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Abstract

Based on [1] and [2].

Contents

1 Shallow water 2
1.1 Gauge theory formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Global symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Gauge symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Linearized shallow water 7
2.1 Lagrangian and gauge symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Flat band solution and Poincaré waves . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Edge modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Incompressible Euler 11

1



1 Shallow water

We consider a (2 + 1)-dimensional spacetime with coordinates (t,x). The height and horizontal
velocity of the fluid are described respectively by h(t,x) and u(t,x). In the Eulerian picture, we
define the covariant derivative

Dt := ∂t + (u ·∇) = ∂t + ui∂i. (1.1)

Spatial indices are lowered and raised with the Euclidean metric δij . The shallow water dynamics
is then described by1

Dth+ h(∇ · u) = 0, Dth+ h∂iu
i = 0, (1.2a)

Dtu+ g∇h− f∗u = 0, Dtu
i + g∂ih− fεijuj = 0, (1.2b)

where the dual ∗u has components (∗u)i = εijuj = (u2,−u1) and is such that ∗∗u = −u. Here g
is the gravitational acceleration and f is the Coriolis parameter. We consider them as spacetime
constants, so that they satisfy ∂µg = 0 = ∂µf . Introducing the 2-dimensional relative vorticity
ζ = ∇ · ∗u = εij∂iuj and the absolute vorticity ξ := ζ + f , we can rewrite these two equations as

∂th+∇ · (hu) = 0, ∂th+ ∂i(hu
i) = 0, (1.3a)

∂tξ +∇ · (ξu) = 0, ∂tξ + ∂i(ξu
i) = 0. (1.3b)

Equation (1.3a) follows immediately from (1.2a), while (1.3b) follows from the contraction of (1.2b)
with ∇ · ∗ and the use of the 2-dimensional identity ∇ ·

(
(u ·∇)(∗u)

)
= ∇ · (ζu). In coordinates

this reduces to εij∂iuk∂kuj = ζ∂iu
i.

Equation (1.3a) is the conservation of mass. The conserved quantity associated with equation
(1.3b) is the circulation

Γ :=

∫
S
d2x ξ =

∫
S
d2x (ζ + f) =

∫
S
d2x

(
εij∂iuj +

1

2
f∂ix

i

)
=

∫
S
d2x εij∂i

(
uj +

1

2
fxkεkj

)
.

(1.4)

The fact that this conserved quantity as actually a total derivative, and can therefore be rewritten
using Stokes’ theorem as a contour integral over C = ∂S, suggests that it is the charge of a gauge
theory. This is precisely what we want to show and study.

1.1 Gauge theory formulation

Equations (1.3) are both conservation equations ∂µJµ = ∂tJ
0 + ∇ · J = 0, for currents given

respectively by Jµ = (J0,J) = (h, hu) and J̃µ = (J̃0, J̃) = (ξ, ξu). One can note in particular that

J̃µ = qJµ, q =
ξ

h
, (1.5)

1We will often go back and forth between index-full and index-free notation.
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where q is the so-called (Rossby, or shallow water) potential vorticity. One can then deduce from
this relation and from the conservation of the two currents that Dtq =̂ 0 (note that we use the SW
EOMs to obtain this). Let us now introduce the pairs of (2 + 1)-dimensional magnetic and electric
fields

B := J0 = h, E := ∗J = h∗u, Ei := εijJj = hεijuj , (1.6a)

B̃ := J̃0 = ξ, Ẽ := ∗J̃ = ξ∗u, Ẽi := εij J̃j = ξεijuj , (1.6b)

These definitions imply in particular that the velocity profile is u = −∗E/B = −∗Ẽ/B̃, and also
that ∂i(Ei/B) = ζ. With this, the conservation equations take the form of Bianchi identities, i.e.

∂µJ
µ = 0 = ∂µJ̃

µ ⇔ ∂tB −∇ · ∗E = 0 = ∂tB̃ −∇ · ∗Ẽ. (1.7)

Let us now write the electric and magnetic fields in terms of two U(1) gauge fields as

B = εij∂iAj , Ei = ∂tAi − ∂iA0, Jµ = εµνρ∂νAρ, (1.8a)

B̃ = εij∂iÃj , Ẽi = ∂tÃi − ∂iÃ0, J̃µ = εµνρ∂νÃρ. (1.8b)

These gauge fields will now be used to build a Lagrangian.

1.1.1 Lagrangian

Let us now forget completely about all the information introduced above, and consider completely
arbitrary gauge fields (Aµ, Ãµ) and the associated electric and magnetic fields (Ei, B) and (Ẽi, B̃).
By definition we then automatically have (1.7), but at this point these equations do not imply
anything physical, since we have not provided a map between the electromagnetic fields and the
physical fields (h, ui) of the SW model.

In order to continue however, we need to assume the relation (1.6a) for the non-tilde sector. This
then automatically implies the conservation equation (1.3a). The other half of the identification,
namely (1.6b), will be obtained by combining three EOMs coming from our Lagrangian. Consider
therefore the Lagrangian (note however that we are here in the Eulerian fluid picture)

L[A, Ã] =
1

2

(
E2

B
− gB2

)
+ fA0 − εµνρAµ∂νÃρ

=
1

2

(
E2

B
− gB2

)
+ fA0 − εµνρAµ∂να∂ρβ, (1.9)

where E2 = E ·E, and where in the second line we have used the so-called Clebsch parametrization
Ãµ = ∂µχ+ α∂µβ. One should note that the first two terms in the Lagrangian are

E2

2B
− 1

2
gB2 =

1

2
hu2 − 1

2
gh2, (1.10)

and therefore represent kinetic energy minus potential energy. As explained in details in [1], these
two terms are not sufficient to produce the correct EOMs, and they need to be supplemented by
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the auxiliary fields Ãµ. The variation of the Lagrangian is

δL =
Ei

B
δEi −

(
E2

2B2
+ gB

)
δB + fδA0 − εµνρδAµ∂νÃρ − εµνρAµ

(
∂νδα∂ρβ + ∂να∂ρδβ

)
=

[
∂i

(
Ei

B

)
+ f − B̃

]
δA0 −

[
∂t

(
Ei

B

)
+ εij∂j

(
E2

2B2
+ gB

)
− εijẼj

]
δAi + εµνρ∂µAν

(
∂ραδβ − δα∂ρβ

)
+ ∂t

(
Ei

B
δAi

)
− ∂i

(
Ei

B
δA0 +

(
E2

2B2
+ gB

)
εijδAj

)
+ ∂µ

(
εµνρAν

(
δα∂ρβ − ∂ραδβ

))
.

(1.11)

The EOMs are

δA0 ⇒ ∂i

(
Ei

B

)
+ f − B̃ = ζ + f − B̃ = ξ − B̃ = 0, (1.12a)

δAi ⇒ ∂t

(
Ei

B

)
+ εij∂j

(
E2

2B2
+ gB

)
− εijẼj = 0, (1.12b)

δα ⇒ εµνρ∂µAν∂ρβ = Jµ∂µβ = 0, (1.12c)

δβ ⇒ εµνρ∂µAν∂ρα = Jµ∂µα = 0, (1.12d)

where for the second one we have used the identity uk∂juk − ζεjku
k = uk∂kuj . The first EOM tells

us that B̃ = ξ. The last two EOMs imply that ∂µα and ∂µβ are both orthogonal to Jµ, which in
turn means that εµνρ∂να∂ρβ ∝ Jµ. Since εµνρ∂να∂ρβ = εµνρ∂νÃρ = J̃µ, we therefore conclude that
J̃µ ∝ Jµ. Explicitly, we can expand the last two EOMs as

J0∂tβ + J i∂iβ = 0 ⇒ ∂tβ = − J i

J0
∂iβ, (1.13a)

J0∂tα+ J i∂iα = 0 ⇒ ∂tα = − J i

J0
∂iα. (1.13b)

Using the definition J̃µ = εµνρ∂νÃρ we finally find

J̃0 = εij∂iÃj = B̃ = ξ, (1.14a)

J̃ i = εij(∂jÃ0 − ∂tÃj)

= εij(∂jα∂tβ − ∂tα∂jβ)

=
Jk

J0
εij(∂kα∂jβ − ∂jα∂kβ)

=
J i

J0
εjk∂jα∂kβ

=
J i

J0
B̃

= ξui, (1.14b)

where we have used a non-trivial 2-dimensional identity in the middle. Using this result, the second
EOM finally becomes the shallow water equation

∂t

(
Ei

B

)
+ εij∂j

(
E2

2B2
+ gB

)
− εijẼj = εij

(
Dtuj + g∂jh− fεjku

k
)
= 0. (1.15)
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1.1.2 Hamiltonian

To obtain the Lagrangian in Hamiltonian form, we first compute the momenta to find

P i :=
∂L

∂∂tAi
=
Ei

B
, P̃ i :=

∂L

∂∂tÃi

= −εijAj , (1.16)

and then write

L =
Ei

2B
(∂tAi − ∂iA0)−

1

2
gB2 + fA0 −A0B̃ +Aiε

ijẼj

=
P i

2
(∂tAi − ∂iA0)−

1

2
gB2 + fA0 −A0B̃ +Aiε

ijẼj

= P i∂tAi +A0

(
∂iP

i + f − B̃)− 1

2

(
BP 2 + gB2

)
− ∂i(A0P

i) +Aiε
ijẼj

= P i∂tAi +A0

(
∂iP

i + f − B̃)− 1

2

(
BP 2 + gB2

)
− ∂i

(
A0P

i + Ã0P̃
i
)
+ P̃ i∂tÃi + Ã0∂iP̃

i, (1.17)

where in the last line we have also performed the Legendre transform for the tilde sector using
Aiε

ijẼj = P̃ i(∂tÃi − ∂iÃ0) (note also that B = −∂iP̃ i).

1.1.3 Global symmetries

Let us consider the global transformations δϵAµ = 0 and δϵ(α, β) = (ϵα,−ϵβ) with ∂µϵ = 0. Using
(1.11), one can then easily see that

δϵL = EOM δϵΦ+ ∂µθ
µ[δϵ] = −εµνρ∂µAν∂ρ(ϵαβ) + ∂µθ

µ[δϵ] = ∂µ

(
θµ[δϵ]− ϵαβεµνρ∂νAρ

)
. (1.18)

This gives a conserved Noether current

Nµ = αβεµνρ∂νAρ = αβJµ, ∂µN
µ =̂ 0. (1.19)

The associated Noether charge is the time component

N0 = αβJ0 = αβB, (1.20)

and for consistency one can check using the EOMs (1.13) that

∂tN
0 = (∂tαβ + α∂tβ)J

0 + αβ∂tJ
0

=̂ − J i

J0
(∂iαβ + α∂iβ)J

0 + αβ∂tJ
0

= −J i∂i(αβ) + αβ∂tJ
0

= −∂i(αβJ i) + αβ∂µJ
µ

= −∂i(αβJ i). (1.21)
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1.1.4 Gauge symmetries

Let us consider as in [2] the gauge transformations δλAµ = ∂µλ and δλÃµ = 0. They act on the
Lagrangian as

δλL = ∂t(λf)− ∂µ
(
εµνρλ∂νÃρ

)
= ∂t(λf)− ∂µ

(
λJ̃µ

)
= −∂t(λζ)− ∂i(λξu

i) = ∂µb
µ. (1.22)

Writing the variation of the Lagrangian as δL = EOM δΦ+ ∂µθ
µ[δ], we also find

EOM δλΦ =

[
∂i

(
Ei

B

)
+ f − B̃

]
∂tλ−

[
∂t

(
Ei

B

)
+ εij∂j

(
E2

2B2
+ gB

)
− εijẼj

]
∂iλ

=
(
∂tB̃ − εij∂iẼj

)
λ− ∂i

([
∂t

(
Ei

B

)
+ εij∂j

(
E2

2B2
+ gB

)
− εijẼj

]
λ

)
=

(
∂tB̃ − εij∂iẼj

)
λ− ∂i

(
λεij

(
Dtuj + g∂jh− fεjku

k
))
. (1.23)

This has the expected form

EOM δλΦ = (Noether identities)− ∂µC
µ, (1.24)

with Cµ =̂ 0. Here the Noether identity leading to the vanishing of the bulk term is the second
Bianchi identity in (1.7) and C0 = 0. The Noether current is then defined by Nµ := θµ[δλ] − bµ,
and we find the components

N0 =
Ei

B
∂iλ+ λζ = ∂i(λε

ijuj), (1.25a)

N i = −E
i

B
∂tλ−

(
E2

2B2
+ gB

)
εij∂jλ+ λξui (1.25b)

= λεij
(
Dtuj + g∂jh− fεjku

k
)
− ∂t(λε

ijuj)− εij∂j

[(
u2

2
+ gh

)
λ

]
. (1.25c)

As expected, the Noether current satisfies ∂µNµ = ∂µC
µ =̂ 0, and can be written as

Nµ = Cµ + ∂νQ
µν , (1.26)

with

Q0i = −Qi0 = λεijuj , Qij = −Qji = −λεij
(
u2

2
+ gh

)
. (1.27)

Integrating the current on a surface Σ at fixed xµ, we find

Q =

∫
Σ
(dx)µN

µ =̂

∫
Σ
(dx)µ∂νQ

µν =

∮
∂Σ

(dx)µνQ
µν . (1.28)

In particular, for a surface at fixed time we find

Q = Γλ =

∮
∂Σ

(dx)i λε
ijuj , (1.29)

which reduces to (1.4) when λ is constant.
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2 Linearized shallow water

Let us now consider the linearized shallow water system. For this, we linearize around a fixed fluid
height H by writing

h(t,x) = H + η(t,x). (2.1)

Keeping only terms linear in η and u, the covariant derivative Dt will always reduce to ∂t. The
fluid equations (1.2) become

∂tη +H(∇ · u) = 0, ∂tη +H∂iu
i = 0, (2.2a)

∂tu+ g∇η − f∗u = 0, ∂tu
i + g∂iη − fεijuj = 0. (2.2b)

The conservation equations (1.3) now become

∂tη +H(∇ · u) = 0, ∂tη +H∂iu
i = 0, (2.3a)

∂tζ + f(∇ · u) = 0, ∂tζ + f∂iu
i = 0, (2.3b)

which can be used to obtain

∂tq = 0, q(x) := Hζ − fη. (2.4)

This potential vorticity is related to the non-linear one (1.5) by

qSW =
ξ

h
=

1

H
(ζ + f)

(
1 +

η

H

)−1
≃ 1

H
(ζ + f)

(
1− η

H

)
=

q

H2
+
f

H
. (2.5)

The electric and magnetic fields (1.6) become

B = H + η =
1

f
(Hξ − q), E = H∗u, (2.6a)

B̃ = ξ, Ẽ = f∗u, (2.6b)

One can see in particular that

B̃ =
1

H
(fB + q), Ẽ =

f

H
E, (2.7)

which means, using the definitions (1.8) of the electric and magnetic fields, that up to a gauge
transformation we can write

Ãi =
1

H

(
fAi −

q

2
εijx

j
)
, Ã0 =

f

H
A0. (2.8)

Finally, let us note that in term of B and E the linearized shallow water equations (2.2) take the
form

∂tB −∇ · ∗E = 0, (2.9a)

∂t∗E − c2∇B + fE = 0, (2.9b)

where c =
√
gH.
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2.1 Lagrangian and gauge symmetries

The first equation in (2.9) is the Bianchi identity, and is therefore automatically satisfied one we
work with the potentials Aµ. The second equation needs to be derived from a variational principle.
For this, we consider the Lagrangian

L[A] =
1

2

(
E2 − c2B2 − fεµνρAµ∂νAρ + 2(fH − q)A0

)
. (2.10)

This is the Lagrangian for Maxwell–Chern–Simons theory with a non-trivial (2 + 1)-dimensional
metric and a background electric charge introduced with a source in A0. Its variation is

δL =
(
∂iE

i − fB + fH − q
)
δA0 −

(
∂tE

i + c2εij∂jB − fεijEj

)
δAi

+ ∂t(E
iδAi)− ∂i

(
EiδA0 + c2BεijδAj

)
+

1

2
∂µ

(
fεµνρAνδAρ

)
, (2.11)

and the EOMs are

δA0 ⇒ ∂iE
i − fB + fH − q = 0, (2.12a)

δAi ⇒ ∂tE
i + c2εij∂jB − fεijEj = 0. (2.12b)

Remembering that (2.6) implies ∂iEi = Hζ, the first EOM (which is the Gauss law) tells us that
q = Hζ − fη. Taking the dual of the second EOM and recalling that ∗2 = −1, we recover (2.9b).
Let us now consider the gauge transformations δλAµ = ∂µλ. They act on the Lagrangian as

δλL = −1

2
∂µ

(
fεµνρλ∂νAρ

)
+ (fH − q)∂tλ = ∂µb

µ. (2.13)

We also have

EOMδλΦ =
(
∂iE

i − fB + fH − q
)
∂tλ−

(
∂tE

i + c2εij∂jB − fεijEj

)
∂iλ

=
(
f∂tB − fεij∂iEj + ∂tq

)
λ

+ ∂t

[(
∂iE

i − fB + fH − q
)
λ
]
− ∂i

[(
∂tE

i + c2εij∂jB − fεijEj

)
λ
]
. (2.14)

For the Noether current Nµ := θµ[δλ]− bµ we find

N0 = −
(
∂iE

i − fB + fH − q
)
λ+ ∂i

[(
Ei − 1

2
fεijAj

)
λ

]
, (2.15a)

N i =
(
∂tE

i + c2εij∂jB − fεijEj

)
λ

− ∂t

[(
Ei − 1

2
fεijAj

)
λ

]
− εij∂j

[(
c2B +

1

2
fA0

)
λ

]
, (2.15b)

which is as expected of the form Nµ = Cµ + ∂νQ
µν with

Q0i = −Qi0 = λ

(
Ei − 1

2
fεijAj

)
, Qij = −Qji = −λεij

(
c2B +

1

2
fA0

)
. (2.16)
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In particular, for a surface at fixed time we find

Q = Γλ =

∮
∂Σ

(dx)i λ

(
Ei − 1

2
fεijAj

)
=

∮
∂Σ

(dx)i λHε
ij

(
uj −

1

2H
fAj

)
. (2.17)

Up to a rescaling, the global charge obtained for λ = 1 is the circulation charge (1.4) if we identify

Ai = Hεijx
j . (2.18)

In the temporal gauge where A0 = 0 and Ei = ∂tAi, this is exactly what we obtain when using the
relation Ei = Hεiju

j = Hεij∂tu
j .

2.2 Flat band solution and Poincaré waves

Let us consider the ansatz

u = ûei(ωt−k·x), η = η̂ei(ωt−k·x). (2.19)

Plugging this into the linearized shallow water equations (2.2) we obtain the eigenvalue equation 0 Hk1 Hk2
gk1 0 −if
gk2 if 0


 η̂

û1
û2

 = ω

 η̂

û1
û2

 . (2.20)

There are two types of solutions.

Flat band solution. This solution is given by

ω = 0,

 η̂

û1
û2

 =
1

f

 f

igk2
−igk1

 , q ∼ c2k2 + f2. (2.21)

Poincaré waves. These solutions are given by

ω2 = c2k2 + f2,

 η̂

û1
û2

 =

 Hk2

k1ω − ifk2
k2ω + ifk1

 , q = 0. (2.22)

Small wavelength modes propagate at c and the Coriolis parameter f appears as an effective mass
(like when we introduce a photon mass by adding a Chern–Simons term to 3d Maxwell).

2.3 Memory

Let us now consider for simplicity the case q = 0 and work in the temporal gauge A0 = 0. Let us
consider the circulation charge aspect in (2.17) and denote it by

γi := ui −
1

2H
fAi. (2.23)
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From the temporal gauge we get

ui = − 1

H
εijE

j = − 1

H
εij∂tA

j ⇒ εiju
j =

1

H
∂tAi ⇒ ζ = εij∂iuj =

1

H
∂t∂iA

i, (2.24)

and from the vanishing potential vorticity q = 0 we get η = Hζ/f . The EOM (2.2b) can then be
rewritten as

∂tui = − g
f
∂t∂i∂jA

j +
f

H
∂tAi, (2.25)

and the time evolution of the charge aspect becomes

∂tγi =
f

2H
∂tAi −

g

f
∂t∂i∂jA

j . (2.26)

For time-independent λ, we can therefore get the memory equation for the variation of the charge
∆Γλ = Γλ(t = +∞)− Γλ(t = −∞).

2.4 Edge modes

Let us consider coordinates (t, xi) = (t, x, y) and a boundary at fixed x. The variation of the
Chern–Simons action is

δS = δ

∫
M
εµνρAµ∂νAρ

= 2

∫
M
εµνρδAµ∂νAρ −

∫
∂M

εµνρnµAνδAρ

= 2

∫
M
εµνρδAµ∂νAρ +

∫
∂M

(AtδAy −AyδAt). (2.27)

as boundary conditions we could impose for example Ay|∂M = cAt. Imposing the constraint Fij = 0,
which is solved by Ai = ∂ia, the bare action becomes a surface integral

S =

∫
∂M

(∂ta−At)∂ya =

∫
∂M

(∂ta− c∂ya)∂ya, (2.28)

where we have used the boundary condition. The equation of motion is ∂t∂ya − c∂2ya = 0, or in
terms of χ = ∂ya a chiral equation ∂tχ− c∂yχ = 0 with solution χ(y + ct).

For linearized shallow water, using (2.11) we find that the on-shell variation of the action with
boundary at fixed x is

δS =
1

2

∫
∂M

(
f(AyδAt −AtδAy)− 2ExδAt − 2c2BδAy

)
. (2.29)

Let us consider the boundary conditions At|∂M = Cste and Ay|∂M = Cste. This implies that
Ey|∂M = 0 = ux|∂M , i.e. that there is no flow through the boundary. We can look for solutions
which extend the boundary conditions throughout the bulk, i.e. have At = 0 = Ay everywhere,
which also implies ux everywhere. Let us then consider the two EOMs

∂iE
i − fB = 0, ∂tE

i + c2εij∂jB − fεijEj = 0. (2.30)
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Using the ansatz

Ax(t,x) = A(x)ei(ωt−ky), (2.31)

the second EOM tells us that

∂tEx = −c2∂yB ⇒ ω2 = c2k2, (2.32)

and the first one then gives

∂xEx = fB ⇒ ω∂xA = kfA ⇒ ∂xA = ±f
c
A. (2.33)

In the northern hemisphere we have f > 0, and the normalizable solution is given by

A(x) ∝ e−x/R, (2.34)

where R = c/f is the Rossby radius of deformation. These solutions, travel in the direction of
decreasing y, meaning towards the south. They are concentrated around x = 0, and are therefore
“edge modes”.

3 Incompressible Euler

Assuming that the density is ρ = 1, the incompressible Euler equations are

∇ · u = 0, ∂iu
i = 0, (3.1a)

Dtu+∇p = 0, Dtu
i + ∂ip = 0, (3.1b)

where p is the pressure. From (3.1a), the velocity can be written as the gradient of a stream function
(or velocity potential) as

u = ∗∇ψ, ui = εij∂jψ, (3.2)

and when computing the vorticity we therefore obtain

ζ = ∇ · ∗u = εij∂iuj = −□ψ. (3.3)

Acting with ∇ · ∗ on (3.1b) and using (3.1a), we obtain the ideal vorticity equation

∂tζ +∇ · (ζu) = ∂tζ + (u ·∇)ζ = Dtζ = 0. (3.4)

This is a conservation equation ∂µJµ = ∂tJ
0 +∇ · J = 0 for a current Jµ = (J0,J) = (ζ, ζu). Let

us now introduce the electric and magnetic fields

B := J0 = ζ, E := ∗J = ζ∗u = −ζ∇ψ, (3.5)

and also write them as (1.8a). Following [4], let us now consider the Lagrangian

L[A] =
E2

2B
− pB − 1

2
εµνρAµ∂νAρ. (3.6)
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Its variation is

δL =
Ei

B
δEi −

(
E2

2B2
+ p

)
δB − 1

2
εµνρ

(
δAµ∂νAρ +Aµ∂νδAρ

)
=

[
∂i

(
Ei

B

)
−B

]
δA0 −

[
∂t

(
Ei

B

)
+ εij∂j

(
E2

2B2
+ p

)
− εijEj

]
δAi

+ ∂t

(
Ei

B
δAi

)
− ∂i

(
Ei

B
δA0 +

(
E2

2B2
+ p

)
εijδAj

)
+

1

2
∂µ

(
εµνρAνδAρ

)
. (3.7)

The EOMs are

δA0 ⇒ ∂i

(
Ei

B

)
−B = 0, (3.8a)

δAi ⇒ ∂t

(
Ei

B

)
+ εij∂j

(
E2

2B2
+ p

)
− εijEj = 0. (3.8b)
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