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1. Polygonal billiards, rational billiards 

1.1. Polygonal billiards 

Informally speaking, the theory of mathematical billiards can be partitioned into three 

areas: convex billiards with smooth boundaries, billiards in polygons (and polyhedra) and 

dispersing and semi-dispersing billiards (similarly to differential geometry in which the 

cases of positive, zero and negative curvature are significantly different). 

These areas differ by the types of results and the methods of study: in the former a 

prominent role is played by the KAM theory and the theory of area preserving twist 

maps; the latter concerns hyperbolic dynamics and has much in common with the study 

of the geodesic flow on negatively curved manifolds. The recent progress in the study of 

polygonal billiards is mostly due to applications of the theory of flat structures on surfaces 

(a.k.a. quadratic differentials) and the study of the action of the Lie group SL(2, R) on the 

space of quadratic differentials which is the main topic of this chapter. We refer to [40,1] 

and [65] for a general survey of mathematical billiards. 

We will be considering a plane polygonal billiard Q, that is, a compact polygon (in 

general, not necessarily convex or simply connected). To fix ideas, the billiard flow is a 

flow in the unit tangent bundle to Q with discontinuities corresponding t~ reflections in the 

boundary 3 Q. These reflections are descri~ed by the familiar law of ~ :ometrical optics: 

the angle of incidence equals the angle ~?fr~'Clection. The billiard map T is a section of the 

billiard flow; it acts on unit tangent vectors (x, v) E T Q whose foot point x is an interior 

point of a side of Q and the vector v has the inward direction. The map T has an invariant 

measure ~. Let t be the length parameter along the perimeter of Q and let 0 be the angle 

made by v with the respective side. Then the invariant measure is given by the next formula: 

= sin 0 dO dt. 

Fig. I. Parallel beam of 3-periodic trajectories in an acute triangle. 
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One often needs to consider parallel beams of billiard trajectories in polygons. For 

example, every even-periodic trajectory belongs to a l-parameter family of parallel 

periodic trajectories of the same period and length, and these trajectories make a strip. 

An odd-periodic trajectory also includes into a strip, this time consisting of trajectories 

whose period and length is twice as great. Note that the billiard reflection in a side of Q 

transforms a parallel beam to another family of parallel trajectories, and that the width of 

the beam remains the same. 

Part of the interest in polygonal billiards comes from the fact that they are closely related 

to problems of mechanics. We discuss one such simple example below. 

1.2. Examples: a pair  o f  elastic point-masses on a segment and a triple o f  point-masses  

on a circle 

Consider two points with masses m l and m2 on the unit segment [0, l]. The points 

may elastically collide and reflect from the end points of the segment ("walls"). The 

configuration space of the system is given by the inequalities 0 ~< x i ~< x2 ~< 1 where x l 

and x2 are the coordinates of the points. Rescale the variables" s -- ~m-[xi, i -- 1,2. 

The configuration space is now a right triangle in the (s163 with the acute angle 

tan-I ( ~/m l /m2) .  

Consider a collision of the points. Let vl, v2 be the velocities before, and u i, u2 - after 

the collision. The conservation of momentum and energy laws read: 

mlUl  + m 2 u 2 - - - m l v l  + m 2 v 2 ,  

m l u f / 2  + m2uq/2  -- m l v ' ( / 2  + m2vS/2 .  

In the rescaled coordinates the velocities are rescaled by the same factors, therefore 

~//-ml t~ i-+- ~/--m2~2- W/~l ~1 ~- w/-m2v2, 
") ~ _ '~  " )  

~i + f i 2 -  v~ + v 2. 

The latter equation says that the magnitude of the vector (t/i, t/z) does not change after 

the collision; the former one says that the scalar product of this vector with the vector 

(x/-m-7, v/-m2~) is preserved as well. The vector (~/--m--[, ,s is tangent to the side of the 

configuration triangle given by the equation s  - = s 

Thus the configuration trajectory reflects in this side according to the billiard reflection 

law. Likewise one considers collisions with the walls x = 0 and x = 1: they correspond to 

the billiard reflections in the other two sides of the configuration triangle. One concludes 

that the dynamical system of two elastic particles on a segment is isomorphic to the billiard 

in a right triangle whose shape depends on the ratio of the masses of the particles. 

Similar arguments show that the system of three elastic point-masses on the circle with 

a fixed center of mass is isomorphic to the billiard in an acute triangle (see [25]). Let the 
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masses be ml,  m2, m3; then the angles c~i of the triangle are given by 

_ m i / m l  -Jr- m2 + m3 
tan c~; 

V mlm2m3 
i =  1,2,3.  

In the limit m3 ~ ~ one obtains the previous example of two point-masses on a segment. 

Many other mechanical models reduce to billiards, in particular, the model of gas in a 

closed vessel as a collection of elastic balls in a compact domain. Such models are of great 

importance in statistical physics. 

1.3. Unfolding billiard trajectories, rational polygons 

Instead of refecting a billiard trajectory in a side of the billiard polygon Q one may reflect 

Q in this side and unfold the trajectory to a straight line. This process is iterated at each 

reflection: each successive copy of the billiard polygon is obtained from the previous one 

by the reflection in the side, met by the straightened trajectory. This unfolding method has 

many applications in the study of polygonal billiards. 

Let A (Q) be the group of motions of the plane generated by the reflections in the sides 

of Q. Denote the reflection in the side s by or,. Notice that for every two sides s and t of Q 

one has: 

O'c~  ( t ) ~ O ' s  ('7"I O's  9 

It follows that every copy of Q involved in the unfolding is the image of Q under an 

element of the group A(Q). The product of an even number of elements of this group 

preserves orientation while an odd number reverses it. 

To keep track of the directions of billiard trajectories in Q consider the group G(Q)  that 

consists of the linear parts of the motions from A(Q). This subgroup of the orthogonal 

group is generated by the reflections in the lines through the origin which are parallel to 

the sides of the polygon Q. 

The group G(Q) acts on the unit circle. When a billiard trajectory in Q reflects in a side 

s its direction is changed by the action of the element of G(Q)  which is the projection of 

or, to G(Q).  

Fig. 2. Unfolding a billiard trajectory. 
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DEFINITION 1.1. A billiard polygon Q is called rational if the group G ( Q )  is finite and 

irrational otherwise. 

If Q is a rational polygon then the group C ( Q )  is the dihedral group of symmetries 

of a regular polygon. A necessary condition fc, z Q to be rational is that all its angles are 

rational multiples of 7r. It is also sufficient if the ooundary is connected; that is, the polygon 

is simply connected. The set of plane n-gons can be considered as a subset in R 2'' (each 

vertex has two degrees of freedom). We give the space of n-gons the subspace topology. 

Rational polygons are dense in the space of polygons. 

A given billiard trajectory in a rational billiard table will have only finitely many 

different directions; this finite collection of directions plays the role of an integral of 

motion. More precisely, let p be the composi'~ion of the projection of the unit tangent 

bundle Q • S ! on S I and the projection of S' t,: i,e quotient space S I / G ( Q )  (which is 

an interval). Then the function p is constant along every billiard trajectory in a rational 

polygon. 

We illustrate the unfolding procedure in the simplest example of a rational polygon, the 

square. 

1.4. Example" billiard in the unit square 

Unfolding a trajectory one obtains a line in the plane which is tiled by the unit squares, 

the images of the original square Q under the action of the group A (Q). Two lines in the 

plane correspond to the same billiard trajectory in Q if they differ by a translation through 

a vector from the lattice 2Z + 2Z. 

Consider the fundamental domain of the group 2Z + 2Z which is the square made of 

four copies of Q. Identify the opposite sides to obtain a flat torus. A billiard trajectory 

becomes a geodesic line on this torus; every geodesic line has a constant slope k. The unit 

tangent bundle of the torus is represented as the union of the tori, parameterized by the 

slopes ~,; the geodesic flow on each torus is a constant flow. 

The dynamics on an individual invariant torus depends on whether k is rational or 

irrational: in the former case the geodesic flow is periodic, and in the latter it is ergodic, and 

in fact, uniquely ergodic. In particular, a billiard trajectory with a rational slope is periodic, 

while the one with an irrational slope is dense in the square. 

One can also analyze periodic trajectories. The unfolding of such a trajectory is a 

segment in the plane whose end-points differ by a vector from 2Z + 2Z. Every parallel 

trajectory is also periodic with the same period and length. 

Assume that an unfolded periodic trajectory goes from the origin to the lattice point 

(2p, 2q). If p and q are coprime this is a prime periodic trajectory, and if p and q have a 

common multiplier then the periodic trajectory is multiple. The length of the trajectory is 

2 v/p 2 + q2, and to a choice of p and q there correspond two orientations of the trajectory. 

Thus the number of (strips of) parallel trajectories of length less than L equals the number 
2 L 2 of pairs of integers, satisfying the inequality p2 + q < /4. 

This is the number of lattice points inside the circle of radius L/2, centered at the origin. 

In the first approximation, this number equals the area rr L2/4. We only take half of these 
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since the trajectory for ( - p ,  q) unfolds to the same trajectory on (p, q) and the trajectory 

for ( p , - q )  unfolds to the same trajectory as ( - p ,  q). Thus the number is 7rL2/8. To 

take only prime periodic trajectories into account (that is, only coprime (p, q)) one divides 

this by Jr 2/6. Thus one obtains a quadratic asymptotic estimate on the number of periodic 

trajectories of the length not exceeding a fixed number. We will see in a later section that 

this result holds for general rational polygons. 

Integrable billiards. What works so well in the above example is the fact that the images 

of Q under the group A(Q)  tile the plane. A similar consideration applies to rectangles, 

equilateral triangles and right triangles with an acute angle n'/4 or 7r/6. These polygons 

are called integrable, and the billiard flow reduces to a constant flow on a torus. Note that 

in all these cases one may define the extension of a billiard trajectory through a vertex of 

the billiard polygon. 

Although integrable polygons are exceptional, some of the features of the billiard 

dynamics in the integrable case extend to general rational polygons. These results will 

be discussed in succeeding sections. 

Almost integrable billiards. One class of rational billiards for which one can make 

such precise statements is the class of almost integrable billiards, intermediate between 

integrable and general rational polygons, studied by Gutkin [28]. A polygon Q is called 

almost integrable if the group A(Q) is a discrete subgroup of the group of motions of the 

plane. There are exactly four such groups generated by the reflections in the sides of the 

four integrable polygons. An almost integrable polygon can be drawn on the corresponding 

lattice. 

Given an almost integrable polygon, the billiard flow decomposes into directional flows 

F~ (just as in the case of a squa re -  see next section for a detailed discussion). Choose a 

basis el, e2 of the respective lattice. A direction is called rational if it is given by a vector 

Fig. 3. An almost integrable polygon. 
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alel + a2e2 with al/a2 6 Q. Gutkin proved (see also [10]) that, similarly to the square 

case, the following conditions are equivalent: 

(i) 0 is an irrational direction; 

(ii) Fo is minimal; 

(iii) Fo is ergodic; 

(iv) Fo is aperiodic, that is, F~ :fi id for all t :~ 0. 

1.5. Rational billiard determines a flat surface 

The following construction of a flat surface from a rational billiard table plays a central 

role in the present study (see [20,41,42,61] and [47]; the latter paper was the first to relate 

billiards in polygons and quadratic differentials). 

Let Q be a rational polygon. The group G(Q) is the dihedral group DN generated by 

the reflections in the lines through the origin that meet at angles rc/N where N is a positive 

integer. This group has 2N elements, and the orbit of a generic point 0 -r krr/N on the unit 

circle consists of 2N points. Let the angles of Q be n 'mi /n i  where m i and n i are coprime 

integers. If Q is simply connected (the assumption we make throughout this section) then 

N is the least common multiple of  the denominators n i. 

Consider the unit tangent bundle Q x S I , the phase space of the billiard flow, and let M0 

be the subset of points whose projection to S I belongs to the orbit of 0 under DN. Then, 

M0 is an invariant surface of the billiard flow in Q. This invariant surface is a level surface 

of the above mentioned function p, "the integral of motion". 

Assume that 0 :/: krr/N and enumerate the angles in the DN-orbit of 0 on the unit circle 

counterclockwise: 0 = 01,02 . . . . .  0 2 N .  The surface M0 is obtained from 2N copies of Q, 

namely, Q • Oi c Q • S I, i = 1 . . . . .  2N, by gluing their sides according to the action 

o f  D N .  

Consider 2N disjoint and parallel copies of Q in the plane. Call them Q I . . . . .  Q2N 

and orient the even ones clockwise and the odd ones counterclockwise. Choose an index 

i = I . . . . .  2N and a side s of Qi;  reflect the direction Oi in this side. The resulting direction 

is O i for some j = 1 . . . . .  2N. Glue the side s of Qi to the identical side of Q.J. After these 

gluings are made for all values of i and all choices of the side s of Q i ,  the sides of all the 

polygons Qi are pasted pairwise, and the gluings agrees with the orientation. The result 

is an oriented compact surface that depends only on the polygon Q, but not on the choice 

of 0, and we denote it by M. The directional billiard flows F~ on M in directions 0 are 

obtained one from another by rotations. 

For example, if Q is a square then N = 2 and the result is a torus made of four identical 

squares. If Q is a right triangle with an acute angle equal to zr/8 then the surface M is 

obtained from a regular octagon, the result of gluing 16 copies of the triangle, by pairwise 

gluing its opposite sides; this surface has genus 2. 

The genus of M is given in the next lemma. 

LEMMA 1.2. Let the angles of a billiard k-gon be 7rmi / n i ,  i = 1 . . . . .  k, where mi  and ni 

are coprime, and N be the least common multiple of  ni 's. Then 

N t ,) g e n u s M - - l + ~  k - 2 - Z ~ -  / . 
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Fig. 4. Constructing a flat surface from a right triangle. 

PROOF. We need to analyze how the pastings are made around a vertex of Q. Consider 

the ith vertex V with the angle Jrmi ~hi.  Let G i be the group of linear transformations of 

the plane generated by the reflections in the sides of Q, adjacent to V. Then G i consists of 

2hi elements. 

According to the construction of M the number of copies of the polygons Q i that are 

glued together at V equals the cardinality of the orbit of the test angle 0 under the group 

Gi,  that is, equals 2hi. Originally we had 2N copies of of the polygon Q, and therefore, 

2N copies of the vertex V; after the gluings we have N / t l i  copies of this vertex on the 

surface M. 

It follows that the total number of vertices in M is N(~-~ l / t l i ) .  The total number of 

edges is N k ,  and the number of laces is 2N. Therefore the Euler characteristic of M equals 

1 _ N k + 2 N - - 2 _ 2 g  
N ~ ,,--7 

where g is the genus, and the result follows. IS] 

The billiard flow on M is obtained from the constant flows in the directions Oi in the 

polygons Qi. The result is a (unit) vector field on M with singularities at the vertices. 

The above proof shows that the ith vertex of M is the result of gluing 2ni copies of the 

angle z r m i / n i  which sums up to an angle of 2zrmi.  One may realize such a singularity 

geometrically as follows. Take m i copies of a Euclidean upper half plane H i and m i 

copies of a lower half plane L i; j = 1 . . . . .  m i. Then glue the positive real axis of H i 

to the positive real axis of L i and glue the negative real axis of L I to the negative real axis 

of H i+l (mi + 1 -- 1). The result is a singularity with a total angle of 27r m i. We will call it 

a cone angle 2zr m i singularity. From this description one can also see that for any direction 
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0, there are 2mi separatrices (mi of them incoming and mi outgoing) emanating from the 

singularity in direction 0. 

It is easy to describe the set of polygons for which all the angles are 2n', that is, m i = 1; 

then the singularities of M are removable. The sum of interior angles of a k-gon is n" (k - 2). 

Thus if m i = 1 for all i then 

1 1 
+ . - . - t -  - -  = k - 2 .  

r/l r/k 

This equation has only four solutions with n i > / 2 ,  considered up to permutations: 

3 ' 3 ' 3  ' ' 4 ' 4  ' ' 3 ' 6  ' ' 2 ' 2 ' 2  

These solutions correspond to the already meJ~tioned integrable polygons, and in each case 

the invariant surface M is a torus with a constant flow. 

To summarize the construction, given a rational billiard polygon Q, one constructs a 

compact surface M whose genus is given by the above lemma. This surface inherits a flat 

metric from Q with a finite number of cone-type singularities, corresponding to the vertices 

of Q, with cone angles multiples of 27r. The directional billiard flow F0 on M is a constant 

flow in a fixed direction with singularities at the cone points. 

1.6. Minimalio' of the billiard flow in rational polygons 

The next result on the minimality of the billiard flow in a rational polygon is much easier 

than the stronger results on ergodicity described later in the chapter. We discuss it because 

it serves a model for these harder theorems. 

DEFINITION 1 .3 .  A flow is called minimal if each one of its orbits is dense in the phase 

space. 

DEFINITION 1.4. A directed saddle connection in direction 0 is an orbit o f  F0 that goes 

from a singularity to a singularity (possibly, the same one) and has no interior singularities. 

A saddle connection is also called a generalized diagonal since it corresponds to a 

billiard orbit in direction 0 that goes from a vertex to a vertex. 

Since the saddle connection is represented by a geodesic in the Euclidean structure it 

determines a vector in R 2. For a saddle connection/3 we will denote by h t~ and vt~ the 

horizontal and vertical components of this vector. 

DEFINITION 1.5. A metric cylinder in direction 0 is the isometric image of an open right 

angled flat Euclidean cylinder consisting of closed geodesics in direction 0. A metric 

cylinder is maximal if it cannot be enlarged. 
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We already noted that a periodic orbit in direction 0 for the billiard flow is included into 

a strip of parallel periodic orbits thus giving rise to a metric cylinder in direction 0. The 

following lemmas and theorem are standard (see [64]), and the proofs do not use the group 

structure coming from billiards. Thus they will hold verbatim for the general situation of  

flat structures (that will be formally defined shortly). 

LEMMA 1.6. I f  M has singularities, then the boundary of  a maximal metric cylinder 

consists of  a finite number of  saddle connections in direction O. 

PROOF. If a metric cylinder fills the surface, then M is the flat torus which has no 

singularities. Thus we can assume the maximal cylinder has a boundary. The obstruction 

to enlarging a maximal cylinder are saddle connections on the boundary. D 

LEMMA 1.7. Suppose ot + is a trajectory, infinite in the positive direction, and starting at 

point Po. Let t3 be an interval perpendicular to c~ + with Po as one of  its endpoints. Then 

Ot + r e t u r n s  to  f t .  

PROOF. Since there are a finite number of singularities, there are a finite number of 

trajectories starting at points of /3 that hit a singularity before crossing /4 again. By 

shortening/4 to a subinterval/4'  with one endpoint P0 and some other endpoint Q0, we 

can assume that no trajectory leaving/4' hits a singularity before returning to/-J. Now flow 

the interval/3'  in the positive direction. The interval sweeps out rectangles of increasing 

area. Since the area of the surface is finite, the interval/4'  must return and overlap/~. If 

c~ + itself does, we are done. Otherwise the trajectory leaving QI) returns to/4 '  and some 

trajectory leaving a point Q I 6 /4 '  returns to P~I. We now consider the interval /4" C /4 '  

with endpoints P0 and Q! and apply the previous analysis to it. Flowing in the forward 

direction it must return to/4 and now c~ + itself must return to/~. 1-] 

THEOREM 1.8. For all but countably many directions 0 the.flow F~ is minimal on the 

su~ace M. 

PROOF. Since there are only finitely many singularities and countably many homotopy 

classes of arcs with fixed endpoints joining the singularities, it is clear that there are only 

countably many saddle connections (the same statement follows from the fact that the 

group A(Q)  is countable.) We claim that the flow F~ is minimal if there is no saddle 

connection in direction 0. 

By Lemma 1.6 there cannot be a metric cylinder for then there would be a saddle 

connection. Suppose there was an infinite trajectory lo in direction 0 which is not dense. 

Let A -r M be the set of co limit points of lo. Then A is invariant under the flow F~. Since 

A :/: M one can choose a trajectory y on OA; let P0 be its initial point. We will show that 

y is a saddle connection. If not then y is infinite in at least one of the two directions. We 

show that there is an open neighborhood of P0 contained in A, a contradiction to P0 being 

a boundary point. 

Let/4 be a perpendicular arc with P0 an endpoint. It is enough to show that there exists a 

segment [P0, Q] c / 3  which is contained in A. For then doing this on both sides we would 
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have our open neighborhood. Now Lemma 1.7 implies that y hits/3 again at some PI. If 

the interval [P0, PI ] C A we are done. Suppose not. Then there exists Q I ~ [P0, PI] which 

is not in A. Since A is closed, there is a largest open subinterval Ii C [P0, PI ] containing 

Q I which is in the complement  of A. Let P• be the endpoint of ll closest to P0. Then 

P• 6 A and the trajectory through P• must be a saddle connection. For if it were infinite in 

either direction, it would intersect Ii. Since A is invariant under the flow, this contradicts 

that Ii misses A. D 

Returning back to the rational billiard polygon Q we see that for all but countably many 

directions every billiard trajectory is dense in Q. Approximating a general billiard by a 

rational one we obtain the next result on topological transitivity of polygonal billiards [41 ]. 

DEFINITION 1.9. A flow is called topologically transitive if it has a dense orbit. 

THEOREM 1.10. For every k ~ 3 there exists a dense G~ subset in the space o f  simply 

connected k-gons that consists of  polygons with topologically transitive billiard flows. 

PROOF. Identify the phase space of the billiard flow in each k-gon with ])2 • S I, and 

assume that this identification depends continuously on the polygon. Let Bi be a countable 

basis for the topology of D e x S I . Denote by X,, the set of k-gons Q such that for each 

open set U in the phase space, there exists a billiard trajectory starting in U that visits all 

the images of the sets Bi . . . . .  B,, in the phase space of the billiard flow in Q. Each set X,, 

is open and their intersection is a G~ set. 

Let us show that this intersection is dense. Let Ym be the set of rational k-gons with 

the angles J rmi /n i ,  m i and tti  coprime, such that the least common multiple of n i 's is at 

least m. For every polygon Q E Y,,, the invariant surface M~ is l /m-dense  in the phase 

space. Therefore for every n there exists m such that for every Q E Y,,, the surface M~ 

intersects all the images of the sets B I . . . . .  B,, in the phase space of the billiard flow in Q. 

Since M~) has a dense trajectory for all but countably many 0 the space Ym lies in X,,. 

Finally, Ym is dense in the space of k-gons for every m, and so X,, is dense for every n as 

well. It follows that ["] X,, is dense by Baire's theorem. 

Let Q be a billiard polygon in ["] X,,. We claim that there is a dense billiard trajectory 

in the phase space of Q. Let U be a compact domain in the phase space D e • S I . Suppose 

inductively we have chosen a compact neighborhood U,,_ I C U. Since Q 6 ['1X,,, one can 

find a billiard trajectory starting in U,,_ j in Q that visits B I . . . . .  B,,. By continuity there 

is a neighborhood U,, C U,,-i such that each trajectory in U,, visits B i . . . . .  B,, within 

time T,,. Choose a phase point v 6 ~ U,.  Then the trajectory of the vector v is dense in the 

phase space of Q. D 

1.7. Rational billiards and interval exchange maps 

The billiard flow on the invariant surface can be reduced to a one-dimensional transforma- 

tion; this reduction is a particular case of the reduction of the billiard flow to the billiard 

transformation. 
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DEFINITION 1.1 1. Let (ll . . . . .  /,,) be a partition of the interval [0, 1) into nonintersecting 

semiclosed intervals, enumerated from left to right, and let o- be a permutation of 

n elements. The respective interval exchange transformation T : [0 ,  1)--~ [0, 1) is a 

transformation whose restriction to every li is a parallel translation and such that the 

intervals T( l l )  . . . . .  T(I,,) follow from left to right in the order or(l) . . . . .  cr (n). 

Clearly, an interval exchange transformation preserves the Lebesgue measure on the unit 

interval. 

EXAMPLE. The exchange of two intervals [0, a) and [a, 1) is identified with the rotation 

of the circle R / Z  through 1 - a. 

REMARK. We will often need to consider an interval exchange transformation defined on 

an interval I,  different from [0, 1 ). In such a case it is understood that I is rescaled to [0, 1) 

by an affine transformation. 

The reduction of the billiard flow in a fixed direction 0 to an interval exchange goes as 

follows. Recall that the invariant surface M was constructed by pasting pairs of equal and 

parallel sides of 2N copies of the billiard polygon Q. Choose one side from each such 

pair and call these segments sl . . . . . .  s',,,. Arrange these segments along a line and let I be 

their union. Give each segment the measure determined by the orthogonal projection on 

the direction, perpendicular to 0. Since "the width of a beam" is an invariant transversal 

measure of a constant flow, the billiard transformation induces a piecewise isometry T of 

the segment I. If the segments are appropriately oriented then T is orientation preserving. 

It remains to rescale I to the unit interval and to define T at its points of discontinuity so 

that it is continuous on the left. The result is an interval exchange transformation. 

The reduction of the billiard flow in a fixed direction to an interval exchange trans- 

formation is by no means unique. For example, assume that the flow F0 is topologically 

transitive. Choose an interval I in M, transverse to the flow, and give it the measure de- 

termined by the orthogonal projection on the direction, perpendicular to 0. Then the first 

return map to I along the trajectories of F0 is orientation and measure preserving, that 

is, an interval exchange transformation. Note that since F0 is topologically transitive, the 

first return map is defined no matter how small I is. The points of discontinuity of the first 

return map correspond to the orbits of the flow through the singular points of the flow F0. 

1.8. Flat metrics and quadratic differentials 

As we have seen a rational billiard defines a closed surface formed by gluing Euclidean 

polygons isometrically along their edges. The vertices of the polygon correspond to points 

with cone angle singularities of the metric. In this section we generalize this notion to what 

we will call flat structures with parallel line fields, or just flat structures for short, so that the 

set of rational billiards of a given genus is a subset of the space of flat structures. The main 

reason for this generalization is that the group SL(2, R) acts on the space of flat structures 

while not preserving the space of rational billiards. The study of this action allows to make 
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conclusions about flat structures in general, which then yield results about rational billiards 

in particular. 

Let M be a compact C ~ surface and r a finite set of points in M. On M \ r we require 

coordinate charts v = (x, y) such that the transition functions on the overlaps are of the 

form 

v --+ v + c or v --+ - v  + c .  

That is, the transition functions are translations and reflections in the origin followed by 

translations. Since they preserve the Euclidean metric, this allows one to define a locally 

Euclidean metric on M. In addition, these transition functions preserve families of parallel 

lines in the plane so that for each direction 0, there is a well-defined foliation Fo of the 

surface consisting of lines in direction 0. 

Note that if the transition functions are all translations, then the line field defines a 

vector field and in each direction 0 we have a flow F0. This is exactly the situation for 

flat structures defined by rational billiards. 

Theorem 1.8 that holds for rational billiards still holds in the more general case of a flat 

structure. Moreover we still have the notions of saddle connections and metric cylinders. 

The form of the transition functions implies that in a neighborhood of a point in Z' there 

are polar coordinates (r, 0) such that the metric can be written as 

ds  2 - -  d r  2 + (o r  dO) 2 

where c is a half integer. We say that the metric has cone type singularity with cone angle 

27rc'. The curvature x at a singular point is defined by the formula 

K -- 27r - 27r c. 

We may concretely describe the metric in a neighborhood of a singular point by gluing 

together half planes as described above. Notice that our previous discussion shows that a 

rational polygon determines such a flat structure with transition functions all of the first 

type (parallel translations) and c an integer. 

One may visualize a flat structure as a finite union of polygons glued along parallel 

(or antiparallel) sides, such that each side is glued to exactly one other, and with special 

vertices vl . . . . .  v,, such that at 1)i there is a conical singularity of excess angle 7rki. 

Another way to define the same structure would be to begin by requiring that M have 

Gaussian curvature zero, or equivalently, it is locally isometric to R 2 with the Euclidean 

metric, away from a finite set of points s and cone type singularities near points of r ,  

where c is an arbitrary real. This in itself is not enough, for it does not rule out the possi- 

bility of rotations in the transition functions, which would not allow for parallel line fields. 

One way to guarantee the correct structure in this language is to consider parallel trans- 

lation with respect to the connection determined by the metric. The global obstruction to 

parallel translation being well defined is the holonomy group which is a subgroup of O (2). 

If the holonomy group is either trivial or {I, - I }  then parallel translation is well-defined 

and M possesses a parallel line field. The existence of such a line field implies that the 
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cone angles are multiples of zr. Pick one such line field and call it the vertical line field. In 

the neighborhood of each point of M \ G' we can construct a chart which is an orientation 

preserving isometry and takes the vertical line field to the vertical line field in R 2. The 

change of coordinate functions between these charts then have the desired form. 

Quadratic differentials. The same structure can also be defined in terms of complex 

analysis. Recall that a Riemann surface or a complex analytic structure on a surface M 

consists of an atlas of charts (U,x, z,x) where {U,x} is a covering of M by open sets, 

zo," Ur --+ C is a homeomorphism and if U~ N U/~ r 0, then z~ o z/~ I "z~(Ur n U/~) --+ C 

is complex analytic. The maps z,~ are called uniformizing parameters. 

A meromorphic quadratic differential 4~ assigns to each uniformizing parameter z,~ a 

meromorphic function 4):~, (z,~) with the property that 

dz/~) 2 

in U,~ N Ut~. Then the quadratic differential 4~(z) dz 2 is invariantly defined on M. 

Although the value of 4) is not well-defined, the set of zeroes and poles of ~ and their 

orders are. It is a classic result in Riemann surface theory that 4~ has a finite number of 

zeroes with orders ki and poles of order li satisfying 

Z k i  -- Z l i  = 4 g  -- 4. 

In this chapter we will assume that if there are poles then they are simple. This implies 

that the norm or area of 4~ defined by 

114~11- fM 14'(:)11d:12 

is finite. Notice that the area element 14)(z)lldz21 is well-defined independently of choice 

of coordinates. A quadratic differential determines a metric with the length element 

14~(z)l 1/21dzl . If the quadratic differential has a simple pole then the metric is not complete 

on the punctured surface. 

The vertical trajectories of 4) are the arcs along which 

4~(z) dz 2 < 0 

and the horizontal trajectories the arcs along which 

~(Z) dz 2 > 0. 

Equivalence of  definitions. We now indicate why a flat structure (with a parallel line 

field) and holomorphic quadratic differential define the same object. First suppose 4~ is a 

quadratic differential on M and p 6 M is a point which is neither a pole nor zero. We 

may choose a uniformizing parameter 4" in a neighborhood of p with p corresponding to 
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~" = 0. We may then choose a branch of  ~bl/2(~ ") near ~" = 0 and define a new uniformizing 

parameter  w by 

f~) 
~ 

w - - w ( ~ )  = q~l/2(r) dr .  

Then, in the w coordinates,  the quadratic differential is given by ck,,,(w)--= I. Such 

coordinates are called natural. If w and w' define natural coordinates in over lapping 

neighborhoods,  then w' -- + w  + c and so one has a flat structure. If the ho lomorphic  

quadratic differential is the square of  an Abelian differential, then the transition functions 

are translations. Again we remark that this is the case with rational billiards. The 

Riemannian metric is the flat metric [dwl. 

At a zero of  4~ of order k (at a simple pole take k -- - 1 )  the quadratic differential can 

be written as ((k + 2)/2)2~ "k d~ "2 for a choice of  coordinate ~'. Then w(~') -- ~.~k+2)/2, 

where the uniformizing parameter  w is defined as above. The full angle 0 ~< arg ~ ~< 2n" is 

subdivided into k + 2 equal sectors 

27r 2n" 
k ,~+----xJ ~< argO" ~< k + z " ( J  + 1), j - - 0  . . . . .  k + 1. 

f 

Fig. 5. Zero of order 2 of a quadratic differential. 
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Every sector is mapped by w(~') onto the upper or lower halfplane. Thus a zero of 4~ of 

order k corresponds to a singular point of a flat structure with the cone angle Jr (k + 2). The 

pre-images of the horizontal lines are the horizontal trajectories of the quadratic differential 

~p, and the trajectory structure has the form of a k + 2 pronged singularity. 

Conversely, a flat structure with a parallel line field defines a quadratic differential. Let 

v = (x, y) and v ' =  (x', y') be coordinates in overlapping charts so that v ' - -  i v  4- c. 

Setting z -- x 4- iy and z' = x' 4- iy', the transition functions are complex analytic, so 

define a Riemann surface structure on M \ Z', where r is the set of singularities. We may 

then define a quadratic differential 4~ on this Riemann surface by assigning the constant 

function 1 to the parameter z. The 2:rc cone angle singularity corresponds to a zero of 

order 2c - 2 (recall that c is a half integer). 

There is an additional description of these structures via the theory of measured 

foliations, developed by Thurston (see [66,8,18]). This description will not play any role 

here and we will not dwell on it. 

We will go back and forth between the terminology of quadratic differentials and flat 

structures with parallel line fields. 

EXAMPLE. We finish the section with an example taken from [78]" the Riemann surface 

corresponding to the billiard in a regular n-gon with n odd is conformally equivalent to the 

Fermat curve x" + y" -- 1, and the respective quadratic differential is dx2/y 4" see [4] for 

a similar description of Riemann surfaces corresponding to rational triangles. 

2. Teichmiiller space, strata of quadratic differentials and SL(2, R) actions 

2.1. Teir space and mapping ~'lass group 

A general reference for Teichmtiller spaces, and compactifications is the paper of Bers [7]. 

Let M be a surface of genus g with n punctures. We assume 3g - 3 + n >~ 0. 

DEFINITION 2.1. Teichmtiller space T~,,, is the space of equivalence classes of complex 

structures or Riemann surface structures X on M where X i "~ X2 if there is a 

biholomorphic map from X i to X2 which is isotopic to the identity on M. 

One may define the Teichmtiller distance function d-r(., .) on T~, by 

dT(Xi,  X2) = 1 /2 in f logK( f ) ,  

where the infimum is taken over all quasiconformal maps f isotopic to the identity on M 

and K ( f )  is the maximal dilation of f as measured by the complex structures X.,  X2. 

In the special special case of g -- 1, n - -0 ;  that is, elliptic curves, Ti,0 is well known to 

be the upper half plane and the Teichm011er metric the Poincar6 or non-euclidean metric. 

DEFINITION 2.2. The mapping class group Mod(g, n) is the group Diff + (M)/Diffo(M)" 

the group of orientation preserving diffeomorphisms modulo those isotopic to the identity. 
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The mapping class group acts o n  Tg,n by pull-back; given a complex structure X 

defined by coordinate charts (U~, z~) and f ~ Mod(g) ,  we find a new complex structure 

f .  X defined by the atlas of coordinate charts ( f (U~) ,  z~ o f - t ) .  The quotient space 

Rg~,, -- T~,,,/Mod(g) is the moduli space of Riemann surfaces of genus g with n punctures. 

It is well-known that Mod(1 ,0)  is the group SL(2, Z).  

2.2. Compactifications 

The moduli space R~,,, is well-known not to be compact. It is possible to deform a Riemann 

surface by pinching along one or more disjoint simple closed curves, by letting the 

hyperbolic length of the curves go to 0. The resulting surface then has nodes or punctures 

and may not be connected. For example if a closed surface of genus g is pinched along a 

single closed curve y and y does not disconnect M, the resulting surface has genus g - 1 

with 2 punctures, while if y is dividing, the resulting surface has two components each 

of which has one puncture and the sum of their genera is g. We can compactify R~,, by 

adjoining the moduli spaces of surfaces obtained in this fashion. 

Denote the compactification by R~,,,. The topology has the following property. Let X0 

be any surface in the compactification and X,, ~ X0. Remove any neighborhood U of the 

punctures of XIt. Then for large enough n, there is a conformal embedding of X~) \ U -+ X,.  

The compactification by these moduli spaces is well-behaved with respect to quadratic 

differentials. For suppose 4),, are unit norm quadratic differentials on X,, which converge to 

XI~ ~ R~.,,. Then there is a subsequence of 4),, which converges uniformly on compact sets 

of XI) via the conformal embedding to an integrable quadratic differential 4)~. However it 

may be the case that 4'o --- 0 on one or more components of X~). This issue will be discussed 

further in the section on periodic orbits. 

2.3. Strata ~?f quadratic differentials 

A meromorphic quadratic differential 4) on a surface of genus g with n punctures with at 

most simple poles at the punctures defines, for some j ,  a j + 1 tuple c~(ck) = (kl . . . . .  k i, ~), 

where ki a r e  the orders of the zeroes and poles and ~ -- + if the quadratic differential is the 

square of an Abelian differential and - if it is not. 

We say that two quadratic differentials defining the same c~ are equivalent if there is a 

homeomorphism of the surface, isotopic to the identity taking singular points to singular 

points of the same order and which at other points has the same local form as the change- 

of-coordinate functions. The set of equivalence classes is denoted by Q(o)  and is called a 

stratum. The resulting space Q(o)  is a manifold. In the case of a compact surface (n = 0) 

and all ki - - -  1 (and e = - 1 )  Q(o)  is called the principle stratum for compact Riemann 

surfaces. For fixed g, n, the union of the Q(o)  fit together to form the space Q,~,,, of 

all meromorphic quadratic differentials with at most simple poles over T~,,. It is a well- 

known part of Teichmtiller theory that T~,,,, is a complex manifold and this space Q,~,,, is 

the cotangent bundle, although we will not make use of this structure in this chapter. 
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A stratum need not be connec t ed -  [72] and [49]. See also [57] that give necessary and 

sufficient conditions on a given j + 1 tuple er so that there exists a differential 4' such that 

= ~ (4~) .  

If we consider compact Riemann surfaces (n -- 0), then the strata Q(o-) are not closed 

subsets of Q,v,o, unless there is a single zero ( j  = 1). This is because a sequence in Q(er) 

may collapse a pair of lower order zeroes into a higher order one. 

The group Mod(g,  n) acts on each Q(o') by pull-back of structures. If {u~ } is an atlas 

of natural coordinates defining a quadratic differential 4~, and f is a diffeomorphism, then 

{u~ o f - I }  defines a new family of natural coordinates. The quotient is denoted by QD(~)  

and will play a crucial role in this chapter. Since Mod(g,  n) does not act freely, the space 

QD(c~) has the structure of an orbifold. 

2.4. SL(2, R) action on quadratic differentials 

The group SL(2, R) acts on each stratum by linear transformations of local coordinates. If 

{u,, } is an atlas of natural coordinates defining a quadratic differential 4~, and A e SL(2, R) 

then {Au~ } defines a new family of natural coordinates for a quadratic differential A4~. It 

follows that A takes singularities of 4) to singularities of A4~ of the same order. 

If one visualizes a flat structure S as a union of polygons RI U . - .  U R,,, then gS = 

gRI U . . . U gR,t. 

The following one parameter subgroups of SL(2, R) are of special interest: 

0) (co,  ,in0) (:, 'i 
g ~ =  0 e-I/2 , r~ - -  - s i n 0  cos0 ' 1 ' 

referred to as the geodesic or Teichmiiller, circular and horocyclic flows, respectively. 

The effect of the flow 4' --+ gt4~ is to stretch along the horizontal trajectories of 4' by a 

factor of e'/2 and contract along the vertical trajectories by e I/2. Associated to gl is the map 

.fi of the underlying Riemann surfaces X -+ X t, called the Teichmiiller map. The map fi 

takes zeroes of 4' to zeroes of 4~. If u, - u + iv are natural coordinates for 4) away from 

the zeroes, and w~ = ul + iv~ are natural coordinates for 4~ away from its zeroes, then in 

these coordinates, f~ is given by 

ut -- et/2u, vt = e- t /2v .  

The famous theorem of Teichmtiller asserts that given any homeomorphism f : X  -+ Y 

of  Riemann su.rfaces o f  finite type, there is a unique Teichmiiller map from X to Y 

which minimizes the maximal dilation among all quasiconformal homeomorphisms in the 

homotopy class. 

The action of ro on a quadratic differential 4) is the same as multiplying 4~ by e 2 i#. This 

multiplication defines an action of the circle R/TrR on the set of quadratic differentials. 

Note that the action of ro leaves the flat metric invariant, but changes the vertical line field. 

The action on saddle connections is as follows. Let 

z lac 
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be a matrix in SL(2, R). Let/3 be a directed saddle connection, and let h l and vl be the 

horizontal and vertical components with respect to q~ of the associated vector. Then the 

horizontal and vertical components h2 and v2 of the vector associated to/3 with respect to 

A4~ are given by matrix multiplication; namely 

l 
a 

c 

b 

The orbit of a quadratic differential under SL(2, R) is the unit tangent bundle to an 

isometrically embedded hyperbolic disc inside Teichmtiller space. This disc is called a 

Teichmtiller disc and has been considered by numerous a u t h o r s -  see [50], for example. 

In a later section we will examine certain examples of Teichmtiller discs that arise in the 

so-called Veech billiards and their generalizations. 

It is immediate from the definitions that the action of SL(2, R) commutes with the action 

of Mod(g) and thus descends to an action on QD(cr). It is this action we will study in some 

detail. 

Invariant measure on the strata. Let QD I (or) C QD(c~) consist of the flat surfaces with 

unit area. It is possible to define an SL(2, R) invariant measure /z~) on each QD I(cr) 

which is absolutely continuous with respect to the orbifold structure. We show how to 

do this for the principle stratum QD i (or). The measure is first defined locally on Q(cr). 

A saddle connection of 4~0 persists under small perturbation of 4~. There are a finite 

number of such saddle connections//I  . . . . .  ~,, whose horizontal and vertical components 

(ht~ ~, vt~ ~ . . . . .  h/%, v/~,,) serve as local coordinates for Q(cr) in a neighborhood of 4~11. 

Specifically, pass to a double cover 7 r ' M  ~ M, ramified over the zeroes of 4~1). There 

is an inw)lution r of M which interchanges the sheets. We choose the/Ji such that their 

lifts to M form a basis for the first homology of M, odd with respect to the involution r.  

The measure/z on Q(cr) is then Lebesgue measure on R 2'' pulled-back to Q(cr) via these 

local coordinates. One sees that /~ does not depend on choice of basis /Ji, so actually 

defines a measure. One then defines the/zl) measure of E C Q l(cr) to be the/z measure of 

{r4~: 0 ~< r ~< 1, 4~ E E}. It is easily seen to descend to QD(cr) and to be SL(2, R) invariant. 

The measure/zl) was shown to be finite and ergodic on the principle stratum in [51] and 

then on each component of general stratum in [71,72]. The following problem is quite 

interesting: to c las s~  all ergodic SL(2, R) invariant measures on QD(cf ). 

3. Ergodicity 

3.1. Veech nonergodic example 

DEFINITION 3.1. A foliation F is uniquely ergodic if it is minimal and the transverse 

measure is unique up to scalar multiplication. 

It is well-known that if F is uniquely ergodic, then it is ergodic with respect to the 

transverse measure. Unique ergodicity is equivalent to the following condition. Let G be 
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any foliation with transverse measure, transverse to F. For any point x0, the transverse 

foliation G defines an arc length l(t) on the leaf of F through x0 in either direction. The 

pair (F, G) defines a measure # on M. For every continuous function f(x) on M and 

every point x0 we have 

lim -- 
T ~ c ~  T 

f(l(t))dt = fM f (x)dlz(x). 

The classical example of a uniquely ergodic foliation is the irrational flow on the flat 

t o r u s -  see [40] for a detailed discussion. 

Veech's example. In [68] Veech constructed examples of minimal and not uniquely 

ergodic dynamical systems. An example of a minimal flow on a surface which is not 

uniquely ergodic was constructed by Sataev [62]. Examples of minimal nonuniquely 

ergodic interval exchanges were constructed by Keane [44]. 

We will look at Veech's example in some detail. Take two copies of the unit circle and 

mark off a segment J of length 2rrct in the counterclockwise direction on each with one 

endpoint at 0. Now take 0 irrational and consider the following dynamical system. Start 

with a point p, say in the first circle. Rotate counterclockwise by 2rr0 until the first time the 

orbit lands in J ;  then switch to the corresponding point in the second circle, rotate by 2rr0 

until the first time the point lands in J ;  switch back to the first circle and so forth. Veech 

showed that if 0 is an irrational number with unbounded partial quotients, then there are 

irrational numbers ct such that this system is minimal and such that the Lebesgue measure 

is not ergodic so that the system is not uniquely ergodic (see also [40], Section 14.5 e). 

We may describe the same dynamical system by a flow on a flat surface that comes from a 

rational billiard. 

We actually give a slight generalization of the Veech example. Start with a square torus 

T; that is, the unit square with lower left vertex at (0, 0) whose opposite sides are identified. 

Equivalently, it is R 2 modulo the integer lattice. Fix a point (x0, y0) E R 2, called a slit. Let 

u, be a segment in R 2 joining (0, 0) to (x0, y0), projected to T. Take two copies of T, each 

slit along w, and identify the positive side of u~ on one copy to the negative side in another. 

It is easy to see that this results in a quadratic differential 4~ on a surface of genus 2. Since 

the total angle around each of the points (0, 0) and (x0, y0) is 4rr, they correspond to zeroes 

of order 2 of 4). The surface of genus 2 is partitioned into 2 sheets M, + and M,~, separated 

from each other by the union of the two slits. 

In the special case that x0 - - 0  and y0 = ct, so that the slit is along the vertical axis, 

the resulting surface has two metric cylinders in the vertical direction, one tbr each sheet. 

Choose the core curve of each metric cylinder. The first return map to this pair of  curves 

for the flow in direction 0 is precisely the dynamical system studied by Veech. 

This same dynamical system can be described in terms of rational billiards. Take a 

rectangle of length 1 and width 1/2, with an interior vertical barrier of length (1 - ct)/2 

from the midpoint of a horizontal side. It is not hard to see that the corresponding flat 

surface, formed by gluing four copies of this table, is exactly the flat surface described in 

the special case. 
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Fig. 6. Billiard table corresponding to the Veech example. 

Returning to more general construction, we say that the slit is irrational if either 

x0, y0 :/: 0 and yo/xo irrational, or one coordinate  is 0 and the other is irrational. 

THEOREM 3.2. Suppose the slit (x0, Y0) is irrational and S the corresponding.tqat surface. 

Then there exists uncountably many directions 0 such that the flow on S in direction 0 is 

minimal and not ergodic. 

Geometric criterion for  nonergodicity. The proof  of  Theorem 3.2 represents unpubl ished 

work of John Smillie and the first author. In order to give the proof  we first give a geometr ic  

criterion of  how to find nonergodic foliations. This criterion was given in [56]. To set the 

notation let P,, = [A,,, B,, ] be a sequence of partitions of a flat surface S such that their 

common boundary is a union of saddle connect ions all in the same direction 0,,. Assume 

that the directions 0,, converge to 0.x.. Let F;;~ be the foliation in direction 0..... Rotate the 

coordinate system so that 0 ~  is the vertical direction. Let h,, be the sum of the horizontal 

components  of the vectors associated to the saddle connect ions separating A,; from B,,. Let 

be the measure defined by the flat structure. 

T H E O R E M  3.3. Suppose that 

(i) l i m , , _ ~  h,, = 0; 

(ii) forsome ~', c', 0 < c ~</t(A,,) ~< ~" < 1; 

(iii) ~-~,;~=l I ; ( A , , A A , , + I )  < r 

Then the vertical foliation F~;~ is nonergodic. 

PROOF. Let 

A n  = l iminfA, ,  = {x: ::IN such that for n >f N , x  c A,,}, 

B ~  = lim inf B,, = {x: ::IN such that for n ~> N, x ~ B,, }. 

We first show that Am and Bo~ satisfy: 

(1) u ( M  \ ( a n  U B ~ ) )  -- 0. 

(2) Am ("1B~ = ~. 

(3) l t (A~/XA, , )  --+ 0 as n --+ oo. 

(4) 0 < / t ( A ~ )  < 1. 
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By (iii) and the Borel-Cantelli  Lemma the set of x' which are in infinitely many A,, AA,,+I 

has # measure 0. From this we have (1). Statement (2) is immediate. To see (3) note that 

o o  

A~AA,~  C U Ai AAi+I 

i--It  

so that 

OG 

t t (A~AA, , )  ~< Z t t ( A i A A i + l ) .  

Hypothesis (iii) implies that the right hand side goes to 0 as n goes to infinity, 

proving (3). Statement (4) follows from (3) and (ii). 

Returning to the proof of Theorem 3.3,  we can assume that the vertical foliation F,~ is 

orientable: if not, we may replace M by an orientable double cover and replace A ~  and 

B ~  by their lifts. Now let fr be the flow along vertical leaves. 

We claim that for any t the set A ~  is lZ a.e. invariant; that is, 

U ( . L ( A ~ ) A A ~ )  - -0 .  

Suppose on the contrary, that for some tt), we have l z ( I ' i~ (A~)AA.~)  -- 5 > (). By (3) and 

(i) we may choose n large enough so that 

l z ( A ~ A A , , )  < 3/8 and er < 5/8. 

Since ./')~ is 1~ preserving, the first inequality above and the assumption give 

I~(fi , ,(A,,)AA,,)  ) 5 - 2 3 / 8 -  33/4. 

Thus at time tl), 33/8 of the measure of A,, flows to its complement. However at most 

et~h,, < 3/8 of measure can cross the boundary of A,,, a contradiction, proving the claim. 

We would like to conclude that A..~ is flow invariant, although by the claim it is only a.e. 

invariant for each time. The theorem is a consequence of the following general lemma. 

LEMMA 3.4. Let fi be a flow on a space X preserving a probability measure ~. Suppose 

there is a set A such that for  every, t, lZ( . f i (A)AA)  --O. Then there is a set A' invariant 

under .f) with l z ( A A A ' )  -- O. 

PROOF. Let ~ be Lebesgue measure on R. Let 

A ' - -  {x" f i (x)  E A for ~ a.e. t}. 

It is clear that A' is .fl invariant. We will show that l z ( A A A ' )  - -0 .  Let 

C0 -- {(x, t)" x E A }  and Cl -- {(x, t)" f1(x) 6 A } .  
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For every t we have 

/z({x" ( x , t ) ~  CoACi } ) - - l Z ( f i ( A ) A A ) = O .  

This implies that (/z x k)(Co/XCi) = 0. By Fubini there is a set X' of ful l /z  measure so 

that for all x 6 X', 

k({t: (x, t)  9 CoACI }) = 0 .  

If x E X' N A then (x, t) 6 C0 so that k({t: (x, t) r Ci }) = 0. Therefore the set {t: fi (x) 

A } has full k measure so x 6 A'. If x 6 X ' \  A then the set {t: (x, t) ~ Ci } has full k measure 

so that x r A'. Thus A A A '  is contained in the complement of X' so # ( A A A ' )  -- 0. This 

finishes the proof of the lemma and therefore Theorem 3.3. l-I 

PROOF OF THEOREM 3.2. Let w be the segment joining (0, O) to (x0, y0) projected to 

T. Suppose u / i s  another segment on T with the same endpoints as w. Then we can take 

u/  as the projection of a segment joining (0, 0) to (x~) + p, y0 + q) where p, q E Z and 

w' is also thought of as a slit. Suppose w and w' intersect an odd number of times in 

their interior so they divide each other into an even number of pieces. This is equivalent 

to saying that w and u/  are homologous mod 2 on T. The sheet interchange measured 

by ~." - (M, + (3 M~, ) U (M,~ A M +,) is a union of an even number of parallelograms with 

sides on w and u / ( h e r e  u, and u / a r e  thought of as vectors). Thus the area of ~' is at most 

lu, x u,'l. 
Now fix a sequence of positive numbers P i with ~ P i < oc. We will build an infinite 

directed tree with each vertex leading to 2 further vertices. At level j there will be 2 .i- I 

vertices. Each vertex will correspond to a pair of integers (p, q) which will determined a 

slit with endpoints (0, 0) and (x0 + / 7, y0 + q). 

For any pair (/7, q ) form the quotient (p + x~)) / (q + 3'1)), the slope of the corresponding 

slit. Let 6i be the minimum distance between any two slopes as (p, q) varies over the 

vertices at level j .  Now inductively, suppose we have determined the tree up to level j .  

For each vertex (p, q) at level j we will choose two vertices (p ' ,q ' )  and ( p " , q " )  at level 

j + l, and call these the two children of (p, q). To find such children begin by choosing 

an even integer d such that 

P.i 

(q + Y~l)(q + Yll + d) 
< 6.i/4. 

Then consider the inequality 

dl{P + xo}n - (q + yo)m[ < P.i. 

The assumption on the irrationality of the original slit (x(), y()) implies that .r()+p is 
. -  . v ( ) - f q  

irrational so there are infinitely many coprime solutions (m, n) of me above inequality. 

Choose any two of them and set 

! ! 
p - - p + d m  and q - - q + d n ,  
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Fig. 7. Proof of Theorem 3.2. 

calling the two resulting two pairs the children. A direct calculation shows that 

5 
I .  

./ 

p + x0 p'  + x0 

q + yo q' + yo 
< 6.i/4. 

That is to say, the distance between the slope of a slit and either child is bounded by 6 j /4 .  

Then the distance between the slopes of the two children of (p, q) is at most 6.i/2, which 

implies that 

6.i+1 < ~.i/2. 

Let w be the segment corresponding to the parent and w' the segment of a child. Since d is 

even, w' is homologous to w mod 2. In fact w' - w represents d times the primitive class 

of (m, n). As we have seen the area of the sheet interchange c is bounded by Iw' x wl, and 

an easy calculation shows that this is bounded by 

](p + xo)n - (q + y0)m] I < P.i. 



1040 H. Masur  and S. Tabachnikov 

Thus, in the situation of Theorem 3.3, we have constructed a sequence of partitions 

satisfying (iii). Now for any geodesic in the tree, the sequence of ratios (p + xo)/(q + Yo) 

is a Cauchy sequence hence converging to some 0~.  From this, condition (i) of 

Theorem 3.3 follows. Condition (ii) holds since the partition divides the surface into two 

pieces of equal areas. Thus by Theorem 3.3 the limiting foliation Fo~ is not ergodic. 

We now show that, in fact, there are uncountably many limiting directions. Since there 

are only countably many directions that are not minimal, we then can conclude that there 

are uncountably many limiting directions which are minimal. Since each pair (p, q) has 

two children there are clearly uncountably many sequences. We therefore need to show that 

any two limits are distinct. Suppose rj = (pj + xo)/(qj + Yo) --+ 0 and a distinct sequence 

r: = (p'. + xo)/(q} + Yo) --+ O' Suppose the sequences differ for the first time at stage j 
. /  . /  . " 

! 

so that the slopes rj and rj satisfy 

I rj - r~l >1 6.i. (3.1) 

Then by (4.3) and (4.4) we have 

I O P.i + xo 

q.i + Yo 4 2 '  
t 1> j t ~> j 

! ! 

and similarly 10' - rjl < 6j /2 .  Combined with (3.1), we have 0 ~ 0 I-1 

The above theorem gives uncountably many minimal nonergodic directions. By 

requiring oe to satisfy a Diophantine condition, it is even possible to show that there is 

a set of such examples of positive Hausdorff dimension (see Section 3.4 below). The main 

result of the next section however says that the set of nonergodic directions must have 

Lebesgue measure 0. 

3.2. Ergodicity in almost ever3., direction 

THEOREM 3.5 ([471). For any holomorphic quadratic differential 4> (rational billiard) the 

set of 0 ~ [0, 27r1 such that r~ck has minimal but non-uniquely ergodic vertical foliation 

has Lebesgue measure O. 

The proof of this theorem uses the SL(2, R) action on quadratic differentials and some 

combinatorial constructions related to quadratic differentials. The quadratic differential 4) 

belongs to some stratum QD(~r). Let QD~, (~r) be the set of quadratic differentials in QD(cr) 

all of whose saddle connections have length at least e. Recall that Re is the moduli space 

of Riemann surfaces of genus g. 

PROPOSITION 3.6. QD~(cr) is compact in QD(cr). 

PROOF. QD~(cr) is clearly closed in QD(cr) since if q~,, ~ q~ and 4~ has a geodesic segment 

of length less than e so does 4~,, for n large. It is therefore enough to show that QD~; (~) lies 
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over a compact  set in Rg. If not, there is a sequence 4~,, 6 QD~: (or) of  quadratic differentials 

lying on Riemann surfaces X,, going to infinity in Rg. Passing to subsequences  we may 

assume that X,, converges to a Riemann surface X ~  with nodes or punctures acquired by 

pinching along a set of  disjoint simple closed curves c~l . . . .  , C~p. By passing to a further 

subsequence we can assume that 4),, converges uniformly on compact  sets to an integrable 

quadratic differential 4 ~  on X ~ .  

Thus 4~e~ has at most  simple poles at the nodes. There is therefore a curve c~j homotopic  

to a puncture with 4 ~  length at most e /2 .  For large n the uniform convergence  implies 

that c~j has 4~ length at most  e /2 ,  a contradiction. I-1 

Recall,  that associated to a holomorphic  quadratic differential 4> is a structure on an 

associated Riemann surface. Recall also the the TeichmiJller flow gt4~ from Section 2.4. 

DEFINITION 3.7. A quadratic differential 4~ is called divergent if the Riemann surfaces 

associated to g~4~ eventually leave every compact  set of  Rg a s  t ~ ~ .  

The following theorem and proof is from [55]. 

THEOREM 3.8. Suppose the vertical foliation F~ o f  ck is minimal but not uniquely ergodic. 

Then q5 is divergent. 

P R O O F .  Suppose the theorem is not true so that for some sequence t,, --+ ~ the Riemann 

surfaces X,, = XI,, converge in Re to some X~. By passing to a further subsequence we 

may assume that 4),, = gt,, (4~) converges to some 4~ on X0. Let fi,, be the corresponding 

Teichmtiller map. Denote  by Z and Z~) the sets of  zeroes of 4~ and 4>o, respectively. 

The normalized transverse measures on the topological foliation F 4, form a finite 

dimensional  convex set for which the extreme points vi are mutually singular ergodic 

m e a s u r e s -  see [77]. Let v0 be the transverse measure  of F4,. We have v~l = Y'~'i"--I ci vi, 

for constants ci. Pick a segment  1 of a horizontal trajectory of 4~ so that vi(1) ~ v.j(1) for 

i ~ j .  Let ~ be the transverse measure to the horizontal foliation defined by 4~. This means 

that the area e lement  14~(z) dz21 : v0 •  Let Ei C X be the disjoint sets of  generic points 

o f t h e  measure vi • # for the interval I. We have (vi • lz)(Ei)  : 1. Each Ei is a union of 

leaves of F,~. 

For each i let Ai C Xo denote the set of  accumulat ion points of  f1,, (x) ~ X,, for x ~ Ei. 

Now let U C X0 be any open set. We claim that there is a j such that 

U N A.j =/= O. 

To prove the claim, choose an open W so that W C U. Since X,, --+ X0, for each n, 

W may be considered as a subset of  X,, with area bounded below by 3 > 0. Consider  

W,, = ft~, I (W)  C X. Since fi,, preserves area, (v0 x lz)(W,,) > 3. 

Then for each n, there is a j -- j (n) such that 

(v.j x Iz)(Ej f3 W n ) -  (v.j x lz)(Wn) 
mcj  
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Fig. 8. Proof of Theorem 3.8. 

Choose a j so that this inequality holds for infinitely many n. This implies that there exists 

some x ~ E i n Wp, for infinitely many n. Since ft,, (x)  ~ W,  ft,, (x)  has an accumulation 

point in W, proving the claim. 

Partition Xo into a finite number of rectangles in the natural coordinates of q~r whose 

sides are horizontal and vertical segments. Adjacent rectangles meet along a common 

hotizot~tal or vertical segment of a side. Each point of Z'I~ is required to be a vertex of 

a rectangle. For each pair of adjacent rectangles R i, Re choose open sets Ui C Ri with the 

property that if Yi E Ui there is a vertical segment li with one endpoint Yi such that l i, 12 

are two sides of a coordinate rectangle contained in R! U Re. For any two points Yl, 3'2 

in the same coordinate rectangle there are vertical segments li with endpoints yi which 

are the vertical sides of a coordinate rectangle. Now by the claim, by passing to further 
[ ]PH 

subsequences of t,, for each open set Ui we may choose yi E Ui and xi 6 ,- , i=l E i such 

that Yi -- lira .D,, (xi) .  

Now suppose Ul, U2 are such open sets contained in either adjacent or the same 

rectangle with corresponding yi and xi. We claim that x t and x2 must belong to the 

same E.i. Assume otherwise. By renumbering assume xi 6 El, i = I, 2. Let li be the 

vertical segments with endpoints Yi and which are vertical segments of a coordinate 

rectangle. They have the same length. Each li is the limit of vertical segments li.n of equal 

length of gt,,ck with one endpoint ft,, (xi) .  Each li.,, is the image under fi,, of a vertical 

segment Li.,, C Ei passing through xi" Li.,, have equal length which go to ~ with n. 

Therefore the number of intersections of Li.,t with I goes to oo and since Li.n Q El, 

card(li ,, N ft,, ( I ) )  card(L i.,, n I)  v l (1 )  
lim ' = lim = 

, ,~.~ card(/2.,, nf t , ,  ( I ) )  , ,~ .~  card(L2.,, n I) v2(1) r 1. 

But since li.,, has limit li and every horizontal segment of 4)0 that intersects I i intersects 

12 and vice versa, 

card(l t.,, nf t , ,  (I))  

card(/2.,, n Z,, (I))  
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can be made arbitrarily close to l by taking n large enough. This is a contradiction, proving 

the claim. 

Any two rectangles R i, R,, can be connected by a chain of  rectangles R i . . . . .  R,1 where 

Ri and Ri+l a r e  adjacent along a side. This fact and the last claim imply that there is a 

single index j such that xi ~ E j  for all xi. 

Choose some index i :/: j and x ~ Ei \ r .  Let y 6 X0 be an accumulation point of  j~,, (x). 

By passing to further subsequences of t, we can assume that there is a single rectangle R 

such that j~,, (x) 6 R and lim,,__++ ft,, (x) -- y. Let Uk C R be one of the open sets found 

previously. We may find vertical segments l C R with one endpoint y and 1' C R with 

endpoint yk -- lim ~,, (xk) such that l, l' are two vertical sides of a coordinate rectangle 

contained in R. We may find vertical segments I, and l,,, of gt,, 4> of equal length, l,, --+ l 

and l, ~, --+ l', l,, has endpoint ~,, (x) and l, ~, has endpoint ~,, (xk). As before 

card(/,, ~ ~,, (I))  

card(/;~ A ft,, (I))  

can be made arbitrarily close to l by taking n large enough, and yet since x and xk are 

points of Ei and E i respectively, the ratio has limit 

v i ( l )  

v i ( l )  :/: 1, 

and we have our contradiction. D 

The proof of Theorem 3.5 follows from the above theorem and the next theorem which 

was given in [47 ]. 

THEOREM 3.9. The set o[0  ~ [0, 27r] su<'h that r~qb is divergent, has Lebesgue measure 

zcro. 

3.3. A <'ombinatorial construction 

In order to prove this theorem we will need to discuss a certain combinatorial construction. 

We fix a stratum QD(c~). 

DEFINITION 3.10. Two saddle connections are disjoint if their only common points are 

vertices. 

Denote by p0 = p0(o)  the maximum number of disjoint saddle connections. A set of 

disjoint saddle connections F is called a system. By I FI we mean the maximum length of 

any member of F .  By a complex K we mean a subset of M consisting of disjoint saddle 

connections and triangles, such that a triangle is in K if and only if its sides are in K. An 

e complex is a complex all of whose saddle connections have length at most e. We denote 

the (topological) boundary of K by 0 K. Then 0 K is a system of saddle connections. 
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Note that if K is a complex, then K \ OK (viewed as a subset of M) is a (possibly 

empty) domain. We say that the complexity of a complex is j if it has j saddle connections, 

including those on the boundary. The main construction is as follows. 

PROPOSITION 3.1 1 (Combining complexes). Suppose K is a complex of  complexity i 

with nonempty boundary and there is a saddle connection ot which is either disjoint from 

K or crosses OK. Then there is a complex K t containing K of  complexity j > i with the 

property that IOK'I <~ 210KI + Ic~l. 

PROOF. Suppose first that K fails to be convex in the sense that there are segments AB 

and BC on 0 K such that the angle they make at B is smaller than 7r. This means that A B 

followed by BC is not a geodesic. Further suppose that the geodesic joining A to C does 

not lie in K. Then we may add this geodesic and the inequality on lengths holds. 

. , ,  P 

~ Q ~ . I  . ~  ~ I I I  

~. . "  ~" i i  

.. I i i  

i I 

B 

7 '  _ 

(D (.01 [ 

Q ~ Q 

Fig. 9. Proof of Proposition 3.11. 
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Thus we may assume that K is convex in the sense that there are no such segments 

A B  and BC. Now if ot is disjoint from K, we may just add it to K and again the length 

inequality holds. 

Thus we may assume that ot crosses OK. Let Q be the point where ot crosses OK on a 

segment co with endpoints A, B. Suppose that in following c~ from Q into the exterior of 

K c~ hits a singularity P in the exterior of K before again crossing O K or hits a singularity 

on OK. 

We may form a polygon with no interior singularities whose sides are co, a possibly 

broken geodesic joining A to P and a possibly broken geodesic joining B to P. The edges 

and diagonals of this polygon have lengths bounded by Ic~l + ]col. Since co is a boundary 

edge of K not all of the edges and diagonals of the polygon can be in K. We may therefore 

add an edge that is not in K. 

Thus we are reduced to the case that before next hitting a singularity, ot crosses OK at 

Q', an interior point of a segment co' with endpoints C, D. If may be the case that A = D 

or B = C or both. Let c~i be the subsegment of c~ joining Q to Q'. If A -- D or B = C, then 

c~l is homotopically nontrivial relative O K; otherwise co and co' would bound a triangle in 

the exterior of K, contrary to the convexity assumption. Now move c~l parallel to itself 

with one endpoint moving along co toward one endpoint, say A, and the other along co' 

towards, say, D. We can choose the direction so that the lengths of the parallel segments 

do not increase in length. This can be done until for a first time a segment or2, parallel 

to c~t, meets a singularity P, which may be either A or D. We proceed exactly as in the 

previous paragraph. We can use P to build a bigger complex whose boundary satisfies the 

same length estimate as before. I-7 

DEFINITION 3.1 2. Let ~:: < C. A saddle connection V is (a, C) isolated if it has length less 

than a and every saddle connection that crosses y in its interior has length greater than C. 

Since any two (~, C) isolated curves are disjoint, the number of such curves is bounded 

above by p~l. 

DEFINITION 3.13. For a quadratic differential 4~ let n~ (4~) be the maximum number of 

simplices in a connected ~ complex. 

DEFINITION 3.14.  For a stratum QD(cr) let N(e,  C) be the set of quadratic differentials 

in the stratum which possess (~, C) isolated saddle connections. 

PROPOSITION 3.15. Let It denote the Lebesgue measure on the circle. Suppose there is a 

set S o f  angles 0 o f  posit ive measure so that rock is divergent f o r  0 E S. Then there are 

( 1 ) a sequence ~?f times 7) --~ cx~; 

(2) a sequence o f  sets Si C S and a number  6 > 0 such that lz(Si)  >~ 6; 

(3) a sequence Ei --~ 0; 

(4) a positive constant  C such that gT) rock E N ( a i ,  C)  f o r  O E Si. 

The idea behind this proposition is that since the Riemann surface of gt r04) eventually 

leaves every compact set, there will be times Ti after which there will always be a seg- 

ment of length less than Ei in the corresponding metrics. For a fixed C, however, the sets 
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N ( e i ,  C )  do not form a neighborhood basis of infinity so it may not be the case that for 

sufficiently large 7) that there will be always (el, C) isolated segments. Nevertheless by 

passing to slightly smaller sets than Si we will be able to make the statement for isolated 

segments. 

PROOF. Choose a sequence 6i ~ O. Since for each ,~i the set QD~: i is compact, for each 

divergent ray ro (q) there are times Ti such that gr ro (q) ~ QD \ QD~ i for all t ~> 7~. 

Then Ti can be chosen so that this relationship holds for all 0 6 S' where S' C S and 

u(S ' )  > # ( S ) / 2 .  

Consider now triples of sequences (8i ,  Ti, S i )  such that 8i ~ O, Ti ~ r I~(S i )  bounded 

away from 0 and gT; rock E QD \ QD,;i for 0 E Si. The set of triples is nonempty for we can 

take Si = S' for all i. Choose a sequence of triples that maximizes 

min min n ~: (gT;  roO). 
i OE Si 

For the corresponding sequence, for each i and 0 E Si let Ci,o be the length of the shortest 

saddle connection that crosses a boundary segment of the ei complex of gl; r(~4~. For each 

i, let m i be a number so that 

lz({O E Si: Ci.o ~ mi l )  = u ( S i ) / 2 .  

We claim that the numbers m i are bounded below. Suppose not. Choose a subsequence 

converging to 0 an(l for that subsequence let 

! 

S i - { O  E S i "  Ci,o < m i } ,  

so l,t ( S[ ) = l~t ( Si ) /2 is bounded below, and let 

! 

F~ i - - 3 e l  + mi  ---+ O. 

! 

Fix 0 E S i. Since lhere is an gi complex and a saddle connection of length at most m i 
t 

crossing it, by Proposition 3.11 we can find an e i complex on gT; r04~ with more simplices, 

contradicting the maximality of our sequence of triples. Thus the set of m i is bounded 

below, by some C > 0. If we replace Si with the set of 0 such that Ci.o >~ m i >/ C ,  every 

saddle connection crossing the 8i complex has length at least C, proving the proposition. [-I 

Let c~ be a geodesic segment. For some 0,~ , the segment c~ is vertical with respect to 

r0~,4). Rotate the coordinate system so that 0,~ = 0. Denote by l(t, O) the length of c~ with 

respect to the structure gtro~, so that Ic~14, = l(0, 0). In these coordinates 

l{t, O) -- 1(0, 0)(e'  sin 2 0 + e - '  cos 2 0)I/2. 

Fix t ~> 0 and choose e > 0. Define two intervals Io, C J,~ C ( -7 r /2 ,  n'/2) with respect to 

the rotated coordinates: 

I,~ - {8" I sinOl ~ ~ / ( v e  r/2)}, J,~ - {8" I sinOI ~< C / ( 2 u e  '/2)1. 



Rational billiards and flat structures 1047 

LEMMA 3.1 6. For 0 q~ I~ one has: l(t ,  O) >~ e. There are constants ej ,  T, K independent  

o f  oe such that f o r  e < el and t > T we have lz ( l~) /#(Jc~)  < Ke.  In addition i f  l ( t ,  O) < e 

fo r  some O, then l(t ,  O) < C fo r  all 0  9 Ju. 

PROOF. The first statement is immediate from the definition. I f l ( t ,  0) < e for some 0 then, 

since l( t ,  O) attains its min imum at 0 = 0, 

ve- t /2]cosOI  <~ v e  - t /2  <~ l ( t ,O)  < e. 

For 0  9 J,~, we then have 

l(t ,  O) <~ (C2 /4  + e 2e - t ) l / 2  ~< C / 2  + e. 

If we choose el = C / 2  and e < el then l( t ,  O) < C. This proves the last statement. 

Let I" and J" be the images of  Io, and Jo, under  the sine function. If C / ( 2 v e  t/2) < 1/2 

then J" is contained in the interval ( - 1 / 2 ,  1/2) and k t ( l ' ) / l z ( J ' ) =  2 e / C .  Since the 

arcsine function restricted to the interval ( - 1 / 2 ,  1/2) is Lipschitz and has a Lipschitz 

inverse, it changes the lengths of intervals t-y a bounded amount.  Thus we can choose a 

constant K depending on C such that 1, ( I,  )/Ia (Jc~) < K e as claimed. 

To ensure that C / ( 2 v e  ~/2) < 1/2 choose 7' such that C / ( 2 m  e 1/2) < 1/2 where m is the 

length of the shortest saddle conneclic~n (~n ~4~. Since v ~> m and t > T, the inequality holds 

and the proof  of the lemma is finished. I-1 

The last technical statement we need is as follows. 

PROPOSITION 3.17.  There are constants T, el ,  K'  such that f o r  t > T and e < e.i one 

has: 

/,({0: gtrod/)  9 N(g,  C)}) < X ' , .  

PROOF. Fix T and e < e.i as in the preceding lemma. Consider  all saddle connect ions c~ 

which are (e, C) isolated with respect to glrodp for some 0. For each such oe let I,,, be the 

smallest interval of O's for which c~ is (e, C) isolated. Then Io, C I,,, C J,,. 

Construct  a new open interval J,x as follows" the left-hand endpoint  of Jc, will be halfway 

between the left-hand endpoints of lot and Jc,, and the right-hand endpoint  of  J,, will be 
^ 

halfway between the right-hand endpoints of I,, and J,~. The point of this construction is the 

fact that if .~ and .It~ intersect, then either Jo, intersects It~ or Jt~ intersects Io,. Assume the 

first. We can find 0  9 J,,, N I/~ such that fl is (~, C) isolated with respect to g, roq. Now, with 

respect to the metric of gtrodp, the saddle c, mnection oe has length less than C, and/4 cannot 

cross any geodesic segment  of length less than C. Thus c~ and fl are disjoint. The maximum 

number  of disjoint segments is p0. Therefore  no 0 can lie in more than p0 segments Jo,. 
^ 

The sum of the lengths of the Jo, is at most 2n'po. The sum of the lengths of the J,,, is at 

most 4n'p0. The sum of the lengths of the intervals Io, is at most  4Kzr epo, and the intervals 

Io~ cover the set of 0 for which gtro4)  9 N(e ,  C). Thus we can take K '  = 4KTrpo. D 
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PROOF OF THEOREM 3.9. Assume the theorem is false. Then choose constants Ei ~ O, 

times Ti --+ ex~, a constant C, and sets Si so that Proposition 3.15 holds. In particular, 

I~(Si) ~> 6 > 0. Let K',  T be as in Proposition 3.17; then, for ei small enough and 7) > T 

large enough, we have: #(Si) < K'ei. However, for ei small enough, one has: K'ei < 6, a 

contradiction. I-1 

3.4. Further ergodicity results 

In this section we mention, without proofs, some further results on ergodicity of vertical 

foliations of quadratic differentials. 

The measure 0 result in Theorem 3.5 was improved in [55] to give a statement about 

Hausdorff dimension. 

THEOREM 3.18. For any quadratic differential 4~ the set of 0 E [0, 2n'] such that rock 

has minimal but non-uniquely ergodic vertical foliation has Hausdorff dimension at 

most 1/2. 

Recently Y. Cheung [ 13] has shown that the bound l /2  is sharp by revisiting the Veech 

examples described at the beginning of this chapter. Assume that the number u in the Veech 

example is not Liouville, that is, there exists s ~> 2 and c > 0 such that ]c~ - p/q] > c /q '  

for all p, q. Under this assumption Cheung proved that the set of directions 0 for which 

the system is minimal but not uniquely ergodic has Hausdorff dimension 1/2. This is to 

be contrasted with an unpublished result of Boshernitzan who showed the same set has 

Hausdorff dimension 0 for a residual set of u. 

On the other hand positive Hausdorff dimension turns out to be typical as was shown 

in [56]. Recall the stratum QD i (o) and SL(2, R) ergodic invariant measure / t0  on each 

component of QD i (c~). Assume that o- :~ (9~; +) ,  ( 1, - 1; - ) ,  ( -  1, - 1, - 1, - 1; - ) ,  that is, 

the quadratic differentials do not define a flat torus, once punctured torus, or four times 

punctured sphere. 

THEOREM 3.19. For each component C of QDi (c~) there is a 6 = 6 ( C )  > 0 such that for 

pro almost all 46 E C, the set t~'0 E [0, 27r] such that r~cb has minimal but non-uniquely 

ergodic vertical foliation has Hausdorff dimension 6. 

3.5. Ergodicity of general polygonal billiards 

Now we apply Theorem 3.5 to polygonal billiards. As before, the collection of plane 

polygonal regions with n vertices and a given combinatorial type is identified with a subset 

of R 2'' and is given a subspace topology. Recall that G (Q) denotes the group generated by 

reflections in the sides of a polygon Q. 

The next result is in the spirit of Theorem 1.10 but is stronger. 
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THEOREM 3.20  ([47]). Let X be a closed subset of  the space of  billiard tables with the 

property that for any number N the set of  rational tables Q ~ X with card(G (Q)) ~ N is 

dense. Then ergodic tables in X form a dense G~ subset. 

PROOF. We can assume that X C R 2" is compact .  Each Q E X is a polygonal  region in 

the plane. We can assume that the area of  Q is 1. Let P X  be the bundle whose base space 

is X and the fiber PQ over Q 6 X is the phase space of  the corresponding billiard table Q. 

Note that P X  C X • R 2 • S l . Let tZQ be the product  of  the area measure  on Q with unit 

Lebesgue  measure on S I , and let 4~t be the billiard flow on P X. 

Choose  a sequence of  continuous functions f l ,  f2 . . . .  on P X  which, when restricted to 

each PQ, are dense in L2(pQ) .  We make the further assumption that if v is an outward 

and v' is the corresponding inward vector on the boundary  of  Q, then fi (v) -- fi  (v').  Let 

E(i, n, T) be the set of  Q 6 X for which 

f ( |  f0T /p )2 Pc, ~ fi(~bt(z)) dt - f id /~  d/~ < l /n .  
.E Q 

Let 

O/9 
E(i, n) -- U E(i, n, T), 

7"=1 
and let 

E-NNE(i,,,). 
i = !  n = l  

The set of Q E X for which 4~t restricted to P() is ergodic is precisely E - see [58]. We 

will prove that 

(I)  The sets E(i, n, T) are open, and 

(2) For a given i and n, there is an N such that E(i, n) contains all rational tables Q for 

which card(G (Q))  > N. 

Assuming these statements,  the theorem is proved as follows. The first s tatement implies 

that the sets E(i, n) are open. The second one implies that the E(i ,  n) are dense. Then E 

is a G~, and it follows from the Baire category theorem that E is dense in X. 

Statement ( 1 ) is a consequence of the next; result. 

LEMMA 3.2 1. Let T > 0 be fixed, and let f be a continuous function on P X respecting 

the boundar 3, identifications. Then 

9 z,~, -T . l ( 4 ~ , ( z ) ) d t -  . fduQ dUQ 
E ~O 

depends continuously on Q. 
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PROOF. For Q E X let a (Q) - fe ,  f d#  Q. Clearly, a (Q) depends continuously on Q. 

Replace the function f by the function f defined as follows: for z E PQ let f ( z )  = 

f ( z )  - a(Q).  Then the proof of the lemma reduces to the proof of the continuity of the 

following function: 

f[ ' l  c( Q) - -~ 
.E P() 

2 

f ( ~ t ( z ) ) d t  dl~(2. 

The difficulty is that, due to discontinuities of the billiard flow at the corners, the billiard 

orbits of close velocity vectors may diverge. Roughly speaking, this difficulty is overcome 

by deleting the set of velocity vectors whose trajectories hit a corner; this set has zero 

measure, and the time T trajectory depends continuously on the velocity vector in its 

complement. 

More specifically, for z 6 P() C PX introduce an auxiliary function l(z) as the infimum 

of the distance from the time T trajectory of vector z to the set of vertices of the polygon Q. 

Clearly l(z) depends continuously on z, and the zero level set o f / ( z ) ,  that is, the set of 

velocity vectors whose time T trajectory hits a vertex, has zero measure. 

Let e > 0 be fixed, and let M -  sup f .  For a neighborhood Ni of Q in the space of 

polygons denote by Q I the intersection of all polygons from Ni (note that Q I is not a 

polygon). We can choose Ni so small that the area of QI is at least 1 - ~/6M 2. 

Let C~ C PC) be the set of velocity vectors z for which l(=) ~> 3. Choose 3 small 

enough so that the measure of C,s is at least 1 - e / 6 M  2. Let D,5 C C,s consist of pairs 
, R 2 ", (x v) E x S I with x E QI. Note that the measure of D,~ is at least 1 - e /3M- .  Since 

Qz x S t is contained in Pk for all R E  NI, we can identify N I x  D,~ with a subset of 

PX in a natural way. Let [(R) be the infimum o f / ( - )  for - E (Pk A (Ni x D,~)). Now [ 

is continuous and l (Q)  - 6. We can find a neighborhood N2 C Ni so that for all R E N2, 

i(R) > 0. Let d (R) denote 

Then 

.E ( I 'R fq (N I • D,~ )) 

-) 

1 f(4), ( - ) )d t  d,uk. 

Id(R) - , ' ( R ) l  <~ M21~(PR \ (PR A (N, • D,~))) ~< e /3  

for each R E N2. For R E N2 the function f(dpt(z)) depends continuously on t E [0, T] 

and z E D,~. Thus we can find a neighborhood N3 of Q in which d varies by less than e /3 .  

Then, for R E N3, 

I,< o ) -  c(R)l ~ It(Q)-d(Q)l + Id(Q)-d(R)l + Id(R) -c(R)l ~ E. 

This completes the proof of continuity of c and the proof of the lemma. [E] 

To finish the proof of the theorem one needs to establish statement (2)" this statement 

follows from the next lemma. 
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LEMMA 3.22. Fix n > 0 and let f be a continuous function on PX. Choose 6 > 0 so that 

iflOI -821 < 6 then I f ( 0 1 ) -  f(02)l  < 1/2n. Let N >~ 2/6, andlet  Q be a rationalpolygon 

with I G(Q)I >~ N. Then for sufficiently large T one has" 

f ( ~ t ( z ) ) d t -  f t ,  f dlZQ]2dlzQ] 

~/2 

< 1/n. 

PROOF. Since Q is fixed we will drop the subscripts from P, G and tt. For 0 6 S I let 

u(O) - 1/IGI f.-cM,, f ( z ) d A  where dA is the area measure on Mo" here, as before, Mo is 

the invariant surface of the billiard flow in direction 8. For z ~ Mo let u'(z) -- u(O). For 

z 6 P let VT(Z) -- 1 /T  fr) f (~1(z) )d t .  The quantity which appears in the lemma is the 

norm in the space L2(p)  of the function VT -- f f dtt. We claim that 

! 

lim Ilvl - u II -- 0. 
7"---, ~,s 

To prove the claim, notice that the surfaces M0 are parametrized by 0 6 S i//G. We evaluate 

the norm by integrating first with respect to M0 and then with respect to 8" 

Ilv-r - II - IGI (v r ( - )  - u ' ( - ) ) -  dA dO 
es~ /(; Ial  ~M,, 

Let 

[ f 1 1 ( v / ( z )  - u ' ( ' ) ) -  dA 
u,r ( O ) -- -~1 . e M,, 

Then 

I I v - r -  .'ll- IlGIf~s,/. u,T(O) 2 dO] I/2 

For a given 0 the ergodicity of 4~ restricted to Mo implies that lim./._,~ wT(O)= O. 

Theorem 3.5 implies ergodicity for almost all 8. Since the functions U,T are bounded and 

converge pointwise almost everywhere to 0, they converge to 0 in norm. This completes 

the proof of the claim. 

The second claim is that 

. '-fld. ~< 1/2n. 

Now [ [u ' -  f f d/z[[ is equal to the norm of u - f f d#  in L2(SI). Let 01 and 82 be points 

in the circle at which u assumes its minimum and maximum values m and M, respectively. 

Note that u is constant on the orbits of G. The distance between neighboring points in 

a G orbit is less than 2/[G[ < 2 / N  < 6. By replacing 02 by g(02), where g 6 G, we 
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may assume that 10~ - 021 < 6. It follows from the continuity assumption on f that since 

J01-021 < 6, then Ju(Oi)-u(02)l  < 1/2n. S inceu is defined by averaging f ,  fp  f = fs, t u. 

Thus m ~< f f ~< M" hence lu(0) - f f l  <~ 1/2n and Ilu - f fll ~< 1/2n. This completes 

the proof of the claim. 

We now complete the proof of the lemma. ~ :loose T sufficiently large so that J JvT" - 

u'll ~< l /2n .  Then 

v,-f/ I1 ' /  ~<JJvT"-u Jl+ u -- f <~ 1/2n + l /2n  = l / n ,  

and we are done. l-7 

3.6. Constructive approach to polygons with er~,', :: ~ic billiard flow 

Ya. Vorobets gave a constructive description of a topologically massive set of polygons 

with ergodic billiard f l o w -  see [76]. We describe his result without proof. 

DEFINITION 3.23. Let 4)(N) be a positive function on N whose limit is zero as N --~ cx~. 

Let Q be a simple k-gon with angles c~l . . . . .  c~/, between the adjacent sides. We say that 

Q admits approximation by rational polygons at the rate 4~(N) if for every n > 0 there is 

N > n and positive integers nl . . . . .  nk, each c~)prime with N, such that I~i - rrni /Nl  < 

r (N) lor all i. 

The next theorem gives an explicit estimate of how well a polygon should be 

approximated by rational ones to guarantee ergodicity of the billiard flow. 

THEOREM 3.24. Let Q be a polygon that admits approximation by rational polygons at 

the rate 

N _ 

Then tile billiard.flow in Q is ergodic. 

The paper [76] also contains constructive proofs of other results on polygonal billiards 

and flat surfaces. In particular it gives a new proof of the quadratic upper bound on the 

number of saddle connections, a result we will discuss in more detail in the next section. 

4. Periodic orbits 

4.1. Periodic directions are dense 

Let 4) be a quadratic differential with the corresponding flat metric and/4 a tree homotopy 

class of simple closed curves. It is a standard fact that there is a geodesic representative in 
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the homotopy class. The geodesic will typically pass through zeroes of ok, making angles 

in excess of 7r at the zero. If however there is a geodesic representative that does not pass 

through a singularity, then the geodesic can be moved parallel to itself and sweeps out a 

cylinder of homotopic geodesics; we called such a cylinder a metric cylinder. 

The boundary of the metric cylinder is a union of parallel saddle connections. In the 

special case of  the flat torus, there are closed geodesics in a dense set of directions, and, of 

course, for each such direction the closed geodesics fill the surface. The main objective of 

this section is to prove the following theorem. 

THEOREM 4.1 ([52]). For any quadratic differential 4)o there is a dense set o f  directions 

0 E S I such that cko has a metric cylinder in the direction O. 

COROLLARY 4.2. For any rational billiard table there is a dense .set o f  directions with a 

periodic orbit in that direction. 

Theorem 4. l was strengthened in the following result of Boshernitzan, Galperin, Krtiger 

and Troube tzkoy-  see [12]. 

THEOREM 4.3. For an3' quadratic d~fferential Oh() there is a dense set ~?[ vectors in the 

tangent space to the sue'ace such that the orbit de termined by that vector is ~'losed. 

The theorem is proved in 1121 for rational billiards. The proof holds verbatim for the 

general case of  a quadratic differential. 

The idea of the proof of Theorem 4. I is to study limit points of the SL(2, R) orbit of 4~11. 

Recall first, that in the compactification R~:.II of the moduli space R~:.r of compact Riemann 

surfaces, we allow pinching Riemann surfaces along p <~ 3g - 3 simple closed curves to 

produce Riemann surfaces Xr with nodes or punctures. Also recall that if X,, ~ Xr in this 

compactification and 4), is a sequence of unit norm quadratic differentials on X,,, then via a 

conformal embedding of Xr \ U into X , ,  for U an arbitrary neighborhood of the punctures 

on Xr we can pass to a subsequence and assume that 4~,, converges uniformly on XCj \ U 

to a finite norm quadratic differential 4~,-~ on Xr \ U. It may or may not be the case that 

4 ~  - 0 .  

DEFINITION 4.4. A limiting quadratic differential 4 ~  on Xr is called exceptional if 

(a) some component  of Xr is a torus and 4)~ defines the flat metric on the torus, or 

(b) some component  of X0 is a punctured sphere and r has no zeroes, or 

(c) 4 ~  -= 0 on every component  of Xr 

We note that in case (b), since r has no zeroes, there must be exactly four punctures at 

which 4 ~  has a simple pole, and at any other puncture, ~ is regular. The importance of 

this definition is illustrated by the following proposition. We are indebted to Yair Minsky 

for suggesting the proof. A different proof appeared in [52] based on [5 l]. 

n 

PROPOSITION 4.5. There exists M > 0 with the property that i f  X ,  ~ Xo in R~.o and 

dp, z are unit norm holomorphic  quadratic differentials on X ,  which converge unijormly on 
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compact sets of Xo to an exceptional 4>oo on X~ ,  then for large enough n, qbn has a metric 

cylinder of length at most M. 

PROOF. In cases (a) and (b) there is a dense set of  directions such that 4 ~  has a metric 

cylinder in that direction. Choose one such metric cyl inder and a ne ighborhood of  the 

punctures such that the cylinder contains a closed curve missing that neighborhood.  The 

uniform convergence of  4~,, to 4 ~  on the complemen t  of  this ne ighborhood implies that for 

large n, 4~,, has a closed regular geodesic with some uniformly bounded length. 

Thus we can assume we are in case (c). For any s > 0 and for each loop C surrounding 

a puncture of X0 we have IC[,/,,, < e tbr large n. The loops C divide X,, into p annuli Bi 

homotopic  to the pinching curves and 4~,, ---> 4 ~  uniformly on X0 \ ( U  Bi ). Since 4 ~  = 0, 

the q~,, area of  X0 \ ( U  Bi)  goes to 0 and so the 4~,, area of U Bi goes to 1. For large n, 

for at least one annulus B, the q~,, area of B is at least l / ( 3 g -  3). This annulus has two 

boundary components  C. 

Fix such a large n. If there is no metric cyl inder in the homotopy  class of C then we 

may let c~ be the unique 4~,, geodesic homotopic  to the loop C. Then ~ passes through 

singularities, at some of  which the angle is in excess of n .  We will arrive at a contradiction. 

First assume that c~ is embedded.  For each r let N(r) be the r ne ighborhood of  o~; the set 

N(r) is convex. For small values of  r, N(r) is an annulus containing c~ in its interior 

(here is where we use that c~ is embedded) .  For all r it is a domain with nonposit ive Euler 

characteristic. Let or,. = ON(r). For all except an isolated set of  r, the curve c~,. is smooth. 

The Gauss -Bonne t  formula says that 

fN K + ~ x d s - - 2 7 r x ( N ( r ) )  <~ (). 
(r) , 

where K is the Gaussian curvature and x is the geodesic curvature. Now K = () except at 

the interior points x of N ( r ) ,  where the curvature is negative and concentrated so that the 

contribution to the first term is - m z r ,  for m a positive integer. The number  m may jump 

a bounded number  of t imes as more zeroes are included in N(r) and so is maximized  by 

some M. Thus 

f reds <~ mzr ~< Mzr 
r 

with equality in the first inequality as long as N(r) remains an annulus. Let A ( r ) =  

IlN(r)][, the area of N(r), and let L(r) denote the length of or,.. Then 

A' (r) = L(r) and L ' ( r ) = f u  x d s ~ < m z r  <~Mn', 
r 

again with equality in the first inequality as long as N(r) remains an annulus. In particular 

this gives L(r) ~ zrr, as long as N(r) remains an annulus. Now the fact that A"(r) <~ Mzr 

together with A (0) = 0 and A'(0) ~< e, gives 

A(r) <<, Mzrr 2 § Er. 
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Choose e small enough so that 

A (e) <~ 
3 g - 3  

We show that B C N(e )  and that this leads to the desired contradiction. Let r0 = e / n .  The 

first step is to notice that each component  C of  the boundary  of B must  intersect N (r0). If 

N(ro)  is an annulus this follows from the fact that L(ro) /> r07r = e and N(ro)  is convex,  

so any curve, namely  C, of length smaller than e cannot  be homotopic  to and exterior  to 

N(ro) .  If x ( N ( r o ) )  < 0, then C must intersect N(ro)  since C is homotopic  to c~. Since C 

has length at most  e the fact that C intersects N(ro)  implies that C must be contained in 

N(e(1 /Jr  + 1/2))  C N(e) .  Then both boundary  components  C of  B are contained in N(e ) ,  

so we must have B C N(e) .  But now 

IIBII ~ A(e) ~< 
( 3 g -  3) '  

which is a contradiction. 

In case c~ is not embedded,  so that ot is not in the interior of  N ( r ) ,  we lift c~ to the 

annular cover so that it is embedded.  We have the same lower bound growth est imates for 

the length of curves in a neighborhood of the lifted c~ as well as the upper bound for the 

area of the neighborhood.  This neighborhood projects to N (r). The rest of the proof  then 

goes through. [-1 

Thus in order  to prove Theorem 4.1 we will find in the SL(2, R) orbit of  r a 

sequence of quadratic differentials that converge to an exceptional limit. We will then apply 

Proposition 4.5. 

The fol lowing lemma says that the TeichmiJller flow gt extends continuously to the 

compactification. We need to add to the definition that if 4~() =- () on a Riemann surface X(), 

then gi4~() = 0 for every t. 

LEMMA 4.6.  Suppose ck, z converges unifi~rmly to ~() as above. Then fo r  every t, gt (ok,,) --~ 

gt (4)()) un(formly on compact  sets o f  the Riemann su .rface o f  gtck() as rl --~ cxz. 

PROOF. Let X() be the Riemann surface of 4~() and X,, the Riemann surface of ~b,,. For any 

component  of  X() on which 4~t) is not identically 0, choose natural coordinates z() = x()+ iy() 

for 4)o. Then, via the conformal  embedding  of compact  subsets of  XI) in X,,, one may view 

z0 as a local parameter  for X,,, n large, and 4~,, is a holomorphic  function of z(). We have, by 

assumption,  that 4~,, (z()) ~ 4~()(z()) ------ 1. If we let z,, = x,, + iy,, be the natural coordinates  

of 4),,, which are then functions of z(), we have 

z,, ( z() ) -+ z(). 

Since the TeichmiJller maps corresponding to gi4~,, and gtcko are given in the natural 

coordinates by 

X,t --'> e t /'~ -Xn Yn --> e- t  /~ , Y , ! ,  
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and 

xo ~ e t / 2 x o ,  YO ~ e - t / 2 y o ,  

it is clear that gtck,, --~ gtcko. 

If 4~0 = 0 on a component ,  then for any local parameter  z0 on a compact  set, cons idered 

via the conformal  embedding  as a local parameter  for X,,, n large, we have 4~,, (z0) --+ 0. 

Then z,,(zo) ~ 0 as well. This implies that g~4~,, ~ 0 too. [-7 

As we have remarked before, for a given genus g and n = 0 say, a stratum QD(~)  

is not a closed subset of  the entire space of  holomorphic  quadratic differentials on 

compact  surfaces of  that genus, unless the stratum is defined by every quadratic differential 

having a single zero. This is because a sequence in QD(c~) may collapse a pair of  lower 

order zeroes into a higher order zero. In addition, the degenerat ion of  Riemann surfaces 

allows limits of  quadratic differentials on which the topology of  the surface has changed.  

Because a degenerated surface need not be connected,  in the following definition we allow 

disconnected surtaces and corresponding strata. 

DEFINITION 4.7.  A stratum QD(cr') is a degenerat ion of  a stratum QD(c~) if QD(cr') 

QD(cs) and there exists a sequence 4~,, E QD(cs) on Riemann surfaces X,, E R~,~j such that 

X,, -+ XII in R v.t) and 4), converges uniformly on compact  sets to some q~x E QD(cr ) 

where 4~--~ is not identically zero. 

For any quadratic differential 4) which is not identically zero, denote by /(4)) the 

length of the shortest saddle connect ion of 4). Notice that /(.) is not cont inuous under 

degenerat ion within a fixed genus since zeroes are collapsed to higher order zeroes. That 

is to say, suppose QD(c~') is a degenerat ion of QD(c~) within the same genus and suppose 

ok,, E QD(cr) converges to a nonzero 4)~ E QD(cr'). Then 1(4),,) ~ 0 while 1(4)~) > 0. 

Now suppose a nonzero quadratic differential 4~o on a connected surface is given. For 

any closed interval I C [0, 27r] let 

El(ck{)) - {4)" 30,, ~ 0 E I, 3t,, ~ cx~, 3~,," rg,,,gt,,ro,,ck~) ~ 4)}. 

That is to say, E/  is the set of  all w limit points 4~ in the SL(2, R) orbit of  4~r where the 

limiting initial rotation angle lies in I.  Here the limiting 4~ may belong to any stratum and 

may be identically zero. Note that 0,, need not lie in I. Now Theorem 4.1 will follow from 

the next proposit ion.  

PROPOSITION 4.8.  For any cko, El(cko) contains an exceptional 4). 

PROOF. Since 1 is closed, E/  = E/(4~0) is compact .  Assume E! does not contain any 

exceptional  05" we will arrive at a contradiction. Let 

E ] - -  {4> E E," u E E , ,  QD(cr'(ck')) is not a degenerat ion of QD(cr(4))) }. 
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That is, E~ is the set of 4, 6 E~ which belong to a stratum that cannot be further degene-  

rated within E~. Let 

l = inf 1(4~). 

~Ef 

If I -- 0 choose a sequence 4~ ~ E~ with liml(4~,,) --+ 0. By passing to a subsequence we 

may assume that 4~,, ~ 4~oo E E l .  Since l -- 0 then either the Riemann surface of 4~,, has 

degenerated or some set of zeroes of 4~,, have been collapsed to a higher order zero of 4 ~ .  

In either case 4 ~  belongs to a stratum which is a degenerat ion of  the stratum containing 

4',,, a contradiction to the definition of E l .  

Suppose on the other hand that l > 0. Choose t,, --+ oo, and a sequence 0,, which 

converges to some 0~ 6 1 such that 

g1,, ro,, ~b,) -+ 4~1 E El'. 

Then 1(4~i ) ~> 1. Let y be a saddle connection of 4~1 whose length is 1(4~i ). Let 0• be such 

that the vector associated to y is vertical with respect to the structure of r0~, 4)J. As s ~ 

the length of y with respect to the metric of g, roy ckl goes to 0. Thus we can choose s such 

that the length of y with respect to the metric of g,r~,ck l  is less than 1/2.  We will have a 

contradiction if we can show that g,,rtjy ckl E E l .  Since the stratum containing 4~1 cannot 

be degenerated within Et we only need to show that g,r,~, ckl E E l .  Now by Lemma 4.6 

g., r~y 4)! - -  l i m  g,  r~jy g1,, r~,, ~(). 

! ! 

We claim that there exist sequences 0,, ~ 0, t,, ~ oe, and lp,, such that 

g., r~, gt,, --  r~/,,, g1,, r~,, . 

Canonically identify G with the unit tangent vectors to the upper half-plane with 

Id identified with the vertical vector at i =  ,f-S-l. Then SL(2, R) acts by Mobius 

transformations. Furthermore cx~ is an attracting fixed point of the geodesic flow gt. 

Therefore for each n, there is a unique rotation r_r such that r_4,,,g,r,~,gt,,  takes the 

vertical vector at i to a vector based on the imaginary axis and then for some small 0,,, and 

large t,',, r_~),, g_t,, takes this vector to the vertical vector at i, proving the claim. Finally, 

g.,.ro~, ckl - l i m  r4,,,gr,; ro , ,+~ cko, 

that is, g.,.royckl 6 E l ,  and we are done. [-1 

PROOF OF THEOREM 4.1.  Choose a closed subinterval I '  of  I contained in the interior 

of I. Then Proposition 4.8 says that there must be some exceptional 4 ) 6  El, .  By 

Proposition 4.5, for a sequence t,, ~ oe and 0,, --+ Oo ~ I ' ,  g1,, ro,, cko has a metric cylinder 

in the homotopy class of some/4,, and the length is uniformly bounded above by some M. 
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Since t,, ~ cx~ and g~,, expands horizontal lengths, the horizontal length of/3,  in the metric 

of ro,, cko goes to 0. 

Thus for some 0,', --+ 0, the quadratic differential ro,, ro,, cko has a metric cylinder in the 

class of/3,, and since 0,, + O, ~, ~ I,  for large n, we are done. D 

PROOF OF THEOREM 4.3. Let T! (S) = {(p, 0)} denote the unit tangent space to S; here 

p E S and 0 E S I. Let e > 0. We begin by fixing a uniquely ergodic direction 0 6 g l, 

provided by Theorem 3.5. Unique ergodicity implies that we can choose N large enough 

so that for all x 6 S the leaf through x of length N is e /2-dense  in S. 

There are only a finite number of saddle connections of length less than or equal to 2N 

and so their tangent vectors determine a finite set of directions. This means that we can 

choose 6 sufficiently small so that if 0' satisfies 10 - 0 ' 1  < 6, then any saddle connection 

in direction 0' has length at least 2N. We may also choose 6 < e / 2 N .  From Theorem 4.1 

we know that there is a point (x0, 00) on a closed leaf Lo 0 in a metric cylinder such that 

100-  01 < 6. Let L~ be the leaf through x0 in direction 0 extended to length N in each 

direction, or to a zero. Now we claim that in at least one of the two possible directions, 

moving distance N, the endpoint of L~ and the endpoint of Lc~ are within ~/2 of each 

other. We prove the claim. For each direction there is a segment joining the endpoints 

of L~ and L ~  such that the segment, L~, and L~j form a simply connected domain. If 

both simply connected domains contained a zero in their closure, there would be a saddle 

connection Y of length at most 2N in direction 0' satisfying 10' - 01 < 3, contradicting the 

choice of 6. Thus in one direction the simply connected domain is actually a metric triangle 

with no interior zeroes. The choice of 3 < ~ / 2 N  implies now that the endpoints are within 

/2 of each other, proving the claim. 

Since the segment of L~ is ~:/2-dense in S, the leaf L~  is ~:-dense. This can be done for 

every uniquely ergodic direction 0. The set of vectors determining uniquely ergodic direc- 

tions is dense in the whole phase space Ti S. Since e is arbitrary this completes the proof. [3 

4.2. Counting saddle connect ions and maximal  cylinders 

In this section we discuss some results on the asymptotics of the number of saddle 

connections and periodic orbits. No proofs will be given. As noted in Section 1.4, the 

number of (parallel families of) periodic orbits of length at most L for a square grows 

asymptotically as 7rL2/8~'(2). For a general rational billiard or a flat structure, the 

asymptotics are not known. However we do have quadratic upper and lower bounds. To 

be specific, given a flat structure 4~ and L > 0, let Nl(4~, L) be the number of saddle 

connections of length at most L on 4~ and N2(4~, L) the number of maximal metric 

cylinders of length at most L. The following theorem was proved in [531 and [541. 

THEOREM 4.9. For each ck there exist posit ive constants  cl -- cl (ok) and c2 -- c2(q~) such 
_ , L 2 tha tc~L  2<~N2(q5 L) ~<NI(4) ,L)~<cl  . 

Other proofs of the upper estimate are given in [76] and [17]. It is possible to prove 

precise asymptotics for generic flat structures. 
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THEOREM 4 .10  ([17]). For each component  o f  QD(cr) there exist constants c > 0 and 

s > 0 such that f o r  #o a.e. cp ~ QD(a)  one has" 

Ni (~b, L) N2(O~, L) 
lim = c  and lim = s .  

L ~  L 2 L ~ c ~  L 2 

In the next section we discuss some examples in which the quadratic asymptotics are 

established and the constants are computable. 

5. Veech groups and Veech surfaces 

5.1. Definition and examples o f  Veech groups 

In this section we discuss the groups of affine transformations associated to flat structures. 

These groups give rise to subgroups in SL(2, R). If this subgroup is a lattice in SL(2, R), 

then the flat structure has particularly nice properties. 

Let t;b be a quadratic differential on the Riemann surface X. Let Z' be a finite subset of 

X which contains the zeroes of ~b (but may be larger). Let X' = X \ Z'. Following Veech 

we give the next definition. 

DEFINITION 5. !. The affine group Aft +(4)) is the group of orientation preserving self 

homeomorphisms of X that map X' to itself and are affine with respect to the natural 

coordinates of 4). 

This means that for each point p E X' we choose coordinates - near p so that 4b -- dz 2 

and coordinates u, near f ( p )  so that 4 ) -  du~2, and in these coordinates, the map f is 

affine. We call the derivative (i.e., linear part) of that homeomorphism the derivative of f .  

It is well-defined independently of p, - and u, up to a factor of 4-I. Let a ( f )  -- +A be the 

derivative. Then by an observation of Veech [73] we have 

I f *~ l -  det(A)14~l and f Ir fls*<+)l, 
which implies that the determinant is 1 and so A is an element of G = SL(2, R). 

DEFINITION 5.2. The Veech group F(~b) is the image of Aft  "+(~b) under the derivative 

map. 

The case of most interest is when F is a lattice in G. Recall that a lattice /-' in G is a 

discrete subgroup such that G / F  has finite volume; a lattice is nonuniform if the quotient 

is not compact (see, e.g., [6]). 

We present several examples. 
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Fig. 10. Thurston's example. 

Thurston ~:~ample. The following example is essentially due to Thurston [66]. Take the 

unit square with lower left vertex at the origin and identify opposite vertical sides. Mark off 

4 points on both the top and bottom of the resulting cylinder C, dividing the top and bottom 

into equally spaced intervals and so that the points on top lie directly above the points on 

the bottom. Arrange the intervals on top into two pairs and glue each pail isometrically as 

indicated in the figure. Do the same for the bottom. 

The Euclidean metric on the rectangle extends to a quadratic differential 4~ = dz 2 on the 

glued surface X, which has genus 2. The 4 marked points on the top identify to a single 

zero of order 2; similarly for the bottom. Let X" consist of these two points. 

A complete proof that Aft +(4~) is a lattice (for a very similar example) can be found 

in [16]. Here we will just give an outline of that proof. The meromorphic function 

F (z) = ~,) (z)/~o ( 1 ), where ~ (z) is the Weierstrass function, has fundamental periods of 

2 and 2i and gives a double covering of the sphere branched over 1, (), - 1 and r Because 

F(z )  = F ( - z ) ,  it induces a meromorphic covering map f of the identification space X 

onto the sphere, branched over the same points. 

The quadratic differential 4~ is a real multiple of the pull-back under f of the quadratic 

differential ~ = d ( '2 / ( ( (2  _ 1) on the sphere. Now ~p has closed horizontal trajectories. 

The affine group A f t  +(g,) contains PSL(2,  R) as a finite index subgroup. A finite index 

subgroup HI) of PSL(2,  R)  acting on the sphere has lifts under f to maps of X and this set 

of lifts H0 forms a finite index subgroup of Af t  + (4~). Thus Af t  + (4~) is a lattice. 

We can describe two elements ofAff + (4~). Recall that a (right) Dehn twist about a simple 

closed curve ot on a surface is a homeomorphism of the surface which fixes ~ and twists 

any curve/4 crossing c~ once to the right about c~. The map (x, y) --+ (x + y, y) is a Dehn 

twist about the core curve of C and has derivative 

(' ') 
A i - -  0 1 " 
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To find a second affine map notice that the gluings force all trajectories in the vertical 

direction to be closed as well. Indeed, an upward vertical trajectory hits the top horizontal 

side of the square at some point S and continues downwards from the point T of the same 

horizontal side which is identified with S. The surface X decomposes into vertical metric 

cylinders C!, C2 of circumference 2 and height 1/4 each composed of 2 vertical strips 

glued together. This allows us to define a right Dehn twist on each Ci with derivative 

'8 ~ A 2 =  _ 1 " 

The elements AI and A2 generate an infinite index subgroup of Aff+(ck). Thurston 

showed that the subgroup generated by them contains pseudo-Anosov elements. 

DEFINITION 5.3. Two subgroups FI, F2 of G are commensurable if there is some g E G 

such that g F! g- I  n F2 has finite index in both g Fi g - I  and F2. 

The group constructed above is commensurable to SL(2, Z). Gutkin and Judge [32] 

showed that the Veech group is commensurable with SL(2, Z) if and only if the surface 

can be tiled by a Euclidean parallelogram. 

Vee~'h examples. The next set of examples are due to Veech - see [73,74]. Part of the 

motivation was to construct an example of a non-arithmetic Veech group, that is, a lattice, 

not commensurable to SL(2, Z). These examples are the flat structures ~b,, associated with 

billiards in right triangles with angles 7r/n, n >~ 5, and the set Z' consists of the zeroes 

of 4~,,. Veech proved the following theorem. 

Recall that the (p, q, r) triangle group is the index 2 subgroup of the group generated 

by reflections in the sides of a triangle with angles 7r/p, 7r/q, 7r/r in the hyperbolic plane; 

the triangle group is a subgroup of G, the group of isometries of the hyperbolic plane. If 

an angle is 0, then the vertex of the triangle is at infinity (see, e.g., [6]). 

THEOREM 5.4.  Forn odd, F(c~,) is a (2, n, oo) triangle group. For even n - -  2 m ,  F ( d p , )  

is the (m, oo, oo) triangle gnmp. In either case the Riemann surface X is the surface 

associated to 3, 2 + x ' -  1. 

One can check that for n odd the invariant surfaces for the above mentioned triangle and 

the isosceles triangle with equal angles of 7r/n are isomorphic so that they determine the 

same Veech group. 

We will not give a proof of the theorem but illustrate the main idea by an example. It is 

convenient to discuss F(4~8) as this invariant surface was already described in Figure 4. The 

flat surface built out of the triangle is the regular octagon P with opposite sides identified. 

The surface X has genus 2 and the quadratic differential ~bs has a single zero of order 4 

corresponding to the identification of all vertices of P. The counterclockwise rotation fl 
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of order 8 about the center of P is obviously affine with respect to 4~8 and is holomorphic 

with respect to X. It fixes the zero. Its derivative is 

A -- ( v / 2 / 2  - v / 2 / 2  
J x/2/2 v/2/2 ) "  

To find a second affine map, rotate the octagon so that two of the opposite sides are 

vertical. Then every horizontal trajectory is closed and the surface decomposes into two 

metric cylinders. The first cylinder C l consists of horizontal segments joining the opposite 

vertical sides. Its boundary consists of the two horizontal segments joining opposite 

vertices. Next notice that because of the identifications made, each horizontal segment 

leaving one of the nonvertical sides is also closed; it first hits the other nonvertical side 

before closing. The family of these closed trajectories determine the second metric cylinder 

C2. Its boundary includes the first boundary together with an extra closed saddle connection 

which is the top and bottom horizontal segments of the octagon. If we normalize so that 

the sides of P are of length 1, then CI has circumference c o t n / 8  -- 1 + v/2 and height 1, 

while C2 has circumference 1 + cot n'/8 = 2 -+- ~ and height x/2/2. Notice that the ratio 

of height to circumference for the first cylinder is twice that for the second one. The ratio 

of height to circumference is called the modulus of a metric cylinder. 

Then there exists an affine map which preserves each cylinder fixing the boundary 

pointwise and whose derivative is 

1 2cotrr/8) 
A2 -- () I " 

The map is the square of the Dehn twist on CI and the Dehn twist on C2. Now A i, A2 

generate a (8, oc, ec) triangle group which is not commensurable with SL(2, Z) [6]. 

The following theorem combines results from [16,75,78], and complements Theo- 

rem 5.4. 

(?2 

Ci 

C2 

Fig. !1. Veech's example. 
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THEOREM 5.5. The Veech groups of  the fiat surfaces associated with the three series of  

triangles with angles 

(re/2n, re~n, ( 2 n -  3)re/2n),  ( ( 2 k -  1)re/4k, ( 2 k -  1)re/4k, re/2k) 

and 

(kre/(2k + 1),kre/(2k + 1), re/(2k + 1)), n ~> 4, k >~ 2, 

are, respectively, 

(3, n, oo), (2k, oo, oo) and (2k + 1, oo, cxa) 

triangle groups. 

5.2. Veech dichotomy 

We now discuss some properties of F(4)). These results are all due to Veech - [73,74]. 

 9 R 2 LEMMA 5.6 Let f e Ajf  +(ok) be such that A -- a ( f )  # 4- Id, and let ~ ~ \ {01 be 

such that Ar --4-~. Then ever)' leaf in the direction corresponding to ~ is either a saddle 

conner or closed s o  that the su~'ace decomposes into the o,linders CI . . . . .  Cp in 

direction ~. Moreover there exists a positive integer k such that for each i the map f k  

preserves Ci, fixing the boundary, and is a power of  the Dehn twist of  Ci. 

PROOF 9 Clearly f fixes the foliation in direction ~. For some k, that can be assumed 

even, ./.k maps each separatrix to itself 9 Since A( = -+-~', .[k must be the identity on each 

separatrix. Each separatrix is either a saddle connection or dense in an open set. In the 

latter case, since .f.k is real analytic, .[k would be the identity in the open set, and so 

A k = 4-Id. However A is an unipotent, therefore A k -J: 4- Id. Thus every separatrix is a 

saddle connection which means that the surface decomposes into cylinders such that fk  is 

the identity on the boundary of each cylinder 9 As it is affine on each cylinder, it must be a 

power of the Dehn twist. [-1 

Veech also shows that the moduli of the cylinders are rationally related. 

LEMMA 5.7. If  a ( f )  ~ 4- Id then f is not isotopic to the identity. 

PROOF. Since  9 is affine in the natural coordinates determined by 4), it is in fact a 

Teichmtiller map determined by 4~ and some dilation 9 Teichmiiller maps are extremal 

quasiconformal maps within their homotopy class. This means that f cannot be homotopic 

to the identity, since the identity is conformal. [--1 

COROLLARY 5.8. Aff+(ck) is a subgroup of  the mapping class group of  the Riemann 

surface. 
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LEMMA 5.9. F(q~) is a discrete subgroup o f  G. 

PROOF. Suppose f,, 6 Aff+(ck) is such that a(f , , )  ~ + I d .  By passing to a subsequence 

and using the Arzela-Ascoli  theorem we can assume that f,, converges uniformly to a 

diffeomorphism f .  For large m, fm o f,,,~ ! is isotopic to the identity, which by Lemma 5.7 

gives a( fm+l  ) = a ( fm)  and so a ( fm)  = -4- Id for large m. f--1 

We now consider consequences of the assumption that F(4~) is a lattice. Begin again by 

canonically identifying G with the set of  unit tangent vectors to the upper half-plane with 

e, the identity in G, identified with the vertical vector at i = ~ 1 .  Then SL(2, R) acts on 

itself by Mobius transformations. Recall that SL(2, R) also acts on quadratic differentials. 

If we associate the identity in G to 4~, then we canonically identify the SL(2, R) orbit of 4~ 

with SL(2, R). 

THEOREM 5.10 (Veech dichotomy). Suppose F(dp) is a lattice. For any direction either 

the foliation in that direction is minimal or its every leaf is closed or a saddle connection. 

In the latter case the surface decomposes into cylinders o f  closed leaves and there is 

f ~ Aff+(ck) with a( . f )  :fi I which preserves these cylinders and acts as Dehn twists on 

them. Furthermore F is a nonuniform lattice. 

PROOF. If the foliation is not minimal there is a saddle connection in that direction. 

By rotating, we can assume the direction is vertical. Then gt4~ has a saddle connection 

which approaches 0 in length, which, under the identification, says that gt(e) leaves every 

compact set of G / F ,  where e 6 G is the identity element. Since F is a lattice this can only 

happen if the point at infinity is a fixed point for some parabolic element of F .  In particular, 

the lattice is not uniform. Such a parabolic element fixes the vertical vector ~" = [0, 1]. It 

remains to apply Lemma 5.6. [--1 

A different proof of the above theorem can be found in [751. 

Theorem 5.10 says that, just as in the case of the flat torus, there is a dichotomy: either 

the flow is minimal or every orbit is closed. Since the triangle groups are lattices, the Veech 

dichotomy applies, in view of Theorem 5.4, to billiards in the isosceles triangles with equal 

angle 7r/n; it applies to regular polygons as well. 

In fact, the analogy with the flat torus extends to ergodicity as well. 

THEOREM 5.1 1. Suppose F(dp) is a lattice. I f  theJ~bliation in a direction is minimal, then 

it is uniquely ergodic. 

PROOF. Again we can assume the direction is vertical. If the foliation is not uniquely 

ergodic then by Theorem 3.8 gtq~ eventually leaves every compact set of moduli space. 

Again this says that gte leaves every compact set of G / F  and that F has a parabolic 

element fixing infinity. By Lemma 5.6 the leaves in the vertical direction are all closed, 

which contradicts the minimality, f--1 
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5.3. Asymptot ics  

Let 4~ be a quadratic differential. Recall that we defined N2(q~, T) as the number of 

homotopy classes of closed geodesics of length less than T or equivalently, the number 

of maximal cylinders whose circumference has length at most T. By Theorem 4.9 there 

are upper and lower quadratic bounds on N2(4), T) for any 4~. Veech (op. cit.) has shown 

the following. 

THEOREM 5.1 2. Suppose F(ck) is a lattice. Then there exists a constant  c = c(49) such 

that N2(T) "~ c T  2. 

The proof is using the Eisenstein series of F(4~). The constant c has been computed in 

the case of isosceles triangles T, with angles (re~n, re~n, (n - 2)re/n).  In that case 

C B 
n (n 2 - 1 ) 

48re(n - 2)IT,, I ' 

where IT,, I is the area of the triangle. 

Gutkin and Judge [32] have given another proof of the same theorem using the mixing 

of the horocyclic flow. The constant c is given in their work in geometrical terms. 

5.4. Covers 

Constructing a flat surface M from a rational billiard polygon P it may happen that some 

of the cone angles are equal to 2re or, equivalently, the points are not zeroes of the quadratic 

differential. For example, if P is a square then M is a flat torus with no singular points. 

From the billiard view point this means that one can continuously define the extension of 

the billiard trajectory through the vertex of P; this is possible if and only if the angle is of 

the form re/n. Adding such a point to Z', the set of points that are required to be preserved 

by the affine diffeomorphisms, may change the Veech group. It is particularly important to 

keep track of removable singular points in the study of covers of flat structures. 

DEFINITION 5.13.  Let (Xi ,  cki), i -- 1,2, be flat structures and ~V' i C X i ,  i -- 1,2, sets 

that contain the zeroes of Xi.  Then (XI,4~1, Z'i) covers (X2,4)2, Z'2) if there exists a 

continuous map f ' X i  --~ X2, called a cover, that sends Z'l to Z'2 and which is given, in 

local coordinates on the complement  of these sets, by parallel translation. The multiplicity 

of a cover is the number of pre-images of a non-singular point in X2 (independent of the 

point). 

In particular, a cover defines a holomorphic cover of the Riemann surface X2 by the 

Riemann surface X i, branched over Z2. 

DEFINITION 5.14.  Two covers f i ' X I  --+ Y and f 2 " X 2  --+ Y are called isomorphic if 

there exists an isomorphism of the flat structures g" X l ~ X2 such that f l  - f2g.  Similarly 

one defines an isomorphism of covers fl  " Y --+ X I and f2" Y --+ X2. 
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The following finiteness property holds (see [75] or [31,32] for a proof). 

PROPOSITION 5.15.  A given flat structure admits a finite number o f  isomorphic classes 

o f  covers with a given multiplicity. Likewise, the number  o f  isomorphic classes o f  covers 

realizable by a given flat structure is finite. 

The next construction provides examples of covers of flat structures associated with 

billiards in polygons. Let P! and P2 be rational polygons, and assume that P2 tiles PI 

by reflections. This means that P! is partitioned into a number of isometric copies of P2, 

each two either disjoint, or having a common vertex or a common side, and if two of these 

polygons have a side in common then they are symmetric with respect to this side. 

For example, a right triangle with angle 7r/n tiles by reflections a regular n - g o n -  see 

Figure 4 for n - 8. Another example is given by the above mentioned Gutkin's almost 

integrable billiard polygons" if such a polygon is drawn on the integer square lattice in the 

plane, then it is tiled by the unit square. 

Let (Xi,  cki) be the flat structures associated with the polygon Pi, i -- 1,2, and assume 

that P2 tiles PI. Let s be the set of zeroes of 4~i (cone points with angles greater than 2n'). 

LEMMA 5.1 6. There is a set Z2 containing the zeroes ~'?(q~2 such that (Xj, 4~!, Zi ) covers 

(X2, 4~2, $2). 

PROOF. Denote by G i and G2 the groups generated by the linear parts of the reflections in 

the sides of the polygons PI and P2. Then G I C G2. Each copy of P2, involved in the tiling 

of PI, is identified with P2 by an isometry" this isometry is a composition of reflections 

in the sides of P2. These identifications, combined, define a projection p from PI to P2. 

Given a point x E PI, let a(x)  E G2 be the linear part of the isometry that takes P2 to the 

tile (a copy of P2) that contains x. 

Consider the map g" PI x Gi ---> P2 x G2 that sends (x,/4) to (p(x),  ,Scz(x)). Notice 

that the surfaces Xi are quotient spaces of Pi x G i ,  i -- 1,2, and the map g determines a 

map f ' X i  ~ X2. This is the desired cover. The multiplicity equals n /m where n is the 

number of tiles in the tiling and m -- [G2" G i ]. 

Some singular points of the first structure may project to removable singular points of 

the second one. This happens only if P-, has a vertex angle 7r/n. One then adds these points 

to S~. I--] 

Note that one does not need to add removable singular points if none of the angles of P2 

is of the form Jr/k. 

As an example to Lemma 5.16 consider again a regular octagon PI tiled by right 

triangles ~ with angle 7r/8. The flat surface M2 for the triangle is the regular octagon 

whose opposite sides are identified, while the flat surface Mz for the regular octagon is a 

union of 8 octagons with some gluings of the sides. Thus Mi covers M2 with multiplicity 8. 

The next result relates the Veech groups of flat structures one of which covers the other; 

it was obtained independently by Gutkin and Judge [31,32] and by Vorobets [75]. Recall 

that two subgroups of G are commensurate if they share a common subgroup that has a 

finite index in each. 
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THEOREM 5.17. I f ( X i ,  q~l, Z'I) c o v e r s  (X2, ~2, ~r'2) then/-'(~1) and/-'(4'2) are commen- 

surate. In particular, one o f  the groups F (ckl ) and/-'(qb2) is a lattice if  and only if  the other 

is. 

PROOF. Consider the set of triples S -- {(X, 4~, f )}  where (X, 4,) is a flat structure and 

f "  X i ---> X is a cover. Let S be the set of equivalence classes of such triples considered up 

to isomorphism of covers. 

Let g ~ Aff+(ckl) and let A - - a ( g )  be its derivative. Then f g  is a cover of the flat 

structure ( X , A - I ( c k ) )  by (Xz,4~l). This defines a right action of Aff+(ckl) on S, and 

this action descends to an action on S_ Consider the subgroup Af t  + (ckl) C Af t  + (ckl) that 

consists of the affine transformations acting trivially on S. By Proposition 5.15 S is finite, 

therefore this subgroup has finite index. Le t / ] )  C F'(4~l) consist of the derivatives of the 

elements of Af t  + (ckt)" then ~) has finite index too. 

Let g 6Aff+(dpl) and A -- a(g).  Then, for every (X, 4~, f )  6 S the flat structures (X, 4,) 

and ( X , A - I c k )  are isomorphic. Therefore A E F(4~). Since (Xl,4)l)  covers (X2, 4~2), it 

follows that /-]) C F(4)2). Thus /-]) C F(4~l) (3 F(4~2) and has finite index in F ( ~ l ) .  To 

show that / ] )  has finite index in F(q~2) as well one applies a similar argument to the set of 

covers of (X2, 4'2). l-1 

COROI,I,ARY 5. ! 8 ([36]). / f a  rational polygon P2 has no angles t?f the.fi~rn7 rr/n and P2 

tiles PI by rt:[tections then the respective Veech groups art, commensurable. 

Hubert and Schmidt [36] have shown that the Veech group associated to the isosceles 

triangle with angles 2rr/n,  (n - 2)rr/2n, (n - 2)rr/2n is not a lattice even though the 

right triangle with angle rr/tz tiles it with one reflection. This is due to the appearance 

of removable singular points that we discussed above. 

6. Interval exchange transformations 

6.1. Topological structure r 

In this section we discuss the topological structure of orbits of an interval exchange 

transformation - see Definition 1. I1; we refer to [40] for a detailed exposition; see also 

[43] and [ 15]. Without loss of generality, we may assume that end-points of all the intervals 

involved are discontinuity points of the interval exchange transformation T involved; 

otherwise adjacent segments could be joined into one and T would be an exchange of 

a smaller number of intervals. 

The following definitions provide analogs of saddle connection and metric cylinder in 

the present setting. 

DEFINITION 6.1. An orbit segment (x, Tx  . . . . .  T k-I x) is called a connecting segment of 

the interval exchange transformation T if the points x and T k - l x  are end-points of some 

intervals li and Ii but none of the intermediate points Tx ., T k-* , . .  -x is an end-point of 

any of the intervals li . . . . .  I,,. 
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DEFINITION 6.2. An interval I -- [a, b) C [0, 1) is called rigid if every positive iterate of  

T is continuous on I. 

If x is a periodic point of an interval exchange transformation T then there exists a 

maximal rigid interval containing x and consisting of periodic points with the same period. 

The end-points of this interval belong to connecting segments. 

DEFINITION 6.3. An interval exchange transformation is called generic if it has no rigid 

intervals. 

One has the following criterion for genericity. Denote by ~, the Lebesgue measure on 

[0, ~). 

LEMMA 6.4. The following properties are equivalent: 

(i) T is generic; 

(ii) T does not have periodic orbits; 

(iii) limk~,,,~ suPio.ij ..... i~ X(lio ("1 T li l  (q " ' "  A T/" li~ ) - -  O. 

PROOF. We already mentioned that if T has a periodic point then it has a rigid interval. 

Thus (i) implies (ii). If T has a rigid interval then (iii) clearly does not hold. Thus (iii) 

implies (i). 

It remains to deduce (iii) from (ii). Let E be the union of the orbits of the left end-points 

of the intervals I] . . . . .  I,,. Then (iii) is equivalent to E being dense. Assume that (iii) does 

not hold. Then the set [0, I) - E is a non-empty open set. Each component  of this set is 

an open interval, and T exchanges these components.  Since there are only finitely many 

components of a given length, each component is periodic, and (ii) does not hold. f-] 

DEFINITION 6.5. A point x is called generic if it is a continuity point for all (positive and 

negative) iterates of T. 

One can prove (see I401) that a generic point is either periodic or the closure of its orbit 

is a finite union of intervals. The latter union is called a transitive component of the interval 

exchange transformation. We refer to [40] for the following structural result. 

THEOREM 6.6. Let T be an exchange o['ll intervals. Then the interval [(), I) ,wlits into a 

finite union of  connecting segments and at most 2n - 2 di,~joint ~q~en invariant sets, each 

of  which is either a transitive or a periodic component, and each o f  these components is a 

finite union of  open intervals. 

6.2. Number of  invariant measures, l_xu'k o f  mixing 

The first result of this section concerns the number of invariant measures for an interval 

exchange transformation. Assume that T is a generic exchange of n intervals. The idea of 

the proof of the next result belongs to V. Oseledets. We follow an elegant exposition in 

[40]" see also [15] and [63]. 



Rational  billiards and  f lat  s tructures 1069 

THEOREM 6.7.  There exist at most n mutually singular T-invariant Borel probability 

measures. 

PROOF. Denote  by ~ the partition of [0, l) into the intervals Ii . . . . .  I , .  Due to condi t ion  

(iii) in L e m m a  6.4, s ~ is a one-s ided generator  for T. Therefore  an invariant m e a s u r e / ~  is 

de termined by its values on the elements  of  the parti t ions 

sek = s  ~ V Ts ~ V . . .  V T k - J s  ~, k - -  1 ,2 . . . . .  

CLAIM. /t is determined by its values on Ii . . . . .  L,. 

To prove this claim, consider  two finite partit ions 77 and v of  the interval [0, 1) into 

subintervals,  and let/z be a nonatomic  Borel probabil i ty measure  on [0, 1). Then the values 

of /~  on the e lements  of  the partition 71 v v are uniquely  determined.  Indeed, let [a, b) be 

an e lement  of  0 v v. Then a is the end-point  of  an interval from either 77 or v. Therefore  

/t([0, a))  is determined.  The same applies to / t([0,  b)),  thus / t ( [a ,  b)) is de te rmined  as 

well. 

Now the italicized claim above is proved inductively: setting ~l = ~k, v -- T k ~, one has: 

71 v v = ~k+i, and the claim follows. 

Assign a point of  an (n - l ) -d imensional  simplex 

A--{( . ,c l  . . . . . .  ,t-,,)" ~ - ~ x i - - l ]  

to a T-invariant  measure 1~ as follows: x i = / ~ ( l i ) .  We obtain a map F fi'om the space of 

invariant probabili ty measures  to A. This map is affine, cont inuous in the weak* topology 

and, as has been shown, injective. It remains to notice that if l~l . . . . .  l~k are mutual ly  

singular measures  then F(l~l) . . . . .  F(l~k) are linearly independent .  Indeed, assume that a 

relation holds: 

a t F ( / z l ) + . . . + a k F ( l l k ) - - F ( a t l ~ t  + ' " + a k k t k ) - - O .  (6.1) 

For every i = 1 . . . . .  k there is a set Ui C [0, l) such that l t i (U)  > 0 but # i ( U ) - - 0  for all 

j 7(= i. Thus (ariel + ""  + a k l ~ k ) ( U i )  - -  a i l l i ( U i  ), and (6.1) implies that ai  - -  O. [--7 

The est imate can be improved if we add the assumption of irreducibility of  the 

permutation.  Recall, an exchange of n intervals (ll . . . . .  I,,) is determined by the pair 
_ 

(i, o )  where  the vector i = (il . . . . .  i,,) consists of  the lengths ij - - I l j l  and c~ ~ S,, is 

the permutat ion corresponding to T. We say that o- is irreducible, if for no k < n one has 

c~ { 1 . . . . .  k } = { 1 . . . . .  k }. W. Veech proved the fol lowing theorem [69]. 

THEOREM 6.8 .  Assume that T is an interval exchange with irredt,'ible permutation. 

Then the number o f  mutually singular T-invariant Borel probability measures does not 

exceed n/2.  

A similar bound  was found by Katok [37] in the context  of  flows on surfaces. 

Next we discuss mixing properties of interval exchange  transformations.  
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DEFINITION 6.9.  A measure-preserving t ransformation T : ( I ,  IX)--+ (I,  IX) is called 

mixing if for every measurable  sets A and B one has: 

lim IX(7"-" (A) r3 B) - -  IX(A)IX(B). 
H .----> (X)  

The following result is due to A. Katok [38], see also [15]. 

THEOREM 6.10 .  No interval exchange transformation is mixing with respect to any 

invariant Borel probability measure IX. 

The proof  makes use of the next l emma which also has other applications in the study 

of interval exchange transformations.  Let T be an exchange of  n intervals. Consider  an 

interval J -- [a, b) C [0, 1), and denote by Tj : J ----> J the first return map. 

LEMMA 6.1 1. The map I"/ is an exchange o f  at most n 4- 2 intervals. 

PROOF. By the Poincar6 recurrence theorem, almost  every point of  J returns to J .  Denote  

by g' the union of  the discontinuity set of  T and the end-points  of  J ;  this set contains at 

most n + 1 points. Consider  the set 

$ 2 -  {x E J T j ( x ) - -  T k ( x ) a n d  T/ (x )  r S f o r / - - 0  . . . . .  k -  1" k -  1,2 . . . .  }. 

Then ,f2 is an open dense subset of  J .  

Consider  a maximal  interval J,x C $2 and let v be its left end-point.  The restriction of  

/'./ on Jo, is T k, for some k. Then an iterate T / (y) ,  / -  0 . . . . .  k, belongs to the set g'" 

otherwise J,~ can be extended beyond v. Each of the points of  Z" can appear in this way as 

an iterate of  at most one left end-point  of  a maximal  interval J,~. Thus 1"2 is the complement  

of at most n + 1 points, and Tj is an exchange of at most n + 2 intervals. [--I 

PROOF OF THEOREM 6.10.  It is enough to consider  an ergodic measure IX. Such a 

measure is either concentrated on a finite set or non-atomic.  In the former case T is not 

mixing. Assume that/z is the Lebesgue measure; we will show that the general case reduces 

to this one. Let T be an exchange of n intervals. 

Fix J C [0, 1). According to L emma  6.11, 7./ is an exchange of intervals Ji . . . . .  J~ 

where J = J I U . . .  U J~: 

TjIj,  = T / ' ; ,  i = l  . . . . .  s; s ~ < n + 2 .  (6.2) 

Set: jm = Tm( j i  ). Then, ignoring finite sets, 

s k i - I  

iO, l>-U U j / , ,  
i = I m = ( )  

indeed, the set on the right hand side is T-invariant. Denote this partition of the interval 

[0, 1) by sej. Choosing J sufficiently small, one makes sej arbitrarily fine. 
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Now one repeats the argument  for the maps Tj~, i -- 1 . . . . .  s. One has" 

Ji = U Jij, si ~< n + 2, and TJi I Jii -- Tku" 

j = I 

Set: Jig = T'" ( Jij ). Then 

si k i -  I 

U U J/;'- 
i = l j = l m = ( )  

Notice that Tl"u (Ji'.}') C J/", and therefore J{.;: C T -ku (J/") .  Thus 

,~"i ,~;i 

J/"- U J;7 c U (J/") 
j = i j = i 

Let B be a set, measurable with respect to the partition ~j .  Then 

 9 ~ .~ i  

/ = l  . i = l  

Since T is measure-preserving and s, s/ ~< n + 2, one has, for some kij,  

t~(B N V ki.i (B))  - - l , ( V  -ku (B)  N B) >~ 
1 

(n + 2) 2 kt(B). (6.3) 

Fix a set A such that 

~ ( A )  < (6 .4)  
5(n + 2) 2. 

For each positive integer N one can choose a subinterval J C [0, 1) so small that 

(i) there exists a set B, measurable with respect to the partition ~g, and such that 

~ ( A A B )  </z (A)2 ;  

(ii) the numbers  ki in (6.2) are all greater than N. 

To satisfy (ii), one chooses a point x such that the points T i (x) ,  i = 0 . . . . .  N - 1, are 

points of continuity of T. Then these points are all distinct (otherwise T would have a 

periodic orbit and a periodic component  of positive measure),  and J can be taken as a 

sufficiently small ne ighborhood of x. 

It follows from (i) that ~ ( B )  ~> ~ (A)  - ~ (A )  2. Applying (6.3) to the set B and taking 

(i) and (6.4) into account, one obtains, for some k U >/ki > N,  

lz(A N T ku (A))  >~ l z (B f-) T ki.i (B))  - 2/ , t (AAB) 
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1 
(n + 2) 2/z(B) -- " "~'z#t~) 2 /> 

1 1 

(n + 2) 2/~(A) - (n -+- 2) 2/Z(~)2"'" 
/> - 2 # ( A )  2 

t ' t />/x(A) 2 5 - (n + 2) 2 - 2 ~> 2/x(A) 2 

Since N was arbitrary, T is not mixing. 

To complete  the proof  it remains to justify the reduction of an invariant non-atomic 

probability measure p~ to the Lebesgue measure ~.. Define a map 4): [0, 1] ~ [0, 1] by 

the formula: 4~(x) = #([0 ,  x]). Then 4~ is monotone,  continuous, surjective and 4~,P, -- ~.. 

Although 4~ is not necessarily injective, it is an isomorphism between the measure  spaces 

([0, 1],/z) and ([0, 1], ~.). 

Define a map S : [0 ,  1] --+ [0, 1] by the formula: S(x )  = c k ( T ( y ) )  where y 6 4~-I (x); in 

other words, S = 4~ o T o 4~-I. To see that S is well defined, note that 4~-I (x) is either a 

point or an interval. In the latter case, ~bT4~ - I  (x) is either a point or an interval. Actually, 

the latter holds, as follows from the next equalities: 

X ( ~ T ~  -I  (x)) -- lz(Tcp -I  (x))  -- IZ(q~-' (x))  -- X({x}) --O. 

Thus S is well defined. Since S preserves the Lebesgue measure and orientation, and is 

continuous and one-to-one except for at most n points, S is an exchange of at most n 

intervals. 1-7 

Using the reduction of the billiard flow on an invariant surface to an interval exchange 

transformation described in Section 1.7, or more generally from the flow on a flat surface, 

one obtains the next c o r o l l a r y -  see [37] for details. 

COROLLARY 6.12.  For ever)., rational polygon (flat su~.'ace) the billiard f low on an 

invariant su~. ace is not mixing. 

6.3. ErgodiciO, o f  interval exchange transformations 

In this section and the next, assume that the permutation associated to the interval exchange 

is irreducible. This is an obvious necessary condition for an interval exchange to be 

uniquely ergodic. Since i l + . - .  + i,, = 1, the space of irreducible interval exchange 

transformations is the product of the (n - l ) -dimensional  simplex A ' ' - I  and the set of 

irreducible permutations S~]. Keane asked whether a typical (with respect to Lebesgue 

measure ,k on A ' ' - I  ) interval exchange is uniquely ergodic. 

THEOREM 6.13.  Let c~ be irreducible. For )~ a.e. -[ ~ A " - I  the corresponding interval 

exchange T is uniquely ergodic. 
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This theorem was first proved independently in [51] and [70]. Later entirely different 

proofs were given in [46,60,10]. It also follows from Theorem 3.5 as noted in [47]. 

Our purpose here is to give a sufficient condition for unique ergodicity due to M. 

Boshernitzan [10]. Instead of taking the first return map to a subinterval, one iterates the 

interval exchange. T k is an interval exchange of essentially kn intervals. Denote by m(k )  

the length of the shortest interval of T k. 

One defines a subset A C N -- {1,2 . . . .  } to be essential if for every l ~> 2 there exists 

c~ > 1 such that the system of equations 

(1) n i + l  > 2ni,  1 <~ i <~ l -- 1, 

(2) n! <~ otn l , 

(3) ni E A, 

has an infinite number of solutions. The Boshernitzan criterion reads as follows. 

THEOREM 6.14.  I f f o r  some e > 0 the set {k" m ( k )  >~ e / k }  is essential then T is uniquely 

ergodic. 

6.4, Asymptot ic  f lag o f  an interval exchange transformation 

In this section we describe, without proofs, recent results obtained by A. Zorich, 

M. Kontsevich and G. Forni [79-82,48,19] (these results can be also stated in the setting 

of measured foliations on surfaces). 

Consider an interval exchange transformation T, pick a generic subinterval J C [0, 1) 

and a generic point x E [0, 1). Generically, T is ergodic, therefore one has the following 

equality: 

#{i" 0 ~ < i ~ < N -  1, T i (x)  E J}  - l J I N  + o ( N ) .  

Zorich observed in computer experiments that the above error term, generically, grows as 

a power of N" error term ~ O(N'~). In other words, 

logl#{i" O ~ < i ~ < N -  1, T i (x )  6 J} - l J lNI  

log N 
=c~. (6.5) 

The exponent c~ < I depends only on the permutation associated with the interval exchange 

transformation T. This observation lead to the theory discussed in this section. 

Renormalizat ion procedure f o r  interval exchange transformations. According to Lem- 

ma 6.11, the first return map 7./ to a subinterval J C [0, 1) is again an interval exchange 

transformation, although generally on more than n intervals. If J can be chosen so that 7".i 

is an exchange on n intervals, and J is renormalized to the unit length, then the procedure 

that assigns 7./ to T determines a transformation of A ' ' -I  x S~]. An example of such a 

procedure is provided by the Rauzy induction [59]. A modification of Rauzy induction 

was constructed in [80]" and the corresponding transformation of ,6 ' ' - !  x S~] is called the 

generalized Gauss map. The set SI] decomposes into invariant subsets under the map G" 
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these subsets are called Rauzy classes. Following arguments by Veech in [70], it is proved 

in [80] that for every Rauzy class R the generalized Gauss map is ergodic with respect to 

an absolutely continuous invariant probability measure ~ on A"- I  x R.  

The generalized Gauss map plays a role, similar to that of the Teichmtiller geodesic flow 

for quadratic differentials. 

Lyapunov exponents and the asymptotic flag. G i v e n a p o i n t x  6 Jq, denoteby Bpq(X)the 
number of points in the trajectory segment x, T(x)  . . . . .  T k-I (x) that belong to Ip" here 

T j ( x ) -  Tk(x)E J is the first return point. For fixed (p ,q)  the number Bpq(X)does not 

depend on x, and we suppress x from the notation. We thus get an n x n matrix B. 

Zorich proves in [81 ] that the matrix-valued function B determines a measurable cocycle 

on A '~- I x R" 

f log+liB-' II < 

The cocycle B-J  has the following spectrum of Lyapunov exponents: 

01 > 0 2 ~ > 0 3 / > . . . / > 0 ~ > 0  . . . . .  0 ~ - - 0 e ~ > . . . / > - 0 2 > - 0 1 ,  

where g depends on the Rauzy class R and the multiplicity of zero is n - 2g. Conjecturally, 

the above spectrum of Lyapunov exponents is simple; the simplicity of 02 is proved in [ 19]. 

Given (i, o)  E A ''-~ x R, set 

8'k' 7, - 8t7, 8(e 

The cocycle B-I  determines a flag of subspaces in R", depending on a point in A ' - I  x R, 

Hi( i ,  c r ) C H 2 ( i , c ~ ) C . . . C  H e(7, c r ) C H ( 7 ,  c r ) c R " .  

The flag is defined for ~ almost every (i, or) by the following conditions: 

log II BCk~(7, ~ ) - I  vii 
lim 

log II B t/' t (~, cr ) - I v II 
lim > 0  for a l l v C H .  

k--,~ k 

= - O i  for a l i v e  Hi, v q~ H i - t ,  

Main result. Given an exchange T of n intervals, consider the following vector-valued 

function counting returns to the intervals (ll . . . . .  I,,)" 

S(x, N) = (S, (x, N) . . . . .  S,,(x, N)), 

N - I  

S i ( x , N ) :  Z x i ( T k ( x )  ), 

k --() 

where x E [0, 1) and Xi is the indicator function of the interval Ii. 

The main result by Zorich is the following theorem. 
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THEOREM 6.15.  For a f ixed Rauzy class R and # almost every interval exchange 

transformation (-[,cr) ~ A 't-l x R, the counting vector-function S ( x , N )  enjoys the 

fol lowing properties. 

For every x ~ [0, 1) one has" 

S ( x , N )  
lim = i, 

N---> o~ N 

and the one-dimensional subspace Hi is spanned by the vector i. 

For every covector f ~ A n n ( H i ) ,  f 6 A n n ( H i + l ) ,  j : 1 . . . . .  g - 1, and every x 

[0, 1) one has: 

log I(f, S(x,  N))I O i+! 
lim sup = 

U---> ~ log N Oj 

For every covector f ~ A n n ( H ) ,  IIfll- 1, and every x E [0, 1) one has: 

I(f, S(x ,  N))[ ~< Const, 

and the constant does not depend on either f ,  x or N. 

A particular case j -- 1 provides an explanation of  the experimental  observation (6.5). 

Fix k 6 { 1 . . . . .  i1} and consider the covector  

.[), - -  ( 0 . . . 0 1 0 . . . 0 )  - i / , ( !  . . .  1) 

where the first vector has l at the kth position. Since the space Hi is spanned by the vector 

7. the covector J~ lies in Ann Hi.  One has: 

((0.  . . 0 1 0 . . . 0 ) ,  S(x, N))  - Sk(x, N),  ( ( I . . . I ) , S ( x , N ) ) - - N ,  

therefore Theorem 6.15 implies that 

log ISk (x, N) - ik N[ 0 ~, 
lim sup : - 

N - - ~  l o g N  01 

This is (6 .5)wi th  J = Ik and c~ = 02/01. 

7 .  M i s c e l l a n e o u s  r e s u l t s  

7.1. Stable periodic trajectories 

The material in this subsection is taken from the paper [24]. 
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DEFINITION 7.1. A periodic billiard trajectory in a polygon Q is called stable if an 

arbitrary small perturbation of the polygon Q leads to a perturbation of this trajectory 

but not to its destruction. 

For example, a 2-periodic trajectory in a square, perpendicular to a side, is not stable: 

a deformation of the square to a quadrilateral without parallel sides destroys this trajectory. 

The Fagnano 3-periodic trajectory in an acute triangle, connecting the foot points of the 

altitudes, is stable, and the same holds for the 6-periodic trajectory which is the double of 

the Fagnano o rb i t -  see Figure 1 again. 

What follows is a criterion for the stability of periodic trajectories. Label the sides of the 

polygon Q by 1,2 . . . . .  k. Without loss of generality, assume that the periodic trajectory 

has an even number of links 2n (otherwise, double it). Then the trajectory is encoded by 

the sequence i l . . . . .  i2,, of the labels of the consecutively visited sides of Q. 

LEMMA 7.2. The trajectory is stable (f and only (f the labels in the sequence i l . . . . .  i2,, 

can be part i t ioned into pairs ~[" identical labels such that the label in each pa ir  appears  

once at an odd posit ion and once at an even one. 

PROOF. Denote by cti the angle, made by ith side of Q with a fixed direction. Unfold the 

periodic trajectory to a straight l ine/ .  Then the (2n)th copy of Q along this line, denoted 

by Q2,,, is parallel to Q and, moreover, the parallel translation t that takes Q to Q2,, 

preserves/ .  The composition of two reflections is a rotation through the angle, twice that 

between the axes of reflection. It follows that Q2,, is obtained from Q by a rotation through 

the angle 2(O~il - -  0li2 + 0(i3 . . . .  -Jr ~i,,, ~ + ~i,,, ), and this angle is a multiple of 2rr. 

Thus for the trajectory to be stable it is necessary that the variation of this tingle satisfies 

the equation 

t~ Ol i l 1 t~ Ol i 2 + (~ (]~ i .~ . . . .  + (~ Ol i 2,, I "3t- ~ Ol i 2, , - - 0  

for every perturbation of the polygon. An arbitrary variation of Q gives rise to an arbitrary 

variation of the directions of its sides. Hence the above relation holds only if its terms 

cancel pairwise, as claimed. 

Conversely, assume that the condition of the lemma on the coding of a periodic trajectory 

is satisfied. Using the same notation as before, one has: t ( l )  = I. Let Q' be a polygon, 

sufficiently close to Q, whose sides are labeled the same way as in Q. Reflect Q' 
! 

consecutively in its sides according to the sequence il . . . . .  i2,t. Then Q2,t is parallel to 

Q'. Let t' be the respective parallel translation; this translation is close to t. Choose a point 

x E I n Q N Q' and let l' be the line through x, invariant under t'. If Q' is sufficiently close 

to Q t h e n / '  is the unfolding of a billiard trajectory in Q' labeled i l . . . . .  i2,,, and since 

t '( l ' )  = 1' this trajectory is (2n)-periodic. I-1 

The lemma implies the next property of irrational billiards. 

COROLLARY 7.3. / f  the angles o f  a billiard k-gon are maximally  independent  over the 

rationals, that is, the dimension o f  the linear space over Q, generated by the angles, equals 

k - 1, then ever3, periodic billiard trajectory in this polygon is stable. 



R a t i o n a l  b i l l i a r d s  a n d  f l a t  s t r u c t u r e s  1 0 7 7  

PROOF. Consider a periodic billiard trajectory, labeled i l . . . . .  i2,,. Then 

Olil - -  Oli2 + Oli 3 . . . .  -t- 0li2, ,_ I -[- Oli2, , - -  r c m ,  m e Z. 

Rewrite this as 

(Ot i  I - -  ~ 1 )  - -  (C~i2 - -  O~l ) "t'- ( ~ i 3  - -  C~l ) . . . .  -'['- (c~i2,,_, - C~l ) + (c~i2,, - C~l) - -  7 r m .  

If the labels do not satisfy the condition of the above lemma, that is, do not cancel pairwise, 

one obtains a non-trivial relation over Q on the angles c~2 - c~l, c~3 - c~l . . . . .  c~k - c~1. It 

remains to notice that the linear space over Q, generated by these angles, coincides with 

that, generated by the angles of the billiard polygon. F1 

7.2. Encoding billiard trajectories. Polygonal billiards have zero entropy 

The encoding of billiard trajectories by the consecutively visited sides of the billiard 

polygon provides a link between billiard and symbolic dynamics. Let us consider this 

encoding in more detail. We follow the paper [23]. 

Assume that the billiard k-gon Q is simply connected (most of the results hold without 

this assumption), and its sides are labeled 1 . . . . .  k. The phase space of the billiard 

transformation T consists of the inward unit vectors whose foot points are on the boundary 

~) Q and whose forward orbits never hit a vertex of Q. Given a phase point x, denote by 

w(x) the infinite sequence of labels 1 . . . . .  k that encodes the forward T-orbit of x. Given 

an infinite word u,, denote by X (w) the set of phase points x with w(x) = w. Call a subset 

S C X(u~) a strip if all vectors in S are parallel and their foot points constitute an interval 

on a side of Q. An open strip is defined analogously. The billiard transformation takes a 

strip to a strip, preserving its width. 

x y  

/ 

Fig. 12. Encoding non-parallel billiard trajectories. 
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Start with two simple observations. First, if w(x)  = w(y)  then the vectors x and y are 

parallel. If not, the unfolded trajectories of x and y linearly diverge, so a vertex of a copy 

of Q will fall into the angle between them. The first time this happens the reflections of the 

two trajectories occur at different sides of the polygon, thus w(x)  ~ w(y) .  

Secondly, if x and y are parallel vectors in X (w) then every parallel vector, whose foot 

point lies between those of x and y also belongs to X (w). This is true because Q is simply 

connected. It follows that X(w) is the maximal strip corresponding to the word w. The 

trajectories of its boundary points come arbitrarily close to vertices of Q. 

The next theorem from [23] shows that the encoding is one-to-one on the set of non- 

periodic billiard trajectories. 

THEOREM 7.4. I f  w is a (2n)-periodic word then each vector from X ( w )  has a 2n- 

periodic trajectory and X (w) is an open ,;trip. I f  w is aperiodic then the set X (w) consist,; 

o f  at most one point. 

PROOF. Start with the first claim. Consider x 6 X (w) and unfold its trajectory to the line l. 

One claims that the (2n)th copy of Q along this trajectory denoted, as before, by Q2,,, is 

parallel to Q. If not, x and T 2'' (x) have their foot points on the same side of Q but they are 

not parallel. According to the remark, preceding the theorem, w(x)  :/: w ( T 2 " ( x ) )  which 

contradicts the periodicity of w. 

Let t be the par~dlel translation that takes Q to Q2,,. One wants to show that t ( l)  - 1. 

Suppose not. Then, for a sufficiently great integer k, the polygon t k (Q) does not intersect 1. 

This is a contradiction because this polygon is Q2,~. Finally, the strip X(u~) is open 

because a periodic trajectory stays a bounded distance from the vertices of the polygon. 

Now consider the second claim. Assume, to the contrary, that the set X (u,) is a maxilnal 

strip of non-zero width" call this strip S. Let x ~ S be the vector whose base point lies 

exactly in the middle of S. 

The proof is especially simple if Q is a rational polygon, and we start with this case. 

Since Q is rational, the trajectory of x has a finite set of directions. It follows that this 

trajectory will visit some side of Q infinitely often with some fixed direction. Call these 

points .ri : T ''i ( . r )  and let Si = T ''i (S). All these strips have the same width, therefore 

they must intersect. Suppose Si and Si intersect. Then the maximal width strips Si and 

Si,  containing si and S], respectively, are also parallel and intersect. These maximal strips 

cannot coincide, otherwise u~ would be periodic. Therefore a part of the boundary of Si 

lies inside S / ( o r  vice versa). Since the trajectories of the boundary points of the maximal 

strip Si come arbitrarily close to vertices of Q, there are vertices inside Si, a contradiction. 

Consider a general polygon Q. One cannot claim anymore that the trajectory of x visits 

some side of Q infinitely often with some fixed direction. This claim will be replaced by a 

weaker recurrence result. 

Let Y be the forward limit set of x under the mapping T. Since the width of S is pos- 

itive, the trajectories of the points from Y stay bounded distance from the vertices of Q. 

Therefore the restriction of T to Y is continuous. Note that Y is closed and bounded, hence 

compact. 

One uses the strengthened version of the Poincar6 recurrence theorem, due to Birkhoff 

(see [21]). This theorem implies that there exists a uniformly recurrent point y ~ Y. This 
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means the following: for every neighborhood U of y there is a constant C such that the 

return times n i  > 0, defined by T ni (y )  ~ U,  satisfy the inequalities ni+l --  n i  < C.  

Fix a sufficiently small e > 0 and consider the unfolded maximal strip S' of y together 

with its e neighborhood S~. Since S' is maximal, some vertices of copies of Q, unfolded 

along this strip, will fall into S~. Claim: they fall with uniformly bounded gaps into each 

of the two components of S'~ - S'. 

This claim follows from the uniform recurrence of y. More specifically, let z be the left- 

most point of S'. Then there is m > 0 such that the foot point of T m (z)  lies within e /2  of a 

vertex v of Q; let m be the first such number. Let U be a neighborhood of y such that for 

every u E U the mth iterate T m ( u ) i s  e /2  close to T m (y); such a neighborhood exists since 

T is continuous at y. Let ni  be the return times of y to U. Then Tm+''; (y) is e /2  close to 

T m (y ) ,  and therefore T m+''i (z)  is e /2  close to T m (z). It follows that the foot points of 

T m+ni (Z) lie within e from the vertex v. The claim is proved. 

To finish the proof of the theorem recall that y is a forward limit of x: there is a sequence 

ni  ~ ~ such that xi = T ''~ (x )  ~ y.  The argument, given above in the case of a rational 

polygon Q, shows that no two vectors xi and x j  are parallel. Consider the intersection of 

the unfolded maximal strip for xi with S~: - S'. Let lYi be the angle between these strips of 

width e and, say, 6. Then c~i --+ 0 as i --+ cx~. The intersection is a parallelogram which, by 

elementary geometry, contains a rectangle of width e and length li -- (8 - 8 coso~i) /s inc~i .  

Since the gaps between the vertices in S~ -- S' are uniformly bounded and li ~ o0 as 

i ~ ~ ,  a vertex will eventually appear inside the unfolded maximal strip for xi .  This is a 

contradiction. N 

As a consequence, the closure of every non-periodic billiard orbit contains a vertex of 

the billiard polygon. 

An important corollary of the theorem concerns the entropy of polygonal billiards. 

COROLLARY 7.5. The me tr ic  en tropy  ~f ' the b i l l iard  m a p p i n g  with respec t  to any  invar ian t  

measure  is zero. 

PROOF. Morally, the argument goes as follows: the "past" is uniquely determined by the 

"future", therefore the entropy vanishes. 

More specifically, consider the set Z' of words in 1 . . . . .  k that encode the billiard 

trajectories for time from -cx~ to cxz, and let S be the shift transformation of Z .  Then 

the encoding map conjugates the billiard transformation and S. By the theorem, the shift 

S has a one-sided generator, the partition into k parts according to the value of the zero 

symbol in a word. This means that for this partition r/ the a-a lgebra  of measurable sets is 

generated by ViCX~=()S - i  (~'/). It is a standard result in ergodic theory that the metric entropy 

of a transformation with a one-sided generator vanishes (see, e.g., [15]). N 

The variational principle implies that the topological entropy vanishes as well. 

The zero entropy result was proved in [9] and [63] for the canonical billiard measure, 

and in [38] for topological entropy (see also [23] and [29,30]). The latter works concerns a 

broader class of transformations, the so-called, polygon exchanges. 
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The zero entropy result implies that a number of quantities, associated with a polygonal 

billiard, grow slower than exponentially: the number of different words of length n in r ,  

the number of strips of n-periodic trajectories or periodic trajectories of length not greater 

than L, etc. Conjecturally, all these quantities have polynomial growth. 

7.3. Complexity of  billiard trajectories in rational polygons 

Consider an aperiodic billiard trajectory in a rational polygon in a direction 0. According 

to Theorem 7.4 its code w is an aperiodic sequence. Generically this sequence enjoys a 

weaker periodicity property, called quasiperiodicity, described in the next result. 

PROPOSITION 7.6. For all but countably many directions 0 each finite segment of  w 

appears in w infinitely many times. 

PROOF. Let i l . . . . .  i,, be a segment of w, and let x be a phase point on the trajectory under 

consideration whose first n successive reflections occur in the sides labeled i l . . . . .  i,,. 

There is a neighborhood U of x such that for every phase point y 6 U the first n reflections 

occur in the same sides of the polygon. By Theorem 1.8, for all but countably many 

directions 0, the trajectory is dense on the invariant surface. It follows that x returns to 

U infinitely many times, and each time the segment i l . . . . .  i,, reappears in w. [--1 

A convenient way to measure the complexity of aperiodic trajectories and their codes is 

provided by the next definition. 

DEFINITION 7.7. The complexity function p(n) of an infinite sequence u, is the number 

of distinct n-element segments of u~. 

We start with the complexity of billiard trajectories in a square; the results are due to 

Hedlund and Morse [34]. We slightly modify the encoding using only two symbols, say, 0 

and 1, to indicate that a trajectory reflects in a horizontal or a vertical side, respectively. 

THEOREM 7.8. For every aperiodic trajectory one has: p(n) = n + 1. 

The sequences with complexity p(n) = n + 1 are called Sturmian. 

PROOF. Start with the following observation. Every aperiodic trajectory is dense in the 

respective invariant torus. Therefore p(n) can be computed as the number of different 

initial segments of length n in the codes w(x) where x ranges over the phase vectors 

having a fixed direction. 

Unfold the billiard trajectory to a line l. Partition the square grid in the plane into 

"ladders", going in the south-eas t -  north-west direction, as shown in Figure 13. The nth 

symbol in the code of the trajectory is 0 or 1, according as I meets a horizontal or a vertical 

segment of nth ladder. 

Let (el, e2) be the orthonormal frame. Consider the linear projection of the plane onto 

the diagonal x + y = 0 whose kernel is parallel to the line I. Factorize the diagonal by 
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Fig. 13. Encoding bil!i,~rd trajectories in a square. 

the translation through el - e2 and identify the quotient space with the unit circle S I . The 

vertices of the first ladder are the lattice points (a, b) with a + b -- I or a + b -- 2. Since 1 

has an irrational slope the projections of the vertices of the first ladder partition the circle 

into two irrational arcs. Let T be the rotation of S I through the length of an arc, that is, 

through the projection of el.  

The number  of different initial n-segments  corresponding to the lines, parallel to l, 

equals the number  of segments into which the projections of the vert ces of the first n 

ladders partition S i . Each ladder is obtained from the first one by the translation through el. 

It follows that p ( n )  equals the cardinality of the orbit T i (0), i - -  0 . . . . .  n .  Since T is an 

irrational rotation of the unit circle all points of this orbit are distinct, and p(n)  -- n + 1. I-1 

There are generalizations of the above theorem to multi-dimensional cubes - see [3] 

and [5]. 

Next we consider the complexity of billiard trajectories in convex rational polygons. The 

following result is due to P. Hubert [35]. 

Let Q be a convex rational k-gon with the angles 7rmi/t l i ,  i = 1 . . . . .  k (mi and ni 

are coprime), and let N be the least common multiple of ni's. Let 0 be a direction such 

that there are no generalized diagonals in this direction. Consider a billiard trajectory in 

direction 0 which avoids the vertices. Let w be its coding in the alphabet {1 . . . . .  k}, and 

denote by p(n)  the complexity of w. 

THEOREM 7.9.  F o r  a l l  s u f f i c i e n t l y  g r e a t  n o n e  h a s "  p ( n )  - -  n ( k  - 2)N + 2N. 
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In particular, if Q is a square, one obtains: p ( n )  = 4(n 4- 1). This does not contradict 

the previous theorem because the encoding there was different and, actually, 4 times less 

precise: the pair of parallel sides were labeled identically. 

PROOF. Consider the invariant surface M of the billiard flow. Recall that M is the result of 

pairwise identifying the sides of 2N copies of Q. Thus M has the structure of a complex; 

denote by v, e and f the number of vertices, edges and faces. Note that e = N k  and 

f = 2 N .  The edges can be labeled by pairs ( i , j ) ,  i =  1 . . . . .  k, j - -  1 . . . . .  N, so that 

the (i, j ) th  edge corresponds to the ith side of Q. Let E C M be the union of the edges. 

The billiard trajectory under consideration can be encoded in an obvious way in the 

alphabet {(i, j)}; denote its code by W. The projection (i, j )  --+ i sends W to w (we will 

always denote by W words in the alphabet {(i, j)} and by w their projections). In other 

words, the new encoding takes into account not only the side of Q in which a reflection 

occurs but also the angle of reflection that can take finitely many values. 

Let P(n)  be the complexity of W. 

CLAIM. P ( n )  = n ( k  - 2)N + 2N f o r  a l l  n >>, 1. 

Arguing as in the proof of the preceding theorem, P(n)  equals the number of distinct 

initial segments of length n in the codes W(x) where x ranges over points of E. 

Next, given a word W,, of length n, consider the set X(W,,) consisting of the points 

x 6 E such that the initial segment of W(x) is W,,. Then, arguing as in the previous section, 

X ( W , , )  is an interval on an edge from E. 

Denote by T the first return map of the directional flow F~ to E (that is, the billiard map). 

Consider the set of initial segments of length (n + 1) in W ( x ) ,  x ~ X ( W , ) .  The word W,, 

will have different successors if and only if T" (X (W,,)) contains a vertex V of M. We say 

that W,, splits at V. 

To find P(n 4- I) - P(n) one needs to learn how many words of length n split at 

each vertex. Let V be a vertex with cone angle 27rc. Then there are c incoming saddle 

connections. Trace each one back n steps, and let W I . . . . .  W '  be the respective n-length 

words. Then T " ( X  ( W ~ ) ) c o n t a i n s  V for each c~ = 1 . . . . .  c. 

The words W '~ are all different since their (n - l)-st letters are distinct. The latter hold 

because in the polygon Q there is only one trajectory that starts at a given side in a given 

direction and goes straight to a given vertex. 

Thus all the n-length words that split at V are W I . . . . .  W".  It follows that 

P ( n  + 1) - P ( n )  --  Z c ( V ) ,  

sum over all vertices. To evaluate this sum note that the Euler characteristic of M equals 

the sum of indices of singular points of the flow F0; the index at vertex V equals 1 - c(V). 

Hence 

x(M)- Z(I-c(V))--v-~-~c(V). 

On the other hand, x ( M )  = v - e + f ,  and it follows that ~ c ( V )  = (k - 2)N. Therefore 

P ( n  + 1) - P ( n )  = (k - 2)N, and since P ( I )  = k N ,  the claim follows. 



Rational billiards and flat structures 1083 

To finish the proof  of the theorem it remains to show that P(n)  -- p (n )  for all sufficiently 

great n. Suppose not; then there exist arbitrary long words W :fi W' that are the initial 

segments of the codes of phase points x 6 E such that w = w I. 

The billiard trajectories, corresponding to W and W', start at the same side of  Q but 

make different angles with it: otherwise, since w = w', they would reflect at the same 

sides of Q and meet them at the same angles which would imply that W -- W I. Note that 

the angle between the two trajectories is bounded below by a constant c~ depending on Q 

and 0. 

Unfold the trajectories to straight lines. Since these lines linearly diverge, there is a con- 

stant m, depending on Q and c~, such that after at most m reflections of Q along either of  

the unfolded trajectories a vertex of a copy of Q will fall into the angle between the lines. 

Therefore if the length of W and W' is greater than m the codes w and w' are distinct, a 

contradiction. U] 

If Q is a general k-gon let N be the least common denominator of its 7r-rational angles 

and s be the number of its distinct rr-irrational angles. Then one has the next upper bound 

for the complexity po (n) of the billiard trajectories in Q in a fixed initial direction 0 - see 

[331. 

THEOREM 7. l 0. For all n one has: 

( p~(n)  <~ k N n  1 + -  . 

Using techniques, similar to the ones in the proof of Theorem 7.9, S. Troubetzkoy 

obtained in [67] a complexity lower bound for arbitrary polygonal billiards. Unlike the 

previous results, his theorem concerns billiard trajectories in all directions, so that p(n)  

now means the number of distinct words of length n in the coding in the alphabet { 1 . . . . .  k } 

of all billiard orbits in a k-gon. 

THEOREM 7. l I. For every polygon there exists a constant  c such that p (n)  ~ cn 2 f o r  all 

n >10. 

A similar estimate is proved in [67] for d-dimensional polyhedra with the exponent 2 

replaced by d. 

7.4. Periodic trajectories in some irrational billiards 

The following elementary argument shows that every rational polygon has a periodic 

billiard trajectory of a special kind; it was found independently by A. Stepin [24] and 

by M. Boshernitzan [l l]. 

Shoot the billiard ball in the direction, perpendicular to a side of the polygon Q. By 

Poincar6's recurrence theorem, for almost every initial position, the ball will return to the 

original side at an angle, arbitrarily close to Jr/2. Since the set of possible directions of the 
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ball is discrete in a rational polygon, this angle will be equal to re/2. After the ball bounces 

off of the side it will backtrack the same trajectory, so the trajectory is periodic. 

Surprisingly, a variation of this argument applies to some irrational polygons. This was 

observed by B. Cipra, R. Hanson and A. Kola~ [14], and then generalized by E. Gutkin 

and S. Troubetzkoy [33]. The next result is due ~"~ the former authors. 

THEOREM 7.12.  Given a right triangle with re-irrational acute angles, a lmost  every (in 

the sense o f  measure) billiard trajectory, that starts at a side adjacent  to the right angle in 

the direction, perpendicular  to this side, returns to the same side in the same direction. 

PROOF. The idea is to apply the construction which gave the invariant surfaces of the 

billiard flow in rational polygons. A significant ~lifference with the rational case is that the 

invariant surface will not be compact. 

Start with reflecting the triangle in the sides of the right angle to obtain a rhombus R. 

The study of  the billiard inside the triangle reduces to that inside the rhombus. Let ot be the 

acute angle of R. 

Consider the beam of horizontal trajectories, starting at the upper half of the vertical 

diagonal of the rhombus, and construct the invariant surface of the phase space, 

corresponding to this beam. This surface consists of rhombi, obtained from R by the action 

of the group A(R),  whose sides are pasted pairwise in an appropriate manner. Since c~ is 

re-irrational, this surface is not compact. The invariant surface is partially foliated by the 

parallel trajectories from the horizontal beam, and this foliation has an invariant transversal 

measure, "the width of a beam". 

Each rhombus involved is obtained from the original one by a rotation through the angle 

not where n 6 Z. Such a rhombus will be referred to as the nth rhombus and denoted by R,,; 

in particular, R = RI~. A trajectory from the beam under consideration may leave the nth 

Fig. 14. Proof of Theorem 7.12. 
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rhombus through a side which has one of the two possible directions. Call such a side posi- 

tive if the trajectory enters an (n + 1)-st rhombus and negative if it enters an (n - l)-st one. 

One wants to show that almost every trajectory returns to R0 (where they hit the vertical 

diagonal in the perpendicular direction). We will prove that for every e > 0 the relative 

measure of the set of trajectories that do not return to R0 is less than e. 

Let e be given. Since c~ is a'-irrational, there exists n > 0 such that the vertical projection 

of the positive side of R,, is less than e. This implies that the relative measure of the set of 

trajectories that make it to (n + l)-st rhombi is less than e. 

The rest of trajectories are bound to stay in R0, R l . . . . .  R,,; call this set of trajectories S. 

The union of the rhombi from 0 through n is compact, therefore the Poincar6 recurrence 

theorem applies to S. It follows that almost every trajectory in S is recurrent, that is, returns 

to Ro. [-1 

In fact, the above proof gives more: for every direction in a rhombus almost every billiard 

trajectory in this direction returns arbitrarily close to itself and in the same direction. 

A relevant definition is proposed in [331. 

DEFINITION 7.1 3. Given a billiard polygon Q, a direction is called recurrent if Lebesgue 

almost every phase point with this direction returns to the same direction. A polygon Q is 

called strongly recurrent if every direction is recurrent. 

In particular, every rational polygon is strongly recurrent. An argument, similar to 

the preceding proof, gives the next result from [33], applicable, in particular, to all 

parallelograms. 

THEOREM 7.14.  Let Q be a polygon whose sides have one of  the two fixed directions. 

Then Q is strongly recurrent. In particular, the billiard orbits, perpendicular to a side of  

Q, are periodic with probability one. 

7.5. A non-periodic trajectory that is not dense in the configuration space 

An example of such a trajectory was constructed by G. Galperin in [22]. 

Consider a centrally symmetric hexagon (so that its opposite sides are parallel and 

congruent) such that the bisector of the angle BAC = c~ is perpendicular to the side AF 

and the the bisector of the angle ABF --/3 is perpendicular to the side BC. 

Since the bisector of c~ is perpendicular to BC, the reflection of AB in BC is the line BF. 

Thus the reflection of any vertical segment leading to BC is parallel to BF. Similarly, 

the reflection of vertical segments in CD are parallel to AC. After another reflection the 

segment becomes vertical again. Choose a line, perpendicular to the side AB; let X, Y, Z 

be the projections on this line of the points A, E, F,  respectively. The set of vertical 

lines is identified with a horizontal segment XY, and the second iteration of the billiard 

transformation induces the exchange of the intervals XZ and ZY. An exchange of two 

intervals is equivalent to a circle rotation. For generic angles c~ and/3 each orbit of this 

circle rotation is dense. Therefore each vertical billiard trajectory is dense in the hexagon. 
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Fig. 15. Galperin's example. 

Extend the non-vert ical  sides of the hexagon to obtain a paral le logram. Then the two 

triangles, added to the hexagon,  are never visited by any vertical trajectory, that starts 

inside the original hexagon.  

Similar  but more technical considerat ions prove the fol lowing result by Galperin.  

THEOREM 7.15.  There exists an acute angle or() such that fi~r almost  every (in the sense 

o f  measure) ot E (0, otl)) the right triangle with the acute angle ot contains a non-periodic  

and not everywhere dense billiard trajectory. 
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