Shear flows in stratified fluids

Roberta Bianchini

IAC
Consiglio Nazionale delle Ricerche

National Research
Council of Italy

Stably stratified fluids near shear flows

(E) $\left\{\begin{array}{l}\partial_{t} \rho+\mathbf{u} \cdot \nabla \rho=0 \\ \rho\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right)+\nabla P=-\rho\binom{0}{\mathfrak{g}}\end{array} \begin{array}{rl}\nabla \cdot \mathbf{u}=0 \quad \text { for } \quad(x, y) \in \mathbb{T} \times[0,1]\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow \text { Stationary solutions of the form } \\
& \left(\bar{\rho}_{e q}(y), U(y) \mathbf{e}_{1}, \bar{P}_{e q}(y)\right) \quad \text { where } \quad \bar{P}_{e q}^{\prime}(y)=-\mathfrak{g} \bar{\rho}_{e q}(y) \quad \text { [hydrostatic balance] }
\end{aligned}
$$

Hydrodynamic stability from the end of the 19th century: Rayleigh, Kelvin, Taylor, Goldstein...

Questions

- Are these solutions "stable"?
- What is the asymptotic behavior of the perturbations in time, with or without dissipation?

Stably stratified fluids near shear flows
\Rightarrow perturbed solutions: $\left\{\begin{array}{l}\rho(t, x, y)=\bar{\rho}_{e q}(y)+\widetilde{\rho}(t, x, y) \\ \mathbf{u}(t, x, y)=U(y) \mathbf{e}_{1}+\widetilde{\mathbf{u}}(t, x, y) \\ p(t, x, y)=\bar{P}_{e q}(y)+\widetilde{p}(t, x, y)\end{array}\right.$
\Rightarrow linearized system $\partial_{t}\binom{\widetilde{\rho}}{\widetilde{\mathbf{u}}}=\mathbf{L}(t, x, y)\binom{\widetilde{\rho}}{\widetilde{\mathbf{u}}}$
\Rightarrow eigenvalues of $\mathbf{L}(t, x, y)$?

$$
\text { normal mode analysis, take }\left\{\begin{array}{l}
\widetilde{\rho}(t, x, y)=\rho(y) e^{s t+i k x} \\
\widetilde{\mathbf{u}}(t, x, y)=\mathbf{u}(y) e^{s t+i k x} \\
\widetilde{p}(y)=p(y) e^{s t+i k x}
\end{array}\right.
$$

Taylor-Goldstein Equation and Miles-Howard criterion

The triple $(\rho(y), \mathbf{u}(y), p(y))$ satisfies, for $\gamma(y)=s+i k U(y)$

$$
\left\{\begin{array}{lc}
\gamma(y) \rho+\bar{\rho}_{e q}^{\prime}(y) u^{y}=0 & \quad \text { Taylor-Goldstein Equation } \\
\bar{\rho}_{e q}(y)\left(\gamma(y) u^{x}+U^{\prime}(y) u^{y}\right)=-i k \rho \\
\bar{\rho}_{e q}(y) \gamma(y) u^{y}=-p^{\prime}-\mathfrak{g} \rho & \quad \Rightarrow-\left(\bar{\rho}_{e q}(y) u^{y^{\prime}}\right)^{\prime}+k^{2} \bar{\rho}_{e q}(y) u^{y}+\frac{i k}{\gamma(y)}\left(\bar{\rho}_{e q}(y) U^{\prime}(y)\right)^{\prime} u^{y}-\frac{k^{2} \mathfrak{g}}{\gamma^{2}(y)} \bar{\rho}_{e q}^{\prime}(y) u^{y}=0 \\
i k u^{x}+u^{y^{\prime}}=0 &
\end{array}\right.
$$

\Rightarrow introducing the variable $v(y)$ such that $u^{y}=v(y) \sqrt{\gamma(y)}$ and multiplying by $\bar{v}(y)$ (complex conj) gives

$$
\operatorname{Re}(s) \int_{0}^{1} \bar{\rho}_{e q}(y)\left(\left|v^{\prime}\right|^{2}+k^{2}|v|^{2}\right)+\frac{k^{2} \bar{\rho}_{e q}(y)\left(U^{\prime}(y)\right)^{2}}{|\gamma(y)|^{2}}\left(\operatorname{Ri}(y)-\frac{1}{4}\right)|v|^{2} d y=0
$$

$\operatorname{Ri}(y)=\left(\frac{\beta(y)}{U^{\prime}(y)}\right)^{2}$ 'Richardson number' and $\beta^{2}(y)=\frac{-\bar{\rho}_{e q}^{\prime}(y) \mathfrak{g}}{\bar{\rho}_{e q}(y)} \quad$ 'Brunt-Väisälä frequency' if \quad| stably stratifi |
| :--- |
| $\bar{\rho}_{e q}^{\prime}(y)<0$ |

$$
\text { Miles-Howard criterion: if } \operatorname{Ri}(y) \geq 1 / 4 \Rightarrow \operatorname{Re}(s)=0 \text { [} \mathrm{NO} \text { any unstable mode] }
$$

'Rigidity' of the Miles-Howard condition

The Miles-Howard condition

- Is sharp in the sense that the value $1 / 4$ is sharp
- But it is only a sufficient condition (ex. Homogeneous case)

However, it persists under
The Boussinesq approximation
The hydrostatic approximation

- Taylor-Goldstein Equation under the Boussinesq approximation $\bar{\rho}_{e q}(y)=\bar{\rho}_{c}-b y, \quad b>0$

$$
-\left(u^{y}\right)^{\prime \prime}+k^{2} u^{y}+\frac{i k}{\gamma(y)} U^{\prime \prime}(y) u^{y}+\frac{k^{2}}{\gamma^{2}(y)} \underbrace{\frac{\mathfrak{g} b}{\bar{\rho}_{c}}}_{\beta^{2}} u^{y}=0
$$

- Taylor-Goldstein Equation under the hydrostatic (and Boussinesq) approximation $x=\frac{\tilde{x}}{\varepsilon}$

$$
-\left(u^{y}\right)^{\prime \prime}+\varepsilon^{2} k^{2} u^{y}+\frac{i k}{\gamma(y)} U^{\prime \prime}(y) u^{y}+\frac{k^{2}}{\gamma^{2}(y)} \underbrace{\frac{\mathfrak{g} b}{\bar{\rho}_{c}}}_{\beta^{2}} u^{y}=0
$$

homogeneous Vs non-homogeneous (Boussinesq)

$$
\text { Let } \gamma(y)=s+i k U(y)=i k\left(U(y)-\frac{i s}{k}\right)=i k(U-c) \quad \text { where } \quad c=i s / k
$$

Homogeneous density: Rayleigh Equation NONhomogeneous density: Taylor-Goldstein

$$
-\left(u^{y}\right)^{\prime \prime}+k^{2} u^{y}+\frac{U^{\prime \prime}}{(U-c)} u^{y}=0
$$

$$
-\left(u^{y}\right)^{\prime \prime}+k^{2} u^{y}+\frac{U^{\prime \prime}(y)}{(U-c)} u^{y}-\frac{\beta^{2}}{(U-c)^{2}} u^{y}=0
$$

*** Rayleigh Equation has a singularity of order 1 in $(U-c)$ while TG has a singularity of order $2^{* * *}$

- This does not change under the Boussinesq approximation
- The different orders of singularity determine a different time decay of the perturbation

Let us consider the simplest shear flow, namely the Couette flow $U(y)=y$

The 2D Boussinesq equations around the Couette flow

* The inviscid Euler-Boussinesq equations in $\mathbb{T} \times \mathbb{R}$ read

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\mathbf{u} \cdot \nabla \rho=0 \quad(x, y) \in \mathbb{T} \times \mathbb{R} \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla p=-\rho \mathbf{g}, \quad \nabla \cdot \mathbf{u}=0
\end{array} \quad\left(\rho=\frac{\tilde{\rho}}{\bar{\rho}_{c}}, P=\frac{\tilde{P}}{\bar{\rho}_{c}}\right)\right.
$$

* Stationary solutions $\left(\bar{\rho}_{e q}(y), \overline{\mathbf{u}}_{e q}(y), \bar{p}_{e q}(y)\right)$ stratified Couette flow

$$
\bar{\rho}_{e q}(y)=\bar{\rho}_{c}-b y, \quad b>0 \text { [stable]; } \quad \overline{\mathbf{u}}_{e q}=(y, 0) \text { [Couette flow]; } \quad \partial_{y} \bar{p}_{e q}=-\mathfrak{g} \bar{\rho}_{e q}
$$

For $\theta=\mathfrak{g} \rho / \bar{\rho}_{c}$ [buoyancy forcing] the linearized system in vorticity

$$
\left\{\begin{array}{l}
\partial_{t} \omega+y \partial_{x} \omega=-\partial_{x} \theta-(\mathbf{u} \cdot \nabla) \omega \\
\partial_{t} \theta+y \partial_{x} \theta=\beta^{2} \partial_{x} \psi-\mathbf{u} \cdot \nabla \theta
\end{array} \quad(x, y) \in \mathbb{T} \times \mathbb{R}\right.
$$

$$
\beta=\sqrt{b \mathbf{g} / \bar{\rho}_{c}} \text { Brunt-Väisälä frequency }
$$

'Spectral stability is not enough' and a steady state is stable if, given two spaces X, Y, perturbations decay

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad\left\|\left(\rho^{i n}, \mathbf{u}^{i n}\right)\right\|_{X}<\delta \Rightarrow\|(\rho(t), \mathbf{u}(t))\|_{Y} \leq \varepsilon
$$

- Asymptotic stability of the 2D Boussinesq system near the Couette flow, inviscid (our results in the 2D infinite strip with Coti Zelati, Dolce and Bedrossian; linear results in the finite channel by Nualart '23)
- Asymptotic stability of the 2D Boussinesq system near the Couette flow with viscosity, no diffusivity [Masmoudi et al '20]
- Construction of echo chains for the 2D Boussinesq system near the Couette flow with viscosity [Zillinger '21]
Enhanced dissipation with viscosity and diffusivity [Del Zotto '23] and transition threshold in Sobolev [Masmoudi et al '22]
Etability threshold for the 3D equations with viscosity and diffusivity in Sobolev [Del Zotto, in preparation]
- Spectral instability and ill-posedness of the hydrostatic-Boussinesq equations near a shear flow violating the Miles-Howard criterion [with Lucas Ertzbischoff and Coti Zelati, in preparation]

2D Euler equations linearized

- [Bedrossian-Masmoudi 2015] nonlinear, Couette flow
- [Ionescu-Jia 2020] nonlinear, monotone shear flows
- [Wei, Zheng, Zhao 2020, after Bouchet-Morita 2010] linear, near the Kolmogorov flow (sin y,0)

A step back: the Euler equations in 2D

Let's focus on vorticity mixing : consider the Euler equations near the 2D Couette flow $\overline{\mathbf{u}}_{\text {couette }}=(y, 0)$ Like any shear flow, Couette is a steady state of 2D Euler. Q: "Is it stable to perturbation?"
\Rightarrow It depends pretty much on the regularity of the perturbation:
look at the linearized 2D Euler equations in vorticity form near Couette

$$
\left\{\begin{array}{l}
\partial_{t} \omega+y \partial_{x} \omega=0 \\
\omega(0, x, y)=\omega_{i n}(x, y)
\end{array} \quad \text { in the domain } \mathbb{T} \times \mathbb{R}\right.
$$

- Spectrally stable in L^{2} [continuous spectrum, the imaginary axis]
- Lyapunov stable in L^{2}
- Lyapunov unstable from $H^{s} \rightarrow H^{s}, s>0$
- Lyapunov stable from $H_{\star}^{1} \rightarrow H^{-1} \quad$ ($\star=$ zero average in x)
"Lypunov stability - time decay - requires loss of regularity"

Mixing by shear flows in the Euler equations

Physical space

- Consider $\theta=1$ and the Euler equations $\partial_{t} \omega+(\mathbf{u} \cdot \nabla) \omega=0$
- Linearized around Couette $\mathbf{u}=(y, 0)$ i.e. $\partial_{t} \omega+y \partial_{x} \omega=0$
- Explicit solution $\omega(t, x, y)=\omega_{\mathrm{in}}(x-y t)$

Fourier Dynamics

- $\partial_{t} \widehat{\omega}+k \partial_{\eta} \widehat{\omega}=0$
- Explicit solution $\widehat{\omega}(t, k, \eta)=\widehat{\omega_{\text {in }}}(\eta+k t)$

$$
\left\{\begin{array}{l}
\partial_{t} \omega+y \partial_{x} \omega=0 \\
\left.\omega\right|_{t=0}=\omega_{\text {in }}
\end{array}\right.
$$

- $\widehat{\omega}(t, k, \eta)=\widehat{\omega}_{\text {in }}(k, \eta+k t)$
- $\widehat{\omega}(t, k, \eta-k t)=\widehat{\omega}_{\text {in }}(k, \eta)$

$$
\widehat{\Delta \psi}(t, k, \eta-k t)=\widehat{\omega}_{\text {in }}(k, \eta-k t)
$$

$$
\Rightarrow\left\{\begin{array}{l}
\widehat{u^{y}} \sim k \widehat{\psi}=\frac{k \widehat{\omega}_{\text {in }}}{k^{2}+(\eta-k t)^{2}}=\frac{k\left(k^{2}+\eta^{2}\right) \widehat{\omega}_{\text {in }}}{\left(k^{2}+(\eta-k t)^{2}\right)\left(k^{2}+\eta^{2}\right)} \lesssim O\left(t^{-2}\right) \\
\widehat{u^{x}} \lesssim O\left(t^{-1}\right)
\end{array}\right.
$$

Linear enhanced dissipation with $\nu \Delta$

Mixing by shear flows transports energy at high frequencies where the Laplacian is stronger

- Navier-Stokes at Couette $\partial_{t} \omega+y \partial_{x} \omega=\nu \Delta \omega$

Explicitly solvable $\quad \partial_{t} \widehat{\omega}+k \partial_{\eta} \widehat{\omega}=-\nu\left(k^{2}+\eta^{2}\right) \widehat{\omega}$

$$
\widehat{\omega}(t, k, \eta-k t) \lesssim \mathrm{e}^{\int_{0}^{t}-\nu\left(k^{2}+(\eta-k \tau)^{2}\right)} d \tau \lesssim \mathrm{e}^{-c \nu t^{3}}
$$

For more general shear flows it is more complicated, enhanced dissipation rates obtained through suitable modified energy functionals (hypocoercivity method)

Back to Boussinesq and linear dynamics in the infinite strip $\mathbb{T} \times \mathbb{R}$
Theorem [RB, Coti Zelati, Dolce '20] Let $\beta>1 / 2$. Define

$$
C_{\beta}:=\left[\frac{2 \beta+1}{2 \beta-1} \exp \left(\frac{1}{2 \beta-1}\right)\right]^{1 / 2}
$$

Then there hold the linear inviscid damping estimates

$$
\begin{aligned}
\left\|\theta_{\neq}(t)\right\|_{L^{2}}+\left\|u_{\neq}^{x}(t)\right\|_{L^{2}} \lesssim C_{\beta}\langle t\rangle^{-1 / 2}\left[\left\|\omega_{\neq}^{i n}\right\|_{L^{2}}+\left\|\theta_{\neq}^{i n}\right\|_{H^{1}}\right] \\
\left\|u^{y}(t)\right\|_{L^{2}} \lesssim C_{\beta}\langle t\rangle^{-\frac{3}{2}}\left[\left\|\omega_{\neq}^{i n}\right\|_{H^{1}}+\left\|\theta_{\neq}^{i n}\right\|_{H^{2}}\right]
\end{aligned}
$$

and the shear-buoyancy instability estimate

$$
\left\|\omega_{\neq}(t)\right\|_{L^{2}}+\left\|\nabla \theta_{\neq}(t)\right\|_{L^{2}} \gtrsim \frac{1}{C_{\beta}}\langle t\rangle^{1 / 2}\left[\left\|\omega_{\neq}^{i n}\right\|_{H^{-1}}+\left\|\theta_{\neq}^{i n}\right\|_{L^{2}}\right]
$$

for every $t \geq 0$.
** density induces creation of vorticity and hence an \mathbf{L}^{2} growth in time **

Initial vorticity

Initial buoyancy

Shearing effect at later times

Growth of the vorticity

Linear enhanced dissipation

THEOREM 2 (Linear enhanced dissipation). Let $\beta>1 / 2$, assume that $\nu, \kappa>0$ satisfy

$$
\frac{\max \{\nu, \kappa\}}{\min \{\nu, \kappa\}}<4 \beta-1
$$

and define the strictly positive number

$$
\lambda_{\nu, \kappa}:=\min \{\nu, \kappa\}\left(1-\frac{1}{4 \beta}-\frac{1}{4 \beta} \frac{\max \{\nu, \kappa\}}{\min \{\nu, \kappa\}}\right)
$$

Then

$$
\left\|\omega_{\neq}(t)\right\|_{L^{2}}+\langle t\rangle\left\|\theta_{\neq}(t)\right\|_{L^{2}} \lesssim C_{\beta}\langle t\rangle^{1 / 2} \mathrm{e}^{-\frac{1}{24} \lambda_{\nu, \kappa} k^{2} t^{3}}\left[\left\|\omega_{\neq}^{i n}\right\|_{L^{2}}+\left\|\theta_{\neq}^{i n}\right\|_{H^{1}}\right]
$$

\Rightarrow Transition threshold $\nu^{1 / 2}$ in Sobolev spaces H^{s} [Zhai \& Zhao '22] while for the homogeneous case $\nu^{1 / 3}$ This is related to the asymptotic $t \sim \nu^{-1 / 3} \Rightarrow\left\|f_{\neq \|}\right\| \lesssim \sqrt{\langle t\rangle} e^{-c \nu t^{3}} \lesssim \nu^{-1 / 6}$ and $\nu^{1 / 3+1 / 6}=\nu^{1 / 2}$

Symmetrization and energy method

The transport $y \partial_{x}$ suggests changing coordinate $z=x-y t$ and variables $\left\{\begin{array}{l}\Omega(t, z, y)=\omega(t, x, y) \\ \Theta(t, z, y)=\theta(t, x, y) \\ \Psi(t, z, y)=\psi(t, x, y)\end{array}\right.$

In this moving frame $\Delta_{L} \Psi=\Omega$ where $\Delta_{L}=\partial_{z z}+\left(\partial_{y}-t \partial_{z}\right)^{2}$ [in Fourier $\mathbf{p}=\mathbf{k}^{2}+(\eta-\mathbf{k} t)^{2}$] and

$$
\underbrace{\partial_{t}\binom{\Omega}{\Theta}=\left(\begin{array}{cc}
0 & -i k \beta^{2} \\
-i k p^{-1} & 0
\end{array}\right)\binom{\Omega}{\Theta}}_{\nu=\kappa=0} \quad \underbrace{\partial_{t}\binom{\Omega}{\Theta}=\left(\begin{array}{cc}
-p_{\nu} & -i k \beta^{2} \\
-i k p^{-1} & -p \kappa
\end{array}\right)\binom{\Omega}{\Theta}}_{\nu, \kappa>0}
$$

$$
\text { symmetric variables: }\left\{\begin{array}{l}
Z=\left(\mathbf{p} / k^{2}\right)^{-1 / 4} \Omega \\
Q=i k \beta\left(\mathbf{p} / k^{2}\right)^{1 / 4} \Theta
\end{array}\right.
$$

Energy in the moving frame - inviscid

In terms of the symmetric variables

$$
\partial_{t}\binom{Z}{Q}=\left(\begin{array}{cc}
-\frac{1}{4} \frac{\partial_{t} p}{p} & -\beta|k| p^{-1 / 2} \\
\beta|k| p^{-1 / 2} & \frac{1}{4} \frac{\partial_{t} p}{p}
\end{array}\right)\binom{Z}{Q}
$$

we can define the energy functional

$$
\mathrm{E}(t, k, \eta)=\frac{1}{2}\left[|Z|^{2}+|Q|^{2}+\frac{1}{2 \beta} \frac{\partial_{t} p}{|k| p^{1 / 2}} \operatorname{Re}(Z \bar{Q})\right]
$$

$$
-\frac{\mathrm{E}}{2(1-2 \beta)}\left|\partial_{t}\left(\frac{\partial_{t} p}{|k| p^{1 / 2}}\right)\right| \leq \frac{d}{d t} \mathrm{E} \leq \frac{\mathrm{E}}{2(1-2 \beta)}\left|\partial_{t}\left(\frac{\partial_{t} p}{|k| p^{1 / 2}}\right)\right|
$$

\Downarrow

Upper and lower bounds, point wise in (k, η)

$$
\mathrm{E}(t) \approx_{\beta} \mathrm{E}(0)
$$

Linear inviscid damping by the energy method

$$
\mathrm{E}(t) \approx_{\beta} \mathrm{E}(0) \text { reads, more explicitely }
$$

$$
\left|p^{-1 / 4} \Omega(t, k, \eta)\right|^{2}+\left|p^{1 / 4} \Theta(t, k, \eta)\right|^{2} \approx_{\beta}\left|\left(k^{2}+\eta^{2}\right)^{-1 / 4} \Omega(0, k, \eta)\right|^{2}+\left|\left(k^{2}+\eta^{2}\right)^{1 / 4} \Theta(0, k, \eta)\right|^{2}
$$

\Downarrow
[damping] $\left\{\begin{array}{l}\left\|\theta(t)-\langle\theta\rangle_{x}\right\|_{L^{2}}+\left\|u^{x}(t)-\left\langle u^{x}\right\rangle_{x}\right\|_{L^{2}}+\langle t\rangle\left\|u^{y}(t)\right\|_{L^{2}} \lesssim\langle\mathbf{t}\rangle^{-\frac{1}{2}}\left(\left\|\omega_{i n}-\left\langle\omega_{i n}\right\rangle_{x}\right\|_{H^{1}}+\left\|\theta_{i n}-\left\langle\theta_{i n}\right\rangle_{x}\right\|_{H^{2}}\right. \\ \left\|\omega-\langle\omega\rangle_{x}\right\|_{L^{2}}+\left\|\nabla \theta-\langle\nabla \theta\rangle_{x}\right\|_{L^{2}} \approx C_{i n}\langle\mathbf{t}\rangle^{1 / 2}\end{array}\right.$

The energy method applies to the case of exponentially stratified fluids $\bar{\rho}_{e q}(y)=e^{-b y}$ without the Boussinesq approximation and to shear flows close to Couette $U_{e q}^{\prime}(y) \sim 1, U_{e q}^{\prime \prime}(y) \sim 0$ such that

$$
\left\|U_{e q}^{\prime}(y)-1\right\|_{H^{s}}=O(\varepsilon), \quad\left\|U_{e q}^{\prime \prime}(y)\right\|_{H^{s-1}}=O(\varepsilon)
$$

Enhanced dissipation via the energy method for $\nu, \kappa>0$

The same energy functional $\mathrm{E}(t, k, \eta)=\frac{1}{2}\left[|Z|^{2}+|Q|^{2}+\frac{1}{2 \beta} \frac{\partial_{t} p}{|k| p^{1 / 2}} \operatorname{Re}(Z \bar{Q})\right]$ applied to the dissipative case

$$
\begin{gathered}
\Downarrow \\
\frac{d}{d t} \mathrm{E} \leq \frac{1}{2(1-2 \beta)} \partial_{t}\left(\frac{\partial_{t} p}{|k| p^{1 / 2}}\right)-\frac{4 \beta}{2 \beta+1} \lambda_{\nu, k} p \mathrm{E} \\
\text { where } \lambda_{\nu, k}=\min \left\{\kappa-\frac{\nu+\kappa}{4 \beta}, \nu-\frac{\nu+\kappa}{4 \beta}\right\} \\
\Downarrow \\
\mathrm{E}(t) \leq \exp \left(\frac{1}{2 \beta-1}\right) \exp \left(-\frac{\beta}{3(2 \beta+1)} \lambda_{\nu, k} k^{2} t^{3}\right) \mathrm{E}(0)
\end{gathered}
$$

Partial dissipation $\kappa=0, \quad \nu>0$

$$
\left\{\begin{array}{l}
\partial_{t} \Omega=-i \beta k \Theta-\nu p \Omega \\
\partial_{t} \Theta=-\frac{i k}{p} \Omega
\end{array}\right.
$$

[Masmoudi et al '20]
THEOREM 3 (Stability in the non-diffusive case, [19]). Let $\beta, \nu>0$ and $\kappa=0$ in (1.11)-(1.12). Then there hold the asymptotic stability estimates

$$
\left\|\omega_{\neq}(t)\right\|_{L^{2}}+\langle t\rangle\left\|u_{\neq}^{x}(t)\right\|_{L^{2}}+\langle t\rangle^{2}\left\|u^{y}(t)\right\|_{L^{2}} \lesssim\langle t\rangle^{-2}\left[\left\|\omega_{\neq}^{i n}\right\|_{H^{4}}+\left\|\theta_{\neq}^{i n}\right\|_{H^{5}}\right],
$$

and

$$
\left\|\theta_{\neq}(t)\right\|_{L^{2}} \lesssim\left\|\omega_{\neq i n}^{i n}\right\|_{H^{2}}+\left\|\theta_{\neq}^{i n}\right\|_{H^{1}},
$$

- θ does not decay at all
- The velocity decays faster
- No any enhanced dissipation since \lesssim depends very badly ν

$$
\text { Good unknown } \Sigma=-i k \beta \Theta-\nu p \Omega
$$

Performing an energy estimate $|\Sigma(t)|^{2}+|\Theta(t)|^{2} \lesssim_{\nu, \beta}|\Sigma(0)|^{2}+|\Theta(0)|^{2} \Rightarrow|\Omega(t)| \lesssim_{\beta, \nu}\left(k^{2}+(\eta-k t)^{2}\right)^{-1}$

In "more general" domains, another approach
"Limiting Absorption Principle"

- Doing resolvent estimates by hands [Jia 2019, Zhao...]
- Using the conjugate operator method [Grenier at al 2020]

Sketch of the approach via the LAP

The LAP [Limiting Absorption Principle] tells that the resolvent $\mathbf{R}(c)$ of an operator \mathbf{L} is uniformly bounded in terms of the spectral parameter c [and it actually decays in time] if it acts on a suitable weighted space

Linear inviscid damping of the 2D Boussinesq equations near the Couette flow in the periodic channel $\mathbb{T} \times[0,1]$ [Marc Nualart '23]

Mode decomposition in $x \quad \Rightarrow \partial_{t}\binom{\psi_{k}}{\rho_{k}}+i \mathbf{L}_{k}\binom{\psi_{k}}{\rho_{k}}=0 \quad \Rightarrow\binom{\psi_{k}(t)}{\rho_{k}(t)}=e^{i \mathbf{L}_{k} t}\binom{\psi_{k}^{0}}{\rho_{k}^{0}}$
Write down $e^{i \mathbf{L}_{k} t}$ using Dunford [Cauchy integral] formula for operators

$$
\begin{gathered}
\binom{\psi_{k}}{\rho_{k}}=\mathrm{e}^{i \mathbf{L}_{k} t}\binom{\psi_{k}^{0}}{\rho_{k}^{0}}=\int_{\partial D} e^{-i k c t} \underbrace{\left(c-\mathbf{L}_{k}\right)^{-1}\binom{\psi_{k}^{0}}{\rho_{k}^{0}}}_{\text {solutions to TG }} d c \sim \int \frac{\ldots}{(y-c)^{\mu}} d c \\
\text { [singular integral, OK only in the sense of the Principal Value] }
\end{gathered}
$$

Sketch of the approach via the LAP

- The decay estimates are obtained by a non stationary phase method (integration by parts in the spectral parameter c) that applies to this problem since the spectrum is continuous for $\beta>1 / 2$

RMK

- Rates of decay in time depend on the order of singularity of the ODE equation TG (Taylor-Goldstein). The singularity of TG is worse than the Rayleigh equation (homogeneous case), then the decay is slower
- The TG equation has the same order of singularity with and without the Boussinesq approximation, then the Boussinesq approximation should not affect the time behavior of the perturbations

Stability in 3D

[Del Zotto' 23] $u=\left(u^{1}, u^{2}, u^{3}\right)$ and β is the Brunt-Väisalal frequency. The 3D Couette flow is $(y, 0,0)$ $\left\{\begin{array}{l}\partial_{t} u+y \partial_{x} u+u^{2} \hat{x}+2 \nabla(-\Delta)^{-1} \partial_{x} u^{2}+\beta \nabla(-\Delta)^{-1} \partial_{y} \theta=\nu \Delta u-\beta \theta \hat{y}, \\ \partial_{t} \theta+y \partial_{x} \theta-\beta u^{2}=\kappa \Delta \theta,\end{array}\right.$

Linear enhanced dissipation

$$
\begin{aligned}
& \text { Assume } \beta>1 / 2 \text { and } \nu=\kappa>0 \text {. Define } C_{\beta}^{2}=\frac{2 \beta+1}{2 \beta-1} \exp \left(\frac{1}{2 \beta-1}\right) \text { and } \lambda_{\nu}:=\nu\left(1-\frac{1}{2 \beta}\right) \\
& \text { Then }\left\{\begin{array}{l}
\left\|\left(u^{1}, u^{3}\right)_{\neq}\right\|_{L^{2}}+\langle t\rangle^{3 / 2}\left\|u_{\neq}^{2}\right\|_{L^{2}}+\langle t\rangle^{1 / 2}\left\|\theta_{\neq}\right\|_{L^{2}} \lesssim e^{-\lambda_{\iota} t^{3}}\left(\left\|u_{\neq}(0)\right\|_{H^{3}}+\left\|\theta_{\neq}(0)\right\|_{L^{2}}\right) \\
\left\|\left(u_{0}, \theta_{0}\right)(t)\right\|_{L^{2}} \lesssim_{\beta} e^{-\nu t}\left\|\left(u_{0}^{\text {in }}, \theta_{0}^{\text {in }}\right)\right\|_{H^{4}}
\end{array}\right.
\end{aligned}
$$

RMK The last estimate implies suppression of the lift-up effect

Stability in 3D in the homogeneous setting

In the homogeneous setting, the x-average of the Navier-Stokes equations satisfies

$$
\left\{\begin{array}{l}
\partial_{t} u_{0}^{1}+u_{0}^{2}=\nu \Delta_{y, z} u_{0}^{1} \\
\partial_{t} u_{0}^{i}=\nu \Delta_{y, z} u_{0}^{i}, \quad i=1,2
\end{array} \quad u_{0}(t)=e^{\nu \Delta_{y, z} t}\left(u_{0}^{1}(0)-t u_{0}^{2}(0), u_{0}^{2}(0), u_{0}^{3}(0)\right)\right.
$$

Thus the x-average displays a linear growth in time as $\nu \rightarrow 0$

In contrast, in the nonhomogeneous setting all the components decay at the rate of the heat equation as soon as $\beta>0$

$$
\|(u, \theta)(t)\|_{\mathbf{L}^{2}} \lesssim \nu^{-8 / 9}\|(u, \theta)(0)\|_{H^{4}} \leq C \quad \text { if } \quad\|(u, \theta)(0)\|_{H^{4}} \lesssim \nu^{8 / 9}
$$

While in the homogeneous case ν replaces $\nu^{8 / 9}$

The nonlinear 2D inviscid problem in $\mathbb{T} \times \mathbb{R}$

Since $\nabla \cdot \mathbf{u}=0 \Rightarrow \mathbf{u} \cdot \nabla=u_{0}^{x} \partial_{x}+\mathbf{u}_{\neq} \cdot \nabla$

Homogeneous 2D Euler around Couette

$$
\left\{\begin{array}{l}
\partial_{t} \omega+\left(y+u_{0}^{x}(t, y)\right) \partial_{x} \omega=-\mathbf{u}_{\neq} \cdot \nabla \omega \\
\mathbf{u}=\nabla^{\perp} \Delta^{-1} \omega
\end{array}\right.
$$

- The 0-th mode does not decay
- It's time average $+y$ is the final shear flow
- The nonlinear term is important: toy model
- Paraproduct decomposition
$(\mathbf{u} \cdot \nabla) \omega=(\mathbf{u} \cdot \nabla) \omega_{\text {High-Low }}+(\mathbf{u} \cdot \nabla) \omega_{\mathrm{LH}}+(\mathbf{u} \cdot \nabla) \omega_{\mathrm{HH}}$

$\mathrm{t}=120$

$t=1000$

An echo: Shinrelmann 2013

$$
\begin{array}{r}
\text { Toy model: X=x-yt; Y=y } \\
\nabla^{\perp} \Delta^{-1} \omega \cdot \nabla \omega \rightarrow \nabla^{\perp} \Delta_{L}^{-1} \Omega \cdot \nabla \Omega \\
\partial_{t} \widehat{\Omega}_{k} \approx \mathscr{F}\left(\partial_{v} \Delta_{L}^{-1} \Omega \partial_{z} \Omega\right)_{k} \\
\mathscr{F}\left(\partial_{v} \Delta_{L}^{-1} \Omega\right)_{k}=\frac{\eta}{k^{2}} \frac{\widehat{\Omega}_{k}}{1+|t-\eta / k|^{2}}
\end{array}
$$

Echo cascade heuristic

- Initial perturbation by a single mode $\delta \exp (k x+i \eta y)$
$\partial_{t} f_{k-1} \sim \frac{\eta}{k^{2}} \frac{f_{k}}{1+(t-\eta / k)^{2}}$
$\partial_{t} f_{k-2} \sim \frac{\eta}{(k-1)^{2}} \frac{f_{k-1}}{1+(t-\eta /(k-1))^{2}}$ excites $(k-1, \eta)$ at the resonant time $t_{k}=\eta / k$ excites $(k-2, \eta)$ at the resonant time $t_{k-1}=\eta /(k-1)$

```
For }t~\eta/k\mathrm{ and }\eta/\mp@subsup{k}{}{2}>>
High-to-low frequency cascade may happen
    k->k-1 -> \cdots1
    (\eta/\mp@subsup{k}{}{2})(\eta/(k-1\mp@subsup{)}{}{2})\cdots(\eta/\mp@subsup{1}{}{2})~}~\mp@subsup{e}{}{\sqrt{}{\eta}
    Gevrey 2 regularity
```


Notion of damping

The velocity converges strongly in \mathbf{L}^{2} as $t \rightarrow+\infty$

$$
\begin{aligned}
& u^{x}(t, x, y) \rightarrow_{\mathbf{L}^{2}} u_{0}^{x}=\int_{\mathbb{T}} u^{x}(\cdot, x) d x \text { at rate } t^{-1} \\
& u^{y}(t, x, y) \rightarrow_{\mathbf{L}^{2}} 0 \text { at rate } t^{-2}
\end{aligned}
$$

The vorticity converges only weakly

$$
\omega(t, x, y) \rightharpoonup \omega_{\infty}\left(t, x-t u_{\infty}(y), y\right)
$$

Where $\omega_{\infty}\left(t, x-t u_{\infty}(y), y\right)$ [scattering profile] solves a linear problem

$$
\begin{cases}\partial_{t} \omega+\left(y+u_{0}^{x}\right) \partial_{x} \omega=-\beta^{2} \partial_{x} \theta-\mathbf{u}_{\neq} \cdot \nabla \omega \\ \partial_{t} \theta+\left(y+u_{0}^{x}\right) \partial_{x} \theta=\partial_{x} \psi-\mathbf{u}_{\neq} \cdot \nabla \theta & \\ \mathbf{u}=\nabla^{\perp} \psi \quad \Delta \psi=\omega & \mathbb{R} \times \mathbb{R}\end{cases}
$$

1) Pro/contro shared with the Euler

Decay of \mathbf{u}_{\neq}due to inviscid damping

- u_{0}^{x} does not decay \longrightarrow nonlinear change of coordinates to go beyond the linear time-scale $O(\varepsilon)$
- \mathbf{u}_{\neq}may create echoes at resonant times

Guess: linear behavior persists for data of Gevrey norm $O(\varepsilon)$ and $t \sim \varepsilon^{-2}$
2) Peculiarities of linear Boussinesq

Slower damping rates

- $\|\omega\|+\|\nabla \theta\|_{L^{2}(\mathbb{T} \times \mathbb{R})} \sim \varepsilon t^{1 / 2}$ in $L^{2}(\mathbb{T} \times \mathbb{R})$ and $\sim O(1)$ when $t \sim \varepsilon^{-2}$
- $\partial_{t}\left(t\left(v^{\prime}-1\right)\right)=\omega_{0} \sim \varepsilon t^{1 / 2}<\delta$
if $\quad t=O\left(\delta \varepsilon^{-2}\right)$

NONLINEAR INVISCID DAMPING

Denote $\quad\|f\|_{\mathscr{G}^{\lambda}}^{2}=\sum_{k \in \mathbb{Z}} \int e^{2 \lambda(|k|+|\eta|)^{s}}\left|\hat{f}_{k}(\eta)\right|^{2} d \eta \quad$ and $\quad \mathrm{f}_{0}(y)=\frac{1}{2 \pi} \int_{\mathbb{T}} f(x, y) d x, \quad f_{\neq}=f-f_{0}$
Theorem [J. Bedrossian, R. Bianchini, M. Coti Zelati, M. Dolce]
Let $\beta>1 / 2$. For all $1 / 2<s \leq 1, \lambda_{0}>\lambda^{\prime}>0$, there exist $\varepsilon_{0} \ll \delta<1 \quad\left[\delta^{2} \sim\left(\beta^{2}-1 / 4\right)\right]$ such that for $\varepsilon \leq \varepsilon_{0}$ and $\omega^{\text {in }}$, $\theta^{\text {in }}$ mean-free initial data with

$$
\left\|\mathbf{u}^{i n}\right\|_{L^{2}}+\left\|\omega^{i n}\right\|_{\mathscr{G}^{\lambda_{0}}}+\left\|\theta^{i n}\right\|_{\mathscr{G}^{\lambda_{0}}} \leq \varepsilon .
$$

Define the phase shift $\quad \Phi(t, y)=\int_{0}^{t} u_{0}^{x}(\tau, y) d \tau$. Then, for all $\quad 0 \leq \mathbf{t} \leq \delta^{2} \varepsilon^{-2}$

$$
\|\omega(t, x+t y+\Phi(t, y), y)\|_{\mathscr{G} \lambda^{\prime}}+\langle t\rangle\left\|\theta_{\neq}(t, x+t y+\Phi(t, y), y)\right\|_{\mathscr{G} \lambda^{\prime}} \lesssim \varepsilon\langle t\rangle^{1 / 2}(t)\left\|_{\mathscr{G} \lambda^{\prime}}+\right\| \theta_{0}(t) \|_{\mathscr{G} \lambda^{\prime}} \lesssim \varepsilon
$$

Therefore

$$
\left\|u_{\neq}^{x}(t)\right\|_{L^{2}}+\left\|\theta_{\neq}(t)\right\|_{L^{2}}+\langle\mathbf{t}\rangle\left\|u_{\neq}^{y}(t)\right\|_{L^{2}} \lesssim \varepsilon\langle\mathfrak{t}\rangle^{-\frac{1}{2}}
$$

Shear-Bouyancy Instability

$$
\begin{aligned}
& \text { Theorem [J. Bedrossian, R. Bianchini, M. Coti Zelati, M. Dolce 2021] } \\
& \text { Same hypotheses. There exists } K>0 \text { such that, if } \\
& \qquad\left\|\omega_{\neq}^{i n}\right\|_{H^{-1}}+\left\|\theta_{\neq}^{\text {in }}\right\|_{L^{2}} \geq K \varepsilon \delta \\
& \text { Then } \\
& \left\|\omega_{\neq}(t)\right\|_{L^{2}}+\left\|\nabla \theta_{\neq}(t)\right\|_{L^{2}} \approx \varepsilon\langle\mathbf{t}\rangle^{\frac{1}{2}} \quad \text { for all } \quad 0 \leq \mathfrak{t} \leq \delta^{2} \varepsilon^{-2}
\end{aligned}
$$

Nonlinear dynamics: the change of coordinates

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} \omega+y \partial_{x} \omega=-\boldsymbol{\beta}^{2} \partial_{x} \theta-\mathbf{u} \cdot \nabla \omega \\
\partial_{t} \theta+y \partial_{x} \theta=\partial_{x} \psi-\mathbf{u} \cdot \nabla \theta \\
\mathbf{u}=\nabla^{\perp} \psi \quad \Delta \psi=\omega
\end{array}\right. \\
& \text { in } \quad \mathbb{T} \times \mathbb{R}
\end{aligned}
$$

3 main ingredients:

1) nonlinear change of coordinates
2) change of variables ["symmetrization"] to handle the linear dynamics
3) dynamical weight inside the norm to control echo chains

$$
\nabla \cdot \mathbf{u}=0 \quad \Rightarrow \quad \mathbf{u} \cdot \nabla=u_{0}^{x} \partial_{x}+\mathbf{u}_{\neq} \cdot \nabla
$$

$$
\text { where } \mathbf{u}_{\neq} \text {should decay }
$$

$$
v=y+\frac{1}{t} \int_{0}^{t} u_{0}^{x}(s, y) d s \quad z=x-v t
$$

RMK: to be invertible, the zero mode needs to stay small, thus we need a coordinate system control

1) change of coordinates

$$
\left\{\begin{array}{l}
\Omega(t, z, v)=\omega(t, x, y) \\
\Theta(t, z, v)=\theta(t, x, y) \\
\Psi(t, z, v)=\psi(t, x, y)
\end{array}\right.
$$

The system in the new coordinates

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} \Omega=-\boldsymbol{\beta}^{2} \partial_{z} \Theta-\mathbf{U} \cdot \nabla \Omega \\
\partial_{t} \Theta=\partial_{z} \Psi-\mathbf{U} \cdot \nabla \Theta \\
\mathbf{U}=(0, \dot{v})+v^{\prime} \nabla^{\perp} \Psi_{\neq} \quad \Delta_{t} \Psi=\Omega
\end{array}\right. \\
& \dot{v}=\partial_{t} v ; \quad \nabla=\nabla_{z, v^{\prime}} ; \quad \Delta_{t}:=\partial_{z z}+\left(v^{\prime}\right)^{2}\left(\partial_{v}-t \partial_{z}\right)^{2}+v^{\prime \prime}\left(\partial_{v}-t \partial_{z}\right)
\end{aligned}
$$

high-low term $\left(\partial_{v} \Delta_{L}^{-1} \Omega\right)_{H i} \cdot\left(\partial_{z} \Omega\right)_{l o}$ [as $\partial_{z} \Omega$ is low $\Rightarrow \eta \sim 0$]
nearest interaction $k \Rightarrow k-1$
near critical times "resonant interval" $|t-\eta / k| \leq \eta / k^{2}$
For any $t>0$ there is at most a critical k such that $t \approx \frac{\eta}{k} \Rightarrow\{k, k-1\}$. The toy model reduces to

$$
\begin{aligned}
\partial_{t} Z_{k} & \approx \varepsilon t^{1 / 2}\left(\frac{k^{2}}{\eta}\right)^{\frac{1}{2}} \frac{Z_{k-1}(\eta)}{\left(1+|t-\eta / k|^{2}\right)^{\frac{1}{4}}} \\
\partial_{t} Z_{k-1} & \approx \varepsilon t^{1 / 2}\left(\frac{\eta}{k^{2}}\right)^{\frac{1}{2}} \frac{Z_{k}(\eta)}{\left(1+|t-\eta / k|^{2}\right)^{\frac{3}{4}}}
\end{aligned}
$$

Construct a weight $\mathbf{w}_{k}(t, \eta)$ encoding the maximal growth predicted by the toy model

$$
\begin{aligned}
& w_{R}=Z_{k} ; \quad w_{N R}=Z_{k-1} \quad t \in\left[-\eta / k^{2}, \eta / k^{2}\right] \\
& \partial_{t} w_{R}=\left(\frac{k^{2}}{\eta}\right)^{\frac{1}{2}} \frac{w_{N R}}{\left(1+|t-\eta / k|^{2}\right)^{\frac{1}{4}}} \\
& \partial_{t} w_{N R}=\left(\frac{\eta}{k^{2}}\right)^{\frac{1}{2}} \frac{w_{R}}{\left(1+|t-\eta / k|^{2}\right)^{\frac{3}{4}}}
\end{aligned}
$$

Proposition. The maximal growth of $\mathbf{w}_{\mathbf{k}}(\mathbf{t}, \eta)$
$\frac{w_{k}\left(t_{k-1, \eta}, \eta\right)}{w_{k}\left(t_{k, \eta}, \eta\right)} \approx \frac{w_{N R}}{w_{R}} \lesssim\left(\frac{\eta}{k^{2}}\right)^{\frac{1}{2}}$

The dynamical weight

The strategy of the proof

The proof is based on a bootstrap argument with several ingredients.
The most important are:

- "Linear" energy functional [with the dynamical weight inside]

$$
\mathrm{E}_{\text {lin }}(t)=\frac{1}{2}\left[\|\mathbf{A} Z\|^{2}+\|\mathbf{A} Q\|^{2}+\frac{1}{2 \beta}\left\langle\frac{\partial_{t} p}{|k| p^{\frac{1}{2}}} \mathbf{A} Z, \mathbf{A} Q\right\rangle\right] \text { where } \mathbf{A} \sim \mathbf{w}_{\mathbf{k}}^{-1} e^{\sqrt{\eta}}
$$

- "nonlinear" energy functional [with the dynamical weight inside]

$$
\mathbf{E}_{\text {nonlin }}(t)=\frac{1}{2}\left[\|\mathbf{A} \Omega\|^{2}+\beta^{2}\left\|\mathbf{A} \nabla_{L} \Theta\right\|^{2}\right]
$$

Energy functional to control the change of coordinates

The nonlinear terms are treated by using a para-product decomposition

The main weight A

* For the variable Q we have the same bounds \longrightarrow we can use the same multiplier w
* In [BM15], the amplification factor is $\left(\frac{\eta}{k^{2}}\right)$ rather than $\left(\frac{\eta}{k^{2}}\right)^{\frac{1}{2}} \longrightarrow$ the regularity gap among resonant \& non-resonant modes is different

We define the main weight:
$A_{k}(t, \eta)=\langle k, \eta\rangle^{\sigma} e^{\lambda(t)|k, \eta|^{s}}\left(m^{-1} J\right)_{k}(t, \eta) \quad$ where $\quad J_{k}(t, \eta)=\frac{e^{\mu|\eta|^{\frac{1}{2}}}}{w_{k}(t, \eta)}+e^{\mu|k| \frac{1}{2}}$ and m is bounded

Control the echo chain

$$
\partial_{t} \lambda=-\langle t\rangle^{-\delta-1}
$$

(in $\tilde{A} J_{k}$ is replaced with $\tilde{J}_{k}=e^{\mu|\eta| \frac{1}{2}} w_{k}^{-1}$)

Artificial dissipation that absorbs the integrable remainders of the linear dynamics

$$
\frac{\partial_{t} m}{m}=\frac{C_{\beta}}{1+|t-\eta / k|^{2}}
$$

The "linear" energy functional

Symmetrized variables to handle the linear dynamics $Z:=\left(p / k^{2}\right)^{-\frac{1}{4}} \widehat{\Omega} \quad Q:=\left(p / k^{2}\right)^{\frac{1}{4}} i k \beta \widehat{\Theta}$
$E_{L}(t)=\frac{1}{2}\left[\|A Z\|^{2}+\|A Q\|^{2}+\frac{1}{2 \beta}\left\langle\frac{\partial_{t} p}{|k| p^{\frac{1}{2}}} A Z, A Q\right\rangle\right] \quad$ where A is a weight encoding Gevrey regularity
$\frac{d}{d t} E_{L}+\left(1-\frac{1}{2 \beta}\right) \sum_{j \in\{\lambda, w, m\}}\left(G_{j}[Z]+G_{j}[Q]\right) \leq L^{Z, Q}+N L^{Z, Q}+\mathscr{E}^{d i v}+\mathscr{E}^{\Delta_{t}}$
$N L^{Z, Q}=\left|\left\langle\mathscr{F}\left(\left[A\left(\frac{p}{k^{2}}\right)^{-\frac{1}{4}}, \mathbf{U}\right] \cdot \nabla \Omega\right), A Z+\frac{1}{4 \beta} \frac{\partial_{t} p}{|k| p^{\frac{1}{2}}} A Q\right\rangle\right|+\frac{1}{4 \beta}\left|\left\langle\left[\frac{\partial_{t} p}{|k| p^{\frac{1}{2}}}, \mathbf{U}\right] \cdot \nabla A Z, A Q\right\rangle\right|=N L_{\text {High-Low }}^{Z, Q}+N L_{\text {Low-High }}^{Z, Q}+N L_{\text {High-High }}^{Z, Q}$

Several open questions

Instability $\sim \sqrt{t}$ in $\mathbb{T} \times \mathbb{R}$ but in $\mathbb{T} \times[0,1]$?

- for $\beta \leq 1 / 4$ nonlinear?

After $t \sim O\left(\varepsilon^{-2}\right)$? Gevrey losses?

- More general shears? (Maybe monotone for now)
- No Boussinesq approximation?

Instability and ill-posedness near a shear with $\operatorname{Ri}(y)<1 / 4$

Choose a density profile of the form $-\bar{\rho}^{\prime}(y)=\alpha(1-\alpha)\left(U^{\prime}(y)\right)^{2}, \alpha \in(0,1), \alpha \neq \frac{1}{2}$
\Rightarrow this choice forces the violation of the Miles-Howard criterion $\operatorname{Ri}(y)<1 / 4$

Choose $\psi=(U-c)^{\alpha} \phi$
\Rightarrow the Taylor-Goldstein equation reads

$$
(U-c)\left(\partial_{y}^{2}-k^{2}\right) \phi+2 \alpha U^{\prime} \partial_{y} \phi+(\alpha-1) U^{\prime \prime} \phi=0
$$

* If $k=0$ and $\alpha=1$, it gives the hydrostatic Rayleigh equation ($k=\varepsilon \tilde{k}$)

$$
(U-c) \partial_{y}^{2} \phi+2 \alpha U^{\prime} \partial_{y} \phi=0
$$

\Rightarrow the Taylor-Goldstein equation reads

$$
(U-c)\left(\partial_{y}^{2}-k^{2}\right) \phi+2 \alpha U^{\prime} \partial_{y} \phi+(\alpha-1) U^{\prime \prime} \phi=0
$$

* If $k=0$ and $\alpha=1$, it gives the hydrostatic Rayleigh equation $(k=\varepsilon \tilde{k})$

$$
(U-c) \partial_{y}^{2} \phi+2 \alpha U^{\prime} \partial_{y} \phi=0
$$

for which we know at least one shear flow $U(y)=\tanh (y / d), \quad 0<d \ll 1$ having inflection point and providing an unstable eigenvalue [Renardy]
\Rightarrow the perturbations are both order 0 while the main operator is order 2. Apply a perturbation approach to deduce the existence of an unstable eigenvalue for the hydrostatic Boussinesq equations and for the nonhydrostatic Boussinesq equations at small horizontal frequencies
[it should give ill-posedness in $H^{s}, s>0$ of the hydrostatic equations and a proof of invalidity of the hydrostatic limit in this setting]
[ongoing project with Lucas ERTZBISCHOFF and Michele COTI ZELATI]

