
A complex hyperbolic Riley slice

JOHN R. PARKER
PIERREWILL

We study subgroups of PU(2, 1) generated by two non-commuting unipotent maps
A andB whose productAB is also unipotent. We callU the set of conjugacy classes
of such groups. We provide a set of coordinates onU that make it homeomorphic
to R

2 . By considering the action on complex hyperbolic spaceH2
C

of groups
in U , we describe a two dimensional discZ in U that parametrises a family of
discrete groups. As a corollary, we give a proof of a conjecture of Schwartz for
(3, 3,∞)-triangle groups. We also consider a particular group on the boundary
of the discZ where the commutator [A,B] is also unipotent. We show that the
boundary of the quotient orbifold associated to the latter group gives a spherical
CR uniformisation of the Whitehead link complement.

22E40; 57M50,57S30

1 Introduction

1.1 Context and motivation

The framework of this article is the study of the deformations of a discrete subgroupΓ
of a Lie groupH in a Lie groupG containingH . This question has been addressed in
many different contexts. A classical example is the one where Γ is a Fuchsian group,
H = PSL(2,R) andG = PSL(2,C). WhenΓ is discrete, such deformations are called
quasi-Fuchsian. We will be interested in the case whereΓ is a discrete subgroup of
H = SO(2,1) andG is the group SU(2,1) (or their natural projectivisations overR
andC respectively). The geometrical motivation is very similar: In the classical case
mentioned above, PSL(2,C) is the orientation preserving isometry group of hyperbolic
3-spaceH3 and a Fuchsian group preserves a totally geodesic hyperbolic planeH2

in H3. In our caseG = SU(2,1) is (a triple cover of) the holomorphic isometry
group of complex hyperbolic 2-spaceH2

C
, and the subgroupH = SO(2,1) preserves a

totally geodesic Lagrangian plane isometric toH2. A discrete subgroupΓ of SO(2,1)
is calledR-Fuchsian. A second example of this construction is whereG is again
SU(2,1) but nowH = S

(
U(1)×U(1,1)

)
. In this caseH preserves a totally geodesic

http://www.ams.org/mathscinet/search/mscdoc.html?code=22E40,(57M50,57S30)
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complex line inH2
C

. A discrete subgroup ofH is calledC-Fuchsian. Deformations
of eitherR-Fuchsian orC-Fuchsian groups in SU(2,1) are called complex hyperbolic
quasi-Fuchsian. See [25] for a survey of this topic.

The title of this article refers to the so-calledRiley slice of Schottky space(see [19]
or [1]). Riley considered the space of conjugacy classes of subgroups of PSL(2,C)
generated by two non-commuting parabolic maps. This space may be identified with
C−{0} under the map that associates the parameterρ ∈ C−{0} with the conjugacy
class of the groupΓρ , where

Γρ =

〈[
1 1
0 1

]
,

[
1 0
ρ 1

]〉
.

Riley was interested in the set of those parametersρ for which Γρ is discrete. He
was particularly interested in the (closed) set whereΓρ is discrete and free, which
is now called the Riley slice of Schottky space [19]. This work has been taken up
more recently by Akiyoshi, Sakuma, Wada and Yamashita. In their book [1] they
illustrate one of Riley’s original computer pictures1, Figure 0.2a, and their version of
this picture, Figure 0.2b. Riley’s main method was to construct the Ford domain for
Γρ . The different combinatorial patterns that arise in this Ford domain correspond to
the differently coloured regions in these figures from [1]. Riley was also interested
in groupsΓρ that are discrete but not free. In particular, he showed thatwhen ρ is
a complex sixth root of unity then the quotient of hyperbolic3-space byΓρ is the
figure-eight knot complement.

1.2 Main definitions and discreteness result

The direct analogue of the Riley slice in complex hyperbolicplane would be the set
of conjugacy classes of groups generated by two non-commuting, unipotent parabolic
elementsA and B of SU(2,1). (Note that in contrast to to PSL(2,C), there exist
parabolic elements in SU(2,1) that are not unipotent. In fact, there is a 1-parameter
family of parabolic conjugacy classes, see for instance Chapter 6 of [15].) This choice
would give a four dimensional parameter space, and we require additionally thatAB is
unipotent; making the dimension drop to 2. Specifically, we define

(1) U =

{
(A,B) ∈ SU(2,1)2 : A, B, AB all unipotent andAB 6= BA

}
/SU(2,1).

Following Riley, we are interested in the (closed) subset ofU where the group〈A,B〉
is discrete and free and our main method for studying this setis to construct the Ford

1JRP has one of Riley’s printouts of this picture dated 26th March 1979
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domain for its action on complex hyperbolic spaceH2
C

. We shall also indicate various
other interesting discrete groups inU but these will not be our main focus.

In Section3.1, we will parametriseU so that it becomes the open square (−π/2, π/2)2 .
The parameters we use will be the Cartan angular invariantsα1 andα2 of the triples
of (parabolic) fixed points of (A,AB,B) and (A,AB,BA) respectively (see Section2.6
for the definitions). Note that the invariantsα1 andα2 are defined to lie in the closed
interval [−π/2, π/2]. Our assumption thatA andB don’t commute implies that neither
α1 nor α2 can equal±π/2 (see Section3.1).

Whenα1 andα2 are both zero, that is at the origin of the square, the group〈A,B〉 is
R-Fuchsian. The quotient of the Lagrangian plane preserved by 〈A,B〉 is a hyperbolic
three times punctured sphere where the three (homotopy classes of) peripheral elements
are represented by (the conjugacy classes of)A, B and AB. The spaceU can thus
be thought of as the slice of the SU(2,1)-representation variety of the three times
punctured sphere group defined by the conditions that the peripheral loops are mapped
to unipotent isometries.

We can now state our main discreteness result.

Theorem 1.1 Suppose thatΓ = 〈A,B〉 is the group associated to parameters(α1, α2)
satisfyingD

(
4 cos2(α1),4 cos2(α2)

)
> 0, whereD is the polynomial given by

D(x, y) = x3y3− 9x2y2− 27xy2
+ 81xy− 27x− 27.

ThenΓ is discrete and isomorphic to the free groupF2. This region isZ in Figure1.

Note that at the centre of the square, we haveD(4,4) = 1225 for theR-Fuchsian
representation. The regionZ whereD > 0 consists of groupsΓ whose Ford domain
has the simplest possible combinatorial structure. It is the analogue of the outermost
region in the two figures from Akiyoshi, Sakuma, Wada and Yamashita [1] mentioned
above.

1.3 Decompositions and triangle groups

We will prove in Proposition3.2 that all pairs (A,B) in U admit a (unique) decompo-
sition of the form

(2) A = STandB = TS,

whereS andT are order three regular elliptic elements (see Section2.2). In turn, the
group generated byA andB has index three in the one generated byS andT . When
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0 R-Fuchsian representation of the 3-punctured sphere group.
1 The horizontal segment marked 1 corresponds to even word subgroups of ideal

triangle groups, see [16, 30, 31, 33].
2 Last ideal triangle group, contained with index three in a group uniformising the

Whitehead link complement obtained by Schwartz, see [30, 31, 33].
3 The vertical segment marked 3 corresponds to bending groups that have been

proved to be discrete in [37].
4 (3, 3, 4)-group uniformising the figure eight knot complement. Obtained by

Deraux and Falbel in [8].
5 (3, 3, n)-groups, proved to be discrete by in [26]. On this picture 46 n 6 8.
6 Uniformisation of the Whitehead link complement we obtainin this work.
7 Subgroup of the Eisenstein-Picard Lattice, see [14].

Figure 1: The parameter space forU . The exterior curveP corresponds to classes of groups
for which [A,B] is parabolic. The central dashed curve bounds the regionZ where we prove
discreteness. The labels correspond to various special values of the parameters. Points with
the same labels are obtained from one another by symmetries about the coordinate axes. The
results of Section3.3 imply that they correspond to groups conjugate in Isom(H2

C
).
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eitherα1 = 0 or α2 = 0 there is a further decomposition making〈A,B〉 a subgroup
of a triangle group.

Deformations of triangle groups in PU(2,1) have been considered in many places,
among which ([16, 28, 32, 26]). A complex hyperbolic (p,q, r)-triangle is one gen-
erated by three complex involutions about (complex) lines with pairwise anglesπ/p,
π/q, andπ/r wherep, q and r are integers or∞ (when one of them is∞ the corre-
sponding angle is 0). Groups generated by complex reflections of higher order are also
interesting, see [22] for example, but we do not consider them here. For a given triple
(p,q, r) with min{p,q, r} > 3 the deformation space of the (p,q, r)-triangle group is
one dimensional, and can be thought of as the deformation space of theR-Fuchsian
triangle group. In [32], Schwartz develops a series of conjectures about which points
in this space yield discrete and faithful representations of the triangle group. For a
given triple (p,q, r), Conjecture 5.1 of [32] states that a complex hyperbolic (p,q, r)-
triangle group is a discrete and faithful representation ofthe Fuchsian one if and only
if the wordsI iI j Ik and I i I jIkI j (with i, j, k pairwise distinct) are non-elliptic. Moreover,
depending onp, q and r he predicts which of these words one should choose.

We now explain the relationship between triangle groups andgroups on the axes of
our parameter spaceU . First consider groups withα2 = 0. Let I1, I2 and I3 be
the involutions fixing the complex lines spanned by the fixed points of (A, B), of
(A, AB) and of (B, AB) respectively. Ifα2 = 0 thenA andB may be decomposed as
A = I2I1 and B = I1I3, and also〈A,B〉 has index 2 in〈I1, I2, I3〉 (Proposition3.6).
SinceI2I1 = A, I1I3 = B and I2I3 = AB are all unipotent, we see that〈I1, I2, I3〉 is a
complex hyperbolic ideal triangle group, as studied by Goldman and Parker [16] and
Schwartz [30, 31, 33]. Their results gave a complete characterisation of when such a
group is discrete. (Our Cartan invariantα1 is the same as the Cartan invariantA used
in these papers.)

Theorem 1.2 (Goldman, Parker [16], Schwartz [31, 33]) Let I1, I2, I3 be complex
involutions fixing distinct, pairwise asymptotic complex lines. LetA be the Cartan
invariant of the fixed points ofI1I2, I2I3 and I3I1 .

(1) The group〈I1, I2, I3〉 is a discrete and faithful representation of an(∞,∞,∞)-
triangle group if and only ifI1I2I3 is non-elliptic. This happens when|A| ≤
arccos

√
3/128.

(2) When I1I2I3 is elliptic the group is not discrete. In this casearccos
√

3/128<

|A| < π/2.

Whenα1 = 0 we get an analogous result. In this case, it is the order three mapsS and
T from (2) which decompose into products of complex involutions. Namely, if α1 = 0,
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there exist three involutionsI1 , I2 , I3 , each fixing a complex line, so thatS= I2I1 and
T = I1I3 have order 3 andST= A = I2I3 is unipotent (Proposition3.6). Furthermore,
writing B = TS= I1I3I2I1 we have [A,B] = (ST−1)3 = (I2I1I3I1)3. A corollary of
Theorem1.1 is a statement analogous to Theorem1.2 for (3,3,∞)-triangle groups,
proving a special case of Conjecture 5.1 of Schwartz [32]. Compare with the proof of
this conjecture for (3,3,n)-triangle groups given by Parker, Wang and Xie in [26].

Theorem 1.3 Let I1, I2 and I3 be complex involutions fixing distinct complex lines
and so thatS= I2I1 and T = I1I3 have order three andA = ST= I2I3 is unipotent.
Let A be the Cartan invariant of the fixed points ofA, SAS−1 andS−1AS. The group
〈I1, I2, I3〉 is a discrete and faithful representation of the(3,3,∞)-triangle group if and
only if I2I1I3I1 = ST−1 is non-elliptic. This happens when|A| ≤ arccos

√
3/8.

Theorem1.3 follows directly from Theorem1.1 by restricting it to the case where
(α1, α2) = (0,A). These groups are a special case of those studied by Will in [37]
from a different point of view. There, using bending he proved that these groups are
discrete as long as|A| = |α2| ≤ π/4. The gap between the vertical segment in Figure
1 and the curve where [A,B] is parabolic illustrates the non-optimality of the resultof
[37].

1.4 Spherical CR uniformisations of the Whitehead link complement

The quotient ofH2
C

by anR or C-Fuchsian punctured surface group is a disc bundle
over the surface. If the surface is non-compact, this bundleis trivial. Its boundary
at infinity is a circle bundle over the surface. Such three-manifolds appearing on the
boundary at infinity of quotients ofH2

C
are naturally equipped with aspherical CR

structure, which is the analogue of the flat conformal structure in the real hyperbolic
case. These structures are examples of (X,G)-structure, whereX = S3 = ∂H2

C

and G = PU(2,1). To any such structure on a three manifoldM are associated a
holonomy representationρ : π1(M) −→ PU(2,1) and a developing mapD = M̃ −→
X. This motivates the study of representations of fundamental groups of hyperbolic
three manifolds in PU(2,1) and PGL(3,C) initiated by Falbel in [11], and continued
in [13, 12] (see also [18]). Among PU(2,1)-representations,uniformisations(see
Definition 1.3 in [7]) are of special interest. There, the manifold at infinity isthe
quotient of the discontinuity region by the group action.

For parameter values in the open regionZ , the manifold at infinity ofH2
C
/〈S,T〉 is a

Seifert fibre space over a (3,3,∞)-orbifold. This is obviously true in the case where
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α1 = α2 = 0 (the central point on Figure1). Indeed, for these values the group
〈S,T〉 preservesH2

R
(it is R-Fuchsian) and the fibres correspond to boundaries of real

planes orthogonal toH2
R

. As the combinatorics of our fundamental domain remains
unchanged inZ , the topology of the quotient is constant inZ .

Things become interesting if we deform the group in such a waythat a loop on the
surface is represented by a parabolic map: the topology of the manifold at infinity can
change. A hyperbolic manifold arising in this way was first constructed by Schwartz:

Theorem 1.4 (Schwartz [30]) Let I1, I2 and I3 be as in Theorem1.2. Let A be
the Cartan invariant of the fixed points ofI1I2 , I2I3 and I3I1 and letS be the regular
elliptic map cyclically permuting these points. WhenI1I2I3 is parabolic the quotient of
H2

C
by the group〈I1I2,S〉 is a complex hyperbolic orbifold with isolated singularities

whose boundary at infinity is a spherical CR uniformisation of the Whitehead link
complement. These groups have Cartan invariantA = ± arccos

√
3/128,

Schwartz’s example provides a uniformisation of the Whitehead link complement.
More recently, Deraux and Falbel described a uniformisation of the complement of the
figure eight knot in [8]. In [6], Deraux proved that this uniformisation was flexible:
he described a one parameter deformation of the uniformisation described in [8], each
group in the deformation being a uniformisation of the figureeight knot complement.

Our second main result concerns the (3,3,∞) triangles group from Theorem1.3, and
it states that whenI2I1I3I1 is parabolic the associated groups give a uniformisation of
the Whitehead link complement which is different from Schwartz’s one. Indeed in our
case the cusps of the Whitehead link complement both have unipotent holonomy. In
Schwartz’s case, one of them is unipotent whereas the other is screw-parabolic. The
representation of the Whitehead link group we consider herewas identified from a
different point of view by Falbel, Koseleff and Rouillier intheir census of PGL(3,C)
representations of knot and link complement groups, see page 254 of [13].

Theorem 1.5 Let I1, I2 andI3 be as in Theorem1.3and defineS= I2I1 andA = I2I3.
LetA be the Cartan invariant of the fixed points ofA, SAS−1 andS−1AS. WhenI2I1I3I1

is parabolic the quotient ofH2
C

by 〈A,S〉 is a complex hyperbolic orbifold with isolated
singularities whose boundary is a spherical CR uniformisation of the Whitehead link
complement. These groups have Cartan invariantA = ± arccos

√
3/8.

Schwartz’s uniformisation of the Whitehead link complement corresponds to each of
the endpoints of the horizontal segment, marked 2 in Figure1, and our uniformisation
corresponds to each of the points on the vertical axis, marked 6 in that figure.
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It should be noted that the image of the holonomy representation of our uniformisation
of the Whitehead link complement is the group generated byS and T , which is
isomorphic toZ3 ∗ Z3. We note in Proposition3.3 that the fundamental group of the
Whitehead link complement surjects ontoZ3 ∗ Z3. Furthermore the groupZ3 ∗ Z3 is
the fundamental group of the (double) Dehn filling of the Whitehead link complement
with slope−3 at each cusp in the standard marking (the same as in SnapPy).This
Dehn filling is non-hyperbolic, as can be easily verified using the software SnapPy
[5] (it also follows from Theorem 1.3. in [20]). This fact should be compared
with Deraux’s remark in [7] that all known examples of non-compact finite volume
hyperbolic manifold admitting a spherical CR uniformisation also admit an exceptional
Dehn filling which is a Seifert fibre space over a (p,q, r)-orbifold with p,q, r,> 3.

1.5 Ideas for proofs.

Proof of Theorem 1.1. The rough idea of this proof is to construct fundamental
domains for the groups corresponding to parameters in the region Z . To this end,
we construct theirFord domains, which can be thought of as a fundamental domain
for a coset decomposition of the group with respect to a parabolic element (here, this
element isA = ST). The Ford domain is invariant by the subgroup generated byA and
we obtain a fundamental domain for the group by intersectingthe Ford domain with a
fundamental domain for the subgroup generated byA. The sides of the Ford domain
are built out of pieces ofisometric spheresof various group elements (see Sections6
and4) This method is classical, and is described in the case of thePoincaŕe disc in
Section 9.6 of Beardon [2].

We thus have to consider a 2-parameter family of such polyhedra, and the polynomialD
controls the combinatorial complexity of the Ford domain within our parameter space
for U in the following sense. The null-locus ofD is depicted on Figure1 as a dashed
curve, which bounds the regionZ . In the interior of this curve, the combinatorics of
our domain is constant, and stays the same as it is for theR-Fuchsian group. On the
boundary ofZ the isometric spheres of the elementsS, S−1 and T have a common
point. More precisely, the isometric spheres ofS−1 and T intersect for all values of
α1 andα2, but insideZ their intersection is contained in one of the two connected
components of the complement of the isometric sphere ofS in H2

C
. When one reaches

the boundary curve ofZ , one of their intersection points lies on the isometric sphere
of S.

We believe that it should be possible to mimic Riley’s approach and to construct regions
in our parameter space where the Ford domain is more complicated. However, as with
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Riley’s work, this may only be reasonable via computer experiments.

Proof of Theorem 1.5. The groups where [A,B] = (I2I1I3I1)3 is parabolic are the
focus of Section6 and Theorem1.5 will follow from Theorem6.4. In order to prove
this result, we analyse in details our fundamental domain, and show that it gives
the classical description of the Whitehead link complementfrom an ideal octahedron
equipped with face identifications. The Whitehead link is depicted in Figure2. We
refer to Section 10.3 of Ratcliffe [29] and Section 3.3 of Thurston [35] for classical
information about the topology of the Whitehead link complement and its hyperbolic
structure.

1.6 Further remarks

Other discrete groups appearing inU . As well as the ideal triangle groups and
bending groups discussed above, there are some other previously studied discrete
groups in this family. We give them in (α1, α2) coordinates and illustrate them in
Figure1.

(1) The groups corresponding toα1 = 0 and α2 = ± arccos
√

1/8 have been
studied in great detail by Deraux and Falbel who proved that they give a spherical
CR uniformisation of the figure-eight knot complement [8]. This illustrates the
fact that there is no statement for Theorem1.3 analogous to the second part
of Theorem1.2: the group from [8] is contained in a discrete (non-faithful)
(3,3,∞) triangle groups whereI2I1I3I1 is elliptic.

(2) The groups with parametersα1 = 0 and for whichST−1 has ordern correspond
to the (3,3,n) triangle groups studied by Parker, Wang and Xie in [26]. The
corresponding value ofα2 is given byα2 = ± arccos

√
(4 cos2(π/n)− 1)/8.

(3) The groups whereα1 = ±π/6 andα2 = ±π/3 are discrete, since they are
subgroups of the Eisenstein-Picard lattice PU(2,1;Z[ω]), whereω is a cube
root of unity. That lattice has been studied by Falbel and Parker in [14].

Comparison with the classical Riley slice. There is, conjecturally, one extremely
significant difference between the classical Riley slice and our complex hyperbolic
version. The boundary of the classical Riley slice is not a smooth curve and has a
dense set of points where particular group elements are parabolic (see for instance
the beautiful picture in the introduction of [19]). On the other hand, we believe
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that in the complex hyperbolic case, discreteness is completely controlled by the
commutator [A,B], or equivalentlyST−1, as is true for the two cases whereα1 = 0
or α2 = 0 described above. If this is true, then the boundary of the set of (classes
of) discrete and faithful representations in SU(2,1) of the three punctured sphere
group with unipotent peripheral holonomy is piecewise smooth, and it is given by the
simple closed curveP in Figure1. This curve provides a one parameter family of
(conjecturally discrete) representations that connects Schwartz’s uniformisation of the
Whitehead link complement to ours. We believe that all theserepresentations give
uniformisations of the Whitehead link complement as well, but we are not able to
prove this with our techniques. What seems to happen is that if one deforms our
uniformisation by following the curveP , the number of isometric spheres contributing
to the boundary at infinity of the Ford domain becomes too large to be understood using
our techniques. Possibly, this is because deformations of fundamental domains with
tangencies between bisectors is complicated. This should be compared to Deraux’s
construction [6] of deformations of the figure-eight knot complement mentioned above.
There, he had to use a different domain to the one in [8], which also has tangencies
between the bisectors.

1.7 Organisation of the article.

This article is organised as follows. In Section2 we present the necessary background
facts on complex hyperbolic space and its isometries. In Section 3, we describe
coordinates on the space of (conjugacy classes) of group generated by two unipotent
isometries with unipotent product. Section4 is devoted to the description of the
isometric spheres that bound our fundamental domains. We state and apply the Poincaré
polyhedron theorem in Section5. In Section6, we focus on the specific case where the
commutator becomes parabolic, and prove that the corresponding manifold at infinity
is homeomorphic to the complement of the Whitehead link. In Section7, we give the
technical proofs which we have omitted for readability in the earlier sections.
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questions. This research was financially supported by ANR SGT and an LMS Scheme



A complex hyperbolic Riley slice 11

Figure 2: The Whitehead link
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2 Preliminary material

Throughout we will work in the complex hyperbolic plane using a projective model
and will therefore pass from projective objects to lifts of them. Our convention is that
the same letter will be used to denote a point inCP2 and a lift of it toC

3 with a bold
font for the lift. As an example, each timep is a point ofH2

C
, p will be a lift of p to

C
3.

2.1 The complex hyperbolic plane

The standard reference for complex hyperbolic space is Goldman’s book [15]. A lot of
information can also be found in Chen and Greenberg’s paper [3], see also the survey
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articles [25, 38].

Let H be the following matrix

H =




0 0 1
0 1 0
1 0 0


 .

The Hermitian product onC3 associated toH is given by 〈x, y〉 = y∗Hx. The
corresponding Hermitian form has signature (2,1), and we denote byV− (respectively
V0 andV+ ) the associated negative (respectively null and positive)cones inC3.

Definition 1 The complex hyperbolic planeH2
C

is the image ofV− in CP2 by
projectivisation and its boundary∂H2

C
is the image ofV0 in CP2. The complex

hyperbolic plane is endowed with theBergman metric

ds2
=
−4
〈z, z〉2 det

( 〈z, z〉 〈dz, z〉
〈z,dz〉 〈dz,dz〉

)
.

The Bergman metric is equivalent to theBergman distance functionρ defined by

cosh2
(
ρ(m,n)

2

)
=
〈m,n〉〈n,m〉
〈m,m〉〈n,n〉 ,

wherem andn are lifts of m andn to C
3.

Let z = [z1, z2, z3]T be a (column) vector inC3 − {0}. Thenz ∈ V− (respectively
V0) if and only if 2Re(z1z3)+ |z2|2 < 0 (respectively= 0). Vectors inV0 with z3 = 0
must havez2 = 0 as well. Such a vector is unique up to scalar multiplication. We
call such its projectivisation thepoint at infinity q∞ ∈ ∂H2

C
. If z3 6= 0 then we

can use inhomogeneous coordinates withz3 = 1. Writing 〈z, z〉 = −2u we give
H2

C
∪ ∂H2

C
− {q∞} horospherical coordinates(z, t,u) ∈ C × R × R≥0 defined as

follows. A point q ∈ H2
C
∪ ∂H2

C
with horospherical coordinates (z, t,u) is represented

by the following vector, which we call itsstandard lift.

(3) q =



−|z|2− u+ it

z
√

2
1


 if q 6= q∞, q∞ =




1
0
0


 if q = q∞.

Points of∂H2
C
− {q∞} haveu = 0 and we will abbreviate (z, t,0) to [z, t].

Horospherical coordinates give a model of complex hyperbolic space analogous to the
upper half plane model of the hyperbolic plane. TheCygan metric dCyg on∂H2

C
−{q∞}
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plays the role of the Euclidean metric on the upper half plane. It is defined by the
distance function:

(4) dCyg(p,q) = |〈p,q〉|1/2
=

∣∣∣|z− w|2 + i
(
t − s+ Im(zw)

)∣∣∣
1/2

wherep and q have horospherical coordinates [z, t] and [w, s]. We may extend this
metric to pointsp andq in H2

C
with horospherical coordinates (z, t,u) and (w, s, v) by

writing

dCyg(p,q) =
∣∣∣|z− w|2 + |u− v|+ i

(
t − s+ Im(zw)

)∣∣∣
1/2

If (at least) one ofp andq lies in ∂H2
C

then the formuladCyg(p,q) = |〈p,q〉|1/2 is still
valid.

2.2 Isometries

Since the Bergman metric and distance function are both given solely in terms of the
Hermitian form, any unitary matrix preserving this form is an isometry. Similarly,
complex conjugation of points inC3 leaves both the metric and the distance function
unchanged. Hence, complex conjugation is also an isometry.

Define U(2,1) to be the group of unitary matrices preserving the Hermitian form and
PU(2,1) to be the projective unitary group obtained by identifying non-zero scalar
multiples of matrices in U(2,1). We also consider the subgroup SU(2,1) of matrices
in U(2,1) with determinant 1.

Proposition 2.1 Every Bergman isometry ofH2
C

is either holomorphic or anti-
holomorphic. The group of holomorphic isometries isPU(2,1), acting by projective
transformations. Every antiholomorphic isometry is complex conjugation followed by
an element ofPU(2,1).

Elements of SU(2,1) fall into three types, according to the number and type of the fixed
points of the corresponding isometry. Namely, an isometry is loxodromic(respectively
parabolic) if it has exactly two fixed points (respectively exactly onefixed point)
on ∂H2

C
. It is calledelliptic when it has (at least) one fixed point insideH2

C
. An

elliptic elementA ∈ SU(2,1) is calledregular elliptic whenever it has three distinct
eigenvalues, andspecial ellipticif it has a repeated eigenvalue. The following criterion
distinguishes the different isometry types.
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Proposition 2.2 (Theorem 6.2.4 of Goldman [15]) Let F be the polynomial given
by F(z) = |z|4 − 8Re (z3) + 18|z|2 − 27, andA be a non identity matrix inSU(2,1).
Then

(1) A is loxodromic if and only ifF(trA) > 0,

(2) A is regular elliptic if and only ifF(trA) < 0,

(3) if F(trA) = 0, thenA is either parabolic or special elliptic.

We will be especially interested in elements of SU(2,1) with trace 0 and those with
trace 3.

Lemma 2.3 (Section 7.1.3 of Goldman [15]) (1) A matrix A in SU(2,1) is regu-
lar elliptic of order three if and only if its trace is equal tozero.

(2) Let (p,q, r) be three pairwise distinct points in∂H2
C

, not contained in a common
complex line. Then there exists a unique order three regularelliptic isometryE
so thatE(p) = q andE(q) = r .

Suppose thatT ∈ SU(2,1) has trace equal to 3. Then allT eigenvalues ofT equal
1, that isT is unipotent. If T is diagonalisable then it must be the identity; if it is
non-diagonalisable then it must fix a point of∂H2

C
. Conjugating within SU(2,1) if

necessary, we may assume thatT fixes q∞ . This implies thatT is upper triangular
with each diagonal element equal to 1.

Lemma 2.4 (Section 4.2 of Goldman [15]) Suppose that[w, s] ∈ ∂H2
C
− {q∞}.

Then there is a uniqueT[w,s] ∈ SU(2,1) taking the point[0,0] ∈ ∂H2
C

to [w, s] . As a
matrix this map is:

(5) T[w,s] =




1 −w
√

2 −|w|2 + is
0 1 w

√
2

0 0 1


 .

Moreover, composition of such elements gives∂H2
C
− {q∞} the structure of the

Heisenberg group
[w, s] · [z, t] =

[
w+ z, s+ t − 2Im(zw)

]

andT[w,s] acts as left Heisenberg translation on∂H2
C
− {q∞}.

The action ofT[w,s] on horospherical coordinates is:

T[w,s] : (z, t,u) 7−→
(
w+ z, s+ t − 2Im(zw),u

)
.

An important observation is that this is an affine map, namelya translation and shear.

We can restate Lemma2.4 in an invariant way. This result is actually true for any
parabolic conjugacy class, as a special case of Proposition3.1 in [23].
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Proposition 2.5 Let (p1,p2,p3) be a triple of pairwise distinct points in∂H2
C

. Then
there is a unique unipotent element ofPU(2,1) fixing p1 and takingp2 to p3.

Proof We can chooseA ∈ SU(2,1) takingp1 to q∞ andp2 to [0,0]. The result then
follows from Lemma2.4.

2.3 Totally geodesic subspaces.

Maximal totally geodesic subspaces ofH2
C

have real dimension 2, and they fall in
two types. Complex lines are intersections withH2

C
of projective lines inCP2. By

Hermitian duality, any complex lineL is polar to a point inCP2 that is outside the
closure ofH2

C
. Any lift of this point is called apolar vectorto L. Any two distinct

points p and q in the closure ofH2
C

belong to a unique complex line, and a vector
polar to this line is given byp ⊠ q = Hp ∧ q. This can be verified directly using
〈x, y〉 = y∗Hx and the fact that here,H2 = 1. A more general description of cross
products in Hermitian vector spaces can be found in Section 2.2.7. of Chapter 2 of
Goldman [15].

The other type of maximal totally geodesic subspace is a Lagrangian plane. Lagrangian
planes are PU(2,1) images of the set of real pointsH2

R
⊂ H2

C
. In particular, real

planes are fixed points sets of antiholomorphic isometric involutions (sometimes called
real symmetries). The symmetry fixingH2

R
is complex conjugation. In turn, the

symmetry about any other Lagrangian planeM · H2
R

, whereM ∈ SU(2,1), is given

by z 7−→ MM−1 z = M
(
M−1z

)
. Note that the matrixN = MM−1 satisfiesNN = Id :

this reflects the fact that real symmetries are involutions.We refer the reader to Chapter
3 and 4 of Goldman [15].

2.4 Isometric spheres

Definition 2 For anyB ∈ SU(2,1) that does not fixq∞ , the isometric sphereof B
(denotedI(B)) is defined to be

(6) I(B) =
{

p ∈ H2
C ∪ ∂H2

C : |〈p,q∞〉| = |〈p,B−1(q∞)〉| = |〈B(p),q∞〉|
}

wherep is the standard lift ofp ∈ H2
C
∪ ∂H2

C
given in (3).

The interior of I(B) is the component of its complement inH2
C
∪ ∂H2

C
that do not

containq∞ , namely,
{

p ∈ H2
C ∪ ∂H2

C : |〈p,q∞〉| > |〈p,B−1(q∞)〉|
}
.
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Theexteriorof I(B) is the component that contains the point at infinityq∞

SupposeB is written as a matrix as

(7) B =




a b c
d e f
g h j


 .

ThenB−1(q∞) =
[
j, h, g

]T
. ThusB fixes q∞ if and only if g = 0. If B does not fix

q∞ (that isg 6= 0) the horospherical coordinates ofB−1(q∞) are:

B−1(q∞) =
[
h/
(
g
√

2
)
, Im

(
j/g

)]
.

Lemma 2.6 (Section 5.4.5 of Goldman [15]) Let B ∈ PU(2,1) be an isometry of
H2

C
not fixing q∞ .

(1) The transformationB mapsI(B) to I(B−1), and the interior ofI(B) to the
exterior ofI(B−1).

(2) For anyA ∈ PU(2,1) fixing q∞ and such that the corresponding eigenvalue has
unit modulus, we haveI(B) = I(AB).

Using the characterisation (4) of the Cygan metric in terms of the Hermitian form, the
following lemma is obvious.

Lemma 2.7 Suppose thatB ∈ SU(2,1) written in the form(7) does not fixq∞ . Then
the isometric sphereI(B) is the Cygan sphere inH2

C
∪ ∂H2

C
with centreB−1(q∞) and

radiusrA = 1/|g|1/2 .

The importance of isometric spheres is that they form the boundary of theFord poly-
hedron. This is the limit of Dirichlet polyhedra as the centre pointapproaches∂H2

C
;

see Section 9.3 of Goldman [15]. The Ford polyhedronD for a discrete groupΓ is the
intersection of the (closures of the) exteriors of all isometric spheres for elements ofΓ
not fixing q∞ . That is:

DΓ =

{
p ∈ H2

C∪∂H2
C : |〈p,q∞〉| ≥ |〈p,B−1q∞〉| for all B ∈ Γ with B(q∞) 6= q∞

}
.

Of course, just as for Dirichlet polyhedra, to construct theFord polyhedron one must
check infinitely many equalities. Therefore our method willbe to guess the Ford
polyhedron and check this using the Poincaré polyhedron theorem. Whenq∞ is either
in the domain of discontinuity or is a parabolic fixed point, the Ford polyhedron is
preserved byΓ∞ , the stabiliser ofq∞ in Γ. It is a fundamental polyhedron for the
partition of Γ into Γ∞ -cosets. In order to obtain a fundamental domain forΓ, one
must intersect the Ford domain with a fundamental domain forΓ∞ .
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2.5 Cygan spheres and geographical coordinates.

We now give some geometrical results about Cygan spheres. They are, in particular,
applicable to isometric spheres. The Cygan sphereS[0,0](r) of radiusr > 0 with centre
the origin [0,0] is the (real) hypersurface ofH2

C
∪ ∂H2

C
described in horospherical

coordinates by the equation

(8) S[0,0](r) =
{

(z, t,u) :
(
|z|2 + u

)2
+ t2 = r4

}
.

From (8) we immediately see that when written in horospherical coordinates the interior
of S[0,0](r) is convex. The Cygan sphereS[w,s](r) of radius r with centre [w, s]
is the image ofS[0,0](r) under the Heisenberg translationT[w,s] . Since Heisenberg
translations are affine maps in horospherical coordinates,we see that the interior of any
Cygan sphere is convex. This immediately gives:

Proposition 2.8 The intersection of two Cygan spheres is connected.

Cygan spheres are examples of bisectors (otherwise called spinal hypersurfaces) and
their intersection is an example of what Goldman calls an intersection of covertical
bisectors. Thus Proposition2.8 is a restatement of Theorem 9.2.6 of [15]. There is a
natural system of coordinates on bisectors in terms of totally geodesic subspaces, see
Section 5.1 of [15]. In particular for Cygan spheres, these are defined as follows:

Definition 3 Let S[0,0](r) be the Cygan sphere with centre the origin [0,0] and radius
r > 0. The pointg(α, β,w) of S[0,0](r) with geographical coordinates(α, β,w) is the
point whose lift toC3 is:

(9) g(α, β,w) =



−r2e−iα

rwei(−α/2+β)

1


 ,

whereβ ∈ [0, π), α ∈ [−π/2, π/2] andw ∈ [−√2 cos(α),
√

2 cos(α)],

Let S[z,t](r) be the Cygan sphere with centre [z, t] and radiusr . Then geographical co-
ordinates onS[z,t](r) are obtained from the ones onS[0,0](r) by applying the Heisenberg
translationT[z,t] to the vector (9).

We will only be interested in geographical coordinates onS[0,0](1), the unit Cy-
gan sphere centred at the origin. Note that for the pointg(α, β,w) of this sphere,
〈g(α, β,u),g(α, β,u)〉 = w2 − 2 cos(α). Therefore the horospherical coordinates of
g(α, β,w) are: (

wei(−α/2+β)/
√

2, sin(α), cos(α) − w2/2
)
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In particular, the points ofS[0,0](1) on∂H2
C

are those withw = ±√2 cos(α).

The level sets ofα andβ are totally geodesic subspaces ofH2
C

; see Example 5.1.8 of
Goldman [15].

Proposition 2.9 LetS[w,s](r) be a Cygan sphere with geographical coordinates(α, β,w).

(1) For eachα0 ∈ (−π/2, π/2) the set of pointsLα0 = {g(α, β,w) ∈ S[w,s](r) :
α = α0} is a complex line, called asliceof S[w,s](r).

(2) For eachβ0 ∈ [0, π) the set of pointsRβ0 = {g(α, β,w) ∈ S[w,s](r) : β = β0}
is a Lagrangian plane, called ameridianof S[w,s](r).

(3) The set of points withw = 0 is thespineof S[w,s](r). It is a geodesic contained
in every meridian.

Remark 1 From (8), it is easy to see that projections of boundaries of Cygan spheres
onto thez-factor are closed Euclidean discs inC. This correspond to the vertical
projection ontoC in the Heisenberg group. This fact is often useful to prove that two
Cygan spheres are disjoint.

2.6 Cartan’s angular invariant.

Élie Cartan defined an invariant of triples of pairwise distinct pointsp1, p2, p3 in ∂H2
C

;
see Section 7.1 of Goldman [15]. For any lifts pj of pj to C

3, this invariant is defined
by arg

(
−〈p1,p2〉〈p2p3〉〈p3,p1〉

)
, where the argument is chosen to lie in (−π, π]. We

state here some important properties ofA.

Proposition 2.10 [Sections 7.1.1 and 7.1.2 of [15]]

(1) −π/2 ≤ A(p1,p2,p3) ≤ π/2 for any triple of pairwise distinct pointsp1, p2,
p3 .

(2) A(p1,p2,p3) = ±π/2 if and only if p1 , p2, p3 lie on the same complex line.

(3) A(p1,p2,p3) = 0 if and only if p1 , p2, p3 lie on the same Lagrangian plane.

(4) Two triplesp1 , p2 , p3 andq1, q2 , q3 haveA(p1,p2,p3) = A(q1,q2,q3) if and
only if there existsA ∈ SU(2,1) so thatA(pj) = qj for j = 1, 2, 3.

(5) Two triples p1, p2, p3 and q1 , q2, q3 haveA(p1,p2,p3) = −A(q1,q2,q3) if
and only if there exists an anti-holomorphic isometryA so thatA(pj) = qj for
j = 1, 2, 3.
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The following proposition will be useful to us when we parametrise the family of
classes of groupsΓ.

Proposition 2.11 Let (α1, α2) ∈ (−π/2, π/2)2 . Then there exists a unique PU(2,1)-
class of quadruples(p1,p2,p3,p4) of pairwise distinct boundary points ofH2

C
such

that

(1) The complex linesL12 andL34 respectively spanned by(p1,p2) and(p3,p4) are
orthogonal.

(2) A(p1,p3,p2) = α1 andA(p1,p3,p4) = α2.

Proof Since PU(2,1) acts transitively on pairs of distinct pointsof ∂H2
C

, we may
assume using the Siegel model, that the pointspi are given in Heisenberg coordinates
by:

(10) p1 = q∞, p2 = [0,0], p3 = [1, t], p4 = [z, s].

Using the standard lifts given in Section2.1 (denoted bypi ), we see by a direct
computation using the Hermitian cross-product that

〈p1 ⊠ p2,p3 ⊠ p4〉 = |z|2 − 1+ i(t − s).

Thus the conditionL12 ⊥ L34 gives |z| = 1 and t = s. We thus writez = eiθ with
θ ∈ [0,2π). Now computing the triple products we see that

A(p1,p3,p2) = arg(1− it) and A(p1,p3,p4) = arg(1−z) = arg
(

2iei θ2 sin
(
θ/2

))
.

In particularα1 andα2 determine the values oft andθ .

3 The parameter space

3.1 Coordinates

Our space of interest is the following.

Definition 4 Let U be the set of PU(2,1)-conjugacy classes of non-elementary pairs
(A,B) such thatA, B andAB are unipotent.
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Here, by non-elementary, we mean that the two isometriesA andB have no common
fixed point in ∂H2

C
. In fact, a slightly stronger statement will follow from Theorem

3.1 below. NamelyA and B do not preserve a common complex line and so the pair
A, B have no common fixed point inCP2 (see Section2.3). Another way to see this is
that if A in PU(2,1) is unipotent and preserves a complex line, then its actionon that
complex line is via a unipotent element of SL(2,R) (that is parabolic with trace+2).
It is well known that ifA andB are unipotent elements of SL(2,R) whose product is
also unipotent thenA andB must share a fixed point (ifA, B andAB are all parabolic
with distinct fixed points, at least one of them should have trace−2).

Note thatBA = A−1(AB)A = B(AB)B−1 and so ifAB is unipotent then so isBA. If
pAB andpBA in ∂H2

C
are the fixed points ofAB andBA then we haveA(pBA) = pAB and

B(pAB) = pBA. From Proposition2.5this means thatA andB are uniquely determined
by the fixed points ofA, B, AB and BA. We describe a set of coordinates onU
expressed in terms of the Cartan invariants of triples of these fixed points.

Theorem 3.1 There is a bijection betweenU and the open square(α1, α2) ∈
(−π/2, π/2)2 , which is given by the map

Λ : (A,B) 7−→ (A(pA,pAB,pB),A(pA,pAB,pBA)) ,

wherepA , pB , pAB andpBA are the parabolic fixed points of the corresponding isome-
tries.

This result can be see as a special case of the main result of [23]. For completeness,
we include here a direct proof.

Proof First, the two quantitiesα1 = A(pA,pAB,pB) and α2 = A(pA,pAB,pBA) are
invariant under PU(2,1)-conjugation and thus the mapΛ is well-defined. Let us first
prove that the image ofΛ is contained in (−π/2, π/2)2 . In other words, we must show
α1 6= ±π/2 andα2 6= ±π/2.

Fix a choice of liftspA, pB, pAB andpBA for the fixed points ofA, B, ABandBA. Since
the fixed points are assumed to be distinct, we see that the Hermitian product of each
pair of these vectors does not vanish. The conditionsA(pBA) = pAB andB(pAB) = pBA

imply that there exist two non-zero complex numbersλ andµ satisfying

ApBA = λpAB and BpAB = µpBA.

As AB is unipotent, its eigenvalue associated topAB is 1, and thereforeλµ = 1.
Moreover, using the fact thatpA andpB are eigenvectors ofA andB with eigenvalue
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1, we have
(11)
〈pBA,pA〉 = 〈ApBA,ApA〉 = λ〈pAB,pA〉, 〈pAB,pB〉 = 〈BpAB,BpB〉 = µ〈pBA,pB〉.

Using λµ = 1 and (11), it is not hard to show thatn1 = λpAB − pBA is a polar
vector for the complex lineL1 spanned bypA and pB (see Section2.3). Moreover,
〈pAB,n1〉 = −〈pAB,pBA〉 6= 0. ThuspAB does not lie onL1. That is, the three of
pointspA, pB, pAB do not lie on the same complex line and soα1 6= ±π/2.

Likewise, again usingλµ = 1 and (11) we find n2 = 〈pB,pAB〉pA− 〈pA,pAB〉pB is a
polar vector forL2 and〈pA,n2〉 = −〈pA,pAB〉〈pA,pB〉 6= 0. HencepA does not lie on
L2 and soα2 6= ±π/2. We remark that, by construction, we have〈n1,n2〉 = 0 and so
in fact L1 andL2 are orthogonal.

To see thatΛ is surjective, fix (α1, α2) in (−π/2, π/2)2 and define
(12)
x1 =

√
2 cos(α1) and x2 =

√
2 cos(α2), for αi ∈ (−π/2, π/2), sox1, x2 ∈ R

∗
+.

Now consider the following elements of SU(2,1):

(13) A =




1 −x1x2
2 −x2

1x2
2e−iα2

0 1 x1x2
2

0 0 1


 andB =




1 0 0
x1x2

2e−iα1 1 0
−x2

1x2
2eiα2 −x1x2

2eiα1 1


 ,

Clearly, A andB are unipotent, and since tr(AB) = 3, AB is also unipotent. The four
fixed points can be lifted to the vectors

(14) pA =




1
0
0


 , pB =




0
0
1


 , pAB =



−eiα1

x1eiα2

1


 , pBA =



−eiα1

−x1e−iα2

1


 .

They satisfyA(pA,pAB,pB) = α1 andA(pA,pAB,pBA) = α2. Note that when eitherα1

or α2 tends to±/π/2 (that isx1 or x2 respectively tends to 0),A andB both tend to
the identity matrix.

To see thatΛ is injective, it suffices to prove that the quadruple (pA,pB,pAB,pBA) is
uniquely determined by (α1, α2) up to isometry. Indeed, once this quadruple is fixed,
A andB are uniquely determined by Proposition2.5. The above discussion has proved
that for any pair (A,B) in U the two complex lines spanned respectively by (pA,pB) and
(pAB,pBA) are orthogonal. The result then follows straightforwardly from Proposition
2.11.

From now on, we will identify any conjugacy class of pair inU with its representative
given by (13). We will repeatedly use the notationxi =

√
2 cos(αi) from (12) and,
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when necessary, we will freely combinexi with trigonometric notation. It should be
noted that the unipotent isometryA given by (13) is equal to the Heisenberg translation
T[ℓA,tA] (see Lemma2.4), where

ℓA = x1x2
2/
√

2 = 2 cos(α1) cos2(α2) ,

tA = x2
1x2

2 sin(α2) = 4 cos(α1) cos(α2) sin(α2).

3.2 Products of order 3 elliptics.

The following proposition gives a decomposition of pairs inU that we will use in the
rest of this work.

Proposition 3.2 For any pair(A,B) ∈ U , their exists a unique pair of isometries(S,T)
such that:

(1) Both S and T have order three, and they cyclically permute(pA,pAB,pB) and
(pA,pB,pBA), respectively.

(2) A = ST andB = TS.

Proof The first item is a direct consequence of Lemma2.3 (note that neither of the
triples (pA,pAB,pB) and (pA,pB,pBA) is contained in a complex line by Theorem3.1).
The action ofS and T is summed up on Figure3. From this, we see thatST (resp.
TS) fixes pA (resp. pB) and mapspBA to pAB (resp. pAB to pBA). ProvidedST and
TSare unipotent, this suffices to prove the second item by Proposition 2.5. To see that
ST andTSare indeed unipotent, we can use the lifts ofpA , pB , pAB andpBA given by
(14). In this case we have

S = e−iα1/3




eiα1 x1eiα1−iα2 −1
−x1eiα2 −eiα1 0
−1 0 0


 ,

T = eiα1/3




0 0 −1
0 −e−iα1 −x1e−iα1−iα2

−1 x1eiα2 e−iα1


 ,

where, as usual,xi =
√

2 cos(αi); see (12). Computing the productsST andTSgives
the result.

We will use the notationS andT for these two order three symmetries throughout the
paper.
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pA

pAB

pB

STpBA

Figure 3: Action ofS andT on the tetrahedron (pA, pB, pAB, pBA).

A more geometric proof of the existence of order three elliptic isometries decomposing
pairs of parabolics as above can be found in a slightly more general context in [23].

One consequence of the existence of this decomposition as a product of order three
elliptic is that any group generated in bu a pair (A,B) in U is the image of the
fundamental group of the Whitehead link complement by a morphism to PU(2,1). This
follows directly from the following.

Proposition 3.3 The free productZ3 ∗ Z3 is a quotient of the fundamental group of
the Whitehead link complement.

Proof The fundamental group of the Whitehead link complement is presented by
π = 〈u, v|rel(u, v)〉, where

(15) rel(u, v) = [u, v] · [u, v−1] · [u−1, v−1] · [u−1, v]

Making the substitutionu = st andv = tst, we observe rel(st, tst) = [st, s−1t−3s−2].
This relation is trivial whenevers3 = t3 = 1. Therefore, one defines a morphism
µ : π −→ Z3 ∗Z3 by settingµ(u) = st andµ(v) = tst. The morphismµ is surjective:
t is the image ofvu−1 ands the image ofu2v−1.

3.3 Symmetries of the moduli space

The parameters (α1, α2) determineΓ up to PU(2,1) conjugation. We now show that
there is an antiholomorphic conjugation that changes the sign of bothα1 andα2.

Proposition 3.4 There is an antiholomorphic involutionι with the properties:

(1) ι interchangespA andpB and interchangespAB andpBA;
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(2) ι conjugatesS to T andA to B (and vice versa);

(3) ι conjugates the groupΓ with parameters(α1, α2) to the group with parameters
(−α1,−α2).

Proof The action onC3 of ι is:

ι :




z1

z2

z3


 7−→




z3

e−iα1z2

z1


 .

It is easy to see thatι2 is the identity and thatι sendspA to pB and sendspAB to
(−e−iα1)pBA. Projectivising gives the first part.

SinceA is the unique unipotent map fixingpA and sendingpBA to pAB, we seeιAι is the
unique unipotent map fixingι(pA) = pB and sendingι(pBA) = pAB to ι(pAB) = pBA.
Thus ιAι = B and soιBι = A. Applying Proposition3.2 we see thatιSι = T and
ιTι = S, proving the second part.

The parameters for the groupιΓι areA(ιpA, ιpAB, ιpB) = A(pB,pBA,pA) = −α1 and
A(ιpA, ιpAB, ιpBA) = A(pB,pBA,pAB) = −α2. This completes the proof.

There are other symmetries of the parameter spaceU that, in general, do not arise from
conjugation by isometries.

Proposition 3.5 Let φh : (α1, α2) 7−→ (α1,−α2) andφv : (α1, α2) 7−→ (−α1, α2)
denote the symmetries about the horizontal and vertical axes of the (α1, α2)-square.
Thenφh ◦ φv induces the conjugation byι given in Proposition3.4. Moreover:

(1) The symmetryφh induces the changes of generators(S,T) 7−→ (T−1,S−1) and
(A,B) 7−→ (A−1,B−1).

(2) The symmetryφv induces the changes of generators(S,T) 7−→ (S−1,T−1) and
(A,B) 7−→ (B−1,A−1),

Proof Applying the changeφh to the points in (14) and multiplying by the diagonal
element diag(1, −1, 1) ∈ PU(2,1) fixespA andpB and swapspAB andpBA. Therefore
it sendsS to the map cyclically permuting (pA,pBA,pB), which is T−1. Similarly it
sendsT to S−1.

It is clear that the change of generators (S,T) 7−→ (T−1,S−1) sendsA = ST to
T−1S−1 = A−1 andB = TS to S−1T−1 = B−1.
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The change of generators (A,B) 7−→ (A−1,B−1) fixes pA and pB . Since it sendsAB
to A−1B−1 = (BA)−1 it sendspAB to pBA and similarly sendspBA to pAB. From this
we can calculate the new Cartan invariants and we obtain the symmetryφh.

Hence all three conditions in the first part are equivalent. The second part then follows
the first part and Proposition3.4by first applyingφh and then conjugating byι.

The fixed point sets of these automorphisms are related toR-decomposability and
C-decomposability ofΓ.

Definition 5 (Compare Will [36]) A pair (S,T) of elements in PU(2,1) is R-
decomposable if there exist three antiholomorphic involutions (ι1, ι2, ι3) such that
S= ι2ι1 andT = ι1ι3.

A pair (S,T) of elements in PU(2,1) isC-decomposable if there exists three involutions
(I1, I2, I3) in PU(2,1) such thatS= I2I1 andT = I1I3.

The properties ofR andC-decomposability have also been studied (in the special case
of pairs of loxodromic isometries) from the point of view of traces in SU(2,1) in [36],
and (in the general case) using cross-ratios in [27]. We could take either point of view
here, but instead we choose to argue directly with fixed points.

Proposition 3.6 Let (A,B) be inU , and(S,T) be the corresponding elliptic isometries.

(1) If α1 = 0, then the pair(S,T) is C-decomposable and the pair(A,B) is R-
decomposable. In particular,〈S,T〉 has index2 in a (3,3,∞)-triangle group.

(2) If α2 = 0, then the pair(S,T) is R-decomposable and the pair(A,B) is C-
decomposable. In particular〈A,B〉 has index two in a complex hyperbolic ideal
triangle group.

Proof Consider the antiholomorphic involutionι1 : [z1, z2, z3] 7−→
[
z1, −z2, z3

]
.

Applying ι1 to the points in (14) with α1 = 0, we see thatι1 fixes pA and pB and
interchangespAB and pBA. Thereforeι1 conjugatesA to A−1 and B to B−1. Hence
Aι1Aι1 and ι1Bι1B are the identity. That isι2 = Aι1 and ι3 = ι1B are involutions.
Hence (A,B) is R-decomposable.

Again assumingα1 = 0, consider the holomorphic involution defined byI1 = ι1ι

(whereι is the involution defined in Proposition3.4). Then I1 fixes pAB andpBA and
interchangespA andpB . Therefore, it conjugatesS to S−1 andT to T−1. This means
I2 = SI1 and I3 = I1T are involutions. Hence (S,T) is C-decomposable.
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Now consider the holomorphic involutionI ′1 : [z1, z2, z3] 7−→ [z1, −z2, z3]. This
fixes pA andpB and whenα2 = 0 it interchangespAB andpBA. As above this means
I ′2 = AI′1 and I ′3 = I ′1B are involutions and (A,B) is C-decomposable. Finally, define
ι′1 = I ′1ι. Arguing as above, again withα2 = 0, we see thatι′2 = Sι′1 and ι′3 = ι′1T
are involutions. Hence (S,T) is R-decomposable.

As indicated above, whenα1 = 0 the group generated by (I1, I2, I3) is a (3,3,∞)
reflection triangle group. This group can be thought of as a limit asn tends to infinity
of the (3,3,n) triangle groups which have been studied by Parker, Wang andXie in
[26]. The special case (3,3,4) has been studied by Falbel and Deraux in [8]. Both
[8] and [26] constructed Dirichlet domains, and the Ford domain we construct can be
seen as a limit of these. Moreover,R-decomposability of the pair (A,B) whenα1 = 0
can be used to show that these groups correspond to the bending representations of
the fundamental group of a 3-punctured sphere that have beenstudied in [37]. Ideal
triangle groups have been studied in great detail in [16, 31, 30, 33, 34].

3.4 Isometry type of the commutator.

The isometry type of the commutator will play an important role in the rest of this
paper. It is easily described using the order three ellipticmaps given by Proposition
3.2.

Proposition 3.7 The commutator[A,B] has the same isometry type asST−1. More
precisely, considerG(x4

1, x
4
2) = G

(
4 cos2(α1),4 cos2(α2)

)
where

G(x, y) = x2y4− 4x2y3
+ 18xy2 − 27.

Then [A,B] is loxodromic (respectively parabolic, elliptic) if and only if G(x4
1, x

4
2) is

positive (respectively zero, negative).

Proof First, from A = ST, B = TS and the fact thatS and T have order 3, we see
that

[A,B] = ABA−1B−1
= STTST−1S−1S−1T−1

= (ST−1)3.

This implies that [A,B] has the same isometry type asST−1 unlessST−1 is elliptic
of order three, in which case [A,B] is the identity. This would mean thatA and B
commute, which can not be because their fixed point sets are disjoint.

Representatives ofS and T in SU(2,1) are given in (15). A direct calculation using
these matrices shows that tr(ST−1) = x2

1x4
2eiα1/3. The functionG(x4

1, x
4
2) above is

obtained by plugging this value in the functionF given in Proposition2.2.
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The null locus ofG
(
4 cos2(α1),4 cos2(α2)

)
in the square (−π/2, π/2)2 is a curve,

which we will refer to as theparabolicity curveand denote byP . It is depicted
on Figure4. Similarly, the region whereG is positive (thus [A,B] loxodromic) will
be denoted byL. It is a topological disc, which is the connected component of the
complement of the curveP that contains the origin. The region where [A,B] is elliptic
will be denoted byE .

4 Isometric spheres and their intersections

4.1 Isometric spheres forS, S−1 and their A-translates.

In this section we give details of the isometric spheres thatwill contain the sides of our
polyhedronD. The polyhedronD is our guess for the Ford polyhedron ofΓ, subject
to the combinatorial restriction discussed in Section4.2.

We start with the isometric spheresI(S) andI(S−1) for S and its inverse. From the
matrix for S given in (15), using Lemma2.7we see thatI(S) andI(S−1) have radius
1/| − e−iα1/3|1/2 = 1 and centresS−1(q∞) = pB and S(q∞) = pAB respectively;
see (14). In particular,I(S) is the Cygan sphereS[0,0](1) of radius 1 centred at the
origin; see (8). In our computations we will use geographical coordinatesin I(S) as
in Definition 3. The polyhedronD will be the intersection of the exteriors ofI(S±1)
and all their translates by powers ofA. We now fix some notation:

Definition 6 For k ∈ Z let I+k be the isometric sphereI(AkSA−k) = AkI(S) and let
I−k be the isometric sphereI(AkS−1A−k) = AkI(S−1).

With this notation, we have:

Proposition 4.1 For any integerk ∈ Z, the isometric sphereI+k has radius1 and
is centred at the point with Heisenberg coordinates[kℓA, ktA] , whereℓA and tA are as
in (15). Similarly, the isometric sphereI−k has radius1 and centre the point with
Heisenberg coordinates[kℓA +

√
cos(α1)eiα2,− sin(α1)] .

Proof As A is unipotent and fixesq∞ , it is a Cygan isometry, and thus preserves the
radius of isometric spheres. This gives the part about radius. Moreover, it follows
directly from Proposition13 that Ak acts on the boundary ofH2

C
by left Heisenberg

multiplication by [kℓA, ktA]. This gives the part about centres by a straightforward
verification.
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The following proposition describes a symmetry of the family {I±k : k ∈ Z} which
will be useful in the study of intersections of the isometricspheresI±k .

Proposition 4.2 Let ϕ be the antiholomorphic isometrySι = ιT , whereι is as in
Proposition3.4. Thenϕ2 = A, andϕ acts on the Heisenberg group as a screw motion
preserving the affine line parametrised by
(16)

∆ϕ =

{
δϕ(x) =

[
x+ i

√
cos(α1) sin(α2)

2
, x
√

cos(α1) sin(α2)− sin(α1)
2

]
: x ∈ R

}
.

Moreover,ϕ acts on isometric spheres asϕ(I+k ) = I−k and ϕ(I−k ) = I+k+1 for all
k ∈ Z.

Proof Using the fact thatT = ιSι we see thatA = ST = SιSι = ϕ2. Moreover
ϕ(pA) = Sι(pA) = S(pB) = pA . Henceϕ is a Cygan isometry. It follows by direct
calculation thatϕ sendsδϕ(x) to δϕ(x+ ℓA/2), and so preserves∆ϕ . Moreover,

ϕ(pBA) = Sι(pBA) = S(pAB) = pB, ϕ(pB) = Sι(pB) = S(pA) = pAB.

Henceϕ sendsI−−1 to I+0 since it is a Cygan isometry mapping the centre ofI−−1 to
the centre ofI+0 . Similarly, ϕ sendsI+0 to I−0 . The action on other isometric spheres
follows sinceϕ2 = A.

4.2 A combinatorial restriction.

The following section is the crucial technical part of our work. As most of the proofs
are computational, we will omit many of them here; they will be provided in Section
7. We are now going to restrict our attention to those parameters in the regionL such
that the three isometric spheresI+0 = I(S), I−0 = I(S−1) andI−−1 = I(T) have no
triple intersection. We will describe the region we are interested in by an inequality on
α1 andα2 . Prior to stating it, let us fix a little notation.

We denote byαlim
2 = arccos

(√
3/8

)
. The two points (0,±αlim

2 ) are the cusps the
curveP : they satisfyG

(
4 cos2(0),4 cos2(±αlim

2 )
)
= G(4,3/2) = 0 (see Figure4).

Now, letR be the rectangle (depicted in Figure4) defined by

(17) R =
{

(α1, α2) : |α1| 6 π/6, |α2| 6 αlim
2

}
.

We remark that in Lemma7.3we will prove that when (α1, α2) ∈ R, the commutator
[A,B] is non elliptic. This means thatR is contained in the closure ofL.
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R

L

E

Z

P

Figure 4: The parameter space, with the parabolicity curveP and the regionsE , L. The
regionZ is the central region, which is contained in the rectangleR.

Definition 7 LetZ denote the subset ofR where the triple intersectionI+0 ∩I−−1∩I−0
is empty.

The following proposition characterises those points (α1, α2) that lie inZ .

Proposition 4.3 A parameter(α1, α2) ∈ R is in Z if and only if it satisfies

D(x4
1, x

4
2) = D

(
4 cos2(α1),4 cos2(α1)

)
> 0,

whereD is the polynomial given by

D(x, y) = x3y3− 9x2y2− 27xy2
+ 81xy− 27x− 27.

The regionZ is depicted in Figure4: it is the interior of the central region of the figure.
In fact, Z is the region in all ofL whereI+0 ∩ I−−1 ∩ I−0 is empty, but as proving
this is more involved, we restrict ourselves to the rectangle R. This provides a priori
bounds on the parametersα1 andα2 that will make our computations easier. We will
prove Proposition4.3 in Section7.3. It relies on Proposition4.4, describing the set of
points whereD(x4

1, x
4
2) > 0 and on Proposition4.5, which gives geometric properties

of the triple intersection. Proofs of Proposition4.4 and Proposition4.5 will be given
in Section7.2and Section7.1respectively.

Proposition 4.4 The regionZ is an open topological disc inR, symmetric about
the axes and intersecting them in the intervals{α2 = 0, −π/6 < α1 < π/6} and
{α1 = 0, −αlim

2 < α2 < αlim
2 }.
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Moreover, the intersection of the closure ofZ with the parabolicity curveP consists
of the two points(0,±αlim

2 ).

Proposition 4.5 (1) The triple intersectionI+0 ∩ I−0 ∩ I−−1 is contained in the
meridianm of I+0 defined in geographical coordinates byβ = (π − α1)/2.

(2) If the triple intersectionI+0 ∩I−0 ∩I−−1 is non-empty, it contains a point in∂H2
C

.

The second part of Proposition4.5 is not true for general triples of bisectors. It
will allow us to restrict ourselves to the boundary ofH2

C
to prove Proposition4.3.

Restricting ourselves to the regionZ will considerably simplify the combinatorics of
the family of isometric spheres{I±k : k ∈ Z}. The following fact will be crucial in
our study; compare Figure5.

Proposition 4.6 Fix (α1, α2) a point inZ . Then the isometric sphereI+0 is contained
in the exterior of the isometric spheresI±k for all k, except forI+1 , I+−1, I−0 andI−−1.

The proof of Proposition4.6 will be detailed in Section7.4. We can give more
information about the intersectionsI±0 with these four other isometric spheres; compare
Figure5.

Proposition 4.7 If (α1, α2) ∈ Z , then the intersectionI−−1 ∩ I−0 is contained in the
interior of I+0 .

Proof Since the pointpB is the centre ofI+0 , it lies in its interior. Moreover,pB lies
on bothI−−1 and I−0 : indeed,〈pAB,pB〉 = 〈pBA,pB〉 = 1. By convexity of Cygan
spheres (see Proposition2.8), the intersection of the latter two isometric spheres is
connected. This implies thatI−−1∩I−0 is contained in the interior ofI+0 for otherwise
I+0 ∩ I−−1 ∩ I−0 would not be empty.

Using Proposition4.2, applying powers ofϕ to Propositions4.6 and 4.7 gives the
following results describing all pairwise intersections.

Corollary 4.8 Fix (α1, α2) ∈ Z . Then for allk ∈ Z:

(1) I+k is contained in the exterior of all isometric spheres in{I±k : k ∈ Z} except
I+k−1, I−k−1, I−k and I+k+1. Moreover,I+k ∩ I−k−1 ∩ I−k = ∅ and I+k ∩ I+k−1
(respectivelyI+k ∩ I+k+1) is contained in the interior ofI−k−1 (respectivelyI−k ).

(2) I−k is contained in the exterior of all isometric spheres in{I±k : k ∈ Z} except
I−k−1, I+k , I+k+1, andI−k+1. Moreover,I−k ∩ I−k ∩ I−k+1 = ∅ and I−k ∩ I−k−1
(respectivelyI−k ∩ I−k+1) is contained in the interior ofI+k (respectivelyI+k+1).

Proposition4.6and Corollary4.8are illustrated in Figure5.
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I−−2 I−−1 I−
0
I−
1
I−
2
I−
3

I+
0

I+−1I+−2 I+
1
I+
2
I+
3

Figure 5: Vertical projections of the isometric spheresI±k for small values ofk at the point
(α1, α2) = (0.4, 0.3)

5 Applying the Poincaré polyhedron theorem insideZ .

5.1 The Poincaŕe polyhedron theorem

For the proof of our main result we need to use the Poincaré polyhedron theorem for
coset decompositions. The general principle of this resultis described in Section 9.6
of [2] in the context of the Poincaré disc. A generalisation to the case ofH2

C
has

already appeared in Mostow [22] and Deraux, Parker, Paupert [9]. In these cases it was
assumed that the stabiliser of the polyhedron is finite. In our case the stabiliser is the
infinite cyclic group generated by the unipotent parabolic map A. There are two main
differences from the version given in [9]. First, we allow the polyhedronD to have
infinitely many facets, the stabiliser groupΥ is also infinite, but we require that there
are only finitely manyΥ-orbits of facets. Secondly, we consider polyhedraD whose
boundary intersects∂H2

C
in an open set, which we refer to as the ideal boundary of

D. In fact, the version we need has many things in common with the version given
by Parker, Wang and Xie [26]. A more general statement will appear in Parker’s book
[24]. In what follows we will adapt our statement of the Poincaré theorem to the case
we have in mind.

The polyhedron and its cell structure Let D be an open polyhedron inH2
C

and let

D denote its closure inH2
C
= H2

C
∪ ∂H2

C
. We define the ideal boundary∂∞D of D

to be the intersection ofD with ∂H2
C

. This polyhedron has a natural cell structure
which we suppose is locally finite insideH2

C
. We suppose that the facets ofD of all

dimensions are piecewise smooth submanifolds ofH2
C

. Let Fk(D) be the collection
of facets of codimensionk having non-trivial intersection withH2

C
. We suppose that

facets are closed subsets ofH2
C

. We write f ◦ to denote the interior of a facetf , that
is the collection of points off that are not contained in∂H2

C
or any facet of a lower
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dimension (higher codimension). Elements ofF1(D) andF2(D) are respectively called
sidesandridgesof D. SinceD is a polyhedron,F0(D) = D and each ridge inF2(D)
lies in exactly two sides inF1(D). Similarly, the intersection of facets ofD with ∂H2

C

gives rise to a polyhedral structure on a subset of∂∞D. We let IFk(D) denote the
ideal facets of∂∞D of codimensionk so that each facet inIFk(D) is contained in
some facet ofFℓ(D) with ℓ < k. In particular, we will also need to considerideal
verticesin IF4(D). These are points of either the endpoints of facets inF3(D) or else
they are points of∂H2

C
contained in (at least) two facets ofD that do not intersect

insideH2
C

. Note that, since we have defined ideal facets to be subsets offacets, it may
be that∂H2

C
contains points of∂∞D not contained in any ideal facet. In the case we

consider, there will be one such point, namely the point at∞ fixed by A.

The side pairing. We suppose that there is aside pairingσ : F1(D) −→ PU(2,1)
satisfying the following conditions:

(1) For each sides∈ F1(D) with σ(s) = S there is another sides− ∈ F1(D) so that
S mapss homeomorphically ontos− preserving the cell structure. Moreover,
σ(s−) = S−1. Furthermore, ifs= s− thenS= S−1 andS is an involution. In
this case, we callS2 = id a reflection relation.

(2) For eachs∈ F1(D) with σ(s) = Swe haveD∩S−1(D) = sandD∩S−1(D) = ∅.
(3) For eachw in the interiors◦ of s there is an open neighbourhoodU(w) ⊂ H2

C

of w contained inD ∪ S−1(D).

In the example we consider,D will be the Ford domain of a group. In particular, each
sideswill be contained in the isometric sphereI(S) of S= σ(s). Indeed,s= I(S)∩D.
By construction we haveS : I(S) 7−→ I(S−1) and in this cases− = I(S−1) ∩ D. The
polyhedronD will be the (open) infinite sided polyhedron formed by the intersection of
the exteriors of all theI(S) whereS= σ(s) ands varies overF1(D). By construction,
the sides ofD are smooth hypersurfaces (with boundary) inH2

C
.

Suppose thatD is invariant under a groupΥ that iscompatiblewith the side pairing
map in the sense that for allP ∈ Υ and s ∈ F1(D) we haveP(s) ∈ F1(D) and
σ(Ps) = Pσ(s)P−1. We call the latter acompatibility relation. We suppose that there
are finitely manyΥ-orbits of facets in eachFk(D). SinceP ∈ Υ cannot fix a side
s ∈ F1(D) pointwise, subdividing sides if necessary, we suppose that if P ∈ Υ maps
a side inF1(D) to itself thenP is the identity. In particular, given sidess1 and s2 in
F1(D), there is at most oneP ∈ Υ sendings1 to s2. In the example of a Ford domain
Υ will be Γ∞ , the stabiliser of the point∞ in the groupΓ.
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Ridges and cycle relations. Consider a ridger1 ∈ F2(D). Then,r1 is contained in
precisely two sides ofD, says−0 ands1 . Consider the ordered triple (r1, s

−
0 , s1). The

side pairing mapσ(s1) = S1 sendss1 to the sides−1 preserving its cell structure. In
particular,S1(r1) is a ridge ofs−1 , sayr2 . Let s2 be the other side containingr2. Then
we obtain a new ordered triple (r2, s

−
1 , s2). Now applyσ(s2) = S2 to r2 and repeat.

Because there are only finitely manyΥ-orbits of ridges, we eventually find anm so that
the ordered triple (rm+1, s−m, sm+1) = (P−1r1,P−1s−0 ,P

−1s1) for someP ∈ Υ (note
that, by hypothesis,P is unique). We define a mapρ : F2(D) −→ PU(2,1) called the
cycle transformationby ρ(r1) = P◦Sm◦· · ·◦S1 . (Note that for any ridger1 = s−0 ∩s1,
the cycle transformation mapρ(r1) = R depends on a choice of one of the sidess−0
and s1 . If we choose the other one then the ridge cycle becomesR−1. This follows
from the fact that thenσ(s−j ) = σ(sj)−1 and from the compatibility relations.) By
construction, the cycle transformationR = ρ(r1) maps the ridger1 to itself setwise.
However,R may not be the identity onr1 , nor onH2

C
. Nevertheless, we suppose that

R has ordern. The relationRn = id is called thecycle relationassociated tor1.

Writing the cycle transformationρ(r1) = R in terms ofP and theSj , we let C(r1) be
the collection of suffix subwords ofRn. That is

C(r1) =
{

Sj ◦ · · · ◦ S1 ◦Rk : 0≤ j ≤ m− 1, 0≤ k ≤ n− 1
}
.

We say thatthe cycle conditionis satisfied atr1 provided:

(1)
r1 =

⋂

C∈C(r1)

C−1(D).

(2) If C1, C2 ∈ C(r1) with C1 6= C2 thenC−1
1 (D) ∩C−1

2 (D) = ∅.
(3) For eachw ∈ r◦1 there is an open neighbourhoodU(w) of w so that

U(w) ⊂
⋃

C∈C(r1)

C−1(D).

Ideal vertices and consistent horoballs. Suppose that the setIF4(D) of ideal
vertices ofD is non-empty. In our applications, there are no edges (that is F3(D)
is empty) and the only ideal vertices arise as points of tangency between the ideal
boundaries of ridges inF2(D). In order to simplify our discussion below, we will
only treat this case. We require that there is a system ofconsistent horoballsbased at
the ideal vertices and their images under the side pairing maps (see page 152 of [10]
for definition). For each ideal vertexξ ∈ IF4(D), the consistent horoballHξ is a
horoball based atξ with the following property. Letξ ∈ IF4(D) and lets ∈ F1(D)
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be a side withξ ∈ s. Then the side pairingS = σ(s) mapsξ to a point ξ− in s− .
Note thatξ− is not necessarily an ideal vertex (since it could be thatξ is a point of
tangency between two sides whose closures inH2

C
are otherwise disjoint andξ− may

be a point of tangency between two nested bisectors only one of which contributes a
side of D). In our case this does not happen and so we may assumeξ− also lies in
IF4(D) and so has a consistent horoballHξ− . In order for these horoballs to form a
system of consistent horoballs we require that for each ideal vertex ξ and each sides
with ξ ∈ s the side pairing mapσ(s) should map the horoballHξ onto the horoball
Hξ− . In particular, any cycle of side pairing maps sendingξ to itself must also send
Hξ to itself.

Statement of the Poincaŕe polyhedron theorem. We can now state the version of
the Poincaŕe polyhedron theorem that we need (compare [22] or [9]).

Theorem 5.1 Let D be a smoothly embedded polyhedronD in H2
C

together with a
side pairingσ : F1(D) −→ PU(2,1). Let Υ < PU(2,1)be a group of automorphisms
of D compatible with the side pairing and suppose that eachFk(D) contains finitely
manyΥ-orbits. Fix a presentation forΥ with generating setPυ and relationsRΥ .
Let Γ be the group generated byPΥ and the side pairing maps{σ(s)}. Suppose that
the cycle condition is satisfied for each ridge inF2(D) and that there is a system of
consistent horoballs at all the ideal vertices ofD (if any). Then:

(1) The images ofD under the cosets ofΥ in Γ tessellateH2
C

. That is H2
C
⊂⋃

A∈Γ A(D) andD ∩ A(D) = ∅ for all A ∈ Γ−Υ.

(2) The groupΓ is discrete and a fundamental domain for its action onH2
C

is
obtained from the intersection ofD with a fundamental domain forΥ.

(3) A presentation forΓ (with respect to the generating setPΥ ∪ {σ(s)}) has the
following set of relations: the relationsRΥ in Υ, the compatibility relations
betweenσ andΥ, the reflection relations and the cycle relations.

5.2 Application to our examples.

We are now going to apply Theorem5.1 to the group generated byS andA. Explicit
matrices for these transformations are provided in equations (13) and (15). Our aim is
to prove:
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Theorem 5.2 Suppose that(α1, α2) is in Z . That is,D
(
4 cos2(α1),4 cos2(α1)

)
> 0,

whereD(x, y) is the polynomial defined in Proposition4.3. Then the groupΓ = 〈S,A〉
associated to the parameters(α1, α2) is discrete and has the presentation

(18) 〈S, A : S3
= (A−1S)3

= id〉.

We obtain the presentation〈S, T : S3 = T3 = id〉 by changing generators toS and
T = A−1S.

Definition of the polyhedron and its cell structure. The infinite polyhedron we
consider is the intersection of the exteriors of all the isometric spheres in{I±k : k ∈ Z}.

Definition 8 We call D the intersection of the exteriors of all isometric spheresI+k
andI−k with centresAkS−1(q∞) andAkS(q∞) respectively :

(19) D =

{
q ∈ H2

C : dCyg
(
q,AkS±1(q∞)

)
> 1 for all k ∈ Z

}
.

The set of sides ofD is F1(D) = {s+k , s−k : k ∈ Z} where s+k = I+k ∩ D and
s−k = I−k ∩ D.

Using Corollary4.8we can completely describes+k ands−k .

Proposition 5.3 The sides±k is topologically a solid cylinder inH2
C
∪ ∂H2

C
. More

precisely,s±k is a productD × [0,1] where for eacht ∈ [0,1], the fibreD × {t} is

homeomorphic to a closed disc inH2
C

whose boundary is contained in∂H2
C

. The
intersection of∂s+k (respectively∂s−k ) with H2

C
is the disjoint union of the topological

discss+k ∩ s−k−1 ands+k ∩ s−k (respectivelys−k ∩ s+k ands−k ∩ s−k+1).

Proof Sinces+k is contained inI+k , its only possible intersections with other sides
are contained inI+k−1, I−k−1, I+k+1 andI−k+1 by Corollary4.8. SinceI+k ∩ I+k−1 and
I+k ∩ I+k+1 are contained in the interiors of other isometric spheres, the intersections
s+k ∩ s+k−1 ands+k ∩ s+k+1 are empty. Also,I+k ∩ I−k−1 ∩ I−k = ∅ and sos+k ∩ s−k−1 and
s+k ∩ s−k are disjoint. Since isometric spheres are topological balls and their pairwise
intersections are connected, the description ofs+k follows. A similar argument describes
s−k .

The side pairingσ : F1(D) −→ PU(2,1) is defined by

(20) σ(s+k ) = AkSA−k, σ(s−k ) = AkS−1A−k.
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Let Υ = 〈A〉 be the infinite cyclic group generated byA. By construction the side
pairing σ is compatible withΥ. Furthermore, using Proposition5.3 the set of ridges
is F2(D) = {r+k , r−k : k ∈ Z} where r+k = s+k ∩ s−k and r−k = s+k ∩ s−k−1 . We can
now verify thatσ satisfies the first condition of being a side pairing.

Proposition 5.4 The side pairing mapσ(s+k ) = AkSA−k is a homeomorphism from
s+k to s−k . Moreoverσ(s−k ) sendsr+k = s+k ∩ s−k to itself and sendsr−k = s+k ∩ s−k−1 to
r−k+1 = s−k ∩ s+k+1 .

Proof By applying powers ofA we need only need to consider the case wherek = 0.
First, the ridger+0 = s+0 ∩ s−0 = I(S) ∩ I(S−1) is defined by the triple equality

(21) |〈z,q∞〉| = |〈z,S−1q∞〉| = |〈z,Sq∞〉|.
The mapS cyclically permutespB = S−1(q∞), pA = q∞ , pAB = S(q∞), and so
mapsr+0 to itself. Similarly, considerr−0 = s+0 ∩ s−−1 . The side pairing mapS sends
A−1S(q∞), the centre ofI−−1, to

S(A−1S)(q∞) = S(T−1S−1)S(q∞) = ST2(q∞) = (ST)S−1(ST)(q∞) = AS−1(q∞),

which is the centre ofI+1 , where we have usedA−1 = T−1S−1, T−1 = T2 and
ST(q∞) = q∞ . Thereforer−0 = s+0 ∩ s−−1 is sent tor−1 = s−0 ∩ s+1 as claimed. The
rest of the result follows from our description ofs±k in Proposition5.3.

Local tessellation. We now prove local tessellation around the sides and ridges of
D.

s±k . Sinceσ(s±k ) = AkS±1A−1 sends the exterior ofI±k to the interior ofI∓k we see
that D and AkS±1A−k(D) have disjoint interiors and cover a neighbourhood of
each point ins∓k . Together with Proposition5.4this meansσ satisfies the three
conditions of being a side pairing.

r+0 . Consider the case ofr+0 = s+0 ∩ s−0 = I(S) ∩ I(S−1), which is given by (21).
Observe thatr+0 is mapped to itself byS. Using Proposition5.4, we see that
when constructing the cycle transformation forr+0 we have one ordered triple
(r+0 , s−0 , s

+
0 ) and the cycle transformationρ(r+0 ) = S. The cycle relation is

S3 = id andC(r+0 ) = {id, S, S2}. Consider an open neighbourhoodU+
0 of r+0

but not intersecting any other ridge. The intersection ofD with U+
0 is the same

as the intersection ofU+
0 with the Ford domainDS for the order three group〈S〉.

SinceS has order 3 this Ford domain is the intersection of the exteriors ofI(S)
andI(S−1). Forz in DS, |〈z,q∞〉| is the smallest of the three quantities in (21).
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Applying S= σ(s+0 ) andS−1 = σ(s−0 ) gives regionsS(DS) andS−1(DS) where
one of the other two quantities is the smallest. ThereforeU+

0 ∩ S(U+
0 ) ∩ S(U−

0 )
is an open neighbourhood ofr+0 contained inD ∪ S(D) ∪ S−1(D). This proves
the cycle condition atr+0 .

r−0 . Now considerr−0 = s+0 ∩ s−−1. When constructing the cycle transformation for
r−0 we start with the ordered triple (r−0 , s

−
−1, s

+
0 ). Applying S = σ(s+0 ) to r−0

gives the ordered triple (r−1 , s−0 , s
+
1 ), which is simply (Ar−0 ,As−−1,As+0 ). Thus

the cycle transformation ofr−0 is ρ(r−0 ) = A−1S = T−1, which has order 3.
Therefore the cycle relation is (A−1S)3 = id , andC(r−0 ) = {id, A−1S, (A−1S)2}.
Noting that I+0 has centreS−1(q∞)S−1A(q∞) = T(q∞) and I−−1 has centre
A−1S(q∞) = T−1(q−∞) we seeI+0 = I(T−1) and I−0 = I(T). Therefore
a similar argument involving the Ford domain for〈T〉 shows that the cycle
condition is satisfied atr−0 .

r±k . Using compatibility of the side pairings with the cyclic group Υ = 〈A〉, we
see thatρ(r+k ) = AkSA−k with cycle relation (AkSA−k)3 = AkS3A−k = id and
that the cycle condition is satisfied atr+k . Likewise, r−k is mapped byρ to
Ak(A−1S)A−k = Ak−1SA−k and (Ak−1SA−k)3 = Ak(A−1S)A−k = id so that the
cycle condition is satisfied atr−k .

This is sufficient to prove Theorem5.2by applying the Poincaré polyhedron theorem
whenD has no ideal vertices, that is to all groupsΓ in the interior ofZ . In particular,Γ
is generated by the generatorA of Υ and the side pairing maps. Using the compatibility
relations, there is only one side pairing map up to the actionof Υ, namelyS. There
are no reflection relations, and (again up to the action ofΥ) the only cycle relations
are S3 = id and (A−1S)3 = id . Thus the Poincaré polyhedron theorem gives the
presentation (18). This completes the proof of Theorem5.2.

For groups on the boundary ofZ the same result is also true. This follows from the
fact (Chuckrow’s theorem): the algebraic limit of a sequence of discrete and faithful
representations of a non virtually nilpotent group in Isom(Hn

C
) is discrete and faithful

(see for instance Theorem 2.7 of [4] or [21] for a more general result in the frame of
negatively curved groups).

We do not need to apply the Poincaré polyhedron theorem for these groups. However,
to describe the manifold at infinity for the limit groups, we will need to know a
fundamental domain, and we will have to go through a similar analysis in the next
section.
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6 The limit group.

In this section, we consider the groupΓlim , and unless otherwise stated, the parameters
α1 andα2 will always be assumed to be equal to 0 andαlim

2 respectively. We know
already thatΓlim is discrete and isomorphic toZ3 ∗ Z3. Our goal is to prove that its
manifold at infinity is homeomorphic to the complement of theWhitehead link. For
these values of the parameters, the mapsS−1T andST−1 are unipotent parabolic (see
the results of Section3.4), and we denote byVS−1T andVST−1 respectively the sets of
(parabolic) fixed points of conjugates ofS−1T andST−1 by powers ofA.

(1) As in the previous section, we apply the Poincaré polyhedron theorem, this time
to the groupΓlim . We obtain an infiniteA-invariant polyhedron, still denotedD,
which is a fundamental domain forA-cosets. This polyhedron is slightly more
complicated than the one in the previous section due to the appearance of ideal
vertices that are the points inVS−1T andVST−1 .

(2) We analyse the combinatorics of the ideal boundary∂∞D of this polyhedron.
More precisely, we will see that the quotient of∂∞D \

(
{pA} ∪ VS−1T ∪ VST−1

)

by the action of the group〈S,T〉 is homeomorphic the complement of the
Whitehead link, as stated in Theorem6.4.

6.1 Matrices and fixed points.

Before going any further, we provide specific expressions for the various objects we
consider at the limit point. Whenα1 = 0 andα2 = αlim

2 , the mapϕ described in
Proposition4.2 is given in Heisenberg coordinates by

(22) ϕ : [z, t] 7−→
[
z+

√
3/8+ i

√
5/8,−t + x

√
5/2+ y

√
3/2

]
.

In particular its invariant line∆ϕ is parametrised by

(23) ∆ϕ =

{
δϕ(x) =

[
x+ i

√
5/32, x

√
5/8

]
: x ∈ R

}
.

The parabolic mapA = ϕ2 acts on∆ϕ asA : δϕ(x) 7−→ δϕ(x+
√

3/2). As a matrix
it is given by

(24) A =




1 −
√

3 −3/2+ i
√

15/2
0 1

√
3

0 0 1


 .



A complex hyperbolic Riley slice 39

We can decomposeA into the product of regular elliptic mapsS andT :

S =




1
√

3/2− i
√

5/2 −1
−
√

3/2− i
√

5/2 −1 0
−1 0 0


 ,

T =




0 0 −1
0 −1 −

√
3/2+ i

√
5/2

−1
√

3/2+ i
√

5/2 1




These maps cyclically permute (pA,pAB,pB) and (pA,pB,pBA) where

pA =




1
0
0


 pAB =




−1√
3/2+ i

√
5/2

1


 ,

pB =




0
0
1


 pBA =




−1
−
√

3/2+ i
√

5/2
1


 .(25)

Using α1 = 0, we will occasionally use the facts from Proposition3.6 that (S,T) is
C-decomposable and (A,B) is R-decomposable.

As mentioned above, in the groupΓlim the elementsST−1, S−1T , TST, STSand
the commutator [A,B] = (ST−1)3 are unipotent parabolic. For future reference,
we provide here lifts of their fixed points, both as vectors inC

3 and in terms of
geographical coordinatesg(α, β) (we omit thew coordinates: since we are on the
boundary at infinity, it is equal to

√
2 cosα).

pST−1 =



−1/4+ i

√
15/4√

3/4+ i
√

5/4
1


 = g

(
arccos(1/4), π/2

)
,

pS−1T =



−1/4− i

√
15/4

−
√

3/4+ i
√

5/4
1


 = g

(
− arccos(1/4), π/2

)
,

pTST =




−1
−3
√

3/4+ i
√

5/4
1


 = g

(
0,− arccos

(√
27/32

))
,

pSTS =




−1
3
√

3/4+ i
√

5/4
1


 = g

(
0,arccos

(√
27/32

))
.(26)

It follows from (22) thatϕ acts on these parabolic fixed points as follows:

(27) · · · pT−1STST
ϕ−→ pTST

ϕ−→ pS−1T
ϕ−→ pST−1

ϕ−→ pSTS
ϕ−→ pSTSTS−1 · · ·
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I−−1

I−
0

I−−1

I−
0

I+
0

Figure 6: Two realistic views of the isometric spheresI+0 , I+1 and I−0 for the limit group
Γlim . The thin bigon isB+

0 (defined in Proposition6.5). Compare with Figures8 and12

6.2 The Poincaŕe theorem for the limit group.

The limit group has extra parabolic elements. Therefore, inorder to apply the Poincaré
theorem, we must construct a system of consistent horoballsat these parabolic fixed
points (see Section5.1).

Lemma 6.1 The isometric spheresI+1 andI−−1 are tangent atpST−1 . The isometric
spheresI+−1 andI−0 are tangent atpS−1T .

Proof It is straightforward to verify that|〈pST−1,pBA〉| = |〈pST−1,A(pB)〉| = 1, and
thereforepST−1 belongs to bothI−−1 and I+1 . Projecting vertically (see Remark1),
we see that the projections ofI−−1 and I+1 are tangent discs and as they are strictly
convex, their intersection contains at most one point. Thisgives the result. The other
tangency is along the same lines.

A consequence of Lemma6.1 is that the parabolic fixed points are tangency points of
isometric spheres. The following lemma is proved in Section7.1.

Lemma 6.2 For the groupΓlim the triple intersectionI+0 ∩I−0 ∩I−−1 contains exactly
two points, namely the parabolic fixed pointspST−1 andpS−1T .

Applying powers ofϕ, we see that these triple intersections are actually quadruple
intersections of sides and triple intersections of ridges.
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Corollary 6.3 The parabolic fixed pointAk(pST−1) lies onI−k−1 ∩ I+k ∩ I−k ∩ I+k . In
particular, it is the triple ridge intersectionr−k ∩ r+k ∩ r−k+1 . Similarly, Ak(pS−1T) lies
on I+−1 ∩ I−−1 ∩ I+0 ∩ I−0 . In particular it isr+k−1 ∩ r−k ∩ r+k .

To construct a system of consistent horoballs at the parabolic fixed points we must
investigate the action of the side pairing maps on them. First, pS−1T ∈ I+−1 ∩ I−−1 ∩
I+0 ∩ I−0 , we have

σ(s+−1) = A−1SA: pS−1T 7−→ pT−1STST,

σ(s−−1) = A−1S−1A : pS−1T 7−→ pTST,

σ(s+0 ) = S : pS−1T 7−→ pST−1,

σ(s−0 ) = S−1 : pS−1T 7−→ pSTS.

Likewise pST−1 ∈ I−−1 ∩ I+0 ∩ I−0 ∩ I+1 . We have

σ(s−−1) = A−1S−1A : pST−1 7−→ A−2(pST−1),

σ(s+0 ) = S : pST−1 7−→ pSTS,

σ(s−0 ) = S−1 : pST−1 7−→ pS−1T,

σ(s+1 ) = ASA−1 : pST−1 7−→ A2(pST−1).

We can combine these maps to show how the pointsAk(pST−1) and Ak(pS−1T) are
related by the side pairing maps. This leads to an infinite graph, a section of which is:
(28)

A−1SA // pST−1
ASA−1

//

S

((PP
PP

PP
PP

PP
PP

PP
P

A2(pST−1) //

pT−1STST
oo

A−1SA
��

pS−1T
A−1SAoo

S

OO

pSTSS
oo

ASA−1

��

A2(pS−1T)ASA−1
oo

A2SA−2

OO

oo

// pTST S
//

A−1SA

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠
pSTSTS−1

A2SA−2
//

ASA−1

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

From this it is clear that all the cycles in the graph (28) are generated by triangles
and quadrilaterals. Up to powers ofA, the triangles lead to the wordS3 , which is the
identity. Up to powers ofA the quadrilaterals lead to words cyclically equivalent to
the one coming from:

pS−1T
S−1

// pSTS
ASA−1

// pSTSTS−1
S−1

// pTST
A−1SA // pS−1T

In other words,pS−1T is fixed by (A−1SA)(S−1)(ASA−1)(S−1) = (T−1S)3. This is
parabolic and so preserves all horoballs based atpS−1T .
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F0

F−1

I−
0

I+
0

I+−1 I+
1

I−
1

∆ϕ

I−−1

Figure 7: Vertical projection and realistic view of the isometric spheres and the fansF0 and
F−1 for the parameter valuesα1 = 0, α2 = αlim

2 . Compare with Figure5.
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Therefore, we can define a system of horoballs as follows. LetU+
0 be a horoball based

at pS−1T , disjoint from the closure of any side not containingpS−1T in its closure. Now
define horoballsU+

k and U−
k by applying the side pairing maps toU+

0 . Since every
cycle in the graph (28) gives rise either to the identity map or to a parabolic map, this
process is well defined and gives rise to a consistent system of horoballs. Therefore we
can apply the Poincaré polyhedron theorem for the two limit groups. Using the same
arguments as we did for groups in the interior ofZ , we see thatΓ has the presentation
(18).

6.3 The boundary of the limit orbifold.

Theorem 6.4 The manifold at infinity of the groupΓlim is homeomorphic to the
Whitehead link complement.

The ideal boundary ofD is made up of those pieces of the isometric spheresI±k that are
outside all other isometric spheres in{I±k : k ∈ Z}. Recall that the (ideal boundary
of) the sides±k is the part of∂I±k which is outside (the ideal boundary of) all other
isometric spheres. In this section, when we speak of sides and ridges we implicitly
mean their intersection with∂H2

C
.

We will see that each isometric sphere in{I±k : k ∈ Z} contributes a sides±k made up
of one quadrilateral, denoted byQ±

k and one bigonB±k . A very similar configuration
of isometric spheres has been observed by Deraux and Falbel in [8]. We begin by
analysing the contribution ofI+0 .

Proposition 6.5 The side(s+0 )◦ of D has two connected components.

(1) One of them is a quadrilateral, denotedQ+
0 , whose vertices are pointspST−1 ,

pS−1T , pSTSandpTST (all of which are parabolic fixed points)

(2) The other is a bigon, denotedB+0 , whose vertices arepST−1 andpS−1T

Proof Since isometric spheres are strictly convex, the ideal boundaries of the ridges
r+0 = I+0 ∩I−0 andr−0 = I+0 ∩I−−1 are Jordan curves onI+0 . We still denote them by
r±0 . The interiors of these curves are respectively the connected components containing
pAB andpBA. By Lemma6.2 in Section7.1, r+0 and r−0 have two intersection points,
namelypS−1T andpST−1 , and their interiors are disjoint. As a consequence the common
exterior of the two curves has two connected components, andthe pointspS−1T and
pST−1 lie on the boundary of both.
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pAB

pSTS pTST

pST−1

r+
0

r−
0

pS−1T

pBA

Figure 8: Intersections of the isometric spheresI−0 , I−
−1 , I+1 andI+

−1 with I+0 in the boundary
of H2

C
, viewed in geographical coordinates. Recall thatr+0 = I+0 ∩ I−0 and r−0 = I+0 ∩ I−−1 .

Hereα ∈ [−π/2, π/2] is the vertical coordinates, andβ ∈ [−π, π] the horizontal one. The
vertical dash-dotted segmentsβ = ±π/2 are the two halves of the boundary of the meridian
m . The bigon between the two curvesr+0 and r−0 is B+

0 (see Proposition6.5). Compare to
Figure 2 of [8].

To finish the proof, consider the involutionι1 defined in the proof of Proposition3.6.
(Note that sinceα1 = 0 this involution conjugatesΓlim to itself.) In Heisenberg
coordinates it is defined byι1 : [z, t] 7−→ [−z,−t] and is clearly a Cygan isometry.
As in Proposition3.6, ι1 fixes pA and pB and it interchangespAB and pBA. Thus it
conjugatesS to T−1 and so it interchangespST−1 and pS−1T and it interchangespSTS

and pTST. Moreover, since it is a Cygan isometry,ι1 preservesI+0 and interchanges
I−−1 andI−0 and thus it also exchanges the two curvesr+0 and r−0 . Again, since it is
a Cygan isometry, it maps interior to interior and exterior to exterior for both curves.
As a consequence, the two connected components of the commonexterior are either
exchanged or both preserved.

Now consider the point with Heisenberg coordinates [i,0]. It is fixed by ι1, and
belongs to the common exterior of bothr+0 and r−0 . This implies that both connected
components are preserved. Finally, sincepSTS ∈ I+0 ∩ I−0 and pTST ∈ I+0 ∩ I−−1
are exchanged byι1, these two points belong to the closure of the same connected
component. As a consequence, one of the two connected components haspST−1 , pS−1T ,
pSTSandpTST on its boundary. This is the quadrilateral. The other one haspST−1 and
pS−1T on its boundary. This is the bigon.

We now apply powers ofA to get a result about all the isometric sphere intersections
in the ideal boundary ofD. DefineQ−

0 = ϕ(Q+
0 ) andB−0 = ϕ(B+0 ). Then applying
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powers ofA we define quadrilateralsQ±
k = Ak(Q±

0 ), and bigonsB±k = Ak(B±0 ). The
action of the Heisenberg translationA and the glide reflectionϕ are:

pTST pST−1 pSTSTS−1

pTST pSTSTS−1

pT−1S pSTS

Q+

1

Q−
1

Q+

0

pT−1STST

Q+

−1 B−−1

B+

−1 Q−−1 B+

0
Q−

0

B−
0

B+

1

F0

pST−1

c−
0

c+
0

A

F−1

c−−1

c+−1

Figure 9: A combinatorial picture of∂D . The top and bottom lines are identified.

Corollary 6.6 For the groupΓlim , the (ideal boundary of) the sides±k is the union of
the quadrilateralQ±

k and the bigonB±k . The action ofA andϕ are as follows.

(1) A mapsQ±
k to Q±

k+1 , andB±k to B±k+1.

(2) ϕ mapsQ+
k to Q−

k , Q−
k to Q+

k+1, B+k to B−k andB−k to B+k+1.

In order to understand the combinatorics of the sides ofD, we describe the edges of the
faces lying inI+0 . The three pointspS−1T, pST−1, pSTSlie on the ridger+0 = I+0 ∩I−0 .
Likewise, the pointspST−1, pS−1T, pTST lie in the ridger−0 = I+0 ∩I−−1. Indeed, these
points divide (the ideal boundaries of) these ridges into three segments. We have listed
the ideal vertices in positive cyclic order (see Figure8). Using the graph (28), the
action of the cycle transformationsρ(s+0 ) = S and ρ(r−0 ) = A−1S = T−1 on these
ideal vertices, and hence on the segments of the ridges, is:

pS−1T
S // pST−1

S // pSTS
S // pS−1T,

pST−1
A−1S // pS−1T

A−1S // pTST
A−1S // pST−1.

Furthermore,S mapspTST to pSTSTS−1 .

The quadrilateralQ+
0 has two edges [pS−1T,pTST] ∪ [pTST,pST−1] in the ridge r−0

and two edges [pST−1,pSTS] ∪ [pSTS,pS−1T] in the ridge r+0 . It is sent byS to the
quadrilateralQ−

0 with two edges [pST−1,pSTSTS−1] ∪ [pSTSTS−1,pSTS] in r−1 and two
edges [pSTS,pS−1T] ∪ [pS−1T,pST−1] in r+0 . Similarly, the edges of the bigonB+0 are
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the remaining segments inr−0 andr+0 , both with endpointspS−1T andpST−1 . It is sent
by S to the bigonB−0 with verticespST−1 andpSTS.

Applying powers ofA gives the other quadrilaterals and bigons. As usual, the image
underAk can be found by addingk to each subscript and conjugating each side pairing
map and ridge cycle byAk . The combinatorics ofD is summarised on Figure9.

Lemma 6.7 The line∆ϕ given in (23) is contained in the complement ofD.

Proof As noted above,A acts on∆ϕ as a translation through
√

3/2. We claim that
the segment of∆ϕ with parameterx ∈ [−

√
3/8,

√
3/8] in contained in the interior

of I+0 . Applying powers ofA we see that each point of∆ϕ is contained inI+k for
somek. Hence the line is in the complement ofD.

Considerδϕ(x) ∈ ∆ϕ with x2 ≤ 3/8. The Cygan distance betweenpB and δϕ(x)
satisfies:

dCyg(pB, δϕ(x))4
=

∣∣∣−x2−5/32+ ix
√

5/8
∣∣∣
2
= x4

+15x2/16+25/1−24≤ 529/1024.

SincedCyg(pB, δϕ(x)) < 1 this meansδϕ(x) is in the interior ofI+0 as claimed.

The following result, which will be proved in Section7.5, is crucial for proving
Theorem6.4.

Proposition 6.8 There exists a homeomorphismΨ : R3 −→ ∂H2
C
− {q∞} mapping

the exterior ofS1 × R, that is{(x, y, z) : x2 + y2 ≥ 1}, homeomorphically ontoD
and so thatΨ(x, y, z+ 1) = AΨ(x, y, z), that isΨ is equivariant with respect to unit
translation along thez axis andA.

As a consequence of Proposition6.8, D admits anA invariant 1-dimensional foliation,
the leaves being the images of radial lines{(r cos(θ0), r sin(θ0), z0) : r ≥ 1} that
foliate the exterior ofS1×R. Each of these leaves is a curve connecting a point of∂D
with q∞ . We can now prove Theorem6.4.

Proof of Theorem 6.4. The unionQ+
0 ∪ B+0 ∪ Q−

0 ∪ B−0 is a fundamental domain
for the action ofA on the boundary cylinder∂D. As the foliation obtained above is
A-invariant, the cone to the pointq∞ built over it via the foliation is a fundamental
domain for the action ofA over D, and thus, it is a fundamental domain for the action
of Γlim on the region of discontinuityΩ(Γlim).
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This fundamental domain is the union of two pyramidsP+ andP− , with respective
basesQ+

0 ∪ B−0 andQ−
0 ∪ B+0 , and common vertexq∞ = pST. The two pyramids

share a common face, which is a triangle with verticespSTS, pT−1S and pST. Cutting
and pasting, consider the unionP+ ∪ S−1

(
P−

)
. It is again a fundamental domain for

Γlim . The apex ofS−1(P−) is S−1(q∞) = pB = pTS. The image underS−1 of Q−
0 is

Q+
0 , and the bigonB+0 is mapped byS−1 to another bigon connectingpT−1S to pSTS.

SinceB−0 = S(B+0 ), this new bigon is the image ofB−0 underS−2 = S.

The resulting object is a is a polyhedron (a combinatorial picture is provided on Figure
10), whose faces are triangles and bigons. The faces of this octahedron are paired as
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pSTS
pST−1

pT−1SpTST
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pST

pSTS

pST

pTSpST−1

pTST

pT−1S

pST

S−1(B+
0 )

B−0

Q+
0

Bottom pyramid : S−1(P−)

Top pyramid : P+

Figure 10: A combinatorial picture of the octahedron.

follows.

TS : (pTS,pT−1S,pSTS) 7−→ (pTS,pTST,pTS−1),

ST : (pST,pTST,pT−1S) 7−→ (pST,pST−1,pSTS),

T : (pST,pTST,pST−1) 7−→ (pTS,pT−1S,pTST),

S : (pTS,pST−1,pSTS) 7−→ (pST,pSTS,pS−1T),

S : (pST−1,pSTS) 7−→ (pSTS,pS−1T)

The last line is the bigon identification betweenB−0 and S−1(B+0 ). As the triangle
(pTS,pST−1,pSTS) and the bigonB−0 share a common edge and have the same face
pairing they can be combined into a single triangle, as well as their images. Thus the
last two lines may be combined into a single side with side pairing mapS. We therefore
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obtain a true combinatorial octahedron. The face identifications given above make the
quotient manifold homeomorphic to the complement of the Whitehead link (compare
for instance with Section 3.3 of [35]).

7 Technicalities.

7.1 The triple intersections: proofs of Proposition4.5and Lemma 6.2.

In this section we first prove Proposition4.5, which states that the triple intersection
must contain a point of∂H2

C
and then we analyse the case of the limit groupΓlim ,

giving a proof of Lemma6.2. First recall that the isometric spheresI−0 andI−−1 are the
unit Heisenberg spheres with centres given respectively ingeographical coordinates by
(see2.5)

pAB = S(∞) = g
(
−α1,−α1/2+ α2,

√
2 cos(α1)

)

pBA = A−1S(∞) = g
(
−α1,−α1/2− α2 + π,

√
2 cos(α1)

)
.

Consider the two functions of pointsq = g(α, β,w) ∈ I+0 defined by

f [0]
α1,α2

(q) = 2 cos2(α/2− α1/2)+ cos(α− α1)(29)

−4wx1 cos(α/2− α1/2) cos(β + α1/2− α2) + w2x2
1,

f [−1]
α1,α2

(q) = 2 cos2(α/2− α1/2)+ cos(α− α1)

+4wx1 cos(α/2− α1/2) cos(β + α1/2+ α2) + w2x2
1.(30)

These functions characterise those points onI+0 that belong toI−0 andI−−1.

Lemma 7.1 A point q on I+0 lies on I−0 (respectively in its interior or exterior) if
and only if it satisfiesf [0]

α1,α2
(q) = 0 (respectively is negative or is positive). Similarly,

a point q on I+0 lies on I−−1 (respectively in its interior or exterior) if and only if it
satisfiesf [−1]

α1,α2
(q) = 0 (respectively is negative or is positive).

Proof A point q ∈ I+0 lies onI−0 (respectively in its interior or exterior) if and only if
its Cygan distance from the centre ofI−0 , which is the pointpAB, equals 1 (respectively
is less than 1 or greater than 1). Equivalently (see Section2.4), the following quantity
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vanishes, is positive or negative respectively,

|〈q,pAB〉|2− 1 =

∣∣∣−e−iα
+ wx1e−iα/2+iβ−iα2 − e−iα1

∣∣∣
2
− 1

=

∣∣∣−2 cos(α/2− α1/2)+ wx1eiβ+iα1/2−iα2

∣∣∣
2
− 1

= 4 cos2(α/2− α1/2)− 1+ w2x2
1

−4 cos(α/2− α1/2)wx1 cos(β + α1/2− α/2)

= f [0]
α1,α2

(q).

On the last line we used 2 cos2(α/2− α1/2) = 1+ cos(α− α1). This proves the first
part of the Lemma and the second is obtained by a similar computation.

Corollary 7.2 For given(α1, α2), if the sumf [0]
α1,α2

+ f [−1]
α1,α2

is positive for allq, then
the triple intersectionI+0 ∩ I−0 ∩ I−−1 is empty.

See Figure8. We can now prove Proposition4.5.

Proof of Proposition 4.5. To prove the first part, note that a necessary condition for
a pointq ∈ I+0 to be in the intersectionI−0 ∩I−−1 is that f [0]

α1,α2
(q)− f [−1]

α1,α2
(q) = 0. By

a simple computation, we see that this difference is:

f [0]
α1,α2

(q)− f [−1]
α1,α2

(q) = −8wx1 cos(α/2− α1/2) cos(β + α1/2) cos(α2).

Sinceα1 and α2 lie in (−π/2, π/2) andα ∈ [−π/2, π/2], the only solutions are
cos(β + α1/2) = 0 or w = 0. Thus eitherp = g(α, β,w) lies on the meridianm, or
on the spine ofI+0 , and hence on every meridian, in particular onm (compare with
Proposition2.9).

To prove the second part of Proposition4.5, assume that the triple intersection contains
a pointq = g

(
α, (π/2− α1/2),w

)
insideH2

C
, that is such thatw2 < 2 cos(α), and

f [0]
α1,α2

(q) + f [−1]
α1,α2

(q) = 0.

In view of Corollary7.2, we only need to prove that there exists a point on∂m where
the above sum is non-positive, and use the intermediate value theorem. To do so, let
α̃ be defined by the condition 2 cos( ˜α) = w2 and such that ˜α andα1 have opposite
signs. Sincew2 < 2 cos(α), these conditions imply that|α̃| > |α|. We claim that the
point q̃ = g

(
α̃, (π − α1)/2,w

)
is satisfactory. Indeed, the conditions on ˜α give

|α− α1| ≤ |α|+ |α1| < |α̃|+ |α1| = |α̃− α1|
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where the last inequality follows from the fact that ˜α and α1 have opposite signs.
Therefore

(31) cos(α̃/2− α1/2) < cos(α/2− α1/2).

On the other hand, we have

f [0]
α1,α2

(q) + f [−1]
α1,α2

(q)

= 4 cos2(α/2− α1/2)+ 2 cos(α− α1)− 8wx1 cos(α/2− α1/2) sin(α2) + 2w2x2
1

= 8 cos2(α/2− α1/2)− 2− 8wx1 cos(α/2− α1/2) sin(α2) + 2w2x2
1.

(32)

We claim this is an increasing function of cos(α/2 − α1/2). In order to see this,
observe that its derivative with respect to this variable is

16 cos(α/2−α1/2)−8wx1 sin(α2) > 16 cos(α/2−α1/2)−16
√

cos(α) cos(α1) ≥ 0,

where we usedx1 =
√

2 cos(α1), w <
√

2 cos(α) and sin(α2) ≤ 1. Therefore,

0 = f [0]
α1,α2

(q) + f [−1]
α1,α2

(q)

= 8 cos2(α/2− α1/2)− 2− 8wx1 cos(α/2− α1/2) sin(α2) + 2w2x2
1

> 8 cos2(α̃/2− α1/2)− 2− 8wx1 cos(α̃/2− α1/2) sin(α2) + 2w2x2
1

= f [0]
α1,α2

(q̃) + f [−1]
α1,α2

(q̃).

This proves our claim.

We now prove Lemma6.2 which completely describes the triple intersection at the
limit point.

Proof of Lemma 6.2 From the first part of Proposition4.5 we see that any point
q = g(α, β,w) in I+0 ∩ I−0 ∩ I−−1 must lie onm, that isβ = (π − α1)/2. For such

points it is enough to show thatf [0]
0,αlim

2
(q) + f [−1]

0,αlim
2

(q) = 0. Substitutingα1 = 0 and

sin(α2) =
√

5/8, this becomes:

f [0]
0,αlim

2
(q) + f [−1]

0,αlim
2

(q) = 4 cos2(α/2)+ cos(α) − 4
√

5wcos(α/2)+ 4w2

=

(
2 cos(α/2)−

√
5w

)2
+

(
2 cos(α) −w2).

In order to vanish, both terms must be zero. Hencew2 = 2 cos(α) and 2 cos(α/2) =√
5w =

√
10 cos(α) (noting w cannot be negative sinceα ∈ [−π/2, π/2]). This

meansα = ± arccos(1/4) andw =
√

2 cos(α) = 1/
√

2. Therefore, the only points in
I+0 ∩ I−0 ∩ I−−1 have geographical coordinatesg

(
± arccos(1/4), π/2,1/

√
2
)
. Using

(26), we see these points arepST−1 andpS−1T .
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7.2 The regionZ is an open disc in the regionL: Proof of Proposition
4.4.

Consider the groupΓα1,α2 and, as before, writex4
1 = 4 cos2(α1) andx4

2 = 4 cos2(α2).
Recall, from Proposition3.7, that (α1, α2) is in L (respectivelyP ) if G(x4

1, x
4
2) > 0

(respectively= 0) where:

(33) G(x, y) = x2y4− 4x2y3
+ 18xy2 − 27.

Recall this means [A,B] is loxodromic (respectively parabolic). Also (α1, α2) is in the
rectangleR if and only if (x4

1, x
4
2) ∈ [3,4]× [3/2,4]. From Proposition4.3, the point

(α1, α2) ∈ R is in Z (respectively∂Z ) if D(x4
1, x

4
2) > 0 (respectively= 0) where:

(34) D(x, y) = x3y3− 9x2y2− 27xy2
+ 81xy− 27x− 27.

Lemma 7.3 Suppose(α1, α2) ∈ R. Then(α1, α2) ∈ L ∪ P , that is the commutator
[A,B] is loxodromic or parabolic (see Section3.4). Moreover, (α1, α2) ∈ P if and
only if (α1, α2) = (0,±αlim

2 ).

Proof We first claim that the functionG(x, y) has no critical points in (0,∞)× (0,∞).
Indeed, the first partial derivatives ofG(x, y) are

Gx(x, y) = 2y2(xy2− 4xy+ 9), Gy(x, y) = 4xy(xy2 − 3xy+ 9).

These are not simultaneously zero for any positive values ofx andy. As a consequence,
the minimum ofG on [3,4] × [3/2,4] is attained on the boundary of this rectangle.
We then have:

G(x,3/2) =
27
16

(4− x) (5x− 4) , G(x,4) = 9(32x− 3),

G(3, y) = 9 (y− 1)
(
y3− 3y2 + 3y+ 3

)
, G(4, y) = (2y+ 1)(2y− 3)3.

It is a simple exercise to check that under the assumptions that (x, y) ∈ [3,4]× [3/2,4],
all four of these terms are positive, except for when (x, y) = (4,3/2) in which case
G(4,3/2) = 0. Then (x4

1, x
4
2) = (4,3/2) if and only if (α1, α2) = (0,±αlim

2 ); compare
to Figure4.

Lemma 7.4 The regionZ is an open topological disc inR symmetric about the
axes and intersecting them in the intervals{α2 = 0, −π/6 < α1 < π/6} and
{α1 = 0, −αlim

2 < α2 < αlim
2 }. Moreover, the only points of∂Z that lie in the

boundary ofR are (α1, α2) = (0,±αlim
2 ) and (α1, α2) = (±π/6,0).
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Figure 11: The null locus ofD(x, y) in the rectangle [3, 4]× [3/2, 4].

Proof First we examine the values ofD(x, y) on the boundary of [3,4] × [3/2,4]:

(35)
D
(
x,3/2

)
= 27

8 (x− 4)(x2 − 2x+ 2), D(x,4) = (x− 3)(3+ 8x)2,

D(3, y) = 27(y− 4)(y− 1)2, D(4, y) = (16y− 15)(2y− 3)2.

We claim that, for anyy0 ∈ [3/2,4] the polynomialD(x, y0) has exactly one root in
[3,4]. Indeed, we haveD(3, y0) ≤ 0 ≤ D(4, y0) and thusD(x, y0) has at least one
such root. Thex-derivative ofD is

∂xD(x, y) = 3(x− 3)y2(xy+ 3y− 6)+ 27(y− 1)3,

which is positive whenx ∈ [3,4] and y ∈ [3/2,4]. ThusD(x, y0) is increasing, and
the root is unique.

Similarly, we claim that, for anyx0 ∈ [3,4], the polynomialD(x0, y) has a unique root
in [3/2,4]. It is clear from (35) whenx0 = 4 (there the root isy = 3/2). Now suppose
3 ≤ x0 < 4. Arguing as before, we haveD(x0,3/2) < 0 ≤ D(x0,4). However, it is
not true thatD(x0, y) is a monotone function ofy. The partial derivative ofD(x, y)
with respect toy is

∂yD(x, y) = 3x(x2y2− 6xy− 18y+ 27).

Therefore, for a fixedx0 ∈ [3,4) we have∂yD(x0,3/2) = 27x2
0(x0− 4)/4 < 0. Since

D(x0, y) is a cubic with leading coefficientx3
0 > 0, such that bothD(x0,3/2) and

∂yD(x0,3/2) are negative we see thatD(x0, y) has exactly one zero in (3/2,∞). Since
D(x0,4) ≥ 0 this zero must lies in (3/2,4] as claimed.

Thus the zero-locus ofD(x, y) in [3,4]× [3/2,4] is the graph of a continuous bijection
connecting the two points (3,4) and (4,3/2). The polynomialD(x, y) is positive in the
part of [3,4]× [3/2,4] above the zero-locus, that is containing the point (x, y) = (4,4)
(see Figure11). Likewise, it is negative in the part below the zero locus, that is
containing the point (x, y) = (3,3/2). Changing coordinates to (α1, α2), we see that
the zero locus ofD

(
4 cos2(α1),4 cos2(α2)

)
in the rectangle [0, π/6] × [0, αlim

2 ] is
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the graph of a continuous bijection connecting the points (α1, α2) = (π/6,0) and
(0, αlim

2 ). Moreover,D is positive on the part below this curve, in particular on the
intervalα1 = 0 and 0≤ α2 < αlim

2 and the intervalα2 = 0 and 0≤ α1 < π/6. The
regionZ is the union of the four copies of this region by the symmetries about the
horizontal and vertical coordinate axes. It is clearly a disc and contains the relevant
parts of the axes. This completes the proof.

Combining Lemmas7.3and7.4proves Proposition4.4.

7.3 Condition for no triple intersections: Proof of Proposition 4.3.

In this section we find a condition on (α1, α2) that characterises the setZ where the
triple intersection of isometric spheresI+0 ∩ I−0 ∩ I−−1 is empty.

Lemma 7.5 The triple intersectionI+0 ∩I−0 ∩I−−1 is empty if and only iffα1,α2(α) > 0
for all α ∈ [−π/2, π/2] where

fα1,α2(α) = 4 cos2(α/2− α1/2)+ 2 cos(α− α1) + 8 cos(α) cos(α1)(36)

−16
√

cos(α) cos(α1) cos(α/2− α1/2)|sin(α2)|.

Proof By Corollary 7.2, it is enough to show thatf [0]
α1,α2

+ f [−1]
α1,α2

> 0. This sum is
made explicit in (32). In view of the second part of Proposition (4.5), we can restrict
our attention to showing that the triple intersectionI+0 ∩I−0 ∩I−−1 contains no points of
∂H2

C
. That is, we may assumew = ±√2 cos(α). Using the first part of Proposition4.5

we restrict our attention to pointsm in the meridianm whereβ = (π−α1)/2. The triple
intersection is empty if and only if the sumf [0]

α1,α2
(q)+ f [−1]

α1,α2
(q) is positive for any value

of α, whereq = g
(
α, (π−α1/2),±√2 cos(α)

)
. Whenwsin(α2) is negative all terms

in (32) are positive. Therefore we may supposewsin(α2) =
√

2 cos(α1)|sin(α2)| ≥ 0.
Substituting these values in the expression forf [0]

α1,α2
(q) + f [−1]

α1,α2
(q) given in (32) gives

the functionfα1,α2(α) in (36).

We want to convert (36) into a polynomial expression in a function ofα. The numerical
condition given in the statement of Proposition4.3will follow from the next lemma.

Lemma 7.6 If α ∈ [−π/2, π/2] is a zero offα1,α2 thenTα = tan(α/2) ∈ [−1,1] is
a root of the quartic polynomialLα1,α2(T), where

Lα1,α2(T) = T4 (2x4
1x4

2 − 4x2
1x4

2 + x4
1 + 10x2

1 + 1
)
− 8T3 sin(α1)

(
x2

1x4
2− x2

1− 1
)

−2T2 (2x4
1x4

2 + 3x4
1− 9

)
+ 8T sin(α1)

(
x2

1x4
2− x2

1 + 1
)

+
(
2x4

1x4
2 + 4x2

1x4
2 + x4

1− 10x2
1 + 1

)
(37)
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Proof Squaring the two lines of (36) and using
√

2 cos(α1)|sin(α2)| ≥ 0, we see that
the conditionfα1,α2(α) = 0 is equivalent to

(
1+2 cos(α−α1)+4 cos(α) cos(α1)

)2
= 64 cos(α) cos(α1) cos2

(α− α1

2

)
sin2(α2).

After rearranging and expanding, we obtain the following polynomial equation in
cos(α) and sin(α).

0 = 4
(
8 cos2(α1) cos2(α2) + 2 cos2(α1)− 1

)
cos2(α)

+8 cos(α1) sin(α1)
(
4 cos2(α2)− 1

)
cos(α) sin(α)

+4 cos(α1)
(
8 cos2(α2)− 5

)
cos(α) + 4 sin(α1) sin(α)− 4 cos2(α1) + 5.

Substituting tan(α/2) = T , 2 cos(α1) = x2
1 and 2 cos(α2) = x2

2 into this equation
givesLα1,α2(T).

Before proving Proposition4.3, we analyse the situation on the axesα1 = 0 and
α2 = 0.

Lemma 7.7 Let Lα1,α2(T) be given by(37).

(1) Whenα2 = 0 and−π/6 < α1 < π/6 thenLα1,0(T) has two real double roots
T− andT+ whereT− < −1 andT+ > 1, and no other roots.

(2) Whenα1 = 0 and0 < α2 < αlim
2 or −αlim

2 < α2 < 0 the polynomialL0,α2(T)
has no real roots.

Proof First, substitutingα2 = 0 in (37) we find L(α1,0) = Mα1(T)2, where

Mα1(T) = T2(3x2
1 − 1)− 4T sin(α1)− (3x2

1 + 1).

The condition onα1 guarantees that 3x2
1− 1 > 0 and so asT tends to±∞ soMα1(T)

tends to+∞. On the other hand,

Mα1(−1) = 4 sin(α1)− 2 < 0, Mα1(1) = −4 sin(α1)− 2 < 0.

ThereforeMα1(T) has two real rootsT− < −1 andT+ > 1 as claimed. SinceMα1(T)
is quadratic, it cannot have any more roots. In particular, it is negative for−1≤ T ≤ 1.

Secondly, we substituteα1 = 0 in (37), giving:

L0,α2(T) =

(
5T2− 8x4

2 + 3
5

)2

+
32
25

(2x4
2 − 3)(4− x4

2).

When α2 ∈ (−αlim
2 , αlim

2 ) and α2 6= 0, we havex4
2 = 4 cos2(α2) ∈ (3/2,4). In

particular, this means that (2x4
2 − 3)(4− x4

2) > 0 and soL0,α2(T) has no real roots,
proving the second part.
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We note that whenα1 = α2 = 0 thenL0,0(T) has double roots atT = ±
√

7/5 and
whenα1 = 0 andα2 = ±αlim

2 thenL0,±αlim
2

(T) has double roots atT = ±
√

3/5.

Lemma 7.8 If (α1, α2) ∈ Z then the polynomialLα1,α2(T) has no rootsT in [−1,1].

Proof We analyse the number, type (real or non-real) and location of roots of the
polynomialLα1,α2(T) when (α1, α2) ∈ R. As Lα1α2(T) has real coefficients, whenever
it has only simple roots, its root set is of one of the following types:

(a) two pairs of complex conjugate non real simple roots,

(b) a pair of non-real complex conjugate simple roots and twosimple real roots,

(c) four simple real roots.

But the set of roots of a polynomial is a continuous map (in bounded degree) for
the Hausdorff distance on compact subsets ofC. In particular, the root set type of
Lα1,α2(T) is a continuous function ofα1 andα2 . This implies that it is not possible
to pass from one of the above types to another without passingthrough a polynomial
having a double root.

We compute the discriminant∆α1,α2 of Lα1,α2(T) (a computer may be useful to do
so):

(38) ∆α1,α2 = 216x4
1

(
x4

1+1
)2(

2x2
1(2−x2

1)(4−x4
2)+ (3x2

1−1)2
)(

4−x4
2

)2 ·D
(
x4

1, x
4
2

)

whereD(x, y) is as in Proposition4.3, andxi =
√

2 cos(αi). The polynomialLα1,α2(T)
has a multiple root inC if and only if ∆α1α2 = 0. Let us examine the different factors.

• The first two factorsx4
1 and (x4

1+1)2 are positive when (α1, α2) ∈ (−π/2, π/2)2 .

• Note that (2− x2
1)(4− x4

2) ≥ 0 and (3x2
1 − 1)2 > 0 when

√
3 ≤ x2

1 ≤ 2 and
x4

2 ≤ 4, and so the third factor is positive.

Thus, the only factors of∆α1,α2 that can vanish onR are (4− x4
2)2 = 16 sin4 α2 and

D(x4
1, x

4
2). In particularLα1,α2(T) has a multiple root inC if and only if one of these two

factors vanishes. We saw in Proposition4.4 that the subset ofR whereD(x4
1, x

4
2) > 0

is a topological discZ , symmetric about theα1 andα2 axes and intersecting them
in the intervals{α2 = 0, −π/6 < α1 < π/6} and {α1 = 0, −αlim

2 < α2 < αlim
2 }.

Therefore, the rectangleR contains two open discs on which∆α1,α2 > 0, namely

Z+
= {(α1, α2) ∈ Z : α2 > 0}, Z−

= {(α1, α2) ∈ Z : α2 < 0}.
These two sets each contain an open interval of theα2 axis. We saw in the second part
of Lemma7.7 that on both these intervalsLα1,α2(T) has no real roots, that is its roots
are of type (a). Therefore it has no real roots on all ofZ+ andZ− .
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Only those points ofZ in the interval{α2 = 0, −π/6 < α1 < π/6} still need to be
considered. We saw in the first part of Lemma7.7 that for such pointsLα1,α2(T) has
no roots with−1≤ T ≤ 1. This completes the proof of Proposition4.3.

7.4 Pairwise intersection: Proof of Proposition4.6.

Proposition4.6will follow from the next lemma.

Lemma 7.9 If 0 < x ≤ 4 andD(x, y) ≥ 0 then xy≥ 6 with equality if and only if
(x, y) = (4,3/2).

Proof Substitutingy = 6/x in (34) and simplifying, we obtain

D(x,6/x) = −27(x− 4)(x− 9)/x.

When 0< x ≤ 4 we see immediately that this is non-positive and equals zero if
and only if x = 4. This means thatxy− 6 has a constant sign on the region where
D(x, y) > 0. Checking at (x, y) = (4,4) we see that it is positive.

Proof of Proposition 4.6 To prove the disjointness of the given isometric spheres we
calculate the Cygan distance between their centres. Since all the isometric spheres
have radius 1, if we can show their centres are a Cygan distance at least 2 apart, then
the spheres are disjoint. (Note that the Cygan distance is not a path metric, so it may
be the distance is less than 2 but the spheres are still disjoint. This will not be the case
in our examples.)

The centre ofI+k is Ak(pB) =
[
kx1x2

2/
√

2, kx2
1x2

2 sin(α2)
]
; see Proposition4.1. We

will show that dCyg
(
Ak(pB),pB

)4
> 16 when k2 ≥ 4 and (α1, α2) ∈ R, that is

(x4
1, x

4
2) ∈ [3,4] × [3/2,4]:

dCyg
(
Ak(pB),pB

)4
=

k4x4
1x8

2 + k2x4
1x4

2(4− x4
2)

4

≥ 27k4

16
.

This number is greater than 16 whenk ≥ 2 or k ≤ −2 as claimed. Using Proposition
4.1 again, the centre ofI−k is Ak(pAB) =

[
(kx1x2

2 + x1eiα2)/
√

2,− sin(α1)
]
. We

suppose that the pair (x4
1, x

4
2) ∈ [3,4] × [3/2,4] satisfiesx4

1x4
2 ≥ 6, which is valid for
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(α1, α2) ∈ Z by Lemma7.9.

dCyg
(
Ak(pAB),pB

)4
=

(
k(k+ 1)x2

1x4
2 + x2

1

)2
+ 4− x4

1

4

= 1+
k2(k+ 1)2x4

1x8
2 + 2k(k+ 1)x4

1x4
2

4

≥
(

3k(k+ 1)
2

+ 1

)2

.

This number is at least 16 whenk ≥ 1 or k ≤ −2 as claimed. Moreover, we have
equality exactly whenk = 1 or k = −2 and whenx4

1x4
2 = 6 andx4

2 = 3/2; that is
when (x4

1, x
4
2) = (4,3/2).

7.5 ∂∞D is a cylinder: Proof of Proposition 6.8.

To prove Proposition6.8, we adopt the following strategy.

• Step 1. First, we intersectD with a fundamental domainDA for the action of
A on the Heisenberg group. The domainDA is bounded by two parallel vertical
planesF−1 andF0 that are boundaries offans in the sense of [17]. These two
fans are such thatA(F−1) = F0 (see Figure7 for a view of the situation in
vertical projection). We analyse the intersections ofF0 and F−1 with D, and
show that they are topological circles, denoted byc−1 andc0 with A(c−1) = c0.

• Step 2. Secondly, we consider the subset of the complement ofD which is
contained inDA, and prove that it is a 3-dimensional ball that intersectsF−1 and
F0 along topological discs (bounded byc−1 andc0). This proves thatD ∩ DA

is the complement a solid tube inDA, which is unknotted using Lemma6.7.
Finally, we prove that, gluing together copies by powers ofA of D ∩ DA, we
indeed obtain the complement of a solid cylinder.

We construct a fundamental domainDA for the cyclic group of Heisenberg translations
〈A〉. The domainDA will be bounded by two fans, chosen to intersect as few bisectors
as possible. The fanF0 will pass throughpST−1 and will be tangent to bothI+1 andI−−1;
compare Figure7. Similarly, F−1 = A−1(F0) will pass throughA−1(pST−1) = pTST

and be tangent to bothI+0 andI−−2. We first giveF0 andF−1 in terms of horospherical
coordinates and then we give them in terms of their own geographical coordinates (see
[17]). In horospherical coordinates they are:

F0 =

{
[x+ iy, t] : 3x

√
3− y

√
5 =
√

2/2
}
,(39)

F−1 =

{
[x+ iy, t] : 3x

√
3− y

√
5 = −4

√
2
}
.(40)
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This leads to the definition ofDA:

(41) DA =

{
[x+ iy, t] : −4

√
2≤ 3x

√
3− y

√
5≤
√

2/2
}
.

We choose geographical coordinates (ξ, η) on F0: the lines whereξ is constant
(respectivelyη is constant) are boundaries of complex lines (respectivelyLagrangian
planes). These coordinates correspond to the double foliation of fans by real planes
and complex lines, which is described in Section 5.2 of [17]. The particular choice is
made so that the origin is the midpoint of the centres ofI+0 andI−0 . Doing so gives
the fanF0 as the set of pointsf (ξ, η):

f (ξ, η) =

{[√
5ξ +

√
3+ 3i

√
3ξ + i

√
5

4
√

2
, η − ξ/4

]
: ξ, η ∈ R

}
.

The standard lift off (ξ, η) is given by

f (ξ, η) =



−ξ2−

√
15ξ/4− 1/4+ iη − iξ/4√

5ξ/4+
√

3/4+ 3i
√

3ξ/4+ i
√

5/4
1


 .

Using the convexity of Cygan spheres, we see that their intersection withF0 (or F−1)
is one of: empty, a point or a topological circle. For the particular fans and isometric
spheres of interest to us, the possible intersections are summarised in the following
result:

Proposition 7.10 The intersections of the fansF−1 andF0 with the isometric spheres
I±k are empty, except for those indicated in the following table.

⋂ I−−2 I+−2 I−−1 I+−1 I−0 I+0 I−1 I+1
F0 ∅ ∅ {pST−1} ∅ a circle a circle ∅ {pST−1}

F−1 {pTST} ∅ a circle a circle ∅ {pTST} ∅ ∅
Moreover, the pointpS−1T belongs to the interior ofDA. The parabolic fixed points
Ak(pST−1) lie outsideDA for all k ≥ 1 andk ≤ −1; parabolic fixed pointsAk(pS−1T)
lie outsideDA for all k 6= 0.

A direct consequence of this proposition is that the only point in the closure of the
quadrilateralQ−

−1 and the bigonB−−1 that lie onF0 is their vertexpTST.

Proof The part about intersections of fans and isometric spheres is proved easily by
projecting vertically ontoC, as in the proof of Proposition4.6 (see Figure7). Note
that as isometric spheres are strictly convex, their intersections with a plane is either
empty or a point or a topological circle. The part about the parabolic fixed points is a
direct verification using (39) as well as (26).



A complex hyperbolic Riley slice 59

We need to be slightly more precise about the intersection ofF0 with I+0 andI−0 .

Proposition 7.11 The intersection ofF0 with I+0 ∪ I−0 (and thus with∂D) is a
topological circlec0 , which is the union of two topological segmentsc+0 and c−0 ,
where the segmentc±0 is the part ofF0∩I±0 that is outsideI∓0 . The two segmentsc+0
andc−0 have the same endpoints: one of them ispST−1 , and we will denote the other
by q0 . Moreover, the pointq0 lies on the segment[pSTS,pS−1T] of I+0 ∩ I−0 .

The pointq0 appears in Figures12, 13 and14.

Proof The pointf (ξ, η) of the fanF0 lies of I+0 whenever 1= |〈f (ξ, η),pB〉| and on
I−0 whenever 1= |〈f (ξ, η),pAB〉|. We first find all points onF0 ∩ I+0 ∩ I−0 . These
correspond to simultaneous solutions to:

(42) 1= |〈f (ξ, η),pB〉| = |〈f (ξ, η),pAB〉|

Computing these products and rearranging, we obtain

|〈f (ξ, η),pB〉|2 = (ξ2
+ 1/4)2 + ξ2

+ η2
+ ξ

(√
15ξ2

+
√

15/4− η
)
/2,

|〈f (ξ, η),pAB〉|2 = (ξ2
+ 1/4)2 + ξ2

+ η2− ξ
(√

15ξ2
+
√

15/4− η
)
/2.

Subtracting, we see that solutions to (42) must either haveξ = 0 orη =
√

15(ξ2+1/4).
Substituting these solutions into 1= |〈f (ξ, η),pB〉|2, we see first thatξ = 0 implies
1 = η2 + 1/16; and secondly thatη =

√
15(ξ2 + 1/4) implies

1 = (ξ2
+ 1/4)2 + ξ2

+ 15(ξ2
+ 1/4)2 = (4ξ2

+ 1)2 + ξ2.

Clearly the only solution to this equation isξ = 0. So both cases lead to the solutions
(ξ, η) = (0,±

√
15/4). Thus the only points satisfying (42), that is the points in

F0 ∩ I+0 ∩ I−0 , are

f (0,
√

15/4) =

[√
3+ i

√
5

4
√

2
,

√
15
4

]
andf (0,−

√
15/4) =

[√
3+ i

√
5

4
√

2
,
−
√

15
4

]
.

Note that the first of these points ispST−1 . We call the other pointq0.

These two points divideF0∩I+0 andF0∩I−0 into two arcs. It remains to decide which of
these arcs is outside the other isometric sphere. Clearly|〈f (ξ, η),pB〉| > |〈f (ξ, η),pAB〉|
if and only if ξ

(√
15ξ2+

√
15/4−η

)
> 0. Close toη = −

√
15/4 we see this quantity

changes sign only whenξ does. This means that iff (ξ, η) ∈ I−0 with ξ > 0 then
f (ξ, η) is in the exterior ofI+0 . Similarly, if f (ξ, η) ∈ I+0 with ξ < 0 thenf (ξ, η) is in
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Q′+

0

pS−1T

T +

0

q0

F0 ∩ I+0
pSTS

pST−1

pTST

Figure 12: The intersection ofF0 with I+0 drawn onI+0 , in geographical coordinates.

the exterior ofI−0 . In other words,c+0 is the segment ofF0 ∩ I+0 whereξ < 0 and
c−0 is the segment ofF0 ∩ I−0 whereξ > 0.

Finally, consider the involutionI2 = SI1 in PU(2,1) from the proof of Proposition3.6.
(Note that sinceα1 = 0, this involution conjugatesΓlim to itself.) The involutionI2

preservesF0, acting on it by sendingf (ξ, η) to f (−ξ, η), and hence interchanging the
components of its complement. In Heisenberg coordinatesI2 is given by

(43) I2 :
[
x+ iy, t

]
←→

[
−x− iy +

√
3/8+ i

√
5/8, t −

√
5/2x+

√
3/2y

]
.

As I2 is elliptic and fixes the pointq∞ , it is a Cygan isometry (see Section2.4). Since
it interchangespB andpAB, it also interchangesI+0 andI−0 . Hence their intersection
is preserved setwise. The involutionI2 also interchangespS−1T andpSTScontained in
I+0 ∩I−0 (but not onF0). Therefore, these two points lie in different components of the
complement ofF0. Hence there must be a point ofF0 on the segment [pS−1T,pSTS].
This point cannot bepST−1 , and so must beq0 (see Figure12).

Let Dc denote closure of the complement ofD in ∂H2
C
− {q∞}.

Proposition 7.12 The closure of the intersectionDc∩DA is a solid tube homeomorphic
to a 3-ball.

Proof We describe the combinatorial cell structure ofDc∩DA; see Figure14. Using
Proposition7.11, it is clear Dc intersectsF0 in a topological disc whose boundary
circle is made up of two edges,c±0 and two verticespST−1 and q0. Combinatorially,
this is a bigon. ApplyingA−1 we seeDc intersectsF−1 in a bigon with boundary
made up of edgesc±−1 and two verticespTST andq−1.
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pST−1

I−
0
∩ F0

c+
0

c−
0

I+
0
∩ F0

q0

Figure 13: The intersection ofF0 with
I+0 ∩ I−0 . The discD0 is the interior of
c0 = c+0 ∩ c−0 . The two segmentsc+0 and
c−0 are the thicker parts ofF0 ∩ I+0 and
F0 ∩ I−0 .

Q′+

0

Q′−
−1

B+
0

B−−1

c−−1

c+−1

c−
0

c+
0

q−1 q0

pTST

pTST pST−1

pST−1

T +

−1

T −
0

pS−1T

Figure 14: A combinatorial picture of the
intersection of∂D with DA . The top and
bottom lines are identified. The curvec0

corresponds to the right hand side of the
figure.

Moreover, Proposition7.11immediately implies thatc0 cutsQ±
0 into a quadrilateral

and a triangle, which we denote byQ′±
0 andT ±

0 . SinceDA containspS−1T andpTST,
we see thatDA containsQ′+

0 andT −
0 . These have vertex sets{pST−1, pTST, pS−1T, q0}

and{pS−1T, pST−1, q0} respectively. ApplyingA−1 we see thatc−1 cutsQ±
−1 into a

quadrilateral, denotedQ′±
−1, and a triangle, denotedT ±

−1. Of these the quadrilateral

Q′−
−1 and the triangleT +

−1 lie in DA. Finally, the bigonsB+0 andB−−1 also lie inDA.

In summary, the boundary ofDc ∩ DA has a combinatorial cell structure with five
vertices{pST−1, pS−1T, pTST, q0, q−1} and eight faces.

{Q′+
0 , Q′−

−1, T −
0 , T +

−1, B+0 , B−−1, F0 ∩ Dc, F−1 ∩ Dc}.
These are respectively two quadrilaterals, two triangles and four bigons. Therefore, in
total the cell structure has (2× 4+ 2× 3+ 4× 2)/2 = 11 edges. Therefore the Euler
characteristic of∂(Dc ∩ DA) is

χ
(
∂(Dc ∩ DA)

)
= 5− 11+ 8 = 2.

Hence∂(Dc ∩ DA) is indeed a sphere. This meansDc ∩ DA is a ball as claimed.

Remark 2 The combinatorial structure described on Figure14 is quite simple. How-
ever, the geometric realisation of this structure is much more intricate. As an example,
there are fansF parallel toF0 and F−1 whose intersection withDc is disconnected.
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This means that the foliation described right after Proposition 6.8 that is used in the
proof of Theorem6.4is actually quite “distorted”.

We are now ready to prove Proposition6.8.

Proposition 7.13 There is a homeomorphismΨA : R2× [0,1] −→ DA that satisfies
ΨA(x, y,1) = AΨA(x, y,0) and so thatΨA restricts to a homeomorphism from the
exterior ofS1× [0,1], that is{(x, y, z) : x2 + y2 ≥ 1, 0≤ z≤ 1}, to D ∩ DA.

Proof We have shown Proposition7.12that Dc ∩ DA is a solid tube homeomorphic
to a 3-ball and (using Proposition7.11) that Dc intersects∂DA in two discs, one inF0

bounded byc0 and the other inF−1 bounded byc−1. This means we can construct a
homeomorphismΨc

A from the solid cylinder{(x, y, z) : x2 + y2 ≤ 1, 0 ≤ z≤ 1} to
Dc ∩DA so that the restriction ofΨc

A to S1× [0,1] is a homeomorphism to∂D ∩DA,
with Ψc

A : S1 × {0} 7−→ c−1 andΨc
A : S1 × {1} 7−→ c0. AdjustingΨc

A if necessary,
we can assume thatΨc

A(x, y,1) = AΨc
A(x, y,0).

Furthermore, in Lemma6.7, we showed thatDc contains the invariant line∆ϕ of
ϕ. This means that the cylinderDc ∩ DA is a thickening of∆ϕ ∩ DA and so, in
particular, it cannot be knotted. HenceΨc

A can be extended to a homeomorphism
ΨA : R2× [0,1] −→ DA satisfyingΨA(x, y,1) = AΨA(x, y,0). In particular,Ψ maps
{(x, y, z) : x2 + y2 ≥ 1, 0≤ z≤ 1} homeomorphically toD ∩ DA as claimed.

Finally, we prove Proposition6.8by extendingΨA : R2×[0,1] −→ DA equivariantly to
a homeomorphismΨ : R3 7−→ ∂H2

C
−{q∞}. That is, if (x, y, z+k) ∈ R

3 wherek ∈ Z

and z ∈ [0,1], we defineΨ(x, y, z+ k) = Ak(x, y, z). SinceΨ(x, y,1) = AΨ(x, y,0)
there is no ambiguity at the boundary.
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