∈ U(α, r1) ⇐⇒ Ir1,α
1 ◦ I

t
r1

,α

3 is elliptic

7 Observations.

Remark 13. Let ρ be the representation of Γ1 associated to a group G(r1, r3, α), with r1, r3 > 0 and
π
4 ≥ α > 0. Lemma 9 shows that G(r1, r3, α) do not stabilize H2

R. It is easily seen that any R-plane
stabilized by G (r1, r3, α), must contain the triple Cρ. Hence, if π

4 ≥ α > 0, G (r1, r3, α) does not
stabilize any R-plane.

Remark 14. We have constructed our deformation in such a way that the element γ = (I1I2I3)
2

remains purely parabolic everywhere. ρ(γ) has matrix form:



1 −√2ω̄ −|ω|2 + iτ

0 1
√

2ω
0 0 1


 .

In the case of G(r1, r3, α), ω and τ become :

ω = 2eiα cosα
(
1 + r2

3 + r−2
1

)

τ = −2 sin 2α
((

r2
3 + 1

)2 − 1
r4
1

)
.

There are two PU(2,1)-conjugacy classes of Heisenberg translations : vertical translations form a
conjugacy class, and non-vertical translations another. In our case −π/4 ≤ α ≤ π/4, thus ω 6= 0.
Hence, all the groups we have described are 2-generator subgroups with fixed conjugacy class of the
commutator.

Remark 15. The proof of the third part of the theorem showed that when r1r3 = 1, the length 2 word
I1I3 of G(r1, r3, α) remains loxodromic when r2

1 +cos 2α is negative. However, when this last condition
is not satisfied, another word can become elliptic, but it seems hard to determine which one. As an
example, consider the case where r1 = r−1

3 = 2, keeping the condition r1r2r3 = 1. A computation
shows that all the length two words are loxodromic for any α ∈ [0,

π

2
[. An experimental study shows

that the length 8 word I1I3I1I2I3I2I3I2, which has trace

3 + 1154 cos4 α− 429 cos2 α− 1150 i sinα cos3 α

is elliptic on the segment α0 < α < π
2 , with 0.468π < α0 < 0.469π. It is the first word (that is, the

shortest) to become elliptic for these values of r1, r2 and r3. For a given value of α, it seems difficult
to determine which word will be the first to become elliptic (in the spirit of the Schwartz conjectures,
see [Sch02]) .
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Figure 5: Top and side view of the fundamental domain for the embedding of the classical case.

Figure 6: Top and side view of the limit fundamental domain for α = π
4 .

Figure 7: Top and side view of the R-sphere S2 alone, for α = π
10 .
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