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Framework
Collaboration with the SHOM (Service Hydrographique et
Océanographie de la Marine).

Tolosa : Open source simulation platform for free-surface models,
applications in coastal and large-scale oceanography (Shallow
Water, multilayer SW and dispersive models).

Contributors :
. R. Baraille, M. Ciavaldini, F. Couderc, P. Noble, J.P. Vila -

Toulouse
. B. Fabrèges, K. Msheik - Lyon
. F. Marche - Montpellier
. M. Kazakova, Y. C. Hung - Chambéry
. G.L. Richard - Grenoble
. V. Duchêne - Rennes
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A brief overview of free-surface flows
λ0λ0

Free surface Euler equations

∇.v = 0 ,
∂v
∂t

+ (v.∇) v = −∇P .

v = v(x, z , t) ∈ Rd+1 × R+.

Ωt =
{

(x, z) ∈ Rd+1 , −h0 + z(x) < z < ξ(x, t)
}
.
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A brief overview of free-surface flows
λ0λ0

I - Depth-averaged models
Integration along the vertical coordinate + BC :

u(x, t) =
1
h

∫ ξ(x,t)

z(x)
vh(x, z , t)dz .

I O(1) : Shallow Water
I O(µ) : Boussinesq, Serre-Green-Naghdi,... µ =

(
h0

λ0

)2
� 1

. D. Lannes, The Water Waves problem : mathematical analysis and
asymptotics, 2013.
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A brief overview of free-surface flows
λ0λ0

II - Potential flows

v(x, z , t) = ∇φ(x, z , t) .

ψ(x, t) = φ(x, z = ξ(x, t), t) .

I DtN operator : evolution equations on ξ and ψ.

. D. Lannes, The Water Waves problem : mathematical analysis and
asymptotics, 2013.
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Application context - Issues and difficulties

Dispersive models Shallow Water

I Density stratification, low Mach/Froude regimes.

I Boundary conditions.

I Wave breaking, coupling, turbulence.

I Dynamics in the surf zone, morphodynamics.

I Fluid/structure interactions.

I Numerical modelling, operational simulation.

I Measures, deep learning, A.I.
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Focus on integrated models

Shallow Water and SGN equations
∂th + ∂x(hu) = 0 ,

∂thu + ∂x

(
hu2 +

1
2
gh2 +

1
3
h2ḧ + Π︸ ︷︷ ︸
O(µ)

)
= −gh∂xz − f︸︷︷︸

O(µ)

.

I Notations

ḣ =
Dh

Dt
= ∂th + u∂xh , ḧ =

Dḣ

Dt
.

Π =
h2

2
D[u∂xz ]

Dt
, f = h∂xz

(
ḧ

2
+

D[u∂xz ]

Dt

)
.
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Reformulation of the SGN équations (1)

Elliptic operator{
∂th + ∂x(hu) = 0 ,

(I + T [h, z ])
(
∂thu + ∂x(hu2)

)
+ gh∂xξ + hQ[h, u, z ] = 0 .

I We set :

D = gh∂xξ − (I + T [h, z ])−1 (gh∂xξ + hQ) .

I Shallow Water with source term :{
∂th + ∂(hu) = 0 ,
∂thu + ∂x(hu2) + gh∂xξ = D .

. P. Bonneton et al., A splitting approach for the fully nonlinear and weakly
dispersive Green-Naghdi model, 2011.
. D. Lannes, F. Marche, A new class of fully nonlinear and weakly dispersive
Green–Naghdi models for efficient 2D simulations, 2015.
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Reformulation of the SGN equations (2)

Hyperbolic problem with constraint ∂th + ∂x(hu) = 0 ,

∂thu + ∂x

(
hu2 +

1
2
gh2 +

1
3
h2ḧ
)

= 0 .

I We set p = hḧ.

∂thw + ∂x(huw) = p ,

where w = −h∂xu  constraint.

I The system is rewritten :

∂tV + ∂xA(V ) = Ψ(p) ,

with V =

h
u
w

 and V ∈ Ah :=
{

t(h, u,w) ∈ L2(Ω) , w = −h∂xu
}
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Reformulation of the SGN equations (2)
I General frame

U =

(
h
u

)
 V =


h
u
w
...

 ,

∂tV + ∂xA(V ) = Ψ , V ∈ Ah .

I Numerical resolution : splitting.

V n −→
S1

V ∗ −→
S2

V n+1

S1 : ∂tV + ∂xA(V ) = 0 −→ V ∗

S2 : ∂tV = Ψ −→ V n+1 = Πh[V ∗]

. E.D. Fernandez-Nieto, M. Parisot, Y. Penel, J. Sainte-Marie, A hierarchy of
dispersive layer-averaged approximations of Euler equations for free surface
flows, 2018.
. C. Escalante, T. Morales de Luna, M.J. Castro, Non-hydrostatic pressure shallow
flows : GPU implementation using finite volume and finite difference scheme, 2018.
. S. Noelle, M. Parisot, T. Tscherpel, A class of boundary conditions for
time-discrete Green–Naghdi equations with bathymetry, 2022.
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Reformulation of the SGN equations (3)

Hyperbolic problem - Relaxation
∂th + ∂xhu = 0 ,

∂thu + ∂x

(
hu2 +

1
2
gh2 +

1
3
hp

)
= 0 ,

∂thw + ∂x(huw) = p ,

w = −h∂xu  constraint

. N. Favrie, S. Gavrilyuk, A rapid numerical method for solving Serre–Green–Naghdi
equations describing long free surface gravity waves, 2017.
. V. Duchêne, Rigorous justification of the Favrie–Gavrilyuk approximation to the
Serre-Green–Naghdi model, 2019.
. C. Escalante et al., On high order ADER Discontinuous Galerkin schemes for first
order hyperbolic reformulations of nonlinear dispersive systems, 2019.
. G. Richard, An extension of the Boussinesq-type models to weakly compressible
flows, 2021.
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Reformulation of the SGN equations (3)

Hyperbolic problem - Relaxation
∂th + ∂xhu = 0 ,

∂thu + ∂x

(
hu2 +

1
2
gh2 +

1
3
hp

)
= 0 ,

∂thw + ∂x(huw) = p ,

∂thp + ∂x(hup) = −λ (w + h∂xu) , λ� 1 .

. N. Favrie, S. Gavrilyuk, A rapid numerical method for solving Serre–Green–Naghdi
equations describing long free surface gravity waves, 2017.
. V. Duchêne, Rigorous justification of the Favrie–Gavrilyuk approximation to the
Serre-Green–Naghdi model, 2019.
. C. Escalante et al., On high order ADER Discontinuous Galerkin schemes for first
order hyperbolic reformulations of nonlinear dispersive systems, 2019.
. G. Richard, An extension of the Boussinesq-type models to weakly compressible
flows, 2021.
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On dispersive properties - Motivation
Equations SGN{

∂th + ∂x(hu) = 0 ,
(I + T [h, z ])

(
∂thu + ∂x(hu2)

)
+ gh∂xξ + hQ = 0 .

I Dispersion relation :

ω2
GN(k) = gk2h0

(
1

1 + (kh0)2/3

)
.

I ωGN vs. linear theory (Stokes) : ω2
S(k) = gk tanh(kh0).

Beji & Battjes test case

. S. Beji, J. Battjes, Numerical simulation of nonlinear wave propagation over a
bar, 1994.
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Improvement of dispersive properties

Equations SGN
∂th + ∂xhu = 0 ,(
I + T [h, z ]︸ ︷︷ ︸

O(µ)

) (
∂thu + ∂x(hu2)

)
+ gh∂xξ + hQ︸︷︷︸

O(µ)

= 0 .

I ∂thu = −∂x(hu2)− gh∂xξ +O(µ).

I Introduction of the parameter α

∂thu = α∂thu + (1− α)
(
− ∂x(hu2)− gh∂xξ

)
+O(µ) .

I Momentum equation

(
I + αT [h, z ]

)(
∂thu + ∂x(hu2) +

α− 1
α

gh∂xξ

)
+

1
α
gh∂xξ + hQ1 = 0 .

. P. Bonneton et al., A splitting approach for the fully nonlinear and weakly
dispersive Green-Naghdi model, 2011.
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dispersive Green-Naghdi model, 2011.
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Improvement of dispersive properties

Equations SGN
∂th + ∂xhu = 0 ,(
I + T [h, z ]︸ ︷︷ ︸

O(µ)

) (
∂thu + ∂x(hu2)

)
+ gh∂xξ + hQ︸︷︷︸

O(µ)

= 0 .

I ∂thu = −∂x(hu2)− gh∂xξ +O(µ).

I Introduction of the parameter α

∂thu = α∂thu + (1− α)
(
− ∂x(hu2)− gh∂xξ

)
+O(µ) .

I Momentum equation

(
I + αT [h, z ]

)(
∂thu + ∂x(hu2) +

α− 1
α

gh∂xξ

)
+

1
α
gh∂xξ + hQ1 = 0 .

. P. Bonneton et al., A splitting approach for the fully nonlinear and weakly
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Improvement of dispersive properties
I Dispersion relation :

ω2
α(k) = gk2h0

(
1 + (1− α)(kh0)2/3

1 + α(kh0)2/3

)
.

. P. Bonneton et al., A splitting approach for the fully nonlinear and weakly
dispersive Green-Naghdi model, 2011.
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The Leucothéa model (LcT) - G.L. Richard, 2021

1d version, flat bottom

(LcT )



∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW ) + ∂x(huW ) =
3
2
P ,

∂t(hP) + ∂x(huP) = −a2(2W + h∂xu) .

a : acoustic speed
W : depth-averaged vertical speed
P : depth-averaged non-hydrostatic pressure

. G. Richard, An extension of the Boussinesq-type models to weakly compressible
flows, 2021.
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Model features

I Hyperbolicity

∂tV + A(V )∂xV = S(V ) ,

λ1,2 = u , λ3,4 = u ±
√
gh + a2 .

I Energy

∂tE + ∂x

(
(E +

1
2
gh2 + hP)u

)
= 0 ,

E =
1
2
hu2 +

1
2
gh2 +

2
3
hW 2 +

1
2a2 hP

2 .

I Dispersion relation

h2
0

3a2ω
4 − ω2

(
1 +

k2h2
0

3

(
1 +

gh0

a2

))
+ k2gh0 = 0 .
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Improvement of dispersive properties

Introduction of the parameter α

(LcTα)



∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW) + ∂x(huW) =
3
2
P +

α− 1
2α

gh2∂xS ,

∂t(hP) + ∂x(huP) = −a2(2W + αh∂xu) ,

∂t(hS) + ∂x(huS) = 2h∂xW +
2
α
WS .

I Formally : LcT = LcTα +O(µ2).

 Look for an energy of the form :

E =
1
2
gh2 +

1
2
hu2 +

2
3α

hW2 +
1

2αa2 hP
2 + ES .

I No energy equation for LcTα !
 Set ES = κhB2 and assume α− 1 = O(µ1/2).
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Improvement of dispersive properties

Introduction of the parameter α

(LcTα)
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∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW) + ∂x(huW) =
3
2
P +

α− 1
2α

gh2∂xS ,

∂t(hP) + ∂x(huP) = −a2(2W + αh∂xu) ,

∂t(hS) + ∂x(huS) = 2h∂xW +
2
α
WS .

I Formally : LcT = LcTα +O(µ2).

 Look for an energy of the form :

E =
1
2
gh2 +

1
2
hu2 +

2
3α

hW2 +
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2αa2 hP
2 + ES .

I No energy equation for LcTα !
 Set ES = κhB2 and assume α− 1 = O(µ1/2).
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Improvement of dispersive properties

Introduction of the parameter α
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∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW) + ∂x(huW) =
3
2
P +

α− 1
2α

gh2∂xS ,

∂t(hP) + ∂x(huP) = −a2(2W + αh∂xu) ,

∂t(hS) + ∂x(huS) = 2h∂xW +
2
α
WS .

I Formally : LcT = LcTα +O(µ2).

 Look for an energy of the form :

E =
1
2
gh2 +

1
2
hu2 +

2
3α

hW2 +
1

2αa2 hP
2 + ES .

I No energy equation for LcTα !
 Set ES = κhB2 and assume α− 1 = O(µ1/2).
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Energy conservation

Final system (B =
√
hS)

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW) + ∂x(huW) =
3
2
P +

α− 1
2α

gh3/2∂xB ,

∂t(hP) + ∂x(huP) = −a2(2W + αh∂xu) ,

∂t(hB) + ∂x(huB) = ∂x(2h3/2W) .

Energy equation

∂tE + ∂x

(
(E +

1
2
gh2 + hP + ΠB)u

)
= 0 ,

E =
1
2
hu2 +

1
2
gh2 +

2
3α

hW2 +
1

2αa2 hP
2 +

α− 1
6α2 ghB2 ,

ΠB = −2
3
α− 1
α2 gh3/2WB .
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Numerical scheme

Hyperbolic / acoustic splitting

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2 + hP) = 0 ,

∂t(hW) + ∂x(huW) =
3
2
P +

α− 1
2α

gh3/2∂xB ,

∂t(hP) + ∂x(huP) = −a2(2W + αh∂xu) ,

∂t(hB) + ∂x(huB) = ∂x(2h3/2W) .

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2) = 0 ,

∂t(hW) + ∂x(huW) = 0 ,

∂t(hP) + ∂x(huP) = 0 ,

∂t(hB) + ∂x(huB) = 0 .

∂tE + ∂x

(
(E +

1
2
gh2)u

)
= 0 .



∂th = 0 ,

∂t(hu) = −∂x(hP) ,

∂t(hW) =
3
2
P +

α− 1
2α

gh3/2∂xB ,

∂t(hP) = −a2(2W + αh∂xu) ,

∂t(hB) = ∂x(2h3/2W) .

∂tE + ∂x ((hP + ΠB)u) = 0 .



Framework

Introduction -
Context and issues
Free-surface flows
- Overview
Application
context - Issues
and difficulties
Shallow Water
equations and
dispersive models
Improvement of
dispersive
properties

Numerical
treatment of the
LcT model
The LcT model
Numerical scheme
Hyperbolic step
Acoustic step
Justification of
the LcT model

Results and
outlook

Hyperbolic step
Shallow Water with passive transport

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2) = 0 ,

∂t(hW) + ∂x(huW) = 0 ,
∂t(hP) + ∂x(huP) = 0 ,
∂t(hB) + ∂x(huB) = 0 .

∂tE + ∂x

(
(E +

1
2
gh2)u

)
= 0 .

Discrete counterpart of the energy equation :

E n+1
K ≤ E n

K −
∆t

∆x

(
GSWK+1/2 − G

SW
K−1/2

)
.

Requirements :
I Explicit methods.
I Inclusion of topography terms.
I Minimise diffusion.
I Extension in 2d on unstructured meshes.
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Hyperbolic step
Shallow Water with passive transport

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2) = 0 ,

∂t(hW) + ∂x(huW) = 0 ,
∂t(hP) + ∂x(huP) = 0 ,
∂t(hB) + ∂x(huB) = 0 .

∂tE + ∂x

(
(E +

1
2
gh2)u

)
= 0 .

Discrete counterpart of the energy equation :

E n+1
K ≤ E n

K −
∆t

∆x

(
GSWK+1/2 − G

SW
K−1/2

)
.

Requirements :
I Explicit methods.
I Inclusion of topography terms.
I Minimise diffusion.
I Extension in 2d on unstructured meshes.
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Continuous frame

I Hyperbolic systems

∂tw + ∂x f (w) = 0 , w ∈ Rd ⊂ Ω .

I Entropy inequalities :

∂tη(w) + ∂xG (w) ≤ 0 .

I Shallow water equations : w = t(h, hu).
∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2 +
1
2
gh2) = 0 .

η(w) = EP + EK =
1
2
gh2 +

1
2
hu2
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I Hyperbolic systems

∂tw + ∂x f (w) = 0 , w ∈ Rd ⊂ Ω .
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Discrete frame

I Numerical scheme

∂̃twh + ∂̃x f (wh) = 0 , wh ∈ Rd ⊂ Ω .

I Local discrete entropy estimate :

∂̃tη(wh) + ∂̃xG (wh) ≤ Rh .

−γDh .

I We take γ = max (0,Rh/Dh).

. C. Berthon et al., An easy control of the artificial numerical viscosity to get discrete
entropy inequalities when approximating hyperbolic systems of conservation
laws, 2020.
. C. Berthon et al., Improvement of the hydrostatic reconstruction scheme to get
fully discrete entropy inequalities, 2019.
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I Numerical scheme

∂̃twh + ∂̃x f (wh) = 0 , wh ∈ Rd ⊂ Ω .

I Local discrete entropy estimate :

∂̃tη(wh) + ∂̃xG (wh) ≤ Rh .

−γDh .

I We take γ = max (0,Rh/Dh).

. C. Berthon et al., An easy control of the artificial numerical viscosity to get discrete
entropy inequalities when approximating hyperbolic systems of conservation
laws, 2020.
. C. Berthon et al., Improvement of the hydrostatic reconstruction scheme to get
fully discrete entropy inequalities, 2019.
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Discrete frame

I Numerical scheme

∂̃twh + ∂̃x f (wh) = γ∂̃xxwh , wh ∈ Rd ⊂ Ω .

I Local discrete entropy estimate :

∂̃tη(wh) + ∂̃xG (wh) ≤ Rh

.

−γDh .

I We take γ = max (0,Rh/Dh).

. C. Berthon et al., An easy control of the artificial numerical viscosity to get discrete
entropy inequalities when approximating hyperbolic systems of conservation
laws, 2020.
. C. Berthon et al., Improvement of the hydrostatic reconstruction scheme to get
fully discrete entropy inequalities, 2019.
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The CPR approach
Back to the Shallow Water equations{

∂th + ∂x(hu) = 0 ,

∂t(hu) + ∂x(hu2) + h∂xφ = 0 ,
φ = g(h + z) .

I Energy equation : E =
1
2
hu2 +

1
2
gh2 + gz .

∂tE + ∂x

((
E +

1
2
gh2
)
u

)
= 0 .

Explicit version

hn+1
K = hnK −∆t∂K (hu∗)

(hu)n+1
K = (hu)nK −∆t∂upK (u, hu∗)−∆thnK∂Kφ

∗ .

I ∂K (hu∗) =
1

∆x

(
hu∗

K+1/2 − hu∗
K−1/2

)
, hu∗

K−1/2 = huK+1/2−ΠK+1/2 ,

ΠK+1/2 = γ∆th̄n
K+1/2

(
φn
K+1/2 − φn

K−1/2

∆x

)
.

I ∂Kφ
∗ =

1
∆x

(
φ∗
K+1/2 − φ∗

K−1/2
)

, φ∗
K−1/2 = φK+1/2 − ΛK+1/2 ,

ΛK+1/2 = αg∆t

(
huK+1/2 − huK−1/2

∆x

)
.

. F. Couderc, A.D., J.P. Vila, An explicit asymptotic preserving low Froude scheme
for the multilayer shallow water model with density stratification, 2017.
. A.D., Revisiting energy estimates of the CPR scheme for the Shallow Water
equations, 2023.
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The CPR approach
Back to the Shallow Water equations{

∂th + ∂x(h(u − δu)) = 0 ,
∂t(hu) + ∂x(hu(u − δu)) + h∂xφ = 0 ,

φ = g(h + z) .

I Energy equation : E =
1
2
hu2 +

1
2
gh2 + gz .

∂tE + ∂x

((
E +

1
2
gh2
)

(u − δu)

)
= − h∂xφδu .

Explicit version

hn+1
K = hnK −∆t∂K (hu∗)

(hu)n+1
K = (hu)nK −∆t∂upK (u, hu∗)−∆thnK∂Kφ

∗ .

I ∂K (hu∗) =
1

∆x

(
hu∗

K+1/2 − hu∗
K−1/2

)
, hu∗

K−1/2 = huK+1/2−ΠK+1/2 ,
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. F. Couderc, A.D., J.P. Vila, An explicit asymptotic preserving low Froude scheme
for the multilayer shallow water model with density stratification, 2017.
. A.D., Revisiting energy estimates of the CPR scheme for the Shallow Water
equations, 2023.
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1
2
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n+1
K−1/2

∆x

)
. M. Parisot, J.P. Vila, Centered-potential regularization for the advection upstream
splitting method, 2016.
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Stability conditions

Conditions

γ, α ∈ S :=
{
x ∈ R , p(x) = (ξK+1/2)2x2 − x + 1 ≤ 0

}
,

ξK+1/2 = 2
∆t

∆x

√
ghK+1/2 .

∆ ≥ 0⇔ ∆t

∆x

√
gh ≤ 1

4
(Condition CFL) .

Choice of viscosity parameters :
I 2 ∈ S : α = γ = 2 ensures stability.
I Search for optimal conditions : linear stability analysis and
numerical exploration.



Framework

Introduction -
Context and issues
Free-surface flows
- Overview
Application
context - Issues
and difficulties
Shallow Water
equations and
dispersive models
Improvement of
dispersive
properties

Numerical
treatment of the
LcT model
The LcT model
Numerical scheme
Hyperbolic step
Acoustic step
Justification of
the LcT model

Results and
outlook

Stability conditions

Conditions

γ, α ∈ S :=
{
x ∈ R , p(x) = (ξK+1/2)2x2 − x + 1 ≤ 0

}
,

ξK+1/2 = 2
∆t

∆x

√
ghK+1/2 .

∆ ≥ 0⇔ ∆t

∆x

√
gh ≤ 1

4
(Condition CFL) .

Choice of viscosity parameters :
I 2 ∈ S : α = γ = 2 ensures stability.
I Search for optimal conditions : linear stability analysis and
numerical exploration.



Framework

Introduction -
Context and issues
Free-surface flows
- Overview
Application
context - Issues
and difficulties
Shallow Water
equations and
dispersive models
Improvement of
dispersive
properties

Numerical
treatment of the
LcT model
The LcT model
Numerical scheme
Hyperbolic step
Acoustic step
Justification of
the LcT model

Results and
outlook

Stability cartography

First and second order time schemes (1/2-CFL)

I Linear stability condition : α̃ + γ ≥ 0.5.
I The (1/4-CFL) condition seems not optimal, as well as
α, γ ≥ 2.
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Stability cartography
Linear stability anlaysis vs. numercis. First and second
order space schemes, RK2 time scheme
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Small perturbation of a steady state (1)
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Small perturbation of a steady state (2)
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Acoustic step (1)

Acoustic system

∂th = 0 ,
∂t(hu) = −∂x(hP) ,

∂t(hW) =
3
2
P +

α− 1
2α

gh3/2∂xB ,

∂t(hP) = −a2(2W + αh∂xu) ,

∂t(hB) = ∂x(2h3/2W) .

I Energy equation :

∂tE + ∂x ((hP + ΠB)u) = 0 .

I Discrete counterpart :

E n+1
K ≤ E n

K −
∆t

∆x

(
GacK+1/2 − G

ac
K−1/2

)
.
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Acoustic step (1)

Acoustic system

∂th = 0 ,
∂t(hu) = −∂x(hP) ,

∂t(hW) =
3
2
P +

α− 1
2α

gh3/2∂xB ,

∂t(hP) = −a2(2W + αh∂xu) ,

∂t(hB) = ∂x(2h3/2W) .

Reformulation

∂th = 0 ,

∂tu = −1
h
∂x(hP) ,

∂tW =
3
2
P

h
+
α− 1
2α

g
√
h∂xB ,

∂tP = −a2
(
2
W
h

+ α∂xu

)
,

∂tB =
1
h
∂x(2h3/2W) .
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Acoustic step (2)
Reformulation

∂th = 0 ,

∂tu = −1
h
∂x(hP) ,

∂tW =
3
2
P

h
+
α− 1
2α

g
√
h∂xB ,

∂tP = −a2
(

2
W
h

+ α∂xu

)
,

∂tB =
1
h
∂x(2h3/2W) .

Numerical scheme

un+1
K − un

K

∆t
= − 1

hK
∂c
K (hPn+1) ,

Wn+1
K −Wn

K

∆t
=

3
2
Pn+1
K

hK
+
α− 1
2α

g
√
hK∂

∗
KB ,

Pn+1
K − Pn

K

∆t
= −a2

(
2
Wn+1

K

hK
+ α∂∗

Ku

)
,

Bn+1
K − Bn

K

∆t
=

1
hK
∂c
K (2h3/2Wn+1) .
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Acoustic step (3)
Numerical scheme

un+1
K − un

K

∆t
= − 1

hK
∂c
K (hPn+1) ,

Wn+1
K −Wn

K

∆t
=

3
2
Pn+1
K

hK
+
α− 1
2α

g
√
hK∂

∗
KB ,

Pn+1
K − Pn

K

∆t
= −a2

(
2
Wn+1

K

hK
+ α∂∗

Ku

)
,

Bn+1
K − Bn

K

∆t
=

1
hK
∂c
K (2h3/2Wn+1) .

∂∗
KB =

1
∆x

(
B∗

K+1/2 − B∗
K−1/2

)
, B∗

K+1/2 = B̄K+1/2 − cB
∆t

∆x

[
h3/2W

]
K+1/2

.

∂∗
Ku =

1
∆x

(
u∗
K+1/2 − u∗

K−1/2
)
, u∗

K+1/2 = ūK+1/2 − cu
∆t

∆x
[hP]K+1/2 .

I Step 1 : Explicit resolution of W and P.
I Step 2 : Evolution of B and u.

Stability under the CFL condition :
∆t

∆x
a
√
α ≤ 1/2.
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Justification of the LcT model
Symmetrizable systems

S0(U)∂tU +
d∑

i=1

Si (U)∂xiU + aLδ.U = G (U) .

I Classical frame : control of the solution in Hs .

I Singular limit problem - three scales : 1, a, δ, (δ =
√
µ).

Uniform control of :

Es(U) =
m∑
j=0

‖∂jtU‖2Hs−j +
s∑

j=m+1

(aδ)m−j‖∂jtU‖2Hs−j .

with respect to 0 < 1/a ≤ δ.
. V. Duchêne, Rigorous justification of the Favrie– Gavrilyuk approximation to the
Serre– Green–Naghdi model, 2019.

Objectives : (with K. Msheik and V. Duchêne)
I Application to the 2d LcT model with topography.
I Relax conditions on the initial data.

Ẽs(U) =
s∑

i+j=0

α−2
i,j ‖∂

j
tU‖2H i .
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Perspectives on the Tolosa code

Numerical analysis and schemes

∂xz = 0 mild slope full system
1D (LcT ) X X X

(LcT )consα X X 7

2D NS (LcT ) X (X) 7
(LcT )consα (X) (X) 7

Work in progress
I Numerical validations (with F. Couderc).
I Comparaisons SGN vs LcT (with F. Marche).
I Justification of the LcT model (with V. Duchêne, K. Msheik).
I Two-layer extension (with G. Richard, K. Msheik, ...).
I Wave-breaking (PHD of Y. C. Hung, Chambéry).
I High order extension (with D. Le Roux (dG), MOOD).

MERCI !
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