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Stably stratified fluids near shear flows

op+u-Vp=0

(E) 0
p(ou+u-Vu)+VP=—p ] V.u=0  for (x,y) € Tx[0,1]
where u = (u",u’) u” \y:O = u’ ‘yzl =0

= Stationary solutions of the form
(ﬁeq(y), U(y)el,}_’eq(y)) where Péq(y) = — gﬁeq(y) [hydrostatic balance]

Hydrodynamic stability from the end of the 19th century: Rayleigh, Kelvin, Taylor, Goldstein...

Questions
® Are these solutions “stable”?
® What is the asymptotic behavior of the perturbations in time, with or without dissipation?




Stably stratified fluids near shear flows

p(t,x,¥) = P, (y) + p(t, X, y)
= perturbed solutions: 4 u(z,x,y) = U(y)e, + u(z, x, y)

p(t,x,y) = P, (y) + p(t,x,y)

= linearized system 0, (f) = L(¢, x,y) <€>
u u

= eigenvalues of L(z,x,y)?

st+ikx

pt,x,y) = p(y)e
normal mode analysis, take 4 U(z, x,y) = u(y)e***

st+ikx

p(y) = p(y)e



Taylor-Goldstein Equation and Miles-Howard criterion

The triple (p(y), u(y), p(y)) satisfies, for y(y) = s + ikU(y)

YVp + peVu’ =0 Taylor-Goldstein Equation
Py + U'(y)u’) = — ikp _ , ik k*g _

= — Y Y U'(W) 1Y / Y = ()
PO = — p'— gp (PegOU) + k*pog(y)u” + ) ——(Pe MUY ) PegV)Ut

iku* + 1 =0

= introducing the variable v(y) such that u#” = v(y)4/y(y) and multiplying by v(y) (complex conj) gives

1 / 2
k*p,,NU'(y)) ]
Re<s>[ Pee V|7 + K2 v [*) + —— (Ri@) ~ —) [v|*dy =0
0 ly(y) | 4
"y stably stratified
PN , o P8 o ey STer
Ri(y) = : Richardson number’ and [°(y) = — Brunt-Vadisdla frequency’ if p, (y) <0
U'(y) Peg(Y)

Miles-Howard criterion: if Ri(y) > 1/4 = Re(s) = 0 [NO any unstable mode]




‘Rigidity’ of the Miles-Howard condition

The Miles-Howard condition

B Is sharp in the sense that the value 1/4 is sharp

B But it is only a sufficient condition (ex. Homogeneous case)
However, it persists under

B The Boussinesq approximation

B The hydrostatic approximation

B Taylor-Goldstein Equation under the Boussinesq approximation Peg¥) =p.— by, b>0

, ik k* qb
— ()" + k“u’ 1 U'(y)u” 4 > —u’ =0
r(y) r) pe
ﬁZ
X
B Taylor-Goldstein Equation under the hydrostatic (and Boussinesq) approximation x = —
5
" ik k*  qb
—(u)"+e“k“u’ 4 U'(y)u’ 4 > —u’ =0
r(y) ry) pe

IB2



homogeneous Vs non-homogeneous (Boussinesq)

Let y(v) = s+ ikU(y) = ik (U(y) l}j) = ik(U —c) where c=1islk

Homogeneous density: Rayleigh Equation NONhomogeneous density: Taylor-Goldstein
U 7 2
— ()" + k*u” u =0 — ()" + k*u¥ + U u” b u =0
(U -rc) (U - ¢) (U — ¢)?

*** Rayleigh Equation has a singularity of order 1 in (U — ¢) while TG has a singularity of order 2 ***

B This does not change under the Boussinesq approximation
B The different orders of singularity determine a different time decay of the perturbation

Let us consider the simplest shear flow, namely the Couette flow U(y) =y



The 2D Boussinesq equations around the Couette flow

* The inviscid Euler-Boussinesq equations in T X R read

op+u-Vp=0 (x,y)elIXR : D
ou+u-vVu+ Vp =—pg, V-u=0 'O_pc
* Stationary solutions (ﬁeq(y),ﬁeq(y), peq(y)) stratified Couette flow
Peg(Y) = p.— by, b>0 [stable]; 1, = (y,0) [Couette flow]; OyPeg = — 8Pey
For 0 = gp/p,. [buoyancy forcing] the linearized system in vorticity
0w+yow=—-—00—-(u-V)w
) (x,y) € TXR
00+ y0,0=p0ywy—u-Vo

p = \/ bg/p,. Brunt-Vaisdla frequency




Some mathematical results

‘Spectral stability is not enough’ and a steady state is stable if, given two spaces X, Y, perturbations decay
Ve>0 36>0 |[(p™,u"|lx <5 = ll(p(0),u@®)lly <e

B Asymptotic stability of the 2D Boussinesq system near the Couette flow, inviscid (our results in the
2D infinite strip with Coti Zelati, Dolce and Bedrossian; linear results in the finite channel by
Nualart ‘23)

B Asymptotic stability of the 2D Boussinesq system near the Couette flow with viscosity, no diffusivity
[Masmoudi et al 20]

B Construction of echo chains for the 2D Boussinesq system near the Couette flow with viscosity
[Zillinger 21]

® Enhanced dissipation with viscosity and diffusivity [Del Zotto ‘23] and transition threshold in Sobolev
[Masmoudi et al "22]

B Stability threshold for the 3D equations with viscosity and diffusivity in Sobolev [Del Zotto, in
preparation]

B Spectral instability and ill-posedness of the hydrostatic-Boussinesq equations near a shear flow
violating the Miles-Howard criterion [with Lucas Ertzbischoff and Coti Zelati, in preparation]




2D Euler equations linearized
@® [Bedrossian-Masmoudi 2015] nonlinear, Couette flow
¥ [Ionescu-Jia 2020] nonlinear, monotone shear flows

® [Wei, Zheng, Zhao 2020, after Bouchet-Morita 2010] linear, near the Kolmogorov flow (sin y,0)



A step back: the Euler equations in 2D

Lets focus on vorticity mixing : consider the Euler equations near the 2D Couette flow u_ ... = (y,0)

Like any shear flow, Couette is a steady state of 2D Euler. Q: “Is it stable to perturbation?”

= It depends pretty much on the regqularity of the perturbation:
look at the linearized 2D Euler equations in vorticity form near Couette

0,0+ yo.w =0
in the domain [ X R

a)(O,x, y) — a)in(xa y)
e Spectrally stable in L* [continuous spectrum, the imaginary axis]
e Lyapunov stable in L*

e Lyapunov unstable from H* — H>, s > 0

e Lyapunov stable from H,l( — H™! (k=zero average in x)

“Lypunov stability - time decay - requires loss of regularity”



Mixing by shear flows in the Euler equations

yA
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Fourier Dynamics
® 0w +ki,w =0
® Explicit solution @ (¢, k,n7) = w;n(n + ki)




Linear inviscid damping
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Linear enhanced dissipation with VA

Mixing by shear flows transports energy at high frequencies where the Laplacian is stronger

® Navier-Stokes at Couette Jd.w + yo. 0w = vAw
® Explicitly solvable 0,@ + ko, = —v(k*+n*)®

. @ (1, k,n — k) S elo=/K+0—kD) g < o—cur?

For more general shear flows it is more complicated, enhanced dissipation rates obtained
through suitable modified energy functionals (hypocoercivity method)



Back to Boussinesq and linear dynamics in the infinite strip [ X |

Theorem [RB, Coti Zelati, Dolce 20] Let [/ > 1/2. Define

~o_ [28+1 1 \1"?
ST g1 P\ -1/

Then there hold the linear inviscid damping estimates

64)] 2+ [ O] 2 S Ca®) ™ [l 2 + 62 ]

o (8)l 2 S C(0) 2 [[|wEll o+ 10212

OV

and the shear-buoyancy instability estimate

T . -
ok (Ol + 1900 2 2 g+ 1102 ]

for everyt > 0.




** density induces creation of vorticity and hence an L growth in time **
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Shearing effect at later times Growth of the vorticity



Linear enhanced dissipation

THEOREM 2 (Linear enhanced dissipation). Let 8 > 1/2, assume that v, k > 0 satisfy

max{v, K} <451

min{v, K}

and define the strictly positive number

Ay = min{v, Kk} (1

1 1 max{v, /{})
48 48 min{v,k} )

Then ) Y . }
o Ol + (10402 S Oty A2 [z, + oz

= Transition threshold '/* in Sobolev spaces H*® [Zhai & Zhao ‘22] while for the homogeneous case v

This is related to the asymptotic 7 ~ 1717 = ||f.]| S /()e-ar’ S0 and p1PH0 = 12

1/3



1 —» U=

o Symmetrization and energy method

H

- |
U‘E 77 7 7 7 7 7 7 7
x

Q(t,2,y) = o(t, X, y)
The transport yd, suggests changing coordinate 7z = x — yf and variables § O(7,z,y) = 0(¢, x, y)

V(. z,y) =yt x,y)
In this moving frame A;¥ = where A; =0_ + (dy - t(')z)2 [in Fourier p = k” + (7 — k)] and

(&)= (L o)) 26)- (G 50
"\ ©® —ikp~! 0 S "\©® —ikp~!  —px S

—~ -~

v=k=0 v,xk>0

7 — (p/kZ)—1/4Q

Symmetric variables:
’ { 0 = ikp(pIKY) "0



Energy in the moving frame - inviscid

In terms of the symmetric variables

we can define the energy functional

| 1 od.p
Et k) =—||ZI?+|O*+ t
(¢, k, 1) > [\ I+ | Q] 5 Tk e

is coercive provided that / > 1/2 [Miles-
Howard]

Re(ZQ)

|

E()—ia ( Oup )Re(ZQ)
dt " 4B "\ |k|pl”2
J
E af( o,p ) SiES E af( 0,p
2(1 = 25) [k|p!2 dt ~ 2(1 -2p) |k|p!/2

\

Upper and lower bounds, point wise in (k, )

E(7) 7 E(O)

)




Linear inviscid damping by the energy method
E(7) 7 E(0) reads, more explicitely

P~ Q@ k) P+ | p O k) |7 &y | (K2 + n?) ™ QO ) |” + | (K2 + 1D MO0k, 1) |

\

[damping] H(t) — <6>xHL2 T Hux(t) — <ux>xHL2 T <t>Huy(t)HL2 5 <t>_%(”wm o <a)in>x”H1 T Hgm o <(9in>x”H2
[instability] W — ()|l + ||IVO—=(VO), |-~ Cm<t>1/2

The energy method applies to the case of exponentially stratified fluids p, (V) = e ™" without the Boussinesq

approximation and to shear flows close to Couette Uéq(y) ~ 1, Ué’q(y) ~ () such that

Uz, () = L[y = OCe),  |Ug, (D) gs-1 = O(e)




Enhanced dissipation via the energy method for v,k > 0

1 1 o _
The same energy functional E(t, k, 1) = 5 [\Z\z + | O |2 | L Re(ZQ)] applied to the dissipative case

28 |k|p'~

\

d 1 0 4
—E < at - ’B /lprE
dt 2(1 = 2p) | k| pl/2 ’

_ U+ K U+ K
where 4, = min {K , U }

4p 4p
\

E(?) < exp ( : ) exp ( b A Kk2t3> E(O)
20— 1 326+ 1) &




Partial dissipation xk =0, v >0

082 = — ifk® — vpL
@@:-%g
[Masmoudi et al ‘20]

THEOREM 3 (Stability in the non-diffusive case, [19]). Let 8,v > 0 and k = 0 in (1.11)-(1.12). Then
there hold the asymptotic stability estimates

s (Dl 2+ (0 [[us®)] 1o + O Ol S 07 [l o+ 102 s |

and

02O 2 S [|wF |2 + 167 |11

® 0 does not decay at all

® The velocity decays faster

® No any enhanced dissipation since < depends very badly v

Good unknown X = — ikfi® — vpL

Performing an energy estimate | 2(?) “+ | O®0) | Sup 1 2(0) “+ ®0)|* = |Q0)] Spu (k* + (n — kt)>)~!



In “more general” domains, another approach
“Limiting Absorption Principle”

e Doing resolvent estimates by hands [Jia 2019, Zhao...]
e Using the conjugate operator method [Grenier at al 2020]



Sketch of the approach via the LAP
The LAP [Limiting Absorption Principle] tells that the resolvent R(c) of an operator L is uniformly

bounded in terms of the spectral parameter ¢ [and it actually decays in time] if it acts on a suitable

weighted space

Linear inviscid damping of the 2D Boussinesq equations near the Couette flow in the periodic
channel T X [0,1] [Marc Nualart ‘23]

t . P
® Mode decomposition in x = 0, 7k (L, ) = = Vi) = 'l vk
Pk Pk P(7) :019

® write down e« using Dunford [Cauchy integral] formula for operators

0 0
(l//k) = el l//](; = [ g~ iket (c — Lk)_1 l//]g) dc ~ J ——dc
P Pk oD Pk (y =)

“solutions to TG
[singular integral, OK only in the sense of the Principal Value]




Sketch of the approach via the LAP

® The decay estimates are obtained by a non stationary phase method (integration by parts in the

spectral parameter c) that applies to this problem since the spectrum is continuous for / > 1/2

RMK

® Rates of decay in time depend on the order of singularity of the ODE equation TG (Taylor-Goldstein).
The singularity of TG is worse than the Rayleigh equation (homogeneous case), then the decay is slower

® The TG equation has the same order of singularity with and without the Boussinesq approximation,
then the Boussinesq approximation should not affect the time behavior of the perturbations



Stability in 3D

[Del Zotto’ 23] u = (u',u’ u’) and p is the Brunt-Vadisadla frequency. The 3D Couette flow is (v,0,0)

Ou + yOzu + u®t + 2V(—A) 1 0,u® + BV (—=A)"19,0 = vAu — 567,
0,0 + y0,0 — Bu® = KAB,

Linear enhanced dissipation

20+ 1 1 |
Assume ff > 1/2 and v = k > (. Define Cﬂ2 = b exp and 1, :=v | 1
20— 1 20— 1 20

1G4 Ol 2+ 20N 2 S e (O] + 10,011 2)

Then i
H(u()a 9())(t) HL2 S'B e—I/Z‘H(uOn, Hon)||H4

RMK The last estimate implies suppression of the lift-up effect



Stability in 3D in the homogeneous setting

In the homogeneous setting, the x-average of the Navier-Stokes equations satisfies

0us + us = vA | U
{ . (1) = €21y (0)~1u5(0), ug(0), 15 (0))

0.1} = vAy,Zué, 1= 1,2

Thus the x-average displays a linear growth in time as v — 0

% % % % %

In contrast, in the nonhomogeneous setting all the components decay at the rate of the
heat equation as soon as f/ > (0

1, ) Dly> S v, 0)O0)|| e < C i ||(ut, 0)(0)]| e S 27

While in the homogeneous case U replaces S



The nonlinear 2D inviscid problem in |




Echoes in the homogeneous-density case

t=0 t=60

Since V-u=0= u-V=uyd +u,-V

Homogeneous 2D Euler around Couette

{atw + (L )0w = —uy - Vo

u=ViAlep

® The 0-th mode does not decay
® Its time average + Yy is the final shear flow
® The nonlinear term is important: toy model

An echo: Shinrelmann 2013

Toy model: X=x-yt; Y=y

ViAo - Vo - VIATIQ-VQ
® Paraproduct decomposition

(u- V)0 = (- V)opign | o+ W Vi + @ Vioy, 0,Q ~ F(9,A;'Q0,Q),
1 24
K21+ |t —nlk|?

F(0,A7'Q), =




Echo cascade heuristic

@ Initial perturbation by a single mode &exp(kx + iny)

i Ji
0 ~
St~ 5T (t — n/k)?

0,fr_n ~ 7 _ﬂ RPN —f;];_/l(k 1y excites (k — 2,n) at the resonant time ¢,_; = n/(k— 1)

excites (k — 1,7) at the resonant time 1, = n/k

For 1 ~ n/k and n/k’ > 1

High-to-low frequency cascade may happen

k—k—1— -1

/K>l (k = 1)2)-+-(5/1%) ~ V"
Gevrey 2 reqgularity




Notion of damping

B The velocity converges strongly in L as t = + oo

u(t,x,y) =2 Uy = [ u(-,x)dx at rate 17!
T
u(t,x,y) =»120 at rate 2

B The vorticity converges only weakly

a)(ta X, y) — a)oo(tvx o tuoo(y)a y)

Where w_ (f,x — tu_,(v),y) [scattering profile] solves a linear problem



Nonlinear Boussinesq in 2d

0w+ (y+ u)ow=— 00 —-u, Vo
0,0+ (y + u3)o,0 = oy —u - VO Tx R
u=Vty Ay = w

1) Pro/contro shared with the Euler 2) Peculiarities of linear Boussinesq

L , ® Slower damping rates
¥ Decay of u_ due to inviscid damping

| 12 .

ug does not decay —# nonlinear change of " Jlof| + WQHLZ(TxR) ~ et in
coordinates to go beyond the linear time-scale L*(TXR)and ~ O(1) when
O(¢) t ~ e

® U, may create echoes at resonant times

Guess: linear behavior persists for "o = 1) =wy ~ et <6
data of Gevrey norm O(¢) and if 1= 0572

t~£‘2




NONLINEAR INVISCID DAMPING

A\

Denote  [If]12, = ZJe2*<"<'+'"'>ﬂfk<n>\2dn and fo<y>=2ij feydx, fo=f-F
T

/A
keZ

Theorem [J. Bedrossian, R. Bianchini, M. Coti Zelati, M. Dolce])
Let f> 1/2. Forall 1/2 <5< 1,4, > A" >0, there exist 6, <5< 1[5 ~ (7 — 1/4)]

such that for € < £, and ", 0™ mean-free initial data with
[u”[[2 + [[@" g2 + 110" |[g20 < €.

f
Define the phase shift ~ ®(f,y) = | uy(z,y)dr. Then, forall 0 <t < 522

0 X
gDl gr + 10Dl S €
|o(t, x + 1y + D(2, y), Y)ng’ + <t>H6#(t,x + ty + P(1, y),y)H?/y < g<t>1/2

Therefore

HM;(I‘)HLz + HH;,&(I)HLZ +<t>Hl/t7yé(l‘)HL2 < g(t}‘%




Shear-Bouyancy Instability

Theorem [J. Bedrossian, R. Bianchini, M. Coti Zelati, M. Dolce 2021]
Same hypotheses. There exists K > O such that, if
ol -1 + 102112 > Ked

Then

Nl Dl 2+ VOO 2~ e(t)? for all 0 <t < 5%




Nonlinear dynamics: the change of coordinates

0.w+ydw=—p00—u-Vo
00+y00=0w—u-V0@
u=V-iy Ay =

in [XR

3 main ingredients:
1) nonlinear change of coordinates
2) change of variables ['symmetrization®] to handle the linear dynamics

3) dynamical weight inside the norm to control echo chains

V-u=0 = u-V=yo. +u,-V

Where u_ should decay

1 [
v=y+7J uy(s,y)ds Z=X—Vi

0

1) change of coordinates
Qt,z,v) = w(t, x,y)
O, z,v) = 0(,x,y)
Y, z,v) =yt x,y)

The system in the new coordinates

RMK: to be invertible, the zero mode

needs to stay small, thus we need a

coordinate system control

0Q=-p00-U-VQ
00=0¥-uU-VO
Uu=©00)+vV-?Y, A¥Y=Q

v=0v; V=V._: A:=0_+0)X0,—10)+v"(0,—10)

Z,v'’




Zoom in on the construction of the toy model
W high-low term (0,A7'Q),; - (0.Q),, [as 0.Q is low = 5 ~ 0]

W ncarest interaction k = k—1

@ near critical times “resonant interval” |t —nlk| < nlk?

For any t > 0 there is at most a critical k such that f ~ %

02~ (

0z~ e (L

=  {kk—1}.
k_2 ’ Zi—1 (1)
) (1+|t=nlk|*)T

n )2 Z,(n)
k2) (1 + |t —nlk|*)s

The toy model reduces to

Construct a weight wy(t,7) encoding the maximal growth predicted by the toy model

Wr =255 Wyr = 24y

WNR

k2 :
O Wg = 7

n\2
O WNR = (ﬁ)

(14 |1 —nlk|*)7

Wgr

(1+ |1 —nlk|*)s

t € [—nlk?, nlk?]

Wilti—1,p 1)

Wk(tk,;ya 7’])

n
"y

WNR
Wg

Proposition. The maximal growth of wy(t,7)

()




The dynamical weight




The strategy of the proof

The proof is based on a bootstrap argument with several ingredients.

The most important are:

® “Linear” energy functional [with the dynamical weight inside]

atp
|k|p

® “nonlinear” energy functional [with the dynamical weight inside]

1
Enonlin(t) — 5 [||AQH2 +ﬁ2HAvL®Hz]

e (D) =~ | 1AZII? + [AQ|P + — < AZ AQ> where A ~ w,~leV7
in 2 2ﬁ % ’ k

® Energy functional to control the change of coordinates

The nonlinear terms are treated by using a para-product decomposition



The main weight A

* For the variable Q we have the same bounds we can use the same multiplier w
1
2
« In [BM15], the amplification factor is (%) rather than (%) the regularity gap among resonant

& non-resonant modes is different

We define the main weight:

1
. etnl?
Altn) = (k)7 (m=L) (t,n)  where  Ji(t, ) =

1
L e#lkK12 and m is bounded

Wk(tv 7])

. S ow . dm i . |
OA =MD kn[PA=——A=——A 1 " (inAJisreplaced with J, = ¢""*w; ")
Restrict the radius of Artificial dissipation that absorbs the
regularity by a finite a Control the integrable remainders
amount & continuously in time echo chain of the linear dynamics
0.4 =— (1)~}
A== (1) . 3

m 1+ |t —nlk|?



The “linear” energy functional

Symmetrized variables to handle the linear dynamics 7:— (p/kz)—%fz\ 0 = (p/kz)%ikﬁ/@\

1 1 0
E; (1) = 5 IAZ||? + ||AQ||* + % < L ~-AZ,AQ where A is a weight encoding Gevrey regularity
| k| p?

I .
—E (1 2ﬁ> Y. (GIZ]1+G[Q]) < LA+ NL#2 + &V 4 &~

_% L _ap L/ or 2,0 2,0 2.0
N =|{ F| A5 V[ -vQl,AZ —_A + — = Ul -vAZ A — NL:, + NL .+ NLZC
< [ <k2> ] T 4B k| p* Q> 4 < klpr Q> High-Low Low-High High-High



Several open questions

® Instability ~ /7 in TX R but in Tx [0,1]?
® for f# < 1/4 nonlinear?

® After t ~ O(e7%)? Gevrey losses?

® More general shears? (Maybe monotone for now)

® No Boussinesq approximation?



Instability and ill-posedness near a shear with Ri(y) < 1/4

1
Choose a density profile of the form —p'(y) = a(l — a)(U'(y))?, a € (0,1), a # 5

= this choice forces the violation of the Miles-Howard criterion Ri(y) < 1/4
Choose v = (U — ¢)%¢
— the Taylor-Goldstein equation reads
(U = )(05—k)p + 2aU0 p+ (o — HU"¢p = 0
* If k=0 and a = 1, it gives the hydrostatic Rayleigh equation (k = k)

2 / _
(U—=0c)oyp +2aUdyp =0



— the Taylor-Goldstein equation reads
(U = c)(05— k) + 2aU0 p+ (o — HU"¢p = 0
* If k=0 and a = 1, it gives the hydrostatic Rayleigh equation (k = k)
(U—=c)05p +2aU0,p =0

for which we know at least one shear flow U(y) = tanh(y/d), 0 < d < 1 having inflection point and providing
an unstable eigenvalue [Renardy]

— the perturbations are both order O while the main operator is order 2. Apply a perturbation approach to

deduce the existence of an unstable eigenvalue for the hydrostatic Boussinesq equations and for the non-
hydrostatic Boussinesq equations at small horizontal frequencies

[it should give ill-posedness in H”, s > O of the hydrostatic equations and a proof of invalidity of the hydrostatic
limit in this setting]

[ongoing project with Lucas ERTZBISCHOFF and Michele COTI ZELATI]



