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We study subgroups of PU(2) generated by two non-commuting unipotent maps
A andB whose producABiis also unipotent. We calll the set of conjugacy classes
of such groups. We provide a set of coordinateg/tinat make it homeomorphic
to R? . By considering the action on complex hyperbolic spétZ of groups

in U, we describe a two dimensional digt in U that parametrises a family of
discrete groups. As a corollary, we give a proof of a conjectf Schwartz for

(3, 3, 00)-triangle groups. We also consider a particular group enttbundary

of the disc Z where the commutatorA] B] is also unipotent. We show that the
boundary of the quotient orbifold associated to the latteug gives a spherical
CR uniformisation of the Whitehead link complement.

22E40;57M50,57S30

1 Introduction

1.1 Context and motivation

The framework of this article is the study of the deformagiof a discrete subgroup

of a Lie groupH in a Lie groupG containingH. This question has been addressed in
many different contexts. A classical example is the one w/iheis a Fuchsian group,
H = PSL(2R) andG = PSL(2 C). WhenI is discrete, such deformations are called
quasi-Fuchsian. We will be interested in the case wheérs a discrete subgroup of
H = SO(2 1) andG is the group SU(2L) (or their natural projectivisations ové
and C respectively). The geometrical motivation is very simillr the classical case
mentioned above, PSL(Z) is the orientation preserving isometry group of hyperboli
3-spaceH?® and a Fuchsian group preserves a totally geodesic hyperplaine H?

in H3. In our caseG = SU(2 1) is (a triple cover of) the holomorphic isometry
group of complex hyperbolic 2—spaH%C, and the subgroupl = SO(2 1) preserves a
totally geodesic Lagrangian plane isometridté. A discrete subgrouf of SO(2 1)

is called R-Fuchsian. A second example of this construction is wheéres again
SU(2 1) but nowH = S(U(1) x U(1,1)). In this caseH preserves a totally geodesic
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complex line inH%. A discrete subgroup dfl is calledC-Fuchsian. Deformations
of eitherR-Fuchsian orC-Fuchsian groups in SU(2) are called complex hyperbolic
guasi-Fuchsian. Se&9] for a survey of this topic.

The title of this article refers to the so-call®lley slice of Schottky spa¢see [L9]
or [1]). Riley considered the space of conjugacy classes of sulpgrof PSL(2C)
generated by two non-commuting parabolic maps. This spagebm identified with
C — {0} under the map that associates the parameterC — {0} with the conjugacy
class of the group’,, where

w3 1)

Riley was interested in the set of those parametefer which I',, is discrete. He
was particularly interested in the (closed) set whEfeis discrete and free, which
is now called the Riley slice of Schottky spad®]. This work has been taken up
more recently by Akiyoshi, Sakuma, Wada and Yamashita. éir thook [1] they
illustrate one of Riley’s original computer pictutegigure 0.2a, and their version of
this picture, Figure 0.2b. Riley’s main method was to caridtthe Ford domain for
I',. The different combinatorial patterns that arise in thisdrFelomain correspond to
the differently coloured regions in these figures frath [Riley was also interested
in groupsI’, that are discrete but not free. In particular, he showed wHeen p is

a complex sixth root of unity then the quotient of hyperbdispace byl', is the
figure-eight knot complement.

1.2 Main definitions and discreteness result

The direct analogue of the Riley slice in complex hyperbplene would be the set
of conjugacy classes of groups generated by two non-commuinipotent parabolic
elementsA and B of SU(21). (Note that in contrast to to PSL(@), there exist
parabolic elements in SU(2) that are not unipotent. In fact, there is a 1-parameter
family of parabolic conjugacy classes, see for instancep@n# of [L5].) This choice
would give a four dimensional parameter space, and we reqdiditionally thatAB is
unipotent; making the dimension drop to 2. Specifically, wére

1) U= {(A, B) € SU(2 12 : A, B, AB all unipotent andAB BA} /SU(2, 1).

Following Riley, we are interested in the (closed) subse¥ afhere the grougA, B)
is discrete and free and our main method for studying thissgetconstruct the Ford

1JRP has one of Riley’s printouts of this picture dated 26thd#d 979
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domain for its action on complex hyperbolic sp&et%. We shall also indicate various
other interesting discrete groupstinhbut these will not be our main focus.

In Section3.1, we will parametrisé/ so that it becomes the open squarer(2, 7/2)?.
The parameters we use will be the Cartan angular invariantand o, of the triples
of (parabolic) fixed points ofA, AB, B) and @, AB, BA) respectively (see Sectidh6
for the definitions). Note that the invariantg and «, are defined to lie in the closed
interval [-7/2, w/2]. Ourassumption that andB don’t commute implies that neither
a1 Nor ap can equaktn/2 (see Sectio. 1).

When a; and «p are both zero, that is at the origin of the square, the gréuB) is
R-Fuchsian. The quotient of the Lagrangian plane preserygd\B) is a hyperbolic
three times punctured sphere where the three (homotomsesias$) peripheral elements
are represented by (the conjugacy classesAofB and AB. The spacé/ can thus
be thought of as the slice of the SU@)-representation variety of the three times
punctured sphere group defined by the conditions that thpheral loops are mapped
to unipotent isometries.

We can now state our main discreteness result.
Theorem 1.1 Suppose thaf' = (A, B) is the group associated to parameters o)
satisfyingD(4 cog(ay), 4 co§(a2)) > 0, whereD is the polynomial given by

D(x,y) = X°y> — Wy? — 27xy? + 81xy — 27x — 27.
ThenT is discrete and isomorphic to the free grdea This region isZ in Figurel.
Note that at the centre of the square, we h@@, 4) = 1225 for theR-Fuchsian
representation. The regiaB whereD > 0 consists of group$ whose Ford domain
has the simplest possible combinatorial structure. ltésahalogue of the outermost

region in the two figures from Akiyoshi, Sakuma, Wada and Ysimita [L] mentioned
above.

1.3 Decompositions and triangle groups

We will prove in Propositior8.2that all pairs A, B) in ¢/ admit a (unique) decompo-
sition of the form

(2 A=STandB=TS

whereS and T are order three regular elliptic elements (see Se@ian In turn, the
group generated bp and B has index three in the one generatedSgnd T. When
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0 R-Fuchsian representation of the 3-punctured sphere group.

1 The horizontal segment marked 1 corresponds to even wogtaups of ideal
triangle groups, sed p, 30, 31, 33].

2 Lastideal triangle group, contained with index three in@ug uniformising the
Whitehead link complement obtained by Schwartz, 8831, 33].

3 The vertical segment marked 3 corresponds to bending githaphave been
proved to be discrete ir8[].

4 (3, 3,4)-group uniformising the figure eight knot complement. &éd by
Deraux and Falbel ing].

5 (3 3,n)-groups, proved to be discrete by . On this picture 4< n < 8.

6 Uniformisation of the Whitehead link complement we obfaithis work.

7 Subgroup of the Eisenstein-Picard Lattice, Seg. [

Figure 1. The parameter space ér The exterior curvé® corresponds to classes of groups
for which [A, B] is parabolic. The central dashed curve bounds the regiovhere we prove
discreteness. The labels correspond to various specigvalf the parameters. Points with
the same labels are obtained from one another by symmelrieg the coordinate axes. The
results of Sectio®.3imply that they correspond to groups conjugate in Isbi).
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eitheray = 0 or ap = 0 there is a further decomposition makif@, B) a subgroup
of a triangle group.

Deformations of triangle groups in PU@® have been considered in many places,
among which (16, 28, 32, 26]). A complex hyperbolic 1§, g, r)-triangle is one gen-
erated by three complex involutions about (complex) linéh wairwise anglesr/p,
m/q, andx/r wherep, g andr are integers oro (Wwhen one of them iso the corre-
sponding angle is 0). Groups generated by complex reflectibnigher order are also
interesting, see?] for example, but we do not consider them here. For a givehetri
(p,q,r) with min{p,q,r} > 3 the deformation space of thp, €, r)-triangle group is
one dimensional, and can be thought of as the deformatiorespfathe R-Fuchsian
triangle group. In32], Schwartz develops a series of conjectures about whiaftpoi
in this space yield discrete and faithful representatiohthe triangle group. For a
given triple @, q,r), Conjecture 5.1 of32] states that a complex hyperbolip, ¢, r)-
triangle group is a discrete and faithful representatiothefFuchsian one if and only
if the wordsliljl, andliljllj (with i, j, k pairwise distinct) are non-elliptic. Moreover,
depending ormp, g andr he predicts which of these words one should choose.

We now explain the relationship between triangle groups gnodps on the axes of
our parameter spad#. First consider groups witlax, = 0. Letlq, 1> and I3 be
the involutions fixing the complex lines spanned by the fixeih{s of (A, B), of
(A, AB) and of B, AB) respectively. Ifax = 0 thenA and B may be decomposed as
A = I,l; and B = I113, and also(A, B) has index 2 in(l1,12,13) (Proposition3.6).
Sincelyl; = A, I113 = B andl,l3 = AB are all unipotent, we see thdt, I, 13) is a
complex hyperbolic ideal triangle group, as studied by Gwld and Parkerlfp] and
Schwartz B0, 31, 33]. Their results gave a complete characterisation of wheh su
group is discrete. (Our Cartan invariamf is the same as the Cartan invarigniused
in these papers.)

Theorem 1.2 (Goldman, Parkerll6], Schwartz B1, 33]) Letl4, |2, I3 be complex
involutions fixing distinct, pairwise asymptotic complaerds. LetA be the Cartan
invariant of the fixed points dfil,, 1513 andlzl;.

(1) The group(l1,l2,13) is a discrete and faithful representation of(aq, co, oc) -
triangle group if and only 11,13 is non-elliptic. This happens wheih| <
arccos,/3/128.

(2) Whenll,l3 is elliptic the group is not discrete. In this casecos,/3/128 <
|A| < 7/2.

Whenaj; = 0 we get an analogous result. In this case, it is the ordee thiagpsS and
T from (2) which decompose into products of complex involutions. Mbif o = 0,
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there exist three involutionls, I, I3, each fixing a complex line, so th&t= I,l; and
T = 113 have order 3 an&T = A = Il,l3 is unipotent (PropositioB.6). Furthermore,
writing B = TS = l1l3l5l; we have A B] = (ST 13 = (I,l11311)3. A corollary of
Theoreml.lis a statement analogous to Theor&r for (3, 3, oo)-triangle groups,
proving a special case of Conjecture 5.1 of Schwaé#.[Compare with the proof of
this conjecture for (33, n)-triangle groups given by Parker, Wang and Xie26]|

Theorem 1.3 Letly, |o andlz be complex involutions fixing distinct complex lines
and so thats = 1,11 andT = l1l3 have order three anll = ST = 1,13 is unipotent.
Let A be the Cartan invariant of the fixed pointsAf SAS ' andS—*AS. The group
(11,12, 13) is a discrete and faithful representation of (B3, oo) -triangle group if and
only if 15111311 = ST~ is non-elliptic. This happens whéh| < arccos,/3/8.

Theorem1.3 follows directly from Theorenil.1 by restricting it to the case where
(a1, a2) = (0,A). These groups are a special case of those studied by Will7n [
from a different point of view. There, using bending he pibteat these groups are
discrete as long ag\| = |az| < 7/4. The gap between the vertical segment in Figure
1 and the curve whereA] B] is parabolic illustrates the non-optimality of the resofit

[37].

1.4 Spherical CR uniformisations of the Whitehead link compement

The quotient oﬂ—l(zc by anRR or C-Fuchsian punctured surface group is a disc bundle
over the surface. If the surface is non-compact, this burgdtdvial. Its boundary
at infinity is a circle bundle over the surface. Such threeifolds appearing on the
boundary at infinity of quotients oIH(Zc are naturally equipped with spherical CR
structure which is the analogue of the flat conformal structure in & hyperbolic
case. These structures are examplesXfG)-structure, whereX = S = (‘?H?C
and G = PU(2 1). To any such structure on a three maniféfid are associated a
holonomy representatiop : m1(M) — PU(2 1) and a developing map = M —
X. This motivates the study of representations of fundamemtaups of hyperbolic
three manifolds in PU(2) and PGL(3C) initiated by Falbel in 11], and continued
in [13, 12] (see also 18]). Among PU(2 1)-representationsyniformisations(see
Definition 1.3 in [7]) are of special interest. There, the manifold at infinitythe
guotient of the discontinuity region by the group action.

For parameter values in the open regi&nthe manifold at infinity oﬂ—|(2c/(s T)isa
Seifert fibre space over a (3 oo)-orbifold. This is obviously true in the case where
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a1 = az = 0 (the central point on Figurg). Indeed, for these values the group
(ST) preserveﬂ-lé (it is R-Fuchsian) and the fibres correspond to boundaries of real
planes orthogonal tdﬂﬁ. As the combinatorics of our fundamental domain remains
unchanged inZ, the topology of the quotient is constanti

Things become interesting if we deform the group in such a tway a loop on the
surface is represented by a parabolic map: the topologyeaitinifold at infinity can
change. A hyperbolic manifold arising in this way was firshsmucted by Schwartz:

Theorem 1.4 (Schwartz BQ]) Let |y, o andlz be as in Theoremd.2 Let A be
the Cartan invariant of the fixed points f,, 1,13 andlsl; and letS be the regular
elliptic map cyclically permuting these points. Whahyl3 is parabolic the quotient of
H% by the group(l1l,,S) is a complex hyperbolic orbifold with isolated singulaggi
whose boundary at infinity is a spherical CR uniformisatidrthe Whitehead link
complement. These groups have Cartan invarart 4+ arccos,/3/128,

Schwartz's example provides a uniformisation of the Whateh link complement.
More recently, Deraux and Falbel described a uniformisaticthe complement of the
figure eight knot in 8]. In [6], Deraux proved that this uniformisation was flexible:
he described a one parameter deformation of the uniforiorsdescribed in§], each
group in the deformation being a uniformisation of the figeight knot complement.

Our second main result concerns the33o) triangles group from Theoreh3, and

it states that whemyl113l1 is parabolic the associated groups give a uniformisation of
the Whitehead link complement which is different from Schwa one. Indeed in our
case the cusps of the Whitehead link complement both haystemt holonomy. In
Schwartz’s case, one of them is unipotent whereas the atlsmréw-parabolic. The
representation of the Whitehead link group we consider herg identified from a
different point of view by Falbel, Koseleff and Rouillier their census of PGL(X")
representations of knot and link complement groups, see pag of [L3].

Theorem 1.5 Letlq, |> andls be as in Theorer.3and defines = 1,11 andA = 15l3.
Let A be the Cartan invariant of the fixed pointsfiofSAS ™t andS—1AS. Whenlsll3l4

is parabolic the quotient dm% by (A, S) is a complex hyperbolic orbifold with isolated
singularities whose boundary is a spherical CR unifornogadf the Whitehead link
complement. These groups have Cartan invariart + arccos,/3/8.

Schwartz’s uniformisation of the Whitehead link complemeorresponds to each of
the endpoints of the horizontal segment, marked 2 in Figuasd our uniformisation
corresponds to each of the points on the vertical axis, ndaBka that figure.
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It should be noted that the image of the holonomy representat our uniformisation
of the Whitehead link complement is the group generatedSkend T, which is
isomorphic toZs * Z3. We note in Propositiod.3 that the fundamental group of the
Whitehead link complement surjects orifg * Z3. Furthermore the groufs = Zs is
the fundamental group of the (double) Dehn filling of the Whé#ad link complement
with slope —3 at each cusp in the standard marking (the same as in SnapRig).
Dehn filling is non-hyperbolic, as can be easily verified gsihe software SnapPy
[5] (it also follows from Theorem 1.3. in20]). This fact should be compared
with Deraux’s remark in ] that all known examples of non-compact finite volume
hyperbolic manifold admitting a spherical CR uniformisatalso admit an exceptional
Dehn filling which is a Seifert fibre space over@ d, r)-orbifold with p,qg,r, > 3.

1.5 Ideas for proofs.

Proof of Theorem 1.1.  The rough idea of this proof is to construct fundamental
domains for the groups corresponding to parameters in fiereZ. To this end,
we construct theiFord domains which can be thought of as a fundamental domain
for a coset decomposition of the group with respect to a mdiablement (here, this
element isA = ST). The Ford domain is invariant by the subgroup generate#l agd

we obtain a fundamental domain for the group by intersedtieg-ord domain with a
fundamental domain for the subgroup generated\byl he sides of the Ford domain
are built out of pieces asometric spheresf various group elements (see Sectiéns
and4) This method is classical, and is described in the case oPtiecaé disc in
Section 9.6 of Beardor?].

We thus have to consider a 2-parameter family of such polgheahd the polynomiab
controls the combinatorial complexity of the Ford domaithivi our parameter space
for U in the following sense. The null-locus @ is depicted on Figur& as a dashed
curve, which bounds the regiofi. In the interior of this curve, the combinatorics of
our domain is constant, and stays the same as it is foR#k@ichsian group. On the
boundary ofZ the isometric spheres of the eleme&sS~1 and T have a common
point. More precisely, the isometric spheres®f and T intersect for all values of
a1 and ap, but inside Z their intersection is contained in one of the two connected
components of the complement of the isometric sphe&ian%. When one reaches
the boundary curve of, one of their intersection points lies on the isometric sphe
of S.

We believe that it should be possible to mimic Riley’s apptoand to construct regions
in our parameter space where the Ford domain is more cortaalicelowever, as with
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Riley’s work, this may only be reasonable via computer expents.

Proof of Theorem 1.5. The groups whereA, B] = (I,l113l1)3 is parabolic are the
focus of Sectioré and Theorerm.5 will follow from Theorem®6.4. In order to prove
this result, we analyse in details our fundamental domana show that it gives
the classical description of the Whitehead link complenfearh an ideal octahedron
equipped with face identifications. The Whitehead link ipided in Figure2. We
refer to Section 10.3 of Ratcliffe2P] and Section 3.3 of Thurstor8p] for classical
information about the topology of the Whitehead link conmpéat and its hyperbolic
structure.

1.6 Further remarks

Other discrete groups appearing inl/. As well as the ideal triangle groups and
bending groups discussed above, there are some other yslyvistudied discrete

groups in this family. We give them inaf, ap) coordinates and illustrate them in
Figurel.

(1) The groups corresponding t® = 0 and ap = +arccos,/1/8 have been
studied in great detail by Deraux and Falbel who proved tiet tjive a spherical
CR uniformisation of the figure-eight knot complemesit [This illustrates the
fact that there is no statement for Theor&m analogous to the second part
of Theorem1.2 the group from 8] is contained in a discrete (non-faithful)
(3,3, ) triangle groups wherkl1l3l; is elliptic.

(2) The groups with parametess = 0 and for whichST~* has orden correspond
to the (33, n) triangle groups studied by Parker, Wang and Xiedf][ The
corresponding value at; is given bya, = + arccos\/(4 co%(rw/n) — 1)/8.

(3) The groups whereyy = +7/6 anda, = +7/3 are discrete, since they are
subgroups of the Eisenstein-Picard lattice PU(Z[w]), where w is a cube
root of unity. That lattice has been studied by Falbel anddétan [14].

Comparison with the classical Riley slice. There is, conjecturally, one extremely
significant difference between the classical Riley slicd anor complex hyperbolic
version. The boundary of the classical Riley slice is not aatm curve and has a
dense set of points where particular group elements ardgargsee for instance
the beautiful picture in the introduction ofi9]). On the other hand, we believe
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that in the complex hyperbolic case, discreteness is cdaipleontrolled by the
commutator A, B], or equivalentlyST1, as is true for the two cases whefig¢ = 0

or ap = 0 described above. If this is true, then the boundary of thefkélasses
of) discrete and faithful representations in SR of the three punctured sphere
group with unipotent peripheral holonomy is piecewise stinpand it is given by the
simple closed curvé® in Figurel. This curve provides a one parameter family of
(conjecturally discrete) representations that connetisvartz's uniformisation of the
Whitehead link complement to ours. We believe that all theggesentations give
uniformisations of the Whitehead link complement as wellt Wwe are not able to
prove this with our techniques. What seems to happen is thate deforms our
uniformisation by following the curvé, the number of isometric spheres contributing
to the boundary at infinity of the Ford domain becomes toceléode understood using
our technigues. Possibly, this is because deformationarmfdmental domains with
tangencies between bisectors is complicated. This shaulcbmpared to Deraux’s
construction §] of deformations of the figure-eight knot complement memgic above.
There, he had to use a different domain to the onejnwhich also has tangencies
between the bisectors.

1.7 Organisation of the article.

This article is organised as follows. In Sectidwe present the necessary background
facts on complex hyperbolic space and its isometries. Ini@e8, we describe
coordinates on the space of (conjugacy classes) of grougrgieal by two unipotent
isometries with unipotent product. Sectidnis devoted to the description of the
isometric spheres that bound our fundamental domains. Méeantd apply the Poindar
polyhedron theorem in Sectidn In Section6, we focus on the specific case where the
commutator becomes parabolic, and prove that the corrdgmpmanifold at infinity

is homeomorphic to the complement of the Whitehead link. doti®n7, we give the
technical proofs which we have omitted for readability ie tarlier sections.
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Figure 2: The Whitehead link
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2 Preliminary material

Throughout we will work in the complex hyperbolic plane usia projective model
and will therefore pass from projective objects to liftsloéin. Our convention is that
the same letter will be used to denote a poin€iR? and a lift of it to C2 with a bold
font for the lift. As an example, each tingeis a point ofH%, p will be a lift of p to
C3.

2.1 The complex hyperbolic plane

The standard reference for complex hyperbolic space isrGahds book [L5]. A lot of
information can also be found in Chen and Greenberg’s pa&hesde also the survey
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1
0] .
0

The Hermitian product orC® associated tdH is given by (x,y) = y*Hx. The
corresponding Hermitian form has signaturel(@ and we denote by_ (respectively
Vo andV, ) the associated negative (respectively null and positieeps inC3.

articles R5, 38.

Let H be the following matrix

Definition 1 The complex hyperbolic plangi2 is the image ofV_ in CP? by
projectivisation and its boundar&H?C is the image ofVy in CP?. The complex
hyperbolic plane is endowed with tiB®rgman metric

4 (z,z) (dz,z)
ds’ = (z, z>2det<<z, dz) (dz, dz>> ’

The Bergman metric is equivalent to tBergman distance functiop defined by

cosif (p(m, n)) _ {(m,n){n,m)

2 (m,m){n,n)’

wherem andn are lifts of m andn to C3.

Let z = [z, 2, z3]" be a (column) vector it — {0}. Thenz ¢ V_ (respectively
Vo) if and only if 2Rez3) + |2|? < O (respectively= 0). Vectors inVp with zz = 0
must havez, = 0 as well. Such a vector is unique up to scalar multiplicatidve
call such its projectivisation thpoint at infinity g, < 8H(2C. If zz # 0 then we
can use inhomogeneous coordinates with= 1. Writing (z,z) = —2u we give
H2 U OHZ — {g.} horospherical coordinategz t,u) € C x R x Rxq defined as
follows. A pointq € HZ U 9H2 with horospherical coordinateg, ¢, u) is represented
by the following vector, which we call itstandard lift

—Z% —u+it 1
®3) q= 22 if 0% 0o, Ooo = |0 if 0= 0.
1 0

Points of oHZ — {d..} haveu = 0 and we will abbreviatez(t, 0) to [z t].

Horospherical coordinates give a model of complex hypéstsgace analogous to the
upper half plane model of the hyperbolic plane. Tygan metric dyg on 8H((2:—{qoo}
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plays the role of the Euclidean metric on the upper half plahds defined by the
distance function:

| /
@) doyo(.0) = [{p.6)[*2 = ||z wi? +i(t — s+ Im(zm) | 2

wherep and q have horospherical coordinategt] and [w, s]. We may extend this
metric to pointsp andq in H(Zc with horospherical coordinateg, {, u) and (v, s, v) by
writing
1/2
doyg(p, 0) = (\z—w]2+ lu—v|+i(t—s+ Im(zW))‘

If (at least) one op andq liesin BH?C then the formuladcyg(p, 0) = |(p, q>]1/2 is still

valid.

2.2 |Isometries

Since the Bergman metric and distance function are botmgiaéely in terms of the
Hermitian form, any unitary matrix preserving this form is sometry. Similarly,
complex conjugation of points ift® leaves both the metric and the distance function
unchanged. Hence, complex conjugation is also an isometry.

Define U(21) to be the group of unitary matrices preserving the Heamiform and
PU(2 1) to be the projective unitary group obtained by identifyinon-zero scalar
multiples of matrices in U(2l). We also consider the subgroup SUIP of matrices
in U(2,1) with determinant 1.

Proposition 2.1 Every Bergman isometry oIF-|(2c is either holomorphic or anti-
holomorphic. The group of holomorphic isometriedP(2 1), acting by projective
transformations. Every antiholomorphic isometry is cogmonjugation followed by
an element oPU(2 1).

Elements of SU(2L) fall into three types, according to the number and typbefixed
points of the corresponding isometry. Namely, an isomatigxodromic(respectively
parabolig) if it has exactly two fixed points (respectively exactly ofeed point)
on 8H(2C. It is calledelliptic when it has (at least) one fixed point insiﬁ%. An
elliptic elementA € SU(2 1) is calledregular elliptic whenever it has three distinct
eigenvalues, anspecial ellipticif it has a repeated eigenvalue. The following criterion
distinguishes the different isometry types.
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Proposition 2.2 (Theorem 6.2.4 of Goldmarl}p]) Let F be the polynomial given
by F(2 = |2* — 8Re &) + 18/Z/°> — 27, andA be a non identity matrix irsU(2 1).
Then

(1) A isloxodromic if and only ifF(trA) > 0,
(2) A is regular elliptic if and only ifF(trA) < 0,
(3) if F(trA) =0, thenA is either parabolic or special elliptic.

We will be especially interested in elements of SU(Pwith trace 0 and those with
trace 3.

Lemma 2.3 (Section 7.1.3 of Goldmarlp]) (1) A matrix A in SU(2 1) is regu-
lar elliptic of order three if and only if its trace is equalzero.

(2) Let(p,q,r) be three pairwise distinct points iH2., not contained in a common
complex line. Then there exists a unique order three regliiptic isometryE
so thatE(p) = g andE(qQ) = .

Suppose thal € SU(2 1) has trace equal to 3. Then dlleigenvalues ofl equal
1, that isT is unipotent If T is diagonalisable then it must be the identity; if it is
non-diagonalisable then it must fix a point @H?C. Conjugating within SU(21) if
necessary, we may assume tiafixes q.,. This implies thatT is upper triangular
with each diagonal element equal to 1.

Lemma 2.4 (Section 4.2 of Goldmanlf]) Suppose thajw,s € OHZ — {d}
Then there is a uniquéy g € SU(2 1) taking the poin{0, 0] € GH% to[w,s]. Asa
matrix this map is:

0 1 W2
0 0 1

Moreover, composition of such elements gi\léld(zc — {0} the structure of the
Heisenberg group

1 —wv2 —|w]?+is
(5) T[w7s] = |: :|

[w,s] - [z t] = [W+ z 5+t — 2Im(zw)]
andTwq acts as left Heisenberg translation @2 — {0} .

The action ofTy, g on horospherical coordinates is:
Tiwg © Zt,Uu) — (W+z s+t — 2Im(zw), u).
An important observation is that this is an affine map, naradhanslation and shear.

We can restate Lemm2.4 in an invariant way. This result is actually true for any
parabolic conjugacy class, as a special case of Propo8itiom [23].
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Proposition 2.5 Let (p1, p2, p3) be a triple of pairwise distinct points iﬁl—l(zc. Then
there is a unique unipotent elementrdf(2 1) fixing p; and takingp, to ps.

Proof We can choosé € SU(2 1) takingp: to g, andp; to [0, 0]. The result then
follows from Lemma2.4. O

2.3 Totally geodesic subspaces.

Maximal totally geodesic subspaces Id% have real dimension 2, and they fall in
two types. Complex lines are intersections V\,Hlé of projective lines inCP?. By
Hermitian duality, any complex ling is polar to a point inCP? that is outside the
closure ofH%. Any lift of this point is called gpolar vectorto L. Any two distinct
points p and g in the closure oﬂ—l(zC belong to a unique complex line, and a vector
polar to this line is given byp X g = Hp A q. This can be verified directly using
(x,y) = y*Hx and the fact that heré{> = 1. A more general description of cross
products in Hermitian vector spaces can be found in Sectidry 2 of Chapter 2 of
Goldman [L5].

The other type of maximal totally geodesic subspace is adragan plane. Lagrangian
planes are PU(A) images of the set of real pointsé C H(zc. In particular, real
planes are fixed points sets of antiholomorphic isometviglirtions (sometimes called
real symmetriegs The symmetry fixinng{ is complex conjugation. In turn, the
symmetry about any other Lagrangian plavie HZ, whereM € SU(2 1), is given
by z+— MM~1z = M(M~1z). Note that the matriN = MM~ satisfiesNN = Id:
this reflects the fact that real symmetries are involutiols.refer the reader to Chapter
3 and 4 of Goldmanl5].

2.4 Isometric spheres

Definition 2 For anyB € SU(2 1) that does not fixg.,, theisometric spheref B
(denotedZ(B)) is defined to be

6) Z(8) = {peHZUIME : [(p,dus)| = (P, B Hdoo))| = | (BM), doc)l}
wherep is the standard lift op € HZ U 9H2 given in @).

Theinterior of Z(B) is the component of its complement k¥ U 9H2 that do not
containg., , namely,

{PEHZUOME : [(p,au)] > I(p,B @)1}
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Theexterior of Z(B) is the component that contains the point at infirty

SupposeB is written as a matrix as

a b c
@) B{def].
g h j

ThenB~}(d-) = [j, h, Q]T. ThusB fixes g, if and only if g = 0. If B does not fix
0o (that isg # 0) the horospherical coordinates Bf 1(q..) are:

B~(a) = [/ (3v2), Im(j/g)].

Lemma 2.6 (Section 5.4.5 of Goldmarlp]) LetB € PU(2 1) be an isometry of
H2 not fixing do -

(1) The transformatiorB mapsZ(B) to Z(B~1), and the interior ofZ(B) to the
exterior of Z(B™1).

(2) ForanyA € PU(2 1) fixing g, and such that the corresponding eigenvalue has
unit modulus, we havé(B) = Z(AB).

Using the characterisatiod)(of the Cygan metric in terms of the Hermitian form, the
following lemma is obvious.

Lemma 2.7 Suppose thaB € SU(2 1) written in the form(7) does not fixq., . Then
the isometric spher®(B) is the Cygan sphere HZ U 9H2 with centreB~Y(q..) and
radiusra = 1/|g|"/2.

The importance of isometric spheres is that they form thentlary of theFord poly-
hedron This is the limit of Dirichlet polyhedra as the centre paapiproachegH?2 ;
see Section 9.3 of Goldmatj]. The Ford polyhedro for a discrete groug' is the
intersection of the (closures of the) exteriors of all istneespheres for elements &f
not fixing g.,. That is:

Dr = {p € HAUOHZ : (P, Guc)| = |(p, B~ doc)| for all B € T with B(Goc) # G |-

Of course, just as for Dirichlet polyhedra, to construct fdeed polyhedron one must
check infinitely many equalities. Therefore our method Ww# to guess the Ford
polyhedron and check this using the Poirgcpolyhedron theorem. Wheg, is either
in the domain of discontinuity or is a parabolic fixed poirte tFord polyhedron is
preserved by, the stabiliser ofg,, in I'. It is a fundamental polyhedron for the
partition of I into I'.-cosets. In order to obtain a fundamental domainIforone
must intersect the Ford domain with a fundamental domail'fgr
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2.5 Cygan spheres and geographical coordinates.

We now give some geometrical results about Cygan spheresy dre, in particular,
applicable to isometric spheres. The Cygan spisgyg;(r) of radiusr > 0 with centre
the origin [Q 0] is the (real) hypersurface cbﬂ% U GH% described in horospherical
coordinates by the equation

®) oo = {ztu : (12%+u)?+ =},

From @) we immediately see that when written in horospherical doates the interior
of Spg(r) is convex. The Cygan sphet§, g(r) of radiusr with centre v, 9|
is the image ofSjp g)(r) under the Heisenberg translatidp, g . Since Heisenberg
translations are affine maps in horospherical coordinatesee that the interior of any
Cygan sphere is convex. This immediately gives:

Proposition 2.8 The intersection of two Cygan spheres is connected.

Cygan spheres are examples of bisectors (otherwise cgiedl fiypersurfaces) and
their intersection is an example of what Goldman calls aerggction of covertical
bisectors. Thus Propositidh8is a restatement of Theorem 9.2.6 @b]. There is a
natural system of coordinates on bisectors in terms oflyogglodesic subspaces, see
Section 5.1 of 15]. In particular for Cygan spheres, these are defined asafsilo

Definition 3 Let Spo g)(r) be the Cygan sphere with centre the origindPand radius
r > 0. The pointg(c, 3, w) of Sjo,(r) with geographical coordinateéo, 3, w) is the
point whose lift toC3 is:

_r26—ia
) (e, B,W) = {rwé(“/” B)] ;
1
whereg € [0,7), a € [—7/2,7/2] andw € [—+/2 cos{), /2 COSE)],

Let Siz4(r) be the Cygan sphere with centt] and radius. Then geographical co-
ordinates oS, (r) are obtained from the ones &Iy g)(r) by applying the Heisenberg
translationT[,y to the vector §).

We will only be interested in geographical coordinates $ng(1), the unit Cy-
gan sphere centred at the origin. Note that for the pgiat, 5, w) of this sphere,
(9(cv, B, ), 9(cx, B,U)) = w? — 2cosg). Therefore the horospherical coordinates of
d(a, B, w) are:

(Wé(—a/2+ﬁ)/\/§’ sin(w), cosg) — \/\/2/2>
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In particular, the points o8 0;(1) on 8H% are those withw = ++/2 cosg).

The level sets ofy and 3 are totally geodesic subspacesHﬁ; see Example 5.1.8 of
Goldman [L5).

Proposition 2.9 LetSyw g (r) be a Cygan sphere with geographical coordingtes, w).
(1) For eachag € (—7/2,7/2) the set of pointd.., = {d(c, B,W) € Sjwg(r) :
a = ag} is a complex line, called slice of S g(r).
(2) Foreachdy € [0, ) the set of pointRs, = {g(, B, W) € Sw,g(r) : S = Po}
is a Lagrangian plane, callechaeridianof Sy, g(r).

(3) The set of points withv = 0 is thespineof S g(r). It is a geodesic contained
in every meridian.

Remark 1 From (), itis easy to see that projections of boundaries of Cygaergs
onto the z-factor are closed Euclidean discs @ This correspond to the vertical
projection ontoC in the Heisenberg group. This fact is often useful to prow tvo
Cygan spheres are disjoint.

2.6 Cartan’s angular invariant.

Elie Cartan defined an invariant of triples of pairwise distipointspy, p2, ps in 8H(2c;
see Section 7.1 of Goldmafg]. For any liftsp; of p; to C3, this invariant is defined
by arg(—(p1, p2)(P2P3) (P3, P1)) , Where the argument is chosen to lie i, 7]. We
state here some important propertieshof

Proposition 2.10 [Sections 7.1.1 and 7.1.2 af3]]
(1) —n/2 < A(p1,p2,p3) < /2 for any triple of pairwise distinct pointg;, p2,
P3.
(2) A(p1,p2,p3) = x£m/2 ifand only if p1, p2, ps lie on the same complex line.
(3) A(p1,p2,p3) = 0 ifand only if p1, p2, p3 lie on the same Lagrangian plane.

(4) Two triplespy, P2, ps anddy, Gz, Gz haveA(py, P2, ps) = A(ds, G, Gs) if and
only if there existA € SU(2 1) so thatA(p)) = ¢ forj =1, 2, 3.

(5) Two triplespa, pz, ps andda, dz, Gz have A(py, P2, ps) = —A(th, U2, Ga) if
and only if there exists an anti-holomorphic isome#yso thatA(p;) = ¢ for
=12 3.
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The following proposition will be useful to us when we pararise the family of
classes of groupk .

Proposition 2.11 Let (a1, ap) € (—7/2,7/2)?. Then there exists a unique PU(2,1)-
class of quadruple§y, p2, p3, Pa) of pairwise distinct boundary points dn‘% such
that

(1) The complex lines 1, andLz, respectively spanned lfp1, p2) and(ps, ps) are
orthogonal.

(2) A(p1,p3, p2) = a1 andA(pz, p3, Pa) = ao.

Proof Since PU(2,1) acts transitively on pairs of distinct poiofsoH2, we may
assume using the Siegel model, that the pgmiare given in Heisenberg coordinates

by:
(10) P1=0w, P2= [07 0]7 P3 = [17t]a Ps4 = [27 S]'

Using the standard lifts given in Sectidhl (denoted byp;), we see by a direct
computation using the Hermitian cross-product that

(pL X P2, p3Xps) = |2% - 1+i(t—9).

Thus the conditiorLy, L L34 gives |z = 1 andt = s. We thus writez = e? with
# € [0, 2r). Now computing the triple products we see that

A(p1, p3, p2) = arg(1—it) and A(py,p3, ps4) = arg(1-2) = arg(Ziei% sin (9/2)>-

In particularay and ap determine the values dfandé. O

3 The parameter space

3.1 Coordinates
Our space of interest is the following.

Definition 4 Let U/ be the set of PU(2.)-conjugacy classes of non-elementary pairs
(A, B) such thatA, B and AB are unipotent.
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Here, by non-elementary, we mean that the two isome&iasd B have no common
fixed point in aHEC. In fact, a slightly stronger statement will follow from Térem
3.1below. NamelyA and B do not preserve a common complex line and so the pair
A, B have no common fixed point iEP? (see Sectio2.3). Another way to see this is
that if A in PU(2 1) is unipotent and preserves a complex line, then its actiothat
complex line is via a unipotent element of S (that is parabolic with trace-2).

It is well known that if A and B are unipotent elements of SL(R) whose product is
also unipotent thed and B must share a fixed point (&, B and AB are all parabolic
with distinct fixed points, at least one of them should hasedr-2).

Note thatBA = A~1(AB)A = B(AB)B~! and so ifAB is unipotent then so iBA. If
pag andpga in 8H(2c are the fixed points cAB andBA then we have\(pga) = pag and
B(pas) = psa. From Propositior2.5this means tha# andB are uniquely determined
by the fixed points ofA, B, AB and BA. We describe a set of coordinates an
expressed in terms of the Cartan invariants of triples aféHixed points.

Theorem 3.1 There is a bijection betweetd and the open squarbri,ay) €
(—7/2,7/2)?, which is given by the map

A (A B) — (A(pa, paB, PB), A(Pa, PAB, PBA)) ,

wherepa, ps, Pag andpga are the parabolic fixed points of the corresponding isome-
tries.

This result can be see as a special case of the main res@Bloffor completeness,
we include here a direct proof.

Proof First, the two quantitiesvy = A(pa, pas, Ps) and az = A(pa, Pas, Psa) are
invariant under PU(2L)-conjugation and thus the mapis well-defined. Let us first
prove that the image of is contained in {7 /2, 7/2)?. In other words, we must show
a1 # £7/2 andayp # +7/2.

Fix a choice of liftspa, ps, pas andpga for the fixed points oA, B, AB andBA. Since
the fixed points are assumed to be distinct, we see that thaitiem product of each
pair of these vectors does not vanish. The conditidfsa) = pas andB(pas) = pea
imply that there exist two non-zero complex numbgrand i satisfying

Apga = Apag  and Bpag = 1PBa.

As AB is unipotent, its eigenvalue associatedpigs is 1, and therefore\y = 1.
Moreover, using the fact thata and pg are eigenvectors ok and B with eigenvalue
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1, we have
(11)
(PBA, PA) = (ApBA, APA) = A(PAB,PA),  (PAB, PB) = (Bpag, Bpe) = 1(PBA; PB)-

Using \ux = 1 and (1), it is not hard to show thah; = Apag — psa iS @ polar

vector for the complex lind.; spanned by and pg (see Sectior2.3). Moreover,

(paB,N1) = —(paB, Pea) # 0. Thuspag does not lie onL;. That is, the three of
points pa, Ps, Pas do not lie on the same complex line and@p+# +7/2.

Likewise, again using\y = 1 and (1) we find n, = (pg, Pas)PA — (PA, PAB)PB IS @
polar vector forL, and (pa, n2) = —(pa, Pas) {Pa, Ps) # 0. Hencepa does not lie on
L, and soap # +7/2. We remark that, by construction, we hava, n,) = 0 and so
in factL; andL, are orthogonal.

To see that\ is surjective, fix 1, ap) in (—7/2,7/2)? and define
(12)
Xy =+/2c0sf1) and xp=+/2c0S(w), foro; € (—7/2,7/2), SOxX1,% € RY.

Now consider the following elements of SU®:

1 —xx3 —xexse™io2 1 0 0
(13 A=1|0 1 X1X3 andB = | x;x3e' 1 0|,
0 O 1 —X2xag2  —xqx3e 1

Clearly, A and B are unipotent, and since AB) = 3, AB is also unipotent. The four
fixed points can be lifted to the vectors

1 0 _ei.al _eia.l
(14) pa= |0|, ps=|0|, pag= |X1€2|, ppa= |—X€'%?|.
0] 1 1 1

They satisfyA(pa, Pas, Ps) = a1 and A(pa, Pas, Pea) = a2. Note that when eithet;
or ap tends to+ /7 /2 (that isx; or X, respectively tends to OA and B both tend to
the identity matrix.

To see thatA is injective, it suffices to prove that the quadruppa, s, pas, Psa) IS
uniquely determined byafi, a2) up to isometry. Indeed, once this quadruple is fixed,
A andB are uniquely determined by Propositidrb. The above discussion has proved
that for any pair &, B) in U/ the two complex lines spanned respectively py, pg) and
(paB, pea) are orthogonal. The result then follows straightforwardbm Proposition
2.11 O

From now on, we will identify any conjugacy class of paitinhwith its representative
given by (3). We will repeatedly use the notation = /2 cosg;) from (12) and,
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when necessary, we will freely combimxe with trigopnometric notation. It should be
noted that the unipotent isometfygiven by (L3) is equal to the Heisenberg translation
Tieata) (s€€ Lemma.4), where

la = x1X3/V2=2cosfy)cos(az) .

ta = XoX5sin(az) = 4cosfy) cosg) sin(ay).

3.2 Products of order 3 elliptics.

The following proposition gives a decomposition of pairgdrthat we will use in the
rest of this work.

Proposition 3.2 For any pail(A, B) € U, their exists a unique pair of isometri¢s T)
such that:

(1) Both S andT have order three, and they cyclically permg, pag, pg) and
(Pa, PB, PBA), respectively.
(2) A=STandB=TS

Proof The first item is a direct consequence of Lemena(note that neither of the
triples Qa, pas, Ps) and @a, Ps, Pea) is contained in a complex line by Theoredl).
The action ofSand T is summed up on Figurg. From this, we see tha&T (resp.
T9) fixes pa (resp. ps) and mapsa to pag (resp. paB to pga). ProvidedST and
TSare unipotent, this suffices to prove the second item by Ritpn 2.5. To see that
ST and TSare indeed unipotent, we can use the liftpaf ps, pas and pga given by
(14). In this case we have

g ydu—iaz 7
S = elu/3 {xléaz —g o],
-1 0 0
0 0 -1
T = du8| Q0 —elu _yeiu-ia|

where, as usuak; = /2 cosgy); see (2). Computing the productST and TS gives
the result. ]

We will use the notatiors and T for these two order three symmetries throughout the
paper.
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pPBa @ 9 pPAB

PB

Figure 3: Action ofSandT on the tetrahedrorpg, ps, Pas, Psa) -

A more geometric proof of the existence of order three édlisometries decomposing
pairs of parabolics as above can be found in a slightly moneigéd context in23].

One consequence of the existence of this decomposition azdaqgh of order three
elliptic is that any group generated in bu a paf, B) in I/ is the image of the
fundamental group of the Whitehead link complement by a merp to PU(2,1). This
follows directly from the following.

Proposition 3.3 The free product.s x Z3 is a quotient of the fundamental group of
the Whitehead link complement.

Proof The fundamental group of the Whitehead link complement es@nted by
m = (u,Vv|rel(u,v)), where

(15) rel@,v) = [uv] - [uv - ut v [uth

Making the substitutioru = st andv = tst, we observe reft, tst) = [st, s t—3s72].
This relation is trivial wheneves® = t> = 1. Therefore, one defines a morphism
u T — Zs* 73 by settingu(u) = stand u(v) = tst. The morphismy. is surjective:

t is the image ofvu~! ands the image ofu?v—1. 0

3.3 Symmetries of the moduli space

The parametersof, az) determinel” up to PU(21) conjugation. We now show that
there is an antiholomorphic conjugation that changes tire i botha; and as.

Proposition 3.4 There is an antiholomorphic involutianwith the properties:

(1) . interchangepa andpg and interchangegas andpga;
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(2) ¢ conjugatesSto T andA to B (and vice versa);

(3) ¢ conjugates the group with parameter§a, o) to the group with parameters

(—a1, —a2).
V2] Z3
| — |e'Mz| .
Z3 pa)

It is easy to see that® is the identity and that sendspa to pg and sendgag to
(—e~'1)pga. Projectivising gives the first part.

Proof The action onC2 of . is:

L.

SinceA is the unique unipotent map fixing, and sendingga to pag, we seeAc is the
unique unipotent map fixing(pa) = ps and sending.(psa) = pas tO ¢(Pag) = Paa.
Thus:A. = B and sotB. = A. Applying Proposition3.2 we see thatS = T and
(Te = S, proving the second part.

The parameters for the group'. are A(¢pa, tpas, tps) = A(Ps, Pea, Pa) = —a1 and
A(Lpa, tPas, tPea) = A(Ps, Pea, PaB) = —az. This completes the proof. O

There are other symmetries of the parameter spiat®t, in general, do not arise from
conjugation by isometries.

Proposition 3.5 Let ¢p : (a1, a2) — (a1, —a) and ¢y : (a1, a2) — (—a1, ap)
denote the symmetries about the horizontal and vertica akeéhe (a1, ap) -square.
Thendon o ¢y induces the conjugation hygiven in Propositior8.4. Moreover:

(1) The symmetrypy, induces the changes of generatt®sT) — (T~1,S™1) and
(A,B) — (A"1,B7).

(2) The symmetryy, induces the changes of generatt®sT) — (S~1, T—1) and
(A,B)— (B™1A™Y),

Proof Applying the changeby, to the points in {4) and multiplying by the diagonal
element diag(1—1, 1) € PU(2 1) fixespa andpg and swap®as andpga. Therefore
it sendsS to the map cyclically permutingpg, pea, Ps), Which is T~1. Similarly it
sendsT to S71.

It is clear that the change of generato& T) — (T~1,S™!) sendsA = ST to
Tist=AlandB=TSto ST 1=B"1
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The change of generatord,B) — (A1, B~1) fixes pa andpg. Since it sendsAB
to A~1B~1 = (BA) ! it sendspag to pra and similarly sendgga to pag. From this
we can calculate the new Cartan invariants and we obtainytnengtry ¢y,

Hence all three conditions in the first part are equivaletiie 3econd part then follows
the first part and Propositiaai4 by first applying¢n and then conjugating by. O

The fixed point sets of these automorphisms are relatel-tlecomposability and
C-decomposability of".

Definition 5 (Compare Will B6)) A pair (S T) of elements in PU(2) is R-
decomposable if there exist three antiholomorphic inwohg (1, ¢2,¢3) such that
S= 1517 andT = 1q1:3.

Apair (S T) ofelementsin PU(2) is C-decomposable if there exists three involutions
(I1,12,13) in PU(2 1) suchthatS= 1,11 andT = I4ls.

The properties oR andC-decomposability have also been studied (in the special cas
of pairs of loxodromic isometries) from the point of view cdi¢es in SU(21) in [3€],

and (in the general case) using cross-ratioRif). [We could take either point of view
here, but instead we choose to argue directly with fixed point

Proposition 3.6 Let(A, B) beinid, and(S, T) be the corresponding elliptic isometries.

Q) If a1 = 0, then the paiS,T) is C-decomposable and the pdik B) is R-
decomposable. In particulalS, T) has indexX2 in a (3, 3, oc)-triangle group.

(2) If an = 0, then the paiS, T) is R-decomposable and the pdi B) is C-
decomposable. In particuldA, B) has index two in a complex hyperbolic ideal
triangle group.

Proof Consider the antiholomorphic involution : [z, z, z3] — [21, —2, 23]
Applying ¢1 to the points in {4) with a1 = 0, we see that; fixes pa and pg and
interchangeas andpga. Therefore.; conjugatesA to A~! andB to B~1. Hence
Ac1A1 and 1By B are the identity. That i, = Ar; and 3 = 1B are involutions.
Hence A, B) is R-decomposable.

Again assumingxy; = 0, consider the holomorphic involution defined by = ¢1¢

(where. is the involution defined in Propositidh4). Thenl; fixes pag and pga and

interchangega andpg. Therefore, it conjugateSto S~ and T to T~1. This means
I, = Sh andlz = I1T are involutions. HenceS T) is C-decomposable.
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Now consider the holomorphic involutio : [z, z, 5] — [z1, —2, z5]. This
fixes pa and pg and whena, = 0 it interchangeag andpga. As above this means
5 = Al] andlj = I1B are involutions andA, B) is C-decomposable. Finally, define
¢y = 11¢. Arguing as above, again with, = 0, we see that, = S} and; = T
are involutions. Henceq T) is R-decomposable. O

As indicated above, wheny = 0 the group generated by;(l2,13) is a (33, 0)
reflection triangle group. This group can be thought of amé ks n tends to infinity
of the (33, n) triangle groups which have been studied by Parker, WangXamah
[26]. The special case (3,4) has been studied by Falbel and Deraux8p Both
[8] and [26] constructed Dirichlet domains, and the Ford domain we tooscan be
seen as a limit of these. Moreov@;decomposability of the pait’, B) whena; = 0
can be used to show that these groups correspond to the pemgiresentations of
the fundamental group of a 3-punctured sphere that have ¢iadied in B7]. Ideal
triangle groups have been studied in great detail & 31, 30, 33, 34].

3.4 Isometry type of the commutator.

The isometry type of the commutator will play an importarterim the rest of this
paper. It is easily described using the order three ellipiaps given by Proposition
3.2

Proposition 3.7 The commutatofA, B] has the same isometry type 8 1. More
precisely, consideg(x, X3) = G (4 co(a1), 4 cos(a,)) where

G(x,y) = x2y* — &3y3 + 18xy? — 27.

Then[A, B] is loxodromic (respectively parabolic, elliptic) if andlgnf G(x3,%3) is
positive (respectively zero, negative).

Proof First, fromA = ST, B = TS and the fact thab and T have order 3, we see
that

[A.B] = ABA 1B~ = STTST!S IS i1t = (ST )3
This implies that A, B] has the same isometry type &1 unlessST! is elliptic

of order three, in which caseéA[B] is the identity. This would mean that and B
commute, which can not be because their fixed point sets gjardi

Representatives dd and T in SU(2 1) are given in {5). A direct calculation using
these matrices shows thatSA ) = x2x4€*1/3. The functionG(x¢, x3) above is
obtained by plugging this value in the functidh given in Propositior2.2 O
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The null locus ofG (4 cos(az), 4 cod(az)) in the square £7/2,7/2)? is a curve,
which we will refer to as theparabolicity curveand denote byP. It is depicted
on Figure4. Similarly, the region wherg; is positive (thus A, B] loxodromic) will
be denoted byC. It is a topological disc, which is the connected componérihe
complement of the curv® that contains the origin. The region where B] is elliptic
will be denoted by¢.

4 Isometric spheres and their intersections

4.1 Isometric spheres forS, S ! and their A-translates.

In this section we give details of the isometric sphereswuhiatontain the sides of our
polyhedronD. The polyhedrorD is our guess for the Ford polyhedron Bf subject
to the combinatorial restriction discussed in Secddh

We start with the isometric spheré€S) and Z(S™1) for S and its inverse. From the
matrix for S given in (L5), using Lemma.7 we see thaZ(S) andZ(S 1) have radius
1/| — e1/3]1/2 = 1 and centresS (q..) = pr and S(O.) = pas respectively;
see (4). In particular,Z(S) is the Cygan spheréjg (1) of radius 1 centred at the
origin; see 8). In our computations we will use geographical coordinate®(S) as
in Definition 3. The polyhedrorD will be the intersection of the exteriors @{St?)
and all their translates by powers Af We now fix some notation:

Definition 6 Fork € Z let Z," be the isometric spherB(AKSAK) = AZ(S) and let
T, be the isometric sphetB(AS1ATK) = AZ(SY).

With this notation, we have:

Proposition 4.1 For any integek € 7Z, the isometric spher?.rfgr has radiusl and

is centred at the point with Heisenberg coordindi€s, kta], wherela andty are as
in (15). Similarly, the isometric spherg, has radiusl and centre the point with
Heisenberg coordinatggla + /Cosfr1)€?2, — sin(a1)] .

Proof As A is unipotent and fixes, it is a Cygan isometry, and thus preserves the
radius of isometric spheres. This gives the part about sadMoreover, it follows
directly from PropositioriL3 that A acts on the boundary dﬂ% by left Heisenberg
multiplication by kéa, kta]. This gives the part about centres by a straightforward
verification. O
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The following proposition describes a symmetry of the feyn{'r[ki : ke Z} which
will be useful in the study of intersections of the isomemilhereSZf.

Proposition 4.2 Let ¢ be the antiholomorphic isometis = (T, where. is as in
Proposition3.4. Theny? = A, andy acts on the Heisenberg group as a screw motion
preserving the affine line parametrised by

(16)

A, = {@(x) = [x+i - cos@lzj Sin(aZ),x\/cos@q)sin(az) — %2041)] D X€E R}.

Moreover, ¢ acts on isometric spheres a$7,”) = I, and o(Z;)) = I,/ , for all
keZ.

Proof Using the fact thafl = .S we see thatA = ST = SS. = ¢?. Moreover
o(pa) = S(pa) = Sps) = pa- Henceyp is a Cygan isometry. It follows by direct
calculation thatp sendsd, () to d,(x + ¢a/2), and so preserves,. Moreover,

©(pPea) = S(pea) = S(PaB) = P8, ¥(PB) = S(Pe) = SPa) = Pas.

Hencey sendsZ”; to I;{ since it is a Cygan isometry mapping the centreof to
the centre ofZ; . Similarly, ¢ sendsZ; to Z, . The action on other isometric spheres
follows sincey? = A. O

4.2 A combinatorial restriction.

The following section is the crucial technical part of ourfuoAs most of the proofs
are computational, we will omit many of them here; they wal frovided in Section
7. We are now going to restrict our attention to those paramaétethe regionl such
that the three isometric sphergs = Z(9), Z, = Z(S 1) andZ_; = Z(T) have no
triple intersection. We will describe the region we areliested in by an inequality on
a1 anday. Prior to stating it, let us fix a little notation.

We denote byal™ = arccog/3/8). The two points (0+alm) are the cusps the
curve P: they satisfyG (4 cog(0), 4 co$(+ai™)) = G(4,3/2) = 0 (see Figurel).
Now, let R be the rectangle (depicted in Figutedefined by

17) R = {(al,az) D oa] < /6, |ag| < agm

We remark that in Lemm@.3we will prove that whend, an) € R, the commutator
[A, B] is non elliptic. This means thaR is contained in the closure &f.
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Figure 4: The parameter space, with the parabolicity cdpvand the regiong, £. The
region Z is the central region, which is contained in the rectarigle

Definition 7 Let Z denote the subset & where the triple intersectiafly NZ—;NZ,
is empty.

The following proposition characterises those pointsg, (o) that lie in Z.

Proposition 4.3 A parametefa1, ap) € R is in Z if and only if it satisfies
D(x},%3) = D(4coé(az),4cod(az)) > 0,
whereD is the polynomial given by
D(x,y) = X°y® — 9%y? — 27xy* + 81Ixy — 27x — 27.

The regionZ is depicted in Figurd: itis the interior of the central region of the figure.
In fact, Z is the region in all ofC whereIar NZI-; NI, is empty, but as proving
this is more involved, we restrict ourselves to the rect@rigl This provides a priori
bounds on the parametergs and o, that will make our computations easier. We will
prove Propositio.3in Section7.3. It relies on Propositiod.4, describing the set of
points whereD(x}, x3) > 0 and on Propositiod.5, which gives geometric properties
of the triple intersection. Proofs of Propositidid and Propositiort.5 will be given

in Section7.2and Sectiory.1respectively.

Proposition 4.4 The regionZ is an open topological disc iR, symmetric about
the axes and intersecting them in the intervals = 0, —7/6 < a1 < w/6} and
{1 =0, —al™ < ay < oM},
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Moreover, the intersection of the closure Dfwith the parabolicity curvé® consists
of the two points(0, +a/i™).

Proposition 4.5 (1) The triple intersectionlar NZy, N1, is contained in the
meridianm of Z; defined in geographical coordinates By= (m — a1)/2.

(2) Ifthe triple intersectio:far NZ, NZZ, is non-empty, it contains a pointBH(ZC.

The second part of Propositioh5 is not true for general triples of bisectors. It
will allow us to restrict ourselves to the boundary Id% to prove Propositiort.3.
Restricting ourselves to the regiah will considerably simplify the combinatorics of
the family of isometric sphereg[ki : k€ Z}. The following fact will be crucial in
our study; compare Figure

Proposition 4.6 Fix (a1, az) a point inZ. Then the isometric sphe@F is contained
in the exterior of the isometric spher&g for all k, except forZ,”, 7*,, I, andZ .

The proof of Propositio.6 will be detailed in Sectior7.4 We can give more
information aboutthe intersectiodgt with these four other isometric spheres; compare
Figureb.

Proposition 4.7 If (a1, a2) € Z, then the intersectioi_; N I, is contained in the
interior of Z; .

Proof Since the poinpg is the centre ofZ, it lies in its interior. Moreoverpg lies

on bothZ~, andZ; : indeed, (pag, P8) = (Pea,PB) = 1. By convexity of Cygan
spheres (see Propositigh8), the intersection of the latter two isometric spheres is
connected. This implies that_; N Z; is contained in the interior df, for otherwise
T4 NI~ NI, would not be empty. D

Using Propositiord.2, applying powers ofp to Propositions4.6 and 4.7 gives the
following results describing all pairwise intersections.

Corollary 4.8 Fix (a1,a2) € Z. Thenforallk € Z:

() I;F is contained in the exterior of all isometric sphereﬂijt : ke Z} except
o1, Ty, I andZd, . Moreover, ) NI, , NI, = 0 andZ,) NI,
(respectivelyL,” N ., ) is contained in the interior of,_, (respectivelyL,”).

(2) Z, iscontained in the exterior of all isometric sphere$ﬂj[ : ke Z} except
I 1 LY, L5, andZ .. Moreover,Z,, NI, NI, = 0 andZ, NI,
(respectivelyZ,” NI, ,) is contained in the interior ollj (respectivel)ZZkJZrl ).

Proposition4.6 and Corollary4.8 are illustrated in Figuré.
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i, 1, I, 1y 1, Iy

5, 1Y 17 I Iy I

Figure 5: Vertical projections of the isometric spheﬁ's for small values ofk at the point
(a1, a2) = (0.4,0.3)

5 Applying the Poincaré polyhedron theorem insideZ.

5.1 The Poincag polyhedron theorem

For the proof of our main result we need to use the Pospatyhedron theorem for
coset decompositions. The general principle of this rdsudescribed in Section 9.6
of [2] in the context of the Poincardisc. A generalisation to the case Hf: has
already appeared in Mosto®4] and Deraux, Parker, Paupe®i[ In these cases it was
assumed that the stabiliser of the polyhedron is finite. Incage the stabiliser is the
infinite cyclic group generated by the unipotent parabolapr. There are two main
differences from the version given i8][ First, we allow the polyhedro to have
infinitely many facets, the stabiliser grodp is also infinite, but we require that there
are only finitely manyY -orbits of facets. Secondly, we consider polyheBravhose
boundary intersect@H% in an open set, which we refer to as the ideal boundary of
D. In fact, the version we need has many things in common withvirsion given
by Parker, Wang and Xie€p]. A more general statement will appear in Parker’s book
[24]. In what follows we will adapt our statement of the Poirieénieorem to the case
we have in mind.

The polyhedron and its cell structure Let D be an open polyhedron i|=l(2c and let

D denote its closure itH2 = H2 U 9HZ. We define the ideal bounda,.D of D

to be the intersection db with 8H(2C. This polyhedron has a natural cell structure
which we suppose is locally finite insidﬂ(zc. We suppose that the facets bfof all
dimensions are piecewise smooth submanifoldsi_éf Let F«(D) be the collection
of facets of codimensiok having non-trivial intersection witlh-l(zc. We suppose that
facets are closed subsetshiT@. We write f° to denote the interior of a facét that

is the collection of points of that are not contained iaH% or any facet of a lower
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dimension (higher codimension). Elements/a{D) and.F»(D) are respectively called
sidesandridgesof D. SinceD is a polyhedron,Fy(D) = D and each ridge iF»(D)
lies in exactly two sides itF1(D). Similarly, the intersection of facets &f with (‘?H(ZC
gives rise to a polyhedral structure on a subsebgD. We let ZF(D) denote the
ideal facets ofd,,D of codimensionk so that each facet if F¢(D) is contained in
some facet ofF;(D) with ¢ < k. In particular, we will also need to considigleal
verticesin ZF4(D). These are points of either the endpoints of facet&j(D) or else
they are points oﬁH% contained in (at least) two facets ©f that do not intersect
inside H(zc. Note that, since we have defined ideal facets to be subskteat§, it may
be thatZ?H(zc contains points o®,,D not contained in any ideal facet. In the case we
consider, there will be one such point, namely the poinkatixed by A.

The side pairing. We suppose that there iss@de pairingo : F1(D) — PU(2,1)
satisfying the following conditions:

(1) Foreach sids € F1(D) with o(s) = Sthere is another side™ € F1(D) so that
S mapss homeomorphically onte™ preserving the cell structure. Moreover,
o(s™) = S~L. Furthermore, ifs = s~ thenS= S~! andSis an involution. In
this case, we cal? = id areflection relation

(2) Foreacts € F1(D) with o(s) = Swe haveDNS (D) = sandDNS (D) = 0.

(3) For eachw in the interiors® of sthere is an open neighbourhoaf{w) C H?C
of w contained inD U S~(D).

In the example we consideld will be the Ford domain of a group. In particular, each
sides will be contained in the isometric spheféS) of S= o(s). Indeed,s = Z(SND.

By construction we havs: Z(S) — Z(S™1) and in this cass™ = Z(S 1) N D. The
polyhedronD will be the (open) infinite sided polyhedron formed by themsection of
the exteriors of all th&€(S) whereS = ¢(s) ands varies overF1(D). By construction,
the sides oD are smooth hypersurfaces (with boundary)—ié.

Suppose thab is invariant under a grouff’ that iscompatiblewith the side pairing
map in the sense that for aft ¢ T ands € F1(D) we haveP(s) € F1(D) and
(P9 = Po(s)P~1. We call the latter @ompatibility relation We suppose that there
are finitely manyY -orbits of facets in eactFx(D). SinceP € T cannot fix a side
s € F1(D) pointwise, subdividing sides if necessary, we supposeifttfac T maps
a side inF1(D) to itself thenP is the identity. In particular, given sidess and s, in
F1(D), there is at most onB € T sendings; to S. In the example of a Ford domain
T will be T',, the stabiliser of the pointo in the groupl.
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Ridges and cycle relations. Consider a ridge1 € F>(D). Then,ry is contained in
precisely two sides oD, says, ands;. Consider the ordered tripléi(s;,s1). The
side pairing mapr(s;) = S sendss; to the sides; preserving its cell structure. In
particular,S;(r1) is a ridge ofs; , sayr». Let s, be the other side containing. Then
we obtain a new ordered triplex(s; , ). Now applyo(s) = S to ro and repeat.
Because there are only finitely maffi~orbits of ridges, we eventually find anso that
the ordered triple rgy+1, Spy Smi1) = (P11, P~1s;,P1s)) for someP € T (note
that, by hypothesisP is unique). We define a mgp: F»(D) — PU(2,1) called the
cycle transformatiomy p(r1) = PoSyo---0S;. (Note that for any ridge; = s; Nsy,
the cycle transformation map(r;) = R depends on a choice of one of the sidgs
ands;. If we choose the other one then the ridge cycle becoRes This follows
from the fact that therr(§7) = o—(q)—1 and from the compatibility relations.) By
construction, the cycle transformatidh= p(r1) maps the ridge; to itself setwise.
However,R may not be the identity ony, nor on H?C. Nevertheless, we suppose that
R has ordem. The relationR" = id is called thecycle relationassociated to; .

Writing the cycle transformatiop(r;) = R in terms of P and the§, we letC(r1) be
the collection of suffix subwords d®". That is

C(rl):{s,o...osloRk L 0<j<m—10<k< n—l}.
We say thathe cycle conditioris satisfied at; provided:

(1) B
n= () c*D).
CeC(r1)
(2) If C1, Cp € C(r1) with C; # Cp thenC;H(D) N C, (D) = 0.
(3) For eachw € r{ there is an open neighbourhoat{w) of w so that

uwyc J c D).

CEC(I’]_)

Ideal vertices and consistent horoballs. Suppose that the seéfF4(D) of ideal
vertices ofD is non-empty. In our applications, there are no edges (tha(D)
is empty) and the only ideal vertices arise as points of tacgdetween the ideal
boundaries of ridges itF2(D). In order to simplify our discussion below, we will
only treat this case. We require that there is a systenopsistent horoballbased at
the ideal vertices and their images under the side pairingsnisee page 152 o1 (]
for definition). For each ideal verteg € ZF4(D), the consistent horobaHi, is a
horoball based af with the following property. Lett € ZF4(D) and lets € F1(D)
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be a side withf € s. Then the side pairing = o(s) maps¢ to a point{™ in s—.
Note that{™ is not necessarily an ideal vertex (since it could be tha a point of
tangency between two sides whose closurels@ﬁare otherwise disjoint ang™ may
be a point of tangency between two nested bisectors only bwhioch contributes a
side of D). In our case this does not happen and so we may asganaso lies in
T F4(D) and so has a consistent horobidll- . In order for these horoballs to form a
system of consistent horoballs we require that for eacH wdaéex £ and each sids
with ¢ € s the side pairing map(s) should map the horobali; onto the horoball
He-. In particular, any cycle of side pairing maps sendint itself must also send
He to itself.

Statement of the Poincaé polyhedron theorem. We can now state the version of
the Poincak polyhedron theorem that we need (compa@ ¢r [9]).

Theorem 5.1 Let D be a smoothly embedded polyhedrnin H% together with a
side pairingo : F1(D) — PU(2,1) LetY < PU(2,1)be a group of automorphisms
of D compatible with the side pairing and suppose that eadlb) contains finitely
many Y -orbits. Fix a presentation fof with generating seP, and relationsR v .
LetT be the group generated By and the side pairing mad®(s)}. Suppose that
the cycle condition is satisfied for each ridge#a(D) and that there is a system of
consistent horoballs at all the ideal verticedofif any). Then:

(1) The images oD under the cosets of in I’ tessellateH%. That is H% C
Uaer A(D) andDNA(D) =0 forall Ac T — 1.

(2) The groupl’ is discrete and a fundamental domain for its actionl-@ is
obtained from the intersection &f with a fundamental domain for .

(3) A presentation fof® (with respect to the generating sef U {o(9)}) has the
following set of relations: the relationR~ in Y, the compatibility relations
betweens andY, the reflection relations and the cycle relations.

5.2 Application to our examples.

We are now going to apply Theorebnl to the group generated yand A. Explicit
matrices for these transformations are provided in equat{t3) and (L5). Our aim is
to prove:
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Theorem 5.2 Suppose thalr, ) is in Z. Thatis,D(4 co$(a1), 4 cos(az)) > 0,
whereD(x,Y) is the polynomial defined in Propositiagn3 Then the group® = (S, A)
associated to the parametéss, ap) is discrete and has the presentation

(18) (S A:S=A19=id).

We obtain the presentatiof§, T : S* = T2 = id) by changing generators ®and
T=A"1s

Definition of the polyhedron and its cell structure.  The infinite polyhedron we
consider is the intersection of the exteriors of all the istiio spheresi{ZE : k € Z}.

Definition 8 We call D the intersection of the exteriors of all isometric sphefgs
andZ, with centresA*S—3(q,.) and AkS(q..) respectively :

(19) D= {q € H2 : doyg(q, AXSEY(0n)) > 1forallk € Z}.

The set of sides oD is F1(D) = {s/. s, : k € Z} wheres{ = Z,' nD and
s« =Z, ND.

Using Corollary4.8we can completely descril:rgL ands, .

Proposition 5.3 The sides: is topologically a solid cylinder it U 9HZ. More
precisely,g‘f is a productD x [0, 1] where for each € [0, 1], the fibreD x {t} is
homeomorphic to a closed disc H’T(ZC whose boundary is contained BH%. The
intersection oﬁsj (respectivelyos, ) with H(zc is the disjoint union of the topological
discss’ Ns_, ands” N (respectivelys, Ns’ ands_ N ).

Proof Sinces/ is contained inZ, its only possible intersections with other sides
are contained it,” ,, Z,_,, Z,7, andZ_ , by Corollary4.8. SinceZ;” N Z,” ; and
I NI, are contained in the interiors of other isometric sphetres iritersections
sc Ns__, ands’ Ns;,, are empty. AlsoZ,” NZ,_, NZ, = and sos’ Ns_, and

g‘f N s  are disjoint. Since isometric spheres are topologicabklad their pairwise
intersections are connected, the descriptioq“olfollows. A similar argument describes

Se - D

The side pairingr : F1(D) — PU(2,1) is defined by
(20) o(sh) = AKSATK o(s) = AksIATK
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Let Y = (A) be the infinite cyclic group generated By By construction the side
pairing o is compatible withY. Furthermore, using Propositidn3 the set of ridges
is 7o(D) = {r}, r, : k€ Z} wherer} =si Nns andr, =s Ns_;. We can
now verify thato satisfies the first condition of being a side pairing.

Proposition 5.4 The side pairing map(s}) = AXSA¥ is a homeomorphism from
s’ tos, . Moreovera(s,) sendsr = s/ Ns, toitself and sends, = s Ns_; to
M1 = S NSGa-

Proof By applying powers oA we need only need to consider the case wikere0.
First, the ridgerg = s§ Ny = Z(9 N Z(S™?) is defined by the triple equality

(21) (2, Goo)| = (2, S too)| = |(Z Soo) -

The map$S cyclically permutespg = S™(0s), PA = Ooos PaAB = H0o), and so
mapsrg to itself. Similarly, considery = s N's_;. The side pairing maj$ sends
A~150.), the centre off _, to

SA1(0x) = TS HA) = STH0) = (STIS HST(Uee) = AS H(0o),

which is the centre off;", where we have used~! = T-1S1, T-1 = T2 and
ST(0w) = G- Thereforery = sf Ns”; issenttor; = s, Ns as claimed. The
rest of the result follows from our description s[g“ in Proposition5.3. O

Local tessellation. We now prove local tessellation around the sides and ridfes o

D

sc. Sinceo(s) = AKSTA~! sends the exterior df to the interior ofZ,” we see
that D and AXS*TA—K(D) have disjoint interiors and cover a neighbourhood of
each point ins] . Together with PropositioB.4 this meansr satisfies the three
conditions of being a side pairing.

ra. Consider the case of = st Nsy = Z(S N Z(S™Y), which is given by 21).
Observe thatar is mapped to itself byS. Using Propositiorb.4, we see that
when constructing the cycle transformation fg“r we have one ordered triple
(rd,S-Sg) and the cycle transformatiop(rgy) = S. The cycle relation is
S =id andC(rd) = {id, S, $?}. Consider an open neighbourhobd of rg
but not intersecting any other ridge. The intersectioaokith Uar is the same
as the intersection df§ with the Ford domairDs for the order three grougs) .
SinceS has order 3 this Ford domain is the intersection of the exteof Z(9
andZ(S™1). Forzin Ds, |(z, 0 )| is the smallest of the three quantities 21}
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Applying S= o(s3) andS™! = o(sy) gives regionsS(Ds) andS~1(Ds) where
one of the other two quantities is the smallest. Therefdgen SUS) N SUy)
is an open neighbourhood q‘f contained inD U (D) U S~X(D). This proves
the cycle condition atg .

ro . Now considery = s3 N's”;. When constructing the cycle transformation for

ro we start with the ordered triple{,s";,s5). Applying S= o(s}) to rg
gives the ordered tripler{,s;,s;), which is simply Ary,As ;,As;). Thus
the cycle transformation ofy is p(ry) = A=1S = T~1, which has order 3.
Therefore the cycle relation i\(1S)® = id, andC(ry) = {id, A~1S (A"192}.
Noting thatZ; has centreS (dw)S*A(dx) = T(dw) andZ—; has centre
A~190q.) = T7Hq — o0) we seeZy = Z(T~1) andZ, = Z(T). Therefore

a similar argument involving the Ford domain f¢f) shows that the cycle
condition is satisfied at; .

. Using compatibility of the side pairings with the cyclicomp T = (A), we
see thatp(r) = AKSA® with cycle relation ASA™ )3 = AKS’A~ = id and
that the cycle condition is satisfied qr Likewise, r, is mapped byp to
AKAI9AK = Ak-Isak and @k-1SATK)3 = AK(A-19AK = id so that the
cycle condition is satisfied af .

This is sufficient to prove Theoref2 by applying the Poincérpolyhedron theorem
whenD has no ideal vertices, that is to all groupsn the interior ofZ. In particular,I’

is generated by the generatdof YT and the side pairing maps. Using the compatibility
relations, there is only one side pairing map up to the aatioff, namelyS. There
are no reflection relations, and (again up to the actioff pthe only cycle relations
are S = id and A~193% = id. Thus the Poincér polyhedron theorem gives the
presentationX8). This completes the proof of Theorem2

For groups on the boundary & the same result is also true. This follows from the
fact (Chuckrow’s theorem): the algebraic limit of a sequen€ discrete and faithful
representations of a non virtually nilpotent group in Isétf{ is discrete and faithful
(see for instance Theorem 2.7 df for [21] for a more general result in the frame of
negatively curved groups).

We do not need to apply the Poinéarolyhedron theorem for these groups. However,
to describe the manifold at infinity for the limit groups, wallweed to know a
fundamental domain, and we will have to go through a simitalysis in the next
section.
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6 The limit group.

In this section, we consider the grolifi”, and unless otherwise stated, the parameters
a1 and oy will always be assumed to be equal to 0 atﬁﬂ‘ respectively. We know
already thaf'™ is discrete and isomorphic s * Z3. Our goal is to prove that its
manifold at infinity is homeomorphic to the complement of ¥Waitehead link. For
these values of the parameters, the mapsT andST—! are unipotent parabolic (see
the results of SectioB.4), and we denote bys-:1r andVgr-1 respectively the sets of
(parabolic) fixed points of conjugates 8f1T andST-! by powers ofA.

(1) Asinthe previous section, we apply the Poirgcpolyhedron theorem, this time
to the groupl'™ . We obtain an infinitéA-invariant polyhedron, still denoted,
which is a fundamental domain féx-cosets. This polyhedron is slightly more
complicated than the one in the previous section due to theaapnce of ideal
vertices that are the points W11 andVgr-1.

(2) We analyse the combinatorics of the ideal boundapD of this polyhedron.
More precisely, we will see that the quotient@{ D \ ({pa} U Vs-17 U Vgr-1)
by the action of the grougS T) is homeomorphic the complement of the
Whitehead link, as stated in Theordimn!.

6.1 Matrices and fixed points.

Before going any further, we provide specific expressiomdife various objects we
consider at the limit point. Wheny1 = 0 anday = a'z'm, the mapy described in
Proposition4.2is given in Heisenberg coordinates by

22 izt 2+ V3B+iV5/B —t+x/B2+ /32|

In particular its invariant lineA , is parametrised by

(23) A, = {@(x) - [x+i\/5/72, x\/%} L x e R}.

The parabolic map\ = ¢? acts onA, asA: §,(X) — d,(x+ 1/3/2). As a matrix
it is given by

1 —V3 —3/2+iV15/2
(24) A=(0 1 V3 .
0 0 1
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We can decomposaA into the product of regular elliptic mag@and T :

I 1 V3/2—iv5/2 1]
S = |-V3/2-iV5/2 -1 0],
i -1 0 0]
[0 0 -1 T
T =10 -1 —/3/2+iV5/2
-1 V3/2+iV5/2 1

These maps cyclically permutpa; pas, Ps) and a, ps, psa) Where

1 I -1
pa= [0 PAB = \/§/2+i\/5/2],
0] L 1
[0] I -1
(25) ps= |0 PBA = \/§/2+i\/§/2].
1

Using a1 = 0, we will occasionally use the facts from Propositi® that S T) is
C-decomposable and\(B) is R-decomposable.

As mentioned above, in the grodf™ the elementsST-1, S™1T, TST, STSand
the commutator 4, B] = (ST-1)® are unipotent parabolic. For future reference,
we provide here lifts of their fixed points, both as vectorsdA and in terms of
geographical coordinateg(c, 5) (we omit thew coordinates: since we are on the
boundary at infinity, it is equal te/2 cosa).
[—1/4+iv/15/4
Pst1 = \/§/4—|—i\/§/4]
1

= g (arccos(¥4),7/2),

:—1/4—i\/f3/4
Ps-1r = \/§/4+i\/§/4} = g(—arccos(}4),7/2) ,
1

PrsT = 3\/5/4414\/5/4} = g(O,—arccos(\/WBZ)),
1

(26) PsTs = 3\/§/4_+1 i\/§/4] = g(O, arccos(W)).
1

It follows from (22) that ¢ acts on these parabolic fixed points as follows:

@ @ @ @ @
(27) “++Pr-1sTsT— PTST — Ps-11 — PsT-1 — PsTs— PsTsTs? " "
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Figure 6: Two realistic views of the isometric sphe&s, Z;" andZ, for the limit group
'™ The thin bigon isBy (defined in Propositios.5). Compare with Figure8 and12

6.2 The Poincagé theorem for the limit group.

The limit group has extra parabolic elements. Thereforerder to apply the Poincar
theorem, we must construct a system of consistent horoabtlsese parabolic fixed
points (see Sectioh.l).

Lemma 6.1 The isometric sphere?§fr andZ”, are tangent abst-1. The isometric
spheres‘;[f1 andZ, are tangent gbg-1.

Proof It is straightforward to verify that(pst-1, pea)| = |(PsT-1, A(pB))| = 1, and
thereforepgsr-: belongs to botliZ~, and If . Projecting vertically (see Remadg,

we see that the projections @f; and If are tangent discs and as they are strictly
convex, their intersection contains at most one point. ghies the result. The other
tangency is along the same lines. O

A consequence of Lemntalis that the parabolic fixed points are tangency points of
isometric spheres. The following lemma is proved in Secfidn

Lemma6.2 For the groud'™ the triple intersectio:iiar NZ, NZI_, contains exactly
two points, namely the parabolic fixed poimtsr-1 andpg-1t.

Applying powers ofp, we see that these triple intersections are actually qperu
intersections of sides and triple intersections of ridges.
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Corollary 6.3 The parabolic fixed poind(psr-1) lies onZ, , NTI NZ, NZF. In
particular, it is the triple ridge intersectiaiy N rl‘f N .- Similarly, A¥(ps-17) lies
onZ* NI~ NIJ NI, . Inparticularitisry ;Nr Nre.

To construct a system of consistent horoballs at the paabgéd points we must
investigate the action of the side pairing maps on them.t,fits:y € ZH, N2~ N
T4 NI, , we have

o(st) =A'SAIpsar — Proistst
o(sS) =A 'S *Aipsar — Pprst
o() =S:Psit > Pst1,
o(§)=S"':ipsir — Pss

Likewise pst-1 € Z—; NI NZy NZ;". We have
o(s) =A'STAIpsrr — A(psta),
o(§) =S:pst1 — Psts
o) =St :pst1 — Psr
O'(Sf) = ASA_l . pST—l — Az(pST—l).

We can combine these maps to show how the polf®sr-1) and AX(ps-11) are
related by the side pairing maps. This leads to an infinitplgra section of which is:
(28)

A—1SA ASAL

2
PsT-1 A“(PsT-1) —

S] \ AZSAZT

A-1sSA ASA! 2
~— Pr-istsT Ps-17 s PsTs A (Ps-11) =—
-1 —1
A SAL %’ ASA L %
ST 3 PsTsTs!? NSA?

From this it is clear that all the cycles in the graf#8)(are generated by triangles
and quadrilaterals. Up to powers Af the triangles lead to the woisf, which is the
identity. Up to powers ofA the quadrilaterals lead to words cyclically equivalent to
the one coming from:
st ASA! s A—1SA

Ps-11 Psts PsTsTs1 PrsT Ps-11
In other words,pgs-11 is fixed by A~1SA(S HASA)(S™?) = (T7193. This is
parabolic and so preserves all horoballs basesat; .
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Figure 7: Vertical projection and realistic vjew of the isetmic spheres and the fafg and
F_, for the parameter valuas; = 0, ap = a|2|m . Compare with Figuré.
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Therefore, we can define a system of horoballs as foIIowsugrebe a horoball based

at ps-17, disjoint from the closure of any side not containipg . in its closure. Now
define horoballsui;F andU, by applying the side pairing maps t.rbar Since every
cycle in the graph48) gives rise either to the identity map or to a parabolic mhjs, t
process is well defined and gives rise to a consistent sydtaoraballs. Therefore we
can apply the Poincarpolyhedron theorem for the two limit groups. Using the same
arguments as we did for groups in the interiorzdf we see that’ has the presentation
(18).

6.3 The boundary of the limit orbifold.

Theorem 6.4 The manifold at infinity of the groug™™ is homeomorphic to the
Whitehead link complement.

The ideal boundary dD is made up of those pieces of the isometric sphéﬁ%ﬂﬁat are
outside all other isometric spheresﬁﬁgE : k€ Z}. Recall that the (ideal boundary
of) the sideﬁ is the part of&IkjE which is outside (the ideal boundary of) all other
isometric spheres. In this section, when we speak of siddgidges we implicitly
mean their intersection withH2.

We will see that each isometric sphere{lfi" : k € Z} contributes a sidg; made up
of one quadrilateral, denoted W and one bigor3;=. A very similar configuration
of isometric spheres has been observed by Deraux and Fallfg]. i We begin by
analysing the contribution df; .

Proposition 6.5 The side(sg )° of D has two connected components.

(1) One of them is a quadrilateral, denot@j , Whose vertices are poinfsr-1,
Ps-17, Pstsandprst (all of which are parabolic fixed points)

(2) The other is a bigon, denotésf| , whose vertices angst-1 andpg-1t

Proof Since isometric spheres are strictly convex, the ideal daues of the ridges
rq =ZIg NI, andry = I NZ_, are Jordan curves dfy . We still denote them by
rgt . The interiors of these curves are respectively the cordamimponents containing
pas andpga. By Lemma6.2in Section7.], r(‘{ andry have two intersection points,
namelyps-1t andpst-1, and their interiors are disjoint. As a consequence the comm
exterior of the two curves has two connected componentstrengointsps-1t and
pst-1 lie on the boundary of both.
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b

Figure 8: Intersections of the isometric sphefgs Z—,, Z,” andZ*; with Z inthe boundary

of HZ, viewed in geographical coordinates. Recall tfat= 7 NZ; andry =Z5 NZ-;.
Here«a € [—7/2,7/2] is the vertical coordinates, angl € [—, 7] the horizontal one. The
vertical dash-dotted segments= +/2 are the two halves of the boundary of the meridian
m. The bigon between the two curve$ andr, is B (see Propositios.5). Compare to
Figure 2 of B].

To finish the proof, consider the involutian defined in the proof of Propositiad.6.
(Note that sincea; = 0 this involution conjugateg™™ to itself.) In Heisenberg
coordinates it is defined by : [z t] — [—Z —t] and is clearly a Cygan isometry.
As in Proposition3.6, ¢1 fixes pa and pg and it interchange®ag and pga. Thus it
conjugatesS to T~! and so it interchangegsT-1 and ps-17 and it interchangepsts
and prst. Moreover, since it is a Cygan isometry, preserveszar and interchanges
Z-, andZ, and thus it also exchanges the two curvgsandr, . Again, since it is
a Cygan isometry, it maps interior to interior and extermekterior for both curves.
As a consequence, the two connected components of the comxtenior are either
exchanged or both preserved.

Now consider the point with Heisenberg coordinate®][ It is fixed by ¢1, and
belongs to the common exterior of batfi andr, . This implies that both connected
components are preserved. Finally, sifggs € zo+ NZ, andprst € Iar nN7Z-,

are exchanged by, these two points belong to the closure of the same connected
component. As aconsequence, one of the two connected cemigdrapst-1, Ps-17,
pstsand prst on its boundary. This is the quadrilateral. The other onedags: and
ps-17 ON its boundary. This is the bigon. ]

We now apply powers of\ to get a result about all the isometric sphere intersections
in the ideal boundary ob. Define Oy = »(Qg) and B, = ¢(Bg). Then applying
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powers ofA we define quadrilateral® = AX(QF), and bigonsB;- = AX(BT). The
action of the Heisenberg translatidnand the glide reflectiop are:

PsTsrs

Figure 9: A combinatorial picture afD. The top and bottom lines are identified.

Corollary 6.6 For the groug™™, the (ideal boundary of) the sidg is the union of
the quadrilateraliF and the bigorBB;F . The action ofA and are as follows.

(1) A mapsQy to Qi.,, andBi to By, .
(2) ¢ mapsQ; to Qi , O to Qf ,, B to B, andBy to Bl ;.

In order to understand the combinatorics of the sidd3 ofre describe the edges of the
faces lying inZg . The three point®s-11, Pst-1, Pstslie on the ridgery = Z5 NZ; .
Likewise, the pointgsr-1, Ps-11, Prst lie in the ridgery = IJ NZ_;. Indeed, these
points divide (the ideal boundaries of) these ridges intedlsegments. We have listed
the ideal vertices in positive cyclic order (see Fig8je Using the graphZ8), the
action of the cycle transformatiorﬂsar) = Sandp(ry) = A~1S = T~ on these
ideal vertices, and hence on the segments of the ridges, is:

s s S
Ps-11 ————— Ps11 PsTs Ps-11,

A-ls A-1s A-1s
Ps-11 PrsT Pst-1.

PsT-1

Furthermore S mapsprst to PsrsTst -

The quadrilaterang has two edgespg-11, prs1l U [PrsT Pst-1] in the ridge ry
and two edgespst-1, Pstd U [Psts Ps-17] in the ridge r;{. It is sent byS to the
quadrilateralQy with two edges fst-1, Pststst] U [PstsTst, Pstd in r; and two
edges Psts Ps-17] U [Ps-17, Pst-1] in 1§ . Similarly, the edges of the bigoi; are
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the remaining segments iy andr;{, both with endpoints-11 andpst-1. Itis sent
by Sto the bigonB; with verticespsr-1 andpsrs

Applying powers ofA gives the other quadrilaterals and bigons. As usual, thgema
underA¥ can be found by addink to each subscript and conjugating each side pairing
map and ridge cycle b¥. The combinatorics ob is summarised on Figui@

Lemma6.7 The lineA, given in(23) is contained in the complement Df.

Proof As noted aboveA acts onA,, as a translation througky/3/2. We claim that
the segment of\,, with parameteix € [—+/3/8, 1/3/8] in contained in the interior
of I;{ . Applying powers ofA we see that each point @k, is contained inIlzr for
somek. Hence the line is in the complement Df

Considerj,(x) € A, with x? < 3/8. The Cygan distance betwegg and d5(X)
satisfies:

2
deyg(Pe, d,(X)* = —x2—5/32+ix\/5/8‘ = X4 +15¢/16+25/1—24 < 529/1024

Sincedcyg(ps, d,(X)) < 1 this means,(x) is in the interior ofZs asclaimed. D

The following result, which will be proved in Section5, is crucial for proving
Theorem6.4.

Proposition 6.8 There exists a homeomorphisin: R3 —; GH% — {0~} mapping
the exterior ofS' x R, that is{(x,y,2) : X +y? > 1}, homeomorphically ont®
and so thatt (x,y,z+ 1) = A¥(X,y, 2), that isV is equivariant with respect to unit
translation along the axis andA.

As a conseguence of Propositiér8, D admits anA invariant 1-dimensional foliation,
the leaves being the images of radial lings cos@o),r sino),z) : r > 1} that
foliate the exterior oSt x R. Each of these leaves is a curve connecting a poifdOof
with g.,. We can now prove Theorefh4.

Proof of Theorem6.4. The unionQg U BJ U Q, U B, is a fundamental domain
for the action ofA on the boundary cylindedD. As the foliation obtained above is
A-invariant, the cone to the point,, built over it via the foliation is a fundamental
domain for the action oA over D, and thus, it is a fundamental domain for the action
of T''™ on the region of discontinuit(I"M).
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This fundamental domain is the union of two pyrami@is and P, with respective
basesQg U B, and Q, U By, and common vertexl., = pst. The two pyramids
share a common face, which is a triangle with vertipegs pr-15 and pst. Cutting
and pasting, consider the unign™ U 91(P‘) . Itis again a fundamental domain for
'™ The apex ofS™{(P7) is S}(qs) = ps = prs. The image undes ! of Q; is
Q¢ , and the bigon3; is mapped byS~! to another bigon connecting; 15 to psts
Since3, = S(Bar), this new bigon is the image @, underS2 =S,

The resulting object is a is a polyhedron (a combinatorieiuypse is provided on Figure
10), whose faces are triangles and bigons. The faces of thedhedton are paired as

pst

pst

/_\\ PTST

pst —p o Drs Pr-1s
PsT-1&7 ¢
£,
S7HBy)

Top pyramid : P+

psrs
_k
B, )
Bottom pyramid : S~Y(P~)
pst
prs
Figure 10: A combinatorial picture of the octahedron.
follows.

TS ' (Prs Pr-is Pst9 — (Prs PrsT: Prs-1),

ST @ (Pst,Prst, Pr-15) — (PsT; PsT-1, PSTY,
T : (pst,Prst Pst-1) — (Prs, Pr-1s, PrST),
S (Prs Pst1,PsT9 — (PsT, PsTs Ps-17),
S ' (Pst1,PsT9 — (PsTs Ps-171)

The last line is the bigon identification betwe&y and 5‘1(63). As the triangle
(Prs, Pst-1, PsT9 and the bigonB, share a common edge and have the same face
pairing they can be combined into a single triangle, as wethair images. Thus the
last two lines may be combined into a single side with sidaqgimapS. We therefore
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obtain a true combinatorial octahedron. The face identifina given above make the
guotient manifold homeomorphic to the complement of the télteéad link (compare
for instance with Section 3.3 08§]). ]

7 Technicalities.

7.1 The triple intersections: proofs of Proposition4.5and Lemma6.2

In this section we first prove Propositign5, which states that the triple intersection
must contain a point 0dHZ and then we analyse the case of the limit graify,
giving a proof of Lemmd.2 First recall that the isometric sphergs andZ”; are the
unit Heisenberg spheres with centres given respectivajgagraphical coordinates by
(see2.5

pae = S(o0) = g(—a1, —a1/2+ az,\/2cosf))
pea = AS00) =g(—a1, —a1/2 — az + 7, /2 C0sfn)).

Consider the two functions of pointg= g(«, 5, W) € I;{ defined by

9) @ = 2co(a/2- ai/2)+ cos@ — ay)
—4wxy COS(r/2 — a1/2) COSE + a1 /2 — ) + WA,
fI-U (@ = 2cod(a/2— a1/2)+ cospr— az)

1,02

(30) +4wx; COS(r/2 — a1/2) coSB + a1 /2 + az) + WK,

These functions characterise those pointggnthat belong taZ, andZ—;.

Lemma 7.1 A point q on I;{ lies onZ, (respectively in its interior or exterior) if
and only if it satisfied[”) . (q) = O (respectively is negative or is positive). Similarly,
a pointq on IJ lies onZ—; (respectively in its interior or exterior) if and only if it
satisfies[ -1 (q) = 0 (respectively is negative or is positive).

1,02

Proof Apointq e zo+ lies onZ, (respectively in its interior or exterior) if and only if
its Cygan distance from the centreXf , which is the poinpag, equals 1 (respectively
is less than 1 or greater than 1). Equivalently (see Segti@nthe following quantity
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vanishes, is positive or negative respectively,

. o o
(g, pag)[* =1 = ‘—e"a+wx1e"a/2+lﬁ—laz_e—m 1

o 2
— |-2c086/2 - a1/2) + wigHion/2-ioe|*

= 4cof(a/2 — a1/2) — 1+ WX
—4cosg/2 — ay/2)wxg coS( + a1 /2 — a/2)

0
= ftgél],az(q)'

On the last line we used 2 ctfa/2 — a1/2) = 1+ cosgx — ). This proves the first

part of the Lemma and the second is obtained by a similar ctatipn. O

Corollary 7.2 For given(az, o), if the sumfl®  +£1-1 'js positive for allq, then

aq,02 aq,02

the triple intersectiorTy NZy NI, is empty.

See Figure3. We can now prove Propositiah5.

Proof of Proposition 4.5. To prove the first part, note that a necessary condition for
apointq € Zg to be in the intersectioiy N7, is thatf  (g) — L1 (g) = 0. By
a simple computation, we see that this difference is:

fO.,@ 0@ = —8wxcosq/2— a1/2)cos@ + ai/2) cosqy).

Since oy and ay lie in (—7/2,7/2) anda € [—7/2,7/2], the only solutions are
cos@@ + a1/2) = 0 orw = 0. Thus eithemp = g(«, 5, w) lies on the meridiam, or
on the spine ofZ;", and hence on every meridian, in particularn(compare with
Proposition2.9).

To prove the second part of Propositibrs, assume that the triple intersection contains
apointq = g(a, (7/2 — a1/2),w) inside HZ, that is such thatv? < 2 cos¢y), and

0 -1
fo[zl],az(q) + f£1’J2(Q) =0.

In view of Corollary7.2, we only need to prove that there exists a poinivam where
the above sum is non-positive, and use the intermediate vhkorem. To do so, let
& be defined by the condition 2 ceg§(= w? and such thatyand oy have opposite
signs. Sincen? < 2 cosfy), these conditions imply thaéi| > |«|. We claim that the
point § = g(&, (m — a1)/2,w) is satisfactory. Indeed, the conditions argive

o —aa| <ol + ] <] + |aa| = & — e
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where the last inequality follows from the fact thatahd a1 have opposite signs.
Therefore

(32) cos/2 — a1/2) < cosg/2 — a1 /2).
On the other hand, we have

0 —1
0, @+ 2 (@)

= 4cod(a/2 — a1/2) + 2cosfr — 1) — 8wx COSEr/2 — a1 /2) Sinz) 4+ 2WAE
= 8cod(a/2 — a1/2) — 2 — 8Wx; COS(/2 — a1 /2) Sinfo) + 2WPX2.
(32)

We claim this is an increasing function of cag@ — a1/2). In order to see this,
observe that its derivative with respect to this variable is

16 cosfy/2 — a1 /2) — 8wxg Sin(ap) > 16 cosf/2 — oy /2) — 164/COSx) COS(r1) > O,
where we used; = /2 c0sf), W < /2 cosg) and sinfy) < 1. Therefore,
0 -1
0 = f%,,@+f 5@
= 8co(ar/2 — a1/2) — 2 — BWx; COS(r/2 — v1/2) sinfrg) + 2wWPxE
> 8c02(a/2 — a1/2) — 2 — 8Wxy COS(I/2 — a1 /2) Sinaz) + 2wW?X2
0] (& -1] (x
= 100,,@ + 15, 5,@.
This proves our claim. O

We now prove Lemmd&.2 which completely describes the triple intersection at the
limit point.

Proof of Lemma6.2 From the first part of Propositiod.5 we see that any point
d = d(a, B,W) in Z§ NZ; NZ~-; must lie onm, thatis 3 = (7 — a1)/2. For such
points it is enough to show thdf’,.(a) + fl ") (d) = 0. Substitutinge; = 0 and

, 0o

O,agm
sin(az) = 1/5/8, this becomes:
fg?igm @ +f (@ = 4cof(a/2)+ cosg) — 4v/Bwcos/2) + 4w

O,ngm
— (2cos6/2) - Vow)  + (2c0s6) - wP).

In order to vanish, both terms must be zero. Hewée= 2 cosf) and 2 cos{/2) =
V5w = /I0cosf) (noting w cannot be negative since € [—7/2,7/2]). This
meansy = =+ arccos(¥4) andw = /2 cosf) = 1/+/2. Therefore, the only points in
14 NIy NI-,; have geographical coordinatgé+ arccos(}¥4), 7/2,1/v/2). Using
(26), we see these points apgr-1 andpg-1y. O
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7.2 The region Z is an open disc in the regionL: Proof of Proposition
4.4.

Consider the group',, , and, as before, writg} = 4 cog(a;) andx3 = 4 cog(ay).
Recall, from Proposition.7, that (v, az) is in £ (respectivelyP) if G(x},x3) > O
(respectively= 0) where:

(33) G(x,y) = x2y* — 4x%y® 4 18xy? — 27.

Recall this meansA, B] is loxodromic (respectively parabolic). Alsa{, ap) isin the
rectangleR if and only if (x{,x3) € [3, 4] x [3/2,4]. From Propositior.3, the point
(o1, a2) € R isin Z (respectivelydZ) if D(x{,x3) > O (respectively= 0) where:

(34) D(x,y) = X°y> — Wy? — 27xy* + 81xy — 27x — 27.

Lemma 7.3 Supposdai,ar) € R. Then(ay, ap) € LU P, that is the commutator
[A, B] is loxodromic or parabolic (see Secti@¥). Moreover, (a1, az) € P if and
only if (a1, az) = (O, :I:oz'z'm).

Proof We first claim that the functiog/(x, y) has no critical points in (o) x (0, c0).
Indeed, the first partial derivatives 6{x,y) are

Gu(xy) = 27 (xy — 4xy+9),  Gy(xy) = 4xy(xy* — 3xy+9).

These are not simultaneously zero for any positive valugsofly. As a consequence,
the minimum ofG on [3,4] x [3/2,4] is attained on the boundary of this rectangle.
We then have:

Gx.3/2) = 2L (4~ %) (5x— 4), G(x, 4) = 93 — 3),
GEY =901 (-3 +3y+3), G@y) = @y+ D@ —3F

It is a simple exercise to check that under the assumpti@tly) € [3,4] x[3/2,4],
all four of these terms are positive, except for wheny) = (4,3/2) in which case
G(4,3/2) = 0. Then &4, x3) = (4,3/2) if and only if (a1, a2) = (0, £ai™); compare
to Figure4. O

Lemma 7.4 The regionZ is an open topological disc iR symmetric about the
axes and intersecting them in the intervdls, = 0, —7/6 < a1 < w/6} and

{ag = 0, —al™ < ap < oM} Moreover, the only points 0dZ that lie in the

boundary ofR are(au, az) = (0, £ai™) and(au, az) = (+7/6,0).
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Figure 11: The null locus oD(x, y) in the rectangle [34] x [3/2,4].

Proof First we examine the values @¥(x, y) on the boundary of [3] x [3/2,4]:

D (x,3/2) = Z(x—4) (2 —2x+2), D(x,4)=(x—3)3+8%2,

3% pay) = 276 - a)y - 12 D(d,y) = (16y - 15)(2 - 32,

We claim that, for anyyy € [3/2, 4] the polynomialD(x, yo) has exactly one root in
[3,4]. Indeed, we havéD(3,yp) < 0 < D(4,yp) and thusD(x, yo) has at least one
such root. Thex-derivative ofD is

KD(X,y) = 3(x — B)y*(xy + 3y — 6) + 27(y — 1)°,

which is positive wherx € [3,4] andy € [3/2,4]. ThusD(x,Yp) is increasing, and
the root is unique.

Similarly, we claim that, for anyg € [3, 4], the polynomialD(xg, y) has a unique root
in [3/2,4]. Itis clear from B85) whenxy = 4 (there the rootig = 3/2). Now suppose
3 < Xp < 4. Arguing as before, we havB(xg, 3/2) < 0 < D(xo,4). However, it is
not true thatD(Xg, y) is a monotone function of. The partial derivative ofD(x,y)
with respect toy is

yD(xX,y) = 3X(x?y* — 6xy — 18y + 27).

Therefore, for a fixedg € [3,4) we havedyD(Xo, 3/2) = 27x(2)(x0 —4)/4 < 0. Since
D(Xp,Y) is a cubic with leading coeﬁiciemg > 0, such that bothD(xp, 3/2) and
dyD(xg, 3/2) are negative we see thB{(x, y) has exactly one zero in (3, c0). Since
D(xo,4) > 0 this zero must lies in (2, 4] as claimed.

Thus the zero-locus dP(x,y) in [3, 4] x [3/2,4] is the graph of a continuous bijection
connecting the two points (8) and (43/2). The polynomialD(x, y) is positive in the
part of [3 4] x [3/2, 4] above the zero-locus, that is containing the paiy)X = (4, 4)
(see Figurell). Likewise, it is negative in the part below the zero locusttis
containing the pointX y) = (3,3/2). Changing coordinates ta{, a»), we see that
the zero locus ofD (4 cog(az), 4 cof(ay)) in the rectangle [Or/6] x [0, aiM] is
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the graph of a continuous bijection connecting the poiatg ¢,) = (7/6,0) and

(o, agm). Moreover, D is positive on the part below this curve, in particular on the
interval vy = 0 and 0< ap < agm and the intervah, = 0 and 0< o3 < 7/6. The
region Z is the union of the four copies of this region by the symmetabout the
horizontal and vertical coordinate axes. It is clearly a&diad contains the relevant
parts of the axes. This completes the proof. O

Combining Lemmag.3and7.4 proves Propositiod.4.

7.3 Condition for no triple intersections: Proof of Propostion 4.3.

In this section we find a condition om{, a») that characterises the s&t where the
triple intersection of isometric spher§§* NZy NIZ; isempty.

Lemma7.5 Thetriple intersecz‘ioﬁar NZy NZ_, isemptyifandonly if,, ,(c) >0
forall a € [—7/2,7/2] where

(36) foy () = 4cod(a/2 — a1/2) + 2cosfx — o) + 8 COSfy) cos(r1)
—16+/cos() cosr1) cosr/2 — a/2)|sin(a)|.

Proof By Corollary7.2, it is enough to show thal” ,  + fL-1 > 0. This sum is
made explicit in 82). In view of the second part of Propositiod.p), we can restrict
our attention to showing that the triple intersectiffnZ, NZ_; contains no points of
OHZ. Thatis, we may assumve = +/2cos). Using the first part of Propositich5
we restrict our attention to pointa in the meridianm where = (r—a1)/2. Thetriple
intersection is empty if and only if the sufff! , (q) +fL_] (q) is positive for any value
of o, whereq = g(a, (1 — a1/2), £1/2 c0s)) . Whenwsin(ay) is negative all terms
in (32) are positive. Therefore we may suppagsin(a,) = /2 cosfy)|sin(az)| > 0.
Substituting these values in the expressionff@r,.(q) + i, (q) given in @2) gives

the functionf,, ,(c) in (36). O

We want to convert3b) into a polynomial expression in a function@f The numerical
condition given in the statement of Propositi3 will follow from the next lemma.

Lemma 7.6 If a € [-7/2,7/2] is a zero off,, o, thenT, = tan(/2) € [-1,1] is
a root of the quartic polynomial,,, .,(T), where
Lapar(T) = T4 (238 — x4 +x§ + 10¢ + 1) — 8T3sin(aq) (x4 — x2 — 1)
—2T2 (243 + 3x¢ — 9) + 8T sina) (X8 — X + 1)
(37) + (28X + 4G + x§ — 10¢ + 1)
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Proof Squaring the two lines of3¢) and using,/2 cosf)|sin(az)| > 0, we see that
the conditionf,,, »,(a)) = O is equivalent to

<1+2 cosfx— a1)+4 cosf) cos@l))2 = 64 cosfr) cos(r1) co§<a _2a1> sirt(aw).

After rearranging and expanding, we obtain the followindypomial equation in
cosg) and sing).

0 = 4(8cos(ay)cos(az) + 2cos(as) — 1) cos(a)
+8 cosfu) sina) (4 co(az) — 1) cosgy) sin(w)
+4 cosfu) (8 cod(az) — 5) cosg) + 4 sinf) sin(e) — 4 co(az) + 5.

Substituting tang/2) = T, 2cosfu) = X2 and 2cosf,) = X3 into this equation
givesLy, q,(T). O

Before proving Propositiod.3, we analyse the situation on the axes = 0 and
ar = 0.
Lemma7.7 Letl,, (T) be given by(37).

(1) Whenap; =0 and—n/6 < a1 < m/6 thenL,, o(T) has two real double roots
T_ andT, whereT_ < —1 andTy > 1, and no other roots.

(2) Whena; =0 and0 < az < o™ or —ali™ < a, < 0 the polynomialLg,,,(T)
has no real roots.

Proof First, substitutingx, = 0 in (37) we find Ly, 0y = Ma, (T)?, where

Ma, (T) = T?(3%% — 1) — 4T sin(ay) — (3¢ + 1).
The condition oy guarantees thab@— 1> 0 and so ag tends totoo soM,,(T)
tends to+oco. On the other hand,

Mq,(—=1) =4sin(1) —2<0, Mg, (1) = —4sin) —2 < 0.
ThereforeM,, (T) has two real root3_ < —1 andT,. > 1 as claimed. Sinc#,,(T)
is quadratic, it cannot have any more roots. In particul@s negative fo—1 < T < 1.
Secondly, we substitute; = 0 in (37), giving:

84 + 3
Loon(T) = (572~ 2%

When a; € (—ai™ oliM) and a; # 0, we havexi = 4cof(az) € (3/2,4). In
particular, this means that X2 — 3)(4 — x3) > 0 and soLg.,(T) has no real roots,
proving the second part. O

7.
) + 54 -3,
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We note that whemv; = a2 = 0 thenLo(T) has double roots af = +,/7/5 and
whenay = 0 anda, = +a3™ thenlg , ,m(T) has double roots & = +/3/5.

Lemma7.8 If (a1, a2) € Z then the polynomial,, .,(T) has noroot3 in[—1,1].

Proof We analyse the number, type (real or non-real) and locatfaais of the
polynomiall, «,(T) when @, o) € R. AsL,,q,(T) has real coefficients, whenever
it has only simple roots, its root set is of one of the followiypes:

(a) two pairs of complex conjugate non real simple roots,
(b) a pair of non-real complex conjugate simple roots anddimple real roots,
(c) four simple real roots.

But the set of roots of a polynomial is a continuous map (inruead degree) for
the Hausdorff distance on compact subset€of In particular, the root set type of
Lay,a,(T) is @ continuous function ofi; and cz. This implies that it is not possible
to pass from one of the above types to another without pasisinggh a polynomial

having a double root.

We compute the discriminam\,, ., of Ln, «,(T) (@ computer may be useful to do
S0):

(38) Aayap = 2% (4 +1)%(28(2— )4~ x) + (3¢ — 1)%) (4 x4) - D (4, )

whereD(X,y) is as in Propositiod.3, andx; = /2 cosy). The polynomialL,, «,(T)
has a multiple root irC if and only if A, = 0. Let us examine the different factors.

e Thefirsttwo factors¢ and &+ 1)? are positive whendy, ap) € (—7/2,7/2)?.

 Note that (2- x2)(4 — x§) > 0 and (32 — 1)> > 0 when/3 < x¢ < 2 and
x‘z‘ < 4, and so the third factor is positive.

Thus, the only factors of\,,, ,, that can vanish oR are (4— x3)? = 16sirf o, and
D(x{,%3). In particularL,, »,(T) has a multiple root T if and only if one of these two
factors vanishes. We saw in Proposititd that the subset dR whereD(x{,x3) > 0

is a topological discZ, symmetric about ther; and «, axes and intersecting them
in the intervals{a, = 0, —7/6 < a1 < 7/6} and {ay = 0, —ai™ < ap < oM},
Therefore, the rectangl® contains two open discs on whidk,, ., > 0, namely

Zt ={(a,a2) € Z 1 ap >0}, Z7 ={(a1,02) € Z : ap < 0O}

These two sets each contain an open interval ofithaxis. We saw in the second part
of Lemma7.7 that on both these intervals,, .,(T) has no real roots, that is its roots
are of type (a). Therefore it has no real roots on alBof and Z—.
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Only those points ofZ in the interval{a, = 0, —7/6 < a1 < 7/6} still need to be
considered. We saw in the first part of Lemina that for such pointd,, »,(T) has
no roots with—1 < T < 1. This completes the proof of Propositidr8. ]

7.4 Pairwise intersection: Proof of Propositior4.6.
Proposition4.6 will follow from the next lemma.

Lemma 7.9 If 0 < x < 4 andD(x,y) > 0 thenxy > 6 with equality if and only if
x.y) = (4,3/2).

Proof Substitutingy = 6/x in (34) and simplifying, we obtain
D(x,6/x) = =27 — 4)(x — 9)/x.

When 0< x < 4 we see immediately that this is non-positive and equals #er
and only if x = 4. This means thaty — 6 has a constant sign on the region where
D(x,y) > 0. Checking atX,y) = (4,4) we see that it is positive. ]

Proof of Proposition 4.6 To prove the disjointness of the given isometric spheres we
calculate the Cygan distance between their centres. Sihteeasometric spheres
have radius 1, if we can show their centres are a Cygan destairleast 2 apart, then
the spheres are disjoint. (Note that the Cygan distancetia path metric, so it may

be the distance is less than 2 but the spheres are stillmlisjbiis will not be the case

in our examples.)

The centre ofl," is A¥(ps) = [kxx3/v/2, kéx3 sin(az)]; see Propositiodt.1 We
will show that deyg(AX(ps), ps)* > 16 whenk? > 4 and @, a2) € R, that is
(X1,%) € [3,4] x [3/2,4]:

Ko + kx4 — X8)
4

deyg(AX(pB), DB)4 =
274
> .
- 16
This number is greater than 16 whkn> 2 or k < —2 as claimed. Using Proposition
4.1 again, the centre of is A(pag) = [(kxXd + x1€92)/v/2, —sinas)]. We
suppose that the paik{, x3) € [3,4] x [3/2, 4] satisfiesx{x3 > 6, which is valid for
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(a1, ap) € Z by Lemmar.9.
(k(k+ 194 +38) + 4 — X
4
14 k2(k + 1)2XH38 + 2k(k + 1)x3x3
4

3k(k + 1) 2
(T +1) |

This number is at least 16 whén> 1 or k < —2 as claimed. Moreover, we have
equality exactly wherk = 1 or k = —2 and whenx}x3 = 6 andxj = 3/2; that is
when §f,53) = (4,3/2). 0

deyg(AX(Pas), Ps) i

7.5 0D is acylinder: Proof of Proposition 6.8

To prove Propositior®.8, we adopt the following strategy.

e Step 1. First, we intersecD with a fundamental domai®a for the action of
A on the Heisenberg group. The dom&@p is bounded by two parallel vertical
planesF_; and Fq that are boundaries d@nsin the sense of][7]. These two
fans are such thaf\(F_1) = Fg (see Figure7 for a view of the situation in
vertical projection). We analyse the intersectiong~gfand F_; with D, and
show that they are topological circles, denotecthy andcy with A(c_1) = ¢o.

e Step 2. Secondly, we consider the subset of the complemer afhich is
contained inDa, and prove that it is a 3-dimensional ball that intersécts and
Fo along topological discs (bounded loy; andcp). This proves thaD N Da
is the complement a solid tube D, which is unknotted using Lemn&7.
Finally, we prove that, gluing together copies by powergAadf D N Da, we
indeed obtain the complement of a solid cylinder.

We construct a fundamental domdp, for the cyclic group of Heisenberg translations
(A). The domainDa will be bounded by two fans, chosen to intersect as few losgct
as possible. The falRp will pass througlpst-: and will be tangent to botﬂfr andZ”,;
compare Figurg. Similarly, F_; = A~1(Fo) will pass throughA=Y(ps-1) = prst
and be tangent to bothF andZ”,. We first giveFo andF_; in terms of horospherical
coordinates and then we give them in terms of their own ggbggal coordinates (see
[17]). In horospherical coordinates they are:

(39) Fo — {[x+iy,t] : 3x\/§—y\/§:\/§/2},
(40) Fa = {[x+iy,t] : SX\/§—y\/§:—4\/§}.
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This leads to the definition d)a:

(41) Da = {[x+ iy, 1] —4v2 < 3x/3-yWE< \/é/z}.

We choose geographical coordinatésn) on Fo: the lines wheref is constant

(respectivelyn is constant) are boundaries of complex lines (respectivalyrangian

planes). These coordinates correspond to the doubleidwliaf fans by real planes
and complex lines, which is described in Section 5.21G1.[ The particular choice is
made so that the origin is the midpoint of the centreipfandlo‘. Doing so gives

the fanF as the set of points(¢, n):

f(m):{ VB¢ + V34 3V3 +iV5
42
The standard lift off (¢, n) is given by
—£2 - \15¢/4 - 1/4 +in — /4
f(&,n) = {\@g/u \/§/4+3i\/§5/4+i\/5/4] :

777—5/4] : &nGR}-

1

Using the convexity of Cygan spheres, we see that theirdetdion withFq (or F_1)
is one of: empty, a point or a topological circle. For the jgatar fans and isometric
spheres of interest to us, the possible intersections anensuised in the following
result:

Proposition 7.10 The intersections of the fafs_1 andFq with the isometric spheres
Ilf are empty, except for those indicated in the following table

N| 75 |75 15 1t Iy ;| 77
Fo 0 0 | {pst-1} 0 acircle| acircle| 0 | {pst-1}
F_1|{prstt| O | acircle|acircle| 0 | {prst} | 0 0

Moreover, the poinps-11 belongs to the interior dDa. The parabolic fixed points
AX(pst-1) lie outsideDa for all k > 1 andk < —1; parabolic fixed point$\(ps-17)
lie outsideDn for all k £ 0.

A direct consequence of this proposition is that the onlynpai the closure of the
quadrilateralQ—; and the bigon3~, that lie onFq is their vertexprsr.

Proof The part about intersections of fans and isometric spherpeived easily by
projecting vertically ontoC, as in the proof of PropositioA.6 (see Figure/). Note
that as isometric spheres are strictly convex, their ietgigns with a plane is either
empty or a point or a topological circle. The part about theapalic fixed points is a
direct verification using39) as well as 26). O
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We need to be slightly more precise about the intersectidr,afith Igr andZ; .

Proposition 7.11 The intersection ofq with IJ UZ, (and thus withoD) is a
topological circlecy, which is the union of two topological segments andc; ,
where the segmertk is the part ofFoNZ5 that is outsideZy . The two segmentsy
andc, have the same endpoints: one of thempds-1, and we will denote the other
by qo. Moreover, the pointy lies on the segmenpsts ps-17] of Iar NZ, .

The pointqp appears in Figure$2, 13and14.

Proof The pointf (¢, n) of the fanFq lies of Z whenever 1= |(f(¢, 1), pg)| and on
7, whenever 1= [(f(¢,n), pag)|. We first find all points orFg N Z§ NZ, . These
correspond to simultaneous solutions to:

(42) 1= [(f(&,m), ps)| = [(F(&, ), Pas)]

Computing these products and rearranging, we obtain
(€. Pe)® = (€2 +1/4R + &+ + & (VIBE2 + V/15/4— ) /2,
(€ pas) = (6 +1/4F + €%+ % — ¢ (VIR + VIB/4— 7)) /2
Subtracting, we see that solutions4@(must either havé = 0 orn = \/15¢%4-1/4).

Substituting these solutions into=2 |(f(&, n), pB>|2, we see first that = 0 implies
1 =1n?+ 1/16; and secondly thaj = v/15(? + 1/4) implies

1= (624 1/4F + € +15(* + 1/4F = (4 + 1 + €2
Clearly the only solution to this equation§s= 0. So both cases lead to the solutions
(¢,m) = (0,£v15/4). Thus the only points satisfyingt®), that is the points in
FonZg NI, ,are
V3+ivb V15 V3+ivb —V15
4\/§ ) 4 4\/2 ) 4 .

Note that the first of these pointspgr-1. We call the other poing.

f(0,v/15/4) =

] andf(0, —v/15/4) =

These two points divid&oNZ; andFoNZ, intotwoarcs. Itremains to decide which of
these arcs is outside the other isometric sphere. CIg&t; n), ps)| > [(f(£, 1), Pas)|
if and only if £ (v/15¢2+1/15/4—7) > 0. Close ton = —/15/4 we see this quantity
changes sign only wheg does. This means that f{¢,n) € Z; with £ > 0 then
f(¢,n) isin the exterior ofZ; . Similarly, if f(¢,7) € ZJ with £ < 0 thenf (£, n) isin
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5T

Figure 12: The intersection &%, with Z;” drawn onZ; , in geographical coordinates.

the exterior ofZ; . In other wordscg is the segment oFo N Z;” where¢ < 0 and
Cy is the segment offg N Z, where§ > 0.

Finally, consider the involutiof, = Sl in PU(2 1) from the proof of PropositioB.6.
(Note that sincen; = 0, this involution conjugate$'™ to itself.) The involutionl,
preserved-g, acting on it by sendind (¢, n) to f(—¢&,n), and hence interchanging the
components of its complement. In Heisenberg coordingtés given by

(43) 12: [x+iy, t] e [-x— iy + \/3/B+1V/5/B, t - v/B2x+ /312y,

As |, is elliptic and fixes the poindl, it is a Cygan isometry (see Sectigml). Since
it interchangegg and pag, it also interchange:’zC(;F andZ; . Hence their intersection
is preserved setwise. The involutids also interchangeps-11 andpsrscontained in
Iar NZ, (butnotonFg). Therefore, these two points lie in different componerithe
complement ofFg. Hence there must be a point B on the segmentpg-11, pstd.-
This point cannot bggt-1, and so must begp (see Figurel2). O

Let D¢ denote closure of the complement®fin OHZ — {d.. }.

Proposition 7.12 The closure ofthe intersectidbfNDy is a solid tube homeomorphic
to a 3-ball.

Proof We describe the combinatorial cell structured$fn Da; see Figurel4. Using
Proposition7.11, it is clear D® intersectsFq in a topological disc whose boundary
circle is made up of two edgesq,jE and two verticepst-1 and go. Combinatorially,
this is a bigon. ApplyingA—! we seeD® intersectsF_; in a bigon with boundary
made up of edges®; and two verticeprst andq_.
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IJ n ]:U ‘PST’1 prsr PsT-1
'+
o B () i
T4
ps—r
q-1 q0
T
Iy Ny ’ B
o cy o5 ¢y
Prst psr-
Figure 13: The intersection df, with Figure 14: A combinatorial picture of the
1§ NIy . The discDy is the interior of intersection ofoD with D . The top and
co = ¢ Ncy . The two segments; and bottom lines are identified. The cun®
c; are the thicker parts oFp N Zy and corresponds to the right hand side of the
FonZy . figure.

Moreover, Propositiorr.11immediately implies thaty cuts Qﬁf into a quadrilateral
and a triangle, which we denote byét and 75i. SinceDp containsps-11 andprsr,
we see thaDa containsQ’¢ and7, . These have vertex sefpst-1, PrsT, Ps-11, Go}
and {ps-17, Pst-1, 0o} respectively. ApplyingA—! we see that_; cuts Qfl into a
guadrilateral, denote@’fl, and a triangle, denote@'_il. Of these the quadrilateral
Q'”; and the triangle7 7, lie in Da. Finally, the bigons3§ and B, also lie inDa.

In summary, the boundary dd° N Da has a combinatorial cell structure with five
vertices{pst-1, Ps-11, PrsT, do, d—1} and eight faces.
{Q0, Q71 Tg, T4, By, BZ;, Fon DS, F_1N D}

These are respectively two quadrilaterals, two trianghesfaur bigons. Therefore, in
total the cell structure has 24+ 2 x 3+ 4 x 2)/2 = 11 edges. Therefore the Euler
characteristic oD(D® N Dp) is

x(0(D°NDp)) =5-11+8=2

Henced(D® N D) is indeed a sphere. This mead8N Dy is a ball as claimed. O

Remark 2 The combinatorial structure described on Figides quite simple. How-
ever, the geometric realisation of this structure is muchenmtricate. As an example,
there are fan§ parallel toFy and F_; whose intersection witlD® is disconnected.
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This means that the foliation described right after Prajmsi6.8 that is used in the
proof of Theoren6.4is actually quite “distorted”.

We are now ready to prove Propositiérs.

Proposition 7.13 There is a homeomorphisfap : R? x [0,1] — Da that satisfies
Wa(X,y,1) = AUa(X,Y,0) and so thatl s restricts to a homeomorphism from the
exterior ofSt x [0, 1], thatis{(x,y,2) : X¥* +y*>1,0<z<1},toDNDa.

Proof We have shown Proposition12that D¢ N D, is a solid tube homeomorphic
to a 3-ball and (using Propositiah11) that D¢ intersectsdDa in two discs, one irfFg
bounded bycy and the other irfF_; bounded byc_;. This means we can construct a
homeomorphismb§ from the solid cylinder{(x,y,2) : x> +y>* <1, 0<z< 1} to
DC N D4 so that the restriction ob§ to St x [0, 1] is a homeomorphism toD M Da,
with U§ : St x {0} — c_; and ¥§ : S x {1} — co. Adjusting ¥§ if necessary,
we can assume thatz(x,y, 1) = AUZ(x, Y, 0).

Furthermore, in Lemm&.7, we showed thaD°® contains the invariant line\, of
¢. This means that the cylinddd® N Da is a thickening of A, N Da and so, in
particular, it cannot be knotted. Hende; can be extended to a homeomorphism
Ua: R? x [0,1] — Da satisfyingWa(x,y, 1) = AUa(x,y, 0). In particular, maps
{(x,y,2 : ¥ +y>>1,0< z< 1} homeomorphically td N Da as claimed. D

Finally, we prove Propositiod.8 by extendingl’ » : R2x[0, 1] — Da equivariantly to
ahomeomorphisn¥ : R3 — 9HZ —{q..}. Thatis, if &, y, z+K) € R* wherek € Z
andz € [0, 1], we define¥(x,y,z+ k) = AX(x,y,2). SinceT(x,y,1) = AT(x,y,0)
there is no ambiguity at the boundary.
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