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Abstract
Bounded symmetric domains carry several natural invariant metrics, for

example the Carathéodory, Kobayashi or the Bergman metric. We define
another natural metric, from generalized Hilbert metric defined in [FGW20],
by considering the Borel embedding of the domain as an open subset of its dual
compact Hermitian symmetric space and then its Harish-Chandra realization
in projective spaces.

We describe this construction on the four classical families of bounded
symmetric domains and compute both this metric and its associated Finsler
metric. We compare it to Carathéodory and Bergman metrics and show that,
except for the complex hyperbolic space, those metrics differ.

1 Introduction
1.1 Bounded symmetric domains and the generalized Hilbert

metric
Bounded domains in Cn are naturally equipped with invariant metrics under their
biholomorphism group [JP13]. Important invariant metrics include the Bergman,
Kobayashi and Carathéodory metrics. Among bounded domains, the symmetric
ones are homogeneous and, for each point in the domain, admit a holomorphic
involution whose differential is the negative identity map. Those domains are ubiq-
uitous. Four families of bounded symmetric domains are named classical bounded
symmetric domains as their biholomorphism groups are contained in the family
of classic semi-simple Lie groups. Explicit computations of invariant metrics for
general domains are not easy but for symmetric domains one has closed formulas
(Kobayashi and Carathéodory metrics coincide), see [JP13] and Section 4.7.

Those bounded symmetric domains correspond to Hermitian symmetric spaces,
see Section 2.1. In the real case, symmetric spaces can be embedded as open convex
subsets of a real projective space, and as such inherit a Hilbert metric. This metric
usually differs from the natural Riemannian metric, except for real hyperbolic spaces
[BH99]. The classical symmetric domains, as described in Section 2, are convex
subsets of some complex affine space. As such, they could inherit a Hilbert metric.
However, the biholomorphism group does not act projectively; this metric would
not be invariant.
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The goal of this paper is to define an invariant Hilbert metric for classical
bounded symmetric domains using [FGW20], to compute it and to compare it to the
classical metrics. The definition of the generalized Hilbert metric in [FGW20] in-
volves a subset Ω of projective space and a subset Λ of its dual projective space that
verify a non-vanishing condition: for any [φ] ∈ Λ and [v] ∈ Ω, we have φ(v) ̸= 0,
see Section 4. Then, for ω, ω′ ∈ Ω, the following formula is well-defined:

dΛ(ω, ω′) = ln (max {|[φ, φ′, ω, ω′]| for φ, φ′ in Λ}) . (1)

This defines a semi-metric1 [FGW20] that is naturally invariant under projective
transformations preserving both subsets.

In order to apply the definition to the case of bounded symmetric domains and
compute the resulting distance, one has to:

1. realize the bounded symmetric domains as subsets Ω of a projective space;

2. define a suitable subset Λ of the dual projective space;

3. compute the formula (1) using the transitivity of the transformation group of
the domain.

The first two points will rely on the classical theory of Borel and Harish-Chandra
embeddings, see Section 2. The last point will follow from a normalization of pairs of
points given by the singular value decomposition. At the end, for a classical bounded
symmetric domain D, we will have defined a metric dD, whose infinitesimal metric
is a Finsler metric. We will explicitly describe those metrics in Sections 4.1, 4.2 and
4.3 through a case-by-case analysis of the four families. This will give in particular
the following Theorem 4.5:

Theorem. For any classical bounded symmetric domain D, the semi-metric dD is
an actual metric, invariant by the automorphism group Aut(D) and comes from a
Finsler infinitesimal metric.

Except if D is a complex hyperbolic space this metric is neither the Carathéodory
nor the Bergman infinitesimal metric. The case of the complex hyperbolic spaces
is particular. In this case, due to the rank one situation, all metrics coincide up
to a multiplicative factor. This was already observed in [Zim17, Lemma 4.3] and
[FGW20, Prop 3.4]

In order to better present the strategy before going into technicalities, we de-
scribe the organization following a simple example: the bidisc.

1.2 A special case: the bidisc
We explain the steps above on the example of the bidisc as a guideline, referring
along the way to the general statements in the paper. Let D = U2 be the bidisc,
where U = {z ∈ C, |z| < 1}. Then, U has a unique PU(1, 1)-invariant metric which
is the hyperbolic metric and coincides with the Carathéodory, the Bergman metric

1It is reflexive, satisfies the triangular inequality but may fail to separate points.
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and the generalized Hilbert metric (see [FGW20]). The automorphism group is
generated by the exchange of the factors and the action of PU(1, 1) on either factor.

The Carathéodory and Bergman metric correspond respectively to the L∞ and
L2 metrics on D (see for instance sections 56 and 57 in Chapter 5 of [Sha90], or
[JP13]). The first step of our strategy is to understand a projective embedding of
D.

1.2.1 Borel and Harish-Chandra embeddings

We give a down-to-earth presentation of the projective embedding of D. We refer
the reader to [Wol72] and Section 2.2 below for more general information. The
Plücker embedding of CP1 × CP1 in CP3 is described in homogeneous coordinates
by

([x : y], [u : v]) 7−→ [xu : yu : xv : yv].

Its image is the quadric

Q = {[x0, x1, x2, x3], x0x3 − x1x2 = 0}.

Viewing the disk as the subset U ≃ {[1 : z], |z| < 1} of CP1, we identify any z ∈ U
to [1, z] ∈ CP1. We can restrict the Plücker embedding to D = U2. This gives the
map

E :
{

D → CP3

(z, w) 7−→ [1 : z : w : zw].

The biholomorphisms of D extend to projective transformations of CP3: one may
check that the image of the biholomorphism group is the connected component
in the orthogonal group of the quadratic form x0x3 − x1x2. Note also that this
quadratic form is non-degenerate, so identifies CP3 to its dual projective space
(CP3)∨. We call F : D → (CP3)∨ the composition of the map E and this duality.
In coordinates, for any (z, w) ∈ D, the form F (z, w), that we denote by F(z,w), is
given up to a multiplicative constant by:

F(z,w) : (x0, x1, x2, x3) 7−→ x0(zw) + x3 − zx2 − wx1.

In general, one can realize bounded symmetric domains as subsets of a pro-
jective space. This comes from the fact that a bounded symmetric domain is the
image under the Borel embedding of a Hermitian symmetric space, and the Harish-
Chandra embedding maps them into a projective space – namely a Grassmannian
space. Under this embedding, the automorphism group of D is sent to a subgroup
of the group of projective transformations. Moreover, there are in fact a pair of such
embeddings, in two dual projective spaces. We review the necessary background
on classical Hermitian symmetric spaces and their links to bounded symmetric do-
mains in Section 2.1; we then describe the embeddings E and F in Section 2.1.3.
More details on the construction are then given in Section 2.2 for the interested
reader. Note that the maps E and F naturally extend to the boundary of D, and
this holds in the general case, see Section 2.1.3.
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1.2.2 The Shilov boundary as the set Λ

The second step is to define a subset Λ in the dual projective space. We define Λ as
the image under the "dual" map F of a classical and very important subset of the
boundary of D: the Shilov boundary, see Section 2. In the case of the bidisc, the
Shilov boundary is the torus ∂SD := {(z, w), |z| = |w| = 1}, see [Cle09].

We can check that, for all p = (z, w) ∈ D and ξ = (z0, w0) ∈ ∂DS, we have

Fξ(E(z, w)) = (z − z0)(w − w0) ̸= 0.

So, linear forms in our Λ do not vanish on the image E(D). Hence, we can define
the Hilbert metric dD by, for p, p′ in D:

dD(p, p′) = ln
(

max
ξ,ξ′∈∂SD

∣∣∣∣∣Fξ(E(p))F ′
ξ(E(p′))

Fξ(E(p′))F ′
ξ(E(p))

∣∣∣∣∣
)

.

In general, the Shilov boundary of the classical domains are well-known, see
Section 2.1. Using the maps E and F defined as above, we will always define the
set Λ as the image under F of the Shilov boundary. We check in Section 2.1.3 that
the non-vanishing condition is always fulfilled. We could have taken for Λ the image
by F of the whole boundary of D. However, due to the maximality properties of
the Shilov boundary, see Definition 2.1, it would not have changed the metric dD.
So we prefer to restrict to the smallest Λ.

1.2.3 Transitivity and computation of the Hilbert metric

In order to give an actual formula for dD, we have to determine for which choice of
(ξ, ξ′) ∈ ∂SD the maximum is obtained. For the bidisc, this can be done directly,
but we prefer to use the action of the automorphism group to draw further the
analogy with the general case.

Indeed, given any two points p, p′ in the bidisc D, there is an automorphism
that sends p to o := (0, 0) and p′ to o′ = (x, y) where 1 > x ≥ y ≥ 0. So we just
need to compute dD(o, o′). In the following computation, we denote by ξ = (a, b)
and ξ′ = (a′, b′) two points in the Shilov boundary ∂SD.

dD(o, o′) = max
ξ,ξ′∈∂SD

ln
∣∣∣∣Fξ(o)Fξ′(o′)
Fξ(o′)Fξ′(o)

∣∣∣∣
= max

ξ,ξ′
ln
∣∣∣∣ (−a)(−b)(x − a′)(y − b′)

(x − a)(y − b)(−a′)(b′)

∣∣∣∣ .
Recall that all the moduli of a, b, a′ and b′ are equal to 1. One may separate the
ones with x and the ones with y. One can then determine that the maximum is
attained for (a, b) = (1, 1) and (a′, b′) = (−1, −1). We recover this way the sum of
the hyperbolic metrics on both factors:

dD(o, o′) = ln
∣∣∣∣x + 1
x − 1

∣∣∣∣+ ln
∣∣∣∣y + 1
y − 1

∣∣∣∣
= dU (z, z′) + dU (w, w′).
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This discussion proves, for the bidisc, the formula for the Hilbert metric:

Proposition 1.1. The generalized Hilbert metric on D2 is the the sum of the
hyperbolic metrics on each factor.

In the general case, one uses classically the singular value decomposition to
describe pair of points in the classical bounded symmetric domains, see Section 3.
The determination of the maximum and its consequences are then done in the last
Section 4.
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2 Classical bounded symmetric domains
Let Ω ⊂ Cn be a bounded domain. There are several situations where a natural
metric can be associated to it. A very general definition is that of the Bergman
metric on any bounded domain. Other definitions of invariant metrics include the
Carathéodory and Kobayashi metrics. The construction is such that the biholomor-
phism group is contained in the isometry group of those metrics. The particular
case where Ω is a bounded homogeneous domain has been studied for a long time.
It contains the important class of non-compact Hermitian symmetric spaces. These
Riemannian spaces, classified by Cartan, can be embedded as bounded domains
which contain the origin, are stable under the circle action and which turn out to
be convex (see [Wol72] for a thorough exposition). In the case of bounded symmetric
domains the Carathéodory and Kobayashi metrics coincide.

The group of biholomorphisms of a bounded symmetric domain is transitive and
can be extended to the boundary. But its action on the boundary is not transitive
except in the case of the complex ball. On the other hand, the isotropy group at the
origin acts by linear maps of Cn and, moreover, it acts transitively on the Shilov
boundary of Ω:

Definition 2.1. Let Ω ⊂ Cn be a bounded domain. The Shilov boundary of Ω
is the smallest closed subset S ⊂ ∂Ω such that, for every holomorphic function f
defined on Ω which extends continuously to the boundary, we have

|f(z)| ≤ max{|f(w)| , w ∈ S}.

We will not use much properties of the Shilov boundary, except its actual descrip-
tion for bounded symmetric domains, see Section 2.1. For a general presentation,
we refer to [Cle09].

We now present the classical cases, together with the associated Hermitian sym-
metric spaces and the Borel and Harish-Chandra embeddings.
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2.1 Bounded symmetric domains and Hermitian symmetric
spaces

We now review the needed materials to extend the two dual projective embeddings
of the bidisc (see Section 1.2.1) to all four families of classical bounded symmetric
domains.

2.1.1 Hermitian symmetric spaces

General references for this section are [Hel01, Wol72] and [Cle09] for the Shilov
boundary. A Riemannian symmetric space X is a Riemannian manifold such that,
at each point x ∈ X, there exists an isometric involution σx with dσx = −Id. In
the case X is a Hermitian manifold and σx is a holomorphic map we say that X is
a Hermitian symmetric space.

Any simply connected Hermitian symmetric space is a product X = Xe × X− ×
X+ where Xe is an Euclidean space, X− is a compact Hermitian symmetric space
and X+ is a non-compact Hermitian symmetric space (Proposition 4.4 in [Hel01,
Chapter VIII]). Moreover, X− and X+ themselves are products of irreducible sym-
metric spaces of compact and non-compact type respectively, with each factor being
of the form G/K where G is a connected simple Lie group with trivial center and
K a maximal compact subgroup of G. Be aware that one does not consider Eu-
clidean spaces as non-compact type symmetric spaces. Hermitian symmetric spaces
of compact type are projective algebraic manifolds.

There exists a duality between Hermitian symmetric spaces of compact and
non-compact type. The construction goes as follow: start with X0 = G0/K an irre-
ducible non-compact Hermitian space and write the Lie algebra of its holomorphic
automorphism group as g0 = k ⊕ m; here k is a maximal compact sub-algebra and
the decomposition corresponds to the 1 and −1 eigenspaces of a Cartan involution
of g0. The compact dual of g0 is gc = k⊕

√
−1m (we write Gc for the corresponding

Lie group). In fact, gc is a maximal compact sub-algebra of the complexification
gC. One obtains that X = Gc/K is a compact Hermitian symmetric space which
is called the dual of X0 = G0/K. The Borel embedding theorem states that a
non-compact Hermitian symmetric space has an embedding as an open subset of
its compact dual.

Theorem (Borel embedding theorem). Let GC be the connected Lie group corre-
sponding to gC. Then the compact Hermitian space Xc = Gc/K is biholomorphic to
GC/P , where P ⊂ GC is a complex subgroup. The embedding G0 → GC induces an
open embedding X0 → Xc realizing X0 as an open subset in its compact dual Xc.

An important fact is that the connected automorphism G0 of the non-compact
Hermitian symmetric space is realized as a subgroup of automorphisms of the pro-
jective manifold Xc. Therefore it is realized as a subgroup of projective transfor-
mations.
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2.1.2 Bounded symmetric domains

The link with bounded symmetric domains is that all Hermitian symmetric spaces
of non-compact type can be realized as bounded symmetric domains.

Definition 2.2. A bounded domain D ⊂ Cn is a symmetric domain if, at each
point z ∈ D, there exists a holomorphic involution σz such that dσz = −Id.

Each bounded domain carries a Bergman metric which is invariant under the
automorphism group of D (see [Hel01, Chapter VIII] or [Sha90, Chapter V]). The
Harish-Chandra theorem states that any Hermitian symmetric space is identified to
a bounded symmetric domain D equipped with its Bergman metric, and conversely:

Theorem 2.3 (Harish-Chandra). A Hermitian symmetric space of non-compact
type is biholomorphic to a bounded symmetric domain in an euclidean space which
is embedded as a dense domain in the compact dual Hermitian symmetric space.

Among the Hermitian symmetric spaces, four families are special: the classical
Hermitian symmetric spaces. We will now describe the bounded symmetric do-
mains corresponding to these Hermitian symmetric spaces, as well as their Shilov
boundaries. We will provide in the next paragraph a short description of the way
this realization is done. To define these domains, we consider the groups:

Sp(n,R) = {M ∈ GL(2n,R) | MT JnM = Jn}

SO∗(2n) = {M ∈ SL(2n,C) | MT M = I2n, M
T

JnM = Jn },

where Jn =
(

0 In

−In 0

)
.

For a Hermitian matrix A, the notation A > 0 means that it is positive definite.

Type I: For 1 ≤ p ≤ q, the symmetric space is XI
p,q = SU(p, q)/S(U(p) × U(q)).

The associated domain and its Shilov boundary are respectively given by:

DI
p,q = { Z ∈ Mp,q(C) | Iq − Z∗Z > 0 }

∂SDI
p,q = { Z ∈ Mp,q(C) | ZZ∗ − Ip = 0 } . (2)

Type II: For n ≥ 5, the symmetric space is XII
n = SO∗(2n)/U(n); the associated

domain and its Shilov boundary are given by the following construction, de-
pending on the parity of n. Let Z0 be the block-diagonal matrix with blocks( 0 1

−1 0
)

and of rank n if n is even, n − 1 if n is odd. Then Z0Z∗
0 − In is either

0, if n is even, or the diagonal matrix with diagonal entries (0, . . . , 0, −1) if
n is odd. The Shilov boundary is the orbit of Z0 under the transformation
group.

DII
n =

{
Z ∈ Mn,n(C) | In − Z∗Z > 0, ZT = −Z

}
⊂ DI

n,n (3)
∂SDII

n =
{

Z ∈ Mn,n(C) | ZZ∗ − In = Z0Z∗
0 − In, ZT = −Z

}
.

Note that ∂SDII
n ⊂ ∂SDI

n,n iff n is even.
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Type III: For n ≥ 2, the space is XIII
n = Sp(n,R)/U(n); the associated domain and

its Shilov boundary are given by:

DIII
n =

{
Z ∈ Mn,n | In − Z∗Z > 0, ZT = Z

}
⊂ DI

n,n (4)
∂SDIII

n =
{

Z ∈ Mn,n(C) | ZZ∗ − In = 0, ZT = Z
}

⊂ ∂SDI
n,n.

Type IV: For n ≥ 2, the space is XIV
n = SO0(n, 2)/SO(n) × SO(2); the associated

domain and its Shilov boundary are given by:

DIV
n =

{
z ∈ M1,n(C) | z∗z < 2 and z∗z < 1 +

∣∣∣∣12zT z

∣∣∣∣2
}

(5)

∂SDIV
n =

{
eiθx for x ∈ M1,n(R), xT x = 2 and θ ∈ R

}
.

We now describe explicitly the projective embeddings, as in the case of the bidisc,
see Section 1.2.1.

2.1.3 Projective embeddings

We recall here classical material (see [Mok89],[Wie04]) about Borel and Harish-
Chandra embeddings, and their descriptions using Grassmannians and the Plücker
map. For the interested reader we will provide a review of these facts in the next
section.

For integers such that p+q = n, the two projective spaces P(ΛpCn) and P(ΛqCn)
are dual to one another. Indeed, the choice of the determinant function defines a
pairing ⟨·, ·⟩ which is defined on pure tensors by

ΛpCn × ΛqCn −→ ΛnCn det∼ C
(A, B) 7−→ A ∧ B = det(A, B). (6)

This allows us to identify ΛqCn to (ΛpCn)∗. In turn, we obtain a natural
identification2

P(ΛqCn) ∼ P(ΛpCn)∗. (7)

The following proposition sums up what we need from the Borel and Harish-Chandra
embeddings:

Proposition 2.4. For each classical bounded symmetric domain D in the above
list, there exists (n, p, q) with p + q = n, and two embeddings E and F

E : D −→ P(ΛqCn), F : D −→ P(ΛpCn),

such that:

1. both maps extend continuously to the boundary ∂D,
2After projectivization, the identification does not depend on the choice of the determinant.
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2. the action of Aut(D) translates into the action of a subgroup of PGL(n,C)
preserving the image of D,

3. if ξ ∈ ∂D then ⟨F (ξ), E(ξ)⟩ = 0,

4. if z ∈ D, and ξ ∈ ∂D then ⟨F (ξ), E(z)⟩ ≠ 0,

We still denote by E and F the extensions to the boundary.
The two maps E and F are easily described for domains of types I, II and III,

as we do now. Given a matrix M ∈ Mat(n, k,C) we still denote by M ∈ ΛkCn the
exterior product of its columns. We denote by [M ] its class in the projective space
P(ΛkCn) (whenever rkM = k). Using this notation, write n = p + q where p and q
are as in (2). Define the following two maps.

Eq : DI
p,q −→ P(ΛqCn)

Z 7−→
[

Z
Iq

]
and

Fp : DI
p,q −→ P(ΛpCn)

Z 7−→
[

Ip

Z∗

]
(8)

Then the maps E and F of Proposition 2.4 are given in Type I, II, III by these
maps, for suitable values of p and q:

Proposition 2.5. 1. The two maps Eq and Fp are embeddings, and they extend
to the boundary of DI

p,q.

2. The action of Aut(DI
p,q) translates into the natural action of PU(p, q) on

P(ΛqCn) and P(ΛpCn).

3. For domains of types II and III, 1. and 2. hold when restricting En and Fn to
the subdomains DII

n ⊂ DI
n,n and DIII

n ⊂ DI
n,n

The following easy proposition checks the non-vanishing property (see Section
1.2.2), that will allow us to define the Hilbert metric later on.

Proposition 2.6. For any Z and Z ′ in the topological closure DI
p,q, we have

Fp(Z) ∧ Eq(Z ′) = det(Ip − Z ′Z∗).

Proof. Using our notation,

Fp(Z) ∧ Eq(Z ′) = det
(

Ip Z ′

Z∗ Iq

)
.

The result follows directly from the fact that for any invertible matrix D

det
(

A B
C D

)
= det(D) det(A − BD−1C). (9)

The following subsection reviews in depth Borel and Harish-Chandra embed-
dings, to prove the two previous propositions and describe de Type IV. Readers
convinced by the previous statements and less interested in Type IV may prefer to
skip it and directly jump to Section 3.
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2.2 Borel and Harish-Chandra embeddings
The link between the classical Hermitian symmetric spaces and symmetric bounded
domains may be accomplished considering an action of the group on a Grassman-
nian, and then using an affine chart on the Grassmannian. These two steps are
respectively the Borel embedding and the Harish-Chandra embedding. We present
explicitly these embeddings for the classical case since we use them afterwards. We
treat types I, II and III together and then present Type IV.

2.2.1 Types I, II, III

Type I Hermitian symmetric spaces are the quotients XI
p,q = SU(p, q)/S(U(p) ×

U(q)). Since we consider p and q fixed in this section, we will drop the dependence
in p and q and simply denote the space by XI. Let us denote by G(k, n) the
Grassmannian of k-spaces in Cn, where n = p + q. The Borel embeddings of XI

realize it as subspaces of the Grassmannians G(p, n) or G(q, n). To describe these
embeddings, let us endow Cn with a Hermitian form h of signature (p, q) given in
the canonical basis (ei)1⩽i⩽n of Cp+q by

h(z, z) =
p∑

i=1
|zi|2 −

q∑
j=1

|zp+i|2.

We denote by Ip,q the matrix of h in the canonical basis of Cn, and we decompose
Cn as the orthogonal direct sum Cn = W + ⊕ W − (where W + = ⟨e1, · · · , ep⟩ and
W − = ⟨ep+1, · · · , ep+q⟩). The Borel embeddings of XI are the following two (well-
defined) maps

XI −→ G(p, n)
x = [g] 7−→ g · W + = W +

x (10)

and

XI −→ G(q, n)
x = [g] 7−→ g · W − = W −

x , (11)

where [g] denotes the class of g in the quotient SU(p, q)/S(U(p) × U(q)). Note that
there is a natural duality between G(p, n) and G(q, n), given by orthogonality for
h. In particular W +

x and W −
x are orthogonal. The actions of the group SU(p, q)

on the Grassmannians decomposes G(p, n) and G(q, n) into orbits. The images of
XI by the maps (10) and (11) are respectively G+(p, n) and G−(q, n), the sets of
positive p-subspaces (resp. negative q-subspaces), namely:

G+(p, n) = {W ∈ G(p, n), h|W > 0} ⊂ G(p, n)

and
G−(q, n) = {W ∈ G(q, n), h|W < 0} ⊂ G(q, n).

The Harish-Chandra realizations of XI as bounded domains follow from choos-
ing affine charts on the two Grassmannians, which contain G+(p, n) and G−(q, n)

10



respectively. Let us explain how this work for G−(q, n) (the situation is symmet-
ric for G+(p, n)). Observe first that any subspace Wx ∈ G−(q, n) is transverse to
W + (meaning Wx ∩ W + = {0}), and therefore is the graph of a unique linear map
Lx : W − −→ W +. Using the bases of W − and W + coming from the canonical basis,
we identify Lx to a matrix Zx ∈ Mat(p, q,C). For any such matrix Z ∈ Mat(p, q,C),
the open condition expressing that Z corresponds to a negative type q-subspace is
given by imposing that the graph of the linear map given by Z has negative type,
that is

∀w ∈ W −, h(w + Zw, w + Zw) < 0.

This is equivalent to (
Z∗, Iq

)
Ip,q

(
Z
Iq

)
= Z∗Z − Iq < 0.

The map
x 7−→ Zx

gives the first Harish-Chandra realization of XI as the domain DI
p,q described in

(2). Using the orthogonality relation between G−(q, n) and G+(p, n), we obtain
that the other Harish-Chandra realization of XI is given by

x 7−→ Z∗
x (12)

The image of XI by the map (12) is the domain {S ∈ Mat(q, p,C), SS∗ − Ip < 0},
which is biholomorphic to DI

p,q.
To sum up, as displayed in Figure 2.2.1, the first Borel and Harish-Chandra

embeddings associate to a point x ∈ XI
p,q a q-subspace W −

x and a matrix Zx. These
two are related by

W −
x = Span

(
Zx

Iq

)
,

where we mean by Span(M) the subspace generated by the columns of the matrix
M . The other embedding associate to x the matrix Z∗

x and the p-subspace

W +
x = (W −

x )⊥ = Span
(

Ip

Z∗
x

)
,

The embeddings for the domains of type II and III are obtained by restrictions
of the embeddings for domains of type one to the appropriate sub-spaces.

2.2.2 Type IV

Following the description we have sketched for types I, II and III, the type IV
symmetric space SO0(n, 2)/(SO(n) × SO(2)) = SO(n, 2)/S(O(n) × O(2)) can be
realized in two dual ways as open subsets of real Grassmannians on Rn+2 equipped
with a (2, n) quadratic form: either as G−

R (2, n + 2) or as G+
R (n, n + 2). The

latter are respectively the open subsets of the real Grassmannian of 2-planes (resp.
n-subspaces) in Rn+2 that are negative (resp. positive). However, to realize this
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x ∈ XI
p,q

W +
x

W −
x

Z∗
x Ep(x)

Zx Eq(x)

B

B

⊥

HC P

∗ ⊥

HC

E

F

P

Figure 1: A synthetic view of the Borel and Harish-Chandra embeddings and the
maps E and F (in red) for Type I.
Here, we have W +

x ∈ G(p, n), W −
x ∈ G(q, n), Zx ∈ DI

p,q ⊂ Mp,q and Z∗
x ∈ Mq,p,

F (x) = Eq(x) ∈ P(ΛqCn) and E(x) = Ep(x) ∈ P(ΛpCn). The black arrows are
the different steps of Borel, Harish-Chandra and Plücker embeddings, denoted by
respectively the letters B, HC and P .
The three blue arrows are given by orthogonality: taking the adjoint on the bottom
left, orthogonality for the Hermitian structure in the middle, and orthogonality in
duality in the bottom right.

family of symmetric spaces as complex bounded symmetric domains, it is customary
to take a slightly different point of view which we describe here.

Let q be the quadratic form of signature (n, 2) on Rn+2 given in the canonical
basis by

q(x) = x2
1 + · · · x2

n − x2
n+1 − x2

n+2.

The form q extends naturally to a complex bilinear form q on the complexification
Cn+2, which we still denote by q. It also gives rise to a Hermitian form h of signature
(n, 2), obtained by setting

h(z, w) = q(z, w), ∀z, w ∈ Cn.

The group SO0(n, 2) preserves both q and h.
Let us denote by P0 the 2-plane in Rn+2 given by P0 = ⟨en+1, en+2⟩, by V0 =

⟨e1 . . . en⟩ its orthogonal complement in Rn+2 and chose an orientation of P0. The
transitive action of the group SO0(n, 2) on the set of negative planes of Rn+2 defines
unambiguously an orientation on each negative plane of Rn+2.

The plane P0 has a unique complex structure J preserving h and such that
for all vectors x ∈ P0 \ {0}, the pair (Jx, x) is positively oriented. Choosing the
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orientation so that (en+1, en+2) is positive, this complex structure is given by

J(en+1) = −en+2, and J(en+2) = en+1.

The action of J extends linearly to the complexification PC
0 ⊂ Cn+2. Let L0 be the

i-eigenline of J in PC
0 , which is spanned by en+1 + ien+2.

The line L0 is negative for h and isotropic for q. The previous construction
extends to all negative 2-planes in Rn+2 by the action of SO0(n, 2). From this
discussion, it follows that the set of negative planes in Rn+2 is in bijection with
the set of complex lines in Cn+2 that are negative for h and q-isotropic (this is
Proposition 6.1 in Appendix 6 of [Sat80]). The converse bijection is obtained by
noting that given a complex line L in Cn+2, which is q-isotropic and h-negative,
then the complex plane W = L ⊕ L is the complexification of a negative plane in
Rn+2.

Now, to obtain an explicit parametrization, we first do a linear change of co-
ordinates by transforming en+1 and en+2 respectively into 1√

2 (en+1 − ien+2) and
1√
2 (en+1 + ien+2). In these coordinates, we observe that a complex line L = Cz is

q-isotropic and h-negative if and only if z satisfies
n∑

k=1
z2

k = 2zn+1zn+2

n∑
k=1

|zk|2 < |zn+1|2 + |zn+2|2.

These two conditions define an open subset of a quadric in CP n+1, whose intersec-
tion with the affine chart {zn+2 = 1} is parametrized by

O =
{[

z1 : . . . : zn : 1
2

n∑
k=1

z2
k : 1

]
,

n∑
k=1

|zk|2 < 1 +
∣∣∣12

n∑
k=1

z2
k

∣∣∣2} .

Note that all points in O satisfy |
∑n

k=1 z2
k| ≠ 2 for otherwise we would have simul-

taneously
∑n

k=1 |zk|2 < 2 and
∣∣∑n

k=1 z2
k

∣∣ = 2. The complex line L0 we started from
corresponds to the point with homogeneous coordinates [0 : . . . : 0 : 0 : 1], and by
connectedness of SO0(n, 1), its orbit is contained in the subset

O0 =
{[

z1 : . . . : zn : 1
2

n∑
k=1

z2
k : 1

]
, |zT z| < 2, z∗z < 1 +

∣∣∣12zT z
∣∣∣2}

The orbit of L0 is in fact equal to O0: we refer to pages 76 and 77 of [Mok89] for
details.

As in the case of domains of types I, II and III, one can describe the dual
realization and see SO0(n, 2)/SO(n) × SO(2) as a subset of the Grassmannian of
hyperplanes in Cn+2. This is done via the duality associated to the Hermitian form
h. As an example, the hyperplane associated to the complex line L0 is H0 = L⊥h

0
which is nothing but the hyperplane spanned by (e1, . . . , en, en+2 + ien+1), that is

13



the hyperplane spanned by V0 and the −i eigenline of J restricted to PC
0 . Again,

this extends to all q-isotropic h-negative complex lines by the action of SO0(n, 2).
To sum-up the previous discussion, the two dual Borel realizations of the sym-

metric space SO0(n, 2)/SO(n) × SO(2) as subsets of complex Grassmannians are
respectively:

Gr(1, n + 2)−
0 = {L ∈ G(1, n + 2), L is q-isotropic and h-negative.}

and

Gr(n + 1, n + 2)+
0 = {H ∈ G(n + 1, n + 2), H⊥h is q-isotropic and h-negative}.

To prove Proposition 2.4 in this case, it remains to describe the maps E and F in
terms of the previous discussion. The map E is defined as follows.

E : DIV
n −→ Gr(1, n + 2)−

0

z = (z1, . . . , zn) 7−→ C · w,

where w is the vector defined by

w =


z1
...

zn

zn+1
1

 with zn+1 = 1
2

n∑
i=1

z2
i . (13)

Using the same notation as above, the map F is given by

F : DIV
n −→ Gr(n + 1, n + 2)−

0

z = (z1, . . . , zn) 7−→ Span

 In 0
z1 . . . zn −1

2
∑n

k=1 z2
k

0 . . . 0 1

 , (14)

which we verify by checking that each column of the matrix is orthogonal to w with
respect to the Hermitian product.

The analog of proposition 2.6 is the following statement. For any z = (z1, . . . , zn)
and z′ = (z′

1, . . . , z′
n) in the topological closure DIV, we define zn+1 and z′

n+1 as in
(13). We then have:

Fz(E(z′)) = F (z) ∧ E(z′) = det


In 0 z′

1
...

...
z1 . . . zn −zn+1 z′

n+1
0 . . . 0 1 1

 ,

= − det


In 0 z′

1
...

...
0 . . . 1 1
z1 . . . zn −zn+1 z′

n+1

 ,

14



which, using the formula of the determinant of a block matrix gives

Fz(E(z′)) = −(zn+1 + z′
n+1) +

n∑
k=1

z̄kz′
k. (15)

3 Singular value decomposition and the geometry
of classical Hermitian symmetric spaces

In the next section we will describe the Hilbert metric on classical bounded symmet-
ric domains. To give an explicit expression of the distance between two points, we
will need a normalisation of pairs of points. It is given by the singular value decom-
position of complex matrices. The singular values of a complex matrix Z ∈ Mp,q(C),
where p ⩽ q are the square roots of the eigenvalues of ZZ∗. Denote these by
σ1(Z) ⩾ · · · ⩾ σp(Z) ⩾ 0.

For any tuple s = (s1, · · · , sr) of real numbers (where r ⩽ p,), we denote by
Σp,q(s) the matrix

Σp,q(s1, . . . , sr) :=



s1 0 . . . 0
. . . ...

...
sr 0 . . . 0

0 . . . 0 0 . . . 0
...

...
...

...
0 . . . 0 0 . . . 0


∈ Mp,q(C).

The following theorem is well-known:

Theorem (Singular values decomposition). Let Z ∈ Mp,q(C) be a matrix, where
p ⩽ q. Denote by ΣZ the matrix Σp,q(σ1(Z), · · · , σp(Z)). Then, there exist a pair
of matrices (U, V ) ∈ U(p) × U(q) such that

Z = UΣZV ∗. (16)

The action of the group SU(p, q) on the bounded symmetric domain DI
p,q is

given by (
A B
C D

)
· Z = (AZ + B)(CZ + D)−1.

Note that the condition that Z ∈ DI
p,q implies that the matrix (CZ+D) is invertible

(see Section (2.2) of Chapter 4 in [Mok89] for details). An important point is that
this action is transitive.

Indeed, given Z ∈ DI
p,q, we can write its singular value decomposition as Z =

UΣZV ∗. By a direct computation, we see that Iq − Z∗Z is conjugate by V ∗ to
Iq − Σ∗

ZΣZ = Iq − Σ2
Z . Therefore, the condition that Z ∈ DI

p,q implies that the
singular values of Z satisfy 0 ⩽ σi(Z) < 1. Denoting τi =

√
1 − σ2

i , we can thus
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consider the two square matrices of respective sizes p and q given by

T (Z) = U

( 1/τ1

. . .
1/τp

)
U∗ and T ′(Z) = V


1/τ1

. . .
1/τp

1
. . .

1

V ∗.

Then, the block-matrix

M =
(

T (Z) −T (Z)Z
−T ′(Z)Z∗ T ′(Z)

)
belongs to SU(p, q) and satisfies M · Z = 0; see e.g. [Mok89, Chap. 4, Section 2.2].

We now want to describe the action on pair of points, analogously to the case of
the bidisc, see Section 1.2.3. The action is not anymore transitive, as it preserves
any invariant metric. However, one can send any pair to a pair (0, S) where S is
a matrix of the form Σp,q(s1, . . . sp) with s1 ≥ · · · ≥ sp, as stated in the following
basic lemma:

Lemma 3.1. Let Z and Z ′ be two points in DI
p,q. There exists a unique ordered

p-uple 1 > σ1 ≥ · · · ≥ σp ≥ 0 and an element M ∈ SU(p, q) such that:

M · Z = 0 and M · Z ′ = Σp,q(σ1, . . . , σp).

Proof. We have seen above that there exist M0 sending Z to 0. Now, the stabilizer
of 0 is the product S(U(p) × U(q)) and a pair U, V in this stabilizer acts on W ′ by
(U, V ) · W ′ = UW ′V ∗. The lemma then follows directly from the singular value
decomposition.

The procedure carries on to other types, giving the descriptions in the next three
lemmas. We begin with Type II, for which the description depends on the parity
of n:

Lemma 3.2. Let W and W ′ be two points in DII
n . Then there exists a unique

ordered p-uple 1 > σ1 ≥ · · · ≥ σp ≥ 0 (where p = ⌊n/2⌋), and an element M ∈
SO∗(n) such that:

M · W = 0 and M · W ′ =



w(σ1)
. . .

w(σp)

 if n is even


w(σ1)

. . .
w(σp)

0

 if n is odd

,
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where
w(σ) =

[
0 σ

−σ 0

]
.

The singular values of W ′ are 1 > σ1 = σ1 ≥ σ2 = σ2 ≥ · · · ≥ σp = σp, with an
additional 0 when n is odd.

The case of Type III is easier to describe:

Lemma 3.3. Let W and W ′ be two points in DIII
n . Then there exists a unique

ordered n-uple 1 > σ1 ≥ · · · ≥ σn ≥ 0 and an element M ∈ Sp(n) such that:

M · W = 0 and M · W ′ = Σn,n(σ1, . . . , σn).

Eventually, we describe Type IV:

Lemma 3.4. Let W and W ′ be two points in DIV
n . Then there exists a unique

couple 1 > σ1 ≥ σ2 ≥ 0 and an element M ∈ SO0(2, n) such that:

M · W = 0 and M · W ′ = (σ1, iσ2, 0, . . . , 0) ∈ M1,n(C).

We now have reviewed the needed material on the bounded symmetric domains
and how the singular values decomposition helps understand the geometry. We can
proceed with the description of the Hilbert metric.

4 The Hilbert metric
We recall here the general definition of Hilbert metric given in [FGW20]. For V a
vector space, we denote by P the projective space P(V ) and by P′ its dual P(V ∨).
Given a point ω ∈ P and a form φ in P′ denote by ω and φ any lift to V and
V ∨. We consider two non-empty subsets Ω ⊂ P and Λ ⊂ P′ such that the following
non-vanishing condition holds (compare with Section 1.2.3).

∀ω ∈ Ω, ∀φ ∈ Λ φ(ω) ̸= 0. (17)

Geometrically, each point in P′ represents a hyperplane in P, and condition (17)
means that Ω is disjoint from all hyperplanes defined by points in Λ. We call such
a pair (Ω, Λ) admissible. We then define a cross-ratio between two forms and two
points:

Definition 4.1. Let (φ, φ′, ω, ω′) ∈ Λ2 ×Ω2. The cross-ratio [φ, φ′, ω, ω′] is defined
as

[φ, φ′, ω, ω′] = φ(ω)φ′(ω′)
φ(ω′)φ′(ω) (18)

We assume now that the set Λ is compact. The generalized Hilbert metric is
defined by the following:

Definition 4.2. The Hilbert semi-metric dΛ is the function defined on Ω × Ω by

dΛ(ω, ω′) = ln (max {|[φ, φ′, ω, ω′]| for φ, φ′ in Λ}) . (19)
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It is always a semi-metric [FGW20]: it is symmetric, respects the triangular
inequality, but may not separate points.

In the previous section, we have defined for each type of classical bounded sym-
metric domain two embeddings E : D → P and F : ∂SD → P′ (for the appropriate
dimension of projective spaces). Moreover, for all x ∈ D and z ∈ ∂SD, the form
F (z) does not vanish at E(x) by Proposition 2.4. In other terms:

Corollary 4.3. For any classical Hermitian symmetric space D = DI
p,q, DII

n , DIII
n ,

DIV
n , the pair (E(D), F (∂SD)) ⊂ P × P′ is admissible.

We can then define the Hilbert metric:

Definition 4.4. For any classical bounded symmetric domain D = DI
p,q, DII

n , DIII
n ,

DIV
n , we define the semi-metric dD(x, x′) := dF (∂SD)(E(x), E(x′)).

The goal of this section is to prove the following by actually computing the
Hilbert metric and its associated Finsler infinitesimal metric in each case:

Theorem 4.5. For any classical bounded symmetric domain D = DI
p,q, DII

n , DIII
n ,

DIV
n , the semi-metric dD is an actual metric, invariant by Aut(D) and comes from

a Finsler infinitesimal metric.
This Finsler metric is neither the Carathéodory nor the Bergman infinitesimal

metric if the symmetric space is not of rank one.

We prove this theorem through a case by case analysis. Note that the invariance
is already obtained by [FGW20] and we shall use it for computations.

4.1 Proof of Theorem 4.5 for type I
Here, the space V is Λq(Cp+q). Denote by D = DI

p,q and let Λ ⊂ P′ be the image
under F I of the Shilov boundary ∂SD. Pick x and x′ in D and denote by ω := EI(x),
ω′ = EI(x′). Following Definition 4.2, the Hilbert metric is defined by

dD(x, x′) = ln (max {|[φ, φ′, ω, ω′]| for φ, φ′ in Λ}) .

Note first that dD is clearly invariant under projective transformations preserving
Λ. In order to compute it and its associated Finsler metric, we use the projective
invariance and Lemma 3.1: we can assume that x is the origin 0 ∈ Mp,q(C) and
x′ = Σp,q(σ1, . . . , σp) is a diagonal matrix, where 1 > σ1 ≥ · · · ≥ σp ≥ 0. Denoting
by

O := EI(0) =
[

0
Iq

]
and ω′ := EI(x′) =

[
x′

Iq

]
,

and using (6), (7) and Proposition 2.6, we get that, for Z ∈ ∂SD and x ∈ D

F I
Z(EI(x)) = F I(Z) ∧ EI(x) = det(Ip − xZ∗).
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The cross-ratio [φ, φ′, ω, ω′] becomes thus after normalization of the pair of
points:

[F I
Z , F I

Z′ , O, ω′] = det(Ip − x′Z ′∗)
det(Ip − x′Z∗)

= det(Ip − Σp,q(σ1, . . . , σp)Z ′∗)
det(Ip − Σp,q(σ1, . . . , σp)Z∗) . (20)

We can now use (20) to obtain an explicit value for the Hilbert metric.

Proposition 4.6. Assume D = DI. The Hilbert distance to the origin of x =
Σp,q(σ1, · · · , σp), where 1 > σ1 ⩾ · · · ⩾ σp ⩾ 0, satisfies

dD(0, x) =
p∑

i=1
ln
(

σi + 1
1 − σi

)
(21)

Before proving Lemma 4.6, we note that (21) implies in particular that, if x ̸= 0
or, equivalently, if σ1 > 0, then dD(0, x) ̸= 0. In particular, dD separates points
and it is an actual metric (not just a semi-metric).

Proof of Proposition 4.6. Let us denote Σp,q(σ1, . . . , σp) = Σ for short. In order
to compute dD(0, x), we need to understand the range of | det(xZ∗ − Ip)| when Z
varies in the Shilov boundary, that is Z satisfies ZZ∗ = Ip. Note that the singular
values of such a matrix Z are all equal to 1. Now, for a given Z in the Shilov
boundary, let A = xZ∗. First we note that in this situation, we have AA∗ = ΣΣ∗

(this follows from the fact that all singular values of Z are 1 by a straightforward
computation). This fact implies first that xZ∗ and x have the same singular values,
and secondly that A is a normal matrix. As a consequence, the singular values of
A are exactly the absolute value of its eigenvalues. It follows from this discussion
that if the eigenvalues of A are λ1, · · · λp (numbered so that σi(A) = |λi|), then we
have

| det(xZ∗ − Ip)| =
p∏

i=1
|λi − 1|

In particular, we observe that
p∏

i=1
(1 − σi) ⩽ | det(xZ∗ − Ip)| ⩽

p∏
i=1

(1 + σi). (22)

But the right and left-hand side of the double inequality (22) are respectively at-
tained by | det(xZ∗ − Ip)| precisely when Z = Z+ = Σp,q(1, . . . , 1) and Z− = −Z+.
This proves that the max in (20) is obtained precisely when (Z, Z ′) = (Z−, Z+),
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which yields (21):

d(0, x) = ln
(

max
Z,Z′∈∂SDI

p,q

| det(xZ∗ − Ip)|
| det(xZ ′∗ − Ip)|

)

= ln
(

| det(xZ∗
− − Ip)|

| det(xZ∗
+ − Ip)|

)
=

p∑
i=1

ln
(

σi + 1
1 − σi

)
.

This concludes the proof.

As a straightforward consequence, we obtain the following by differentiating in
(21).

Corollary 4.7. Let ξ ∈ T0Ω ≃ Mp,q be a tangent vector at the origin 0 ∈ DI
p,q,

with singular values σ1 ≥ · · · ≥ σp ≥ 0. The Finsler norm of ξ is

||ξ||O = 2(σ1 + · · · + σp).

Corollary (4.7) implies directly that the Hilbert metric is neither the Bergman
nor the Carathéodory metric, since these two metrics respectively correspond to the
L2 and L∞ infinitesimal metrics:

• the Carathéodory infinitesimal metric gives ||ξ||C O = max{σ1, · · · , σp} (see
[Kob70, Suz84]).

• the Bergman infinitesimal metric at the origin is given by a multiple of
||ξ||BO =

√
σ2

1 + · · · + σ2
p depending on normalizations (see [Mor56]).

This finishes the proof of Theorem 4.5 in the case of the symmetric spaces DI
p,q.

4.2 Proof of Theorem 4.5 for type II and III
The situation for types II and III is analogous. Lemmas 3.2 and 3.3 provide a
normalized form for pairs of points which allows an explicit computation in terms
of singular values. The following proposition sums-up the results in that case.

Proposition 4.8. Assume D = DII
n or DIII

n . If the singular values of x ∈ D are
1 > σ1 ≥ · · · ≥ σn ≥ 0, then:

dD(0, x) =
n∑

i=1
ln
(

σi + 1
1 − σi

)
.

For ξ ∈ T0Ω ≃ Mn a tangent vector at the origin 0 ∈ D, with singular values
σ1 ≥ · · · ≥ σn ≥ 0, the Finsler norm of ξ at the origin is

||ξ||O = 2(σ1 + · · · + σn).
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Here again, the expression of the Finsler norm shows that the metric is different
from both the Bergman or Carathéodory ones (see the discussion at the end of the
previous section).

Proof. The proof follows along the same lines as for Proposition 4.6 and Lemma
4.7. One verifies that the values of the determinants are as follows.

• For type III, not only is ∂SDIII ⊂ ∂SDI, but also ∂SDIII contains the two
points Z− and Z+ defined in the proof of Proposition 4.6. They are clearly
the arguments of the maximum for DIII as well.

• for type II, Z− and Z+ do not anymore belong to the Shilov boundary, but
one can use instead Z± = ±Z0, where Z0 is the block diagonal matrix with
blocks

( 0 −1
1 0

)
, as in the definition of DII, see (3).

Theorem 4.5 is then proven for Types II and III.

4.3 Proof of Theorem 4.5 for type IV
We now turn to the last Type IV. We follow the same strategy: we compute
the distance between any two points by considering the normalized form given by
Lemma 3.4. Recall that (ei)n+2

i=1 is the canonical basis of Cn+2. We are going to use
the homogeneous coordinates coming from the basis(

e1, . . . , en,
en+1 − ien+2√

2
,

en+1 − ien+2√
2

)
in which the form q is given by the matrix

J =

In

−1
−1

 .

Recall that if z ∈ ∂S(DIV) is a point in the Shilov boundary and w ∈ DIV, then
equation (15) gives a formula for Fz(E(w)).

The following Lemma sums-up the necessary quantities to compute the distance
between two (normalized) points. The proof is straightforward using the descrip-
tions of the Harish-Chandra embeddings at the end of Section 2.2.2, together with
Equation (15).

Lemma 4.9. Let E and F be the maps described by (13) and (14).

1. The image of the origin 0 ∈ Cn is

E(0) = [0 : . . . : 0 : 0 : 1]T .

2. If x = (x1, ix2, 0, . . . , 0) with xi ∈ R, then

E(x) =
[
x1 : ix2 : 0 : . . . : 0 : 1

2(x2
1 − x2

2) : 1
]T

.
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3. Let v = eiθ(v1, . . . , vn), where vi ∈ R, be a point in the Shilov boundary of
DIV. Then

E(v) =
[
eiθv1 : . . . : eiθvn : e2iθ : 1

]T

.

4. Moreover, the values of linear forms associated to v at the normalized pair of
points are given by:

Fv(E(0)) = −e−2iθ

Fv(E(x)) = e−iθ

(
v1x1 + iv2x2 − x2

1 − x2
2

2 eiθ − e−iθ

)
In order to compute the value of the Hilbert distance we need to estimate

|Fz(E(x))|.

Lemma 4.10. Let z− and z+ be the two points in the Shilov boundary given by
z± = (±

√
2, 0, . . . , 0). Then, for any z ∈ ∂SDIV and any x = (x1, ix2, 0, . . .) ∈ DIV

with x1 ≥ x2, we have

1 + x2
1 − x2

2
2 −

√
2x1 = |Fz−E(x)| ≤ |FzE(x)| ≤ |Fz+E(x)| = 1 + x2

1 − x2
2

2 +
√

2x1.

Proof. Let us denote by V1 and V2 the quantities

V1 = v1x1 + iv2x2

V2 = eiθ + e−iθ x2
1 − x2

2
2

= cos θ

(
1 + x2

1 − x2
2

2

)
+ i sin(θ)

(
1 − x2

1 − x2
2

2

)
We have seen in Lemma 4.9 that Fz(E(x)) = e−iθ (V1 − V2), so that we need to
estimate |V1 − V2|. Remark that

• On the one hand, since v belongs to the Shilov boundary, so that (v1, v2)
verify v2

1 + v2
2 ≤ 2. Hence, the point V1 ranges over of the ellipse E1 which

is centered at 0, and whose axes are horizontal (with half-length x1
√

2) and
vertical (with half-length x2

√
2).

• On the other hand, as θ varies, V2 ranges over the ellipse E2 with horizontal
axis having half-length 1 + (x2

1 − x2
2)/2 and vertical axis having half-length

1 − (x2
1 − x2

2)/2 (see Figure 2).

• The fact that x ∈ O gives

x2
1 + x2

2 < 1 +
(

x2
1 − x2

2
2

)2

,
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which implies in turn that

2x2
1 = (x2

1 + x2
2) + (x2

1 − x2
2)

< 1 +
(

x2
1 − x2

2
2

)2

+ (x2
1 − x2

2)

=
(

1 + x2
1 − x2

2
2

)2

.

As a consequence we have
√

2x1 < 1 + x2
1 − x2

2
2 ,

and analogously we obtain
√

2x2 < 1 − x2
1 − x2

2
2 .

This means that E1 is contained in the interior of E2. The maximum of |V1 − V2| is
thus attained when v1 =

√
2, v2 = 0 and θ = π (which correspond to two marked

black points on Figure 2).
The minimum value of |V1 − V2| is attained either along the horizontal axis (for

v1 =
√

2, v2 = 0, θ = 0), or along the vertical axis (for v1 = 0, v2 =
√

2, θ = π/2).

• In the first case, the minimum equals A = 1 + x2
1 − x2

2
2 − x1

√
2, which after a

little rewriting is seen to be equal to(
1 − x1 + x2√

2

)(
1 − x1 − x2√

2

)
.

• In the second case the minimum is equal to B = 1 − x2
1 − x2

2
2 − x2

√
2, which

is equal to (
1 − x1 + x2√

2

)(
1 + x1 − x2√

2

)
.

The last two quantities are positive as values of |V1 − V2|. Together with x1 ⩾ x2,
this implies that 1 − (x1 + x2)/

√
2 ⩾ 0. Now, the difference is

A − B = −
√

2
(

1 − x1 + x2√
2

)
(x1 − x2) < 0

So the minimum is attained for v1 =
√

2, v2 = 0, θ = 0 and is equal to A.

Proposition 4.11. Assume D = DIV
n . Let x ∈ D be such that x = (x1, ix2, 0 . . . , 0)

with x1 ≥ x2 ≥ 0. Then we have:

dD(0, x′) = ln
(

1 + x2
1−x2

2
2 +

√
2x1

1 + x2
1−x2

2
2 −

√
2x1

)
. (23)
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A

B
ix2

√
2

i

(
1− x21 − x22

2

)

max value of |V1 − V2| 1 +
x21 − x22

2

x1
√
2

Figure 2: The two ellipses E1 and E2 and the min and max values for |V1 − V2|.

For ξ = (ξ1, iξ2, 0, . . . , 0) ∈ T0D (with ξ1, ξ2 ∈ R) a tangent vector at the origin
0 ∈ DIV

n , the Finsler norm of ξ at the origin is

||ξ||0 = 2
√

2 max(|ξ1|, |ξ2|).

Proof. The proof of Proposition 4.11 is straightforward from Lemma 4.10: if x is as
above, then the maximum of the cross-ratio is attained for z− = (−x1

√
2, 0, . . . , 0)

and z+ = (x1
√

2, 0, . . . , 0) as in Lemma 4.10. This gives the expression for the
distance announced in (23). The Finsler norm is obtained by differentiating the
distance function. It suffices to consider ξ1 ≥ ξ2 ≥ 0, and we obtain in this case
||ξ||0 = 2

√
2ξ1. This implies the formula.

The last point to prove in the main theorem is that the metric is not equal to
the Carathéodory metric. This follows from the following lemma.

Lemma 4.12. For ξ = (ξ1, iξ2, 0, . . . , 0) ∈ T0D (with ξ1, ξ2 ∈ R) a tangent vector
at the origin 0 ∈ DIV

n , the Carathéodory norm of ξ at the origin is

||ξ||car
0 = 1√

2
(|ξ1| + |ξ2|).

Proof. In order to prove the lemma we come back to the initial example: the bidisc
U2, see Section 1.2. In fact, the bidisc U2 identifies with the domain DIV

2 through the
map (z, w) 7→ 1√

2 (z+w, i(z−w)). The Hilbert metric for DIV
2 given above coincides

with the one for U2 given in the introduction, up to a factor 2. Indeed, a tangent
vector (ξ, η) at (0, 0) ∈ U2 is sent to the tangent vector 1√

2 (ξ +η, i(ξ −η)) ∈ T0DIV
2 .

Given a tangent vector (ξ, η) (with ξ, η ∈ R) at (0, 0) in the bidisc, we obtain
from the previous proposition, for its image (ξ1, iξ2) = 1√

2 (ξ + η, i(ξ − η)) ∈ T0DIV
2

the value of its norm 2
√

2 max(|ξ1|, |ξ2|) = 2 max(|ξ + η|, |ξ − η|), which equals
2(|ξ| + |η|).

The Carathéodory metric on the bidisc is, on the other hand different, and equal
to max(|ξ|, |η|). Using the argument of [Kob70] section IV.2 example 2, applying

24



the same change of variables as above, the Carathéodory norm of (ξ1, iξ2, 0, . . . , 0) ∈
T0D is 1√

2 (|ξ1| + |ξ2|).
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