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Stably stratified fluids near shear flows 

(E) 

∂tρ + u ⋅ ∇ρ = 0

ρ (∂tu + u ⋅ ∇u) + ∇P = − ρ (0
𝔤) ∇ ⋅ u = 0 for (x, y) ∈ 𝕋 × [0,1]

where   u = (ux, uy) uy |y=0 = uy |y=1 = 0

 Stationary solutions of the form 

     where          [hydrostatic balance]
⇒

(ρ̄eq(y), U(y)e1, P̄eq(y)) P̄′ eq(y) = − 𝔤ρ̄eq(y)

Questions
Are these solutions ‘’stable’’? 
What is the asymptotic behavior of the perturbations in time, with or without dissipation?

Hydrodynamic stability from the end of the 19th century: Rayleigh, Kelvin, Taylor, Goldstein… 



normal mode analysis, take  

ρ̃(t, x, y) = ρ(y)est+ikx

ũ(t, x, y) = u(y)est+ikx

p̃(y) = p(y)est+ikx

 perturbed solutions: 

 linearized system  

 eigenvalues of 

⇒

ρ(t, x, y) = ρ̄eq(y) + ρ̃(t, x, y)

u(t, x, y) = U(y)e1 + ũ(t, x, y)
p(t, x, y) = P̄eq(y) + p̃(t, x, y)

⇒ ∂t (ρ̃
ũ) = L(t, x, y)(ρ̃

ũ)
⇒ L(t, x, y)?

Stably stratified fluids near shear flows 



Taylor-Goldstein Equation and Miles-Howard criterion
The triple  satisfies, for 

         

    
 introducing the variable  such that    and multiplying by   (complex conj)  gives   

   

(ρ(y), u(y), p(y)) γ(y) = s + ikU(y)

γ(y)ρ + ρ̄′ eq(y)uy = 0
ρ̄eq(y)(γ(y)ux + U′ (y)uy) = − ikρ
ρ̄eq(y)γ(y)uy = − p′ − 𝔤ρ

ikux + uy′ = 0

⇒ −(ρ̄eq(y)uy′ )′ + k2ρ̄eq(y)uy +
ik

γ(y)
(ρ̄eq(y)U′ (y))′ uy −

k2𝔤
γ2(y)

ρ̄′ eq(y)uy = 0

⇒ v(y) uy = v(y) γ(y) v̄(y)

Re(s)∫
1

0
ρ̄eq(y)( |v′ |2 + k2 |v |2 ) +

k2ρ̄eq(y)(U′ (y))2

|γ(y) |2 (Ri(y) −
1
4 ) |v |2 dy = 0

 'Richardson number’  and     'Brunt-Väisälä frequency’ if  Ri(y) = ( β(y)
U′ (y) )

2

β2(y) =
−ρ̄′ eq(y)𝔤

ρ̄eq(y)

stably stratified
ρ̄′ eq(y) < 0

Miles-Howard criterion: if    [NO any unstable mode] Ri(y) ≥ 1/4 ⇒ Re(s) = 0

Taylor-Goldstein Equation 



‘Rigidity’ of the Miles-Howard condition

The Miles-Howard condition 
Is sharp in the sense that the value 1/4 is sharp
But it is only a sufficient condition (ex. Homogeneous case)

However, it persists under 
 The Boussinesq approximation
 The hydrostatic approximation 

Taylor-Goldstein Equation under the Boussinesq approximation    

Taylor-Goldstein Equation under the hydrostatic (and Boussinesq) approximation   

ρ̄eq(y) = ρ̄c − by, b > 0

−(uy)′ ′ + k2uy +
ik

γ(y)
U′ ′ (y)uy +

k2

γ2(y)
𝔤b
ρ̄c⏟
β2

uy = 0

x =
x̃
ε

−(uy)′ ′ +ε2k2uy +
ik

γ(y)
U′ ′ (y)uy +

k2

γ2(y)
𝔤b
ρ̄c⏟
β2

uy = 0



homogeneous Vs non-homogeneous (Boussinesq)

Let γ(y) = s + ikU(y) = ik (U(y) −
is
k ) = ik(U − c) where c = is/k

Homogeneous density: Rayleigh Equation 

−(uy)′ ′ + k2uy +
U′ ′ 

(U − c)
uy = 0

NONhomogeneous density: Taylor-Goldstein

−(uy)′ ′ + k2uy +
U′ ′ (y)

(U − c)
uy −

β2

(U − c)2
uy = 0

*** Rayleigh Equation has a singularity of order 1 in  while TG has a singularity of order 2 ***

This does not change under the Boussinesq approximation 
The different orders of singularity determine a different time decay of the perturbation

(U − c)

Let us consider the simplest shear flow, namely the Couette flow  U(y) = y



The 2D Boussinesq equations around the Couette flow

    * The inviscid Euler-Boussinesq equations in   read

                                                      ( ) 

                                                 
  * Stationary solutions    stratified Couette flow

          [stable];      [Couette flow];        

                                  

𝕋 × ℝ

{∂tρ + u ⋅ ∇ρ = 0 (x, y) ∈ 𝕋 × ℝ
∂tu + u ⋅ ∇u + ∇p = − ρg, ∇ ⋅ u = 0

ρ =
ρ̃
ρ̄c

, P =
P̃
ρ̄c

(ρ̄eq(y), ūeq(y), p̄eq(y))
ρ̄eq(y) = ρ̄c − by, b > 0 ūeq = (y, 0) ∂y p̄eq = − 𝔤ρ̄eq

For   [buoyancy forcing]  the linearized system in vorticity 
             

                                      

  Brunt-Väisälä frequency

θ = 𝔤ρ/ρ̄c

{
∂tω + y∂xω = − ∂xθ − (u ⋅ ∇)ω
∂tθ + y∂xθ = β2∂xψ − u ⋅ ∇θ

(x, y) ∈ 𝕋 × ℝ

β = bg/ρ̄c



Some mathematical results

Asymptotic stability of the 2D Boussinesq system near the Couette flow, inviscid (our results in the 
2D infinite strip with Coti Zelati, Dolce and Bedrossian; linear results in the finite channel by 
Nualart ’23)
Asymptotic stability of the 2D Boussinesq system near the Couette flow with viscosity, no diffusivity 
[Masmoudi et al ’20]
Construction of echo chains for the 2D Boussinesq system near the Couette flow with viscosity 
[Zillinger ’21]
Enhanced dissipation with viscosity and diffusivity [Del Zotto ’23] and transition threshold in Sobolev 
[Masmoudi et al ’22]
Stability threshold for the 3D equations with viscosity and diffusivity in Sobolev [Del Zotto, in 
preparation]
Spectral instability and ill-posedness of the hydrostatic-Boussinesq equations near a shear flow 
violating the Miles-Howard criterion [with Lucas Ertzbischoff and Coti Zelati, in preparation]

‘Spectral stability is not enough’ and a steady state is stable if, given two spaces , perturbations decayX, Y
∀ε > 0 ∃δ > 0 ∥(ρin, uin)∥X < δ ⇒ ∥(ρ(t), u(t))∥Y ≤ ε



2D Euler equations linearized
[Bedrossian-Masmoudi 2015] nonlinear, Couette flow
[Ionescu-Jia 2020] nonlinear, monotone shear flows
[Wei, Zheng, Zhao 2020, after Bouchet-Morita 2010] linear, near the Kolmogorov flow  (sin y,0)



A step back: the Euler equations in 2D 

Let’s focus on vorticity mixing : consider the Euler equations near the 2D Couette flow  
Like any shear flow, Couette is a steady state of 2D Euler.  Q: ‘’Is it stable to perturbation?’’

 It depends pretty much on the regularity of the perturbation:
    look at the linearized 2D Euler equations in vorticity form near Couette

    in the domain 

• Spectrally stable in  [continuous spectrum, the imaginary axis]

• Lyapunov stable in 

• Lyapunov unstable from 

• Lyapunov stable from   ( =zero average in x)

‘’Lypunov stability - time decay - requires loss of regularity’’

ūcouette = (y,0)

⇒

{∂tω + y∂xω = 0
ω(0,x, y) = ωin(x, y)

𝕋 × ℝ

L2

L2

Hs → Hs, s > 0

H1
⋆ → H−1 ⋆



Mixing by shear flows in the Euler equations

Physical space
Consider  and the Euler equations  

Linearized around Couette  i.e. 

Explicit solution 

θ = 1 ∂tω + (u ⋅ ∇)ω = 0
u = (y,0) ∂tω + y∂xω = 0

ω(t, x, y) = ωin(x − yt)

Consider ✓ ⌘ 1 and the Navier-Stokes equations:

@t v + v ·rv +rp = ⌫�v ,

 @t! + v ·r! = ⌫�!.

Euler equations: ⌫ = 0.

Linearize around

v = (y , 0),! = �1.

Explicitly solvable.

Exhibit mixing enhanced dissipation.

y

x
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Mixing by Shear Flows

Fourier Dynamics 
 

Explicit solution 

∂t ̂ω + k∂η ̂ω = 0
̂ω (t, k, η) = ̂ωin (η + kt)

@t! + y@x! = ⌫�!  @tF! � k@⌘F! = �⌫(k2 + ⌘2)F!.

k

η

7/36 2023-11 C. Zillinger: Boussinesq CRC 1173 Wave phenomena

Fourier Dynamics



Linear inviscid damping

{
∂tω + y∂xω = 0
ω |t=0 = ωin

̂ω (t, k, η) = ̂ω in(k, η + kt)
̂ω (t, k, η − kt) = ̂ω in(k, η)̂Δψ (t, k, η − kt) = ̂ω in(k, η − kt)

⇒
̂uy ∼ k ̂ψ =

k ̂ω in
k2 + (η − kt)2 =

k(k2 + η2) ̂ω in
(k2 + (η − kt)2)(k2 + η2)

≲ O(t−2)

̂ux ≲ O(t−1)

Consider ✓ ⌘ 1 and the Navier-Stokes equations:

@t v + v ·rv +rp = ⌫�v ,

 @t! + v ·r! = ⌫�!.

Euler equations: ⌫ = 0.

Linearize around

v = (y , 0),! = �1.

Explicitly solvable.

Exhibit mixing enhanced dissipation.

y

x

5/36 2023-11 C. Zillinger: Boussinesq CRC 1173 Wave phenomena

Mixing by Shear Flows



Linear enhanced dissipation with  νΔ

Mixing by shear flows transports energy at high frequencies where the Laplacian is stronger

Navier-Stokes at Couette    

Explicitly solvable               

                              

For more general shear flows it is more complicated, enhanced dissipation rates obtained 
through suitable modified energy functionals (hypocoercivity method) 

∂tω + y∂xω = νΔω
∂t ̂ω + k∂η ̂ω = −ν(k2 + η2) ̂ω

̂ω (t, k, η − kt) ≲ e ∫t
0 −ν(k2+(η−kτ)2) dτ ≲ e−cνt3



Back to Boussinesq and linear dynamics in the infinite strip  𝕋 × ℝ

In the case of the stably stratified Couette flow (1.4), where U 0 ⌘ 1, the Brunt–Väisälä frequency and the
Richardson number coincide, giving

�2 >
1

4
. (1.17)

REMARK 1.2. The threshold 1/4 is optimal but the Miles-Howard criterion is only a sufficient condition
for spectral stability: notice indeed that in the homogeneous case ⇢ = 1, any shear flow without inflection
point is spectrally stable by Rayleigh’s theorem.

2. Linearized asymptotic stability

There are several ways to study the longtime dynamics of (2.7), some of which involve finding an
explicit solution in terms of hypergeometric functions [23] or Whittaker functions [9, 10], at least when
⌫ =  = 0. The approach developed in [4] is instead based on an energy method, which well adapts to the
nonlinear setting [2], or the viscous one as we show below.

For any function f : T⇥ R ! R, we use the notation

f0 =
1

2⇡

Z

T
f(x, ·)dx, f 6= = f � f0.

At the linear level, the zero mode in x does not play any significant role in the dynamics of (1.11)-(1.12),
as it is simply conserved (when ⌫ =  = 0) or diffused (when ⌫, > 0). The asymptotic stability in the
inviscid case ⌫ =  = 0 can be phrased as in the following result. The basic assumption is the spectral
stability condition (1.17), and the notation is

THEOREM 1 (Linear inviscid damping and instability, [4]). Let � > 1/2, and define

C� :=


2� + 1

2� � 1
exp

✓
1

2� � 1

◆�1/2
. (2.1)

Then there hold the linear inviscid damping estimates

k✓ 6=(t)kL2 +
��ux6=(t)

��
L2 .C�hti�1/2

h��!in

6=
��
L2 +

��✓in6=
��
H1

i
, (2.2)

kuy(t)k
L2 .C�hti�

3
2

h��!in

6=
��
H1 +

��✓in6=
��
H2

i
, (2.3)

and the shear-buoyancy instability estimate

k! 6=(t)kL2 + kr✓ 6=(t)kL2 & 1

C�

hti1/2
h��!in

6=
��
H�1 +

��✓in6=
��
L2

i
, (2.4)

for every t � 0.

The symbols . and & only hide absolute constants, independent of �. In stark contrast to the homoge-
neous Couette flow [3], the system undergoes a Lyapunov instability (2.4). This can be considered the reason
why the decay rates in (2.2)-(2.3) are slower by a factor of t1/2, compared to those that can be obtained in
the constant density case. From a physical viewpoint, density stratification induces creation of vorticity and
hence an algebraic growth in L2. Nonetheless, density is not simply transported (hence conserved in L2),
but decays due to buoyancy mechanism.

This mechanism affects also the dissipative behavior of the equations, which we firstly analyze in the
case when ⌫, > 0 are comparable.

Exp. no V— Symmetrization and asymptotic stability in non-homogeneous fluids

V–5

Theorem [RB, Coti Zelati, Dolce ’20] Let . Define β > 1/2



Initial vorticity Initial buoyancy

Shearing effect at later times Growth of the vorticity

** density induces creation of vorticity and hence an  growth in time **L2



Linear enhanced dissipation 

FIGURE 1. Numerical simulation of the linearized system with ⌫ =  = 0. On the top-
left the initial data with zero vorticity perturbation (the background vorticity and density
are not plotted). On the top-right we see the evolution at time t = 0.1, where dipoles
are created to restore the equilibrium state (heavier density at the bottom). The bottom-
left figure shows the evolution at time t = 16, where the effect of shearing is evident.
Observe that the density is fading out at the center, which is in stark contrast compared to
the standard advection by the Couette flow. The colors of these three figures are not scaled
with magnitude for visualization reasons. Finally, on the bottom-right we see a plot of the
L2 norms of density, vorticity and velocity fields components. Notice the

p
t behavior of

the vorticity (the yellow curve).

THEOREM 2 (Linear enhanced dissipation). Let � > 1/2, assume that ⌫, > 0 satisfy
max{⌫,}
min{⌫,} < 4� � 1, (2.5)

and define the strictly positive number

�⌫, := min{⌫,}
✓
1� 1

4�
� 1

4�

max{⌫,}
min{⌫,}

◆
.

Then
k! 6=(t)kL2 + hti k✓ 6=(t)kL2 . C�hti1/2e�

1
24�⌫,k

2
t
3
h��!in

6=
��
L2 +

��✓in6=
��
H1

i
,

for every t � 0.

Similar estimates on the velocity (ux6=, u
y) can be obtained, since the proof of this theorem is based on

precise pointwise estimates in the Fourier side. In particular, when setting ⌫ =  and then sending them
to 0, one recovers all the estimates in Theorem 1.

REMARK 2.1. The condition (2.5) is the same identified in [8] to prove enhanced dissipation in the
three-dimensional Boussinesq equations. It reduces to (1.17) when ⌫ = .

2.1. A new symmetrization scheme. The transport structure of system (1.11)-(1.12) suggests the lin-
ear change of variable

z = x� yt, (2.6)

Roberta Bianchini, Michele Coti Zelati and Michele Dolce

V–6

 Transition threshold  in Sobolev spaces  [Zhai & Zhao ’22] while for the homogeneous case 

    This is related to the asymptotic    and 

⇒ ν1/2 Hs ν1/3

t ∼ ν−1/3 ⇒ ∥f≠∥ ≲ ⟨t⟩e−cνt3 ≲ ν−1/6 ν1/3+1/6 = ν1/2



Symmetrization and energy method

The transport  suggests changing coordinate    and variables 

In this moving frame    where   [in Fourier ] and

           

Symmetric variables:  

y∂x z = x − yt
Ω(t, z, y) = ω(t, x, y)
Θ(t, z, y) = θ(t, x, y)
Ψ(t, z, y) = ψ(t, x, y)

ΔLΨ = Ω ΔL = ∂zz + (∂y − t∂z)2 p = k2 + (η − kt)2

∂t (Ω
Θ) = ( 0 −ikβ2

−ikp−1 0 ) (Ω
Θ)

ν=κ=0

∂t (Ω
Θ) = ( −pν −ikβ2

−ikp−1 −pκ ) (Ω
Θ)

ν,κ>0

{Z = (p/k2)−1/4Ω
Q = ikβ(p/k2)1/4Θ



Energy in the moving frame - inviscid

In terms of the symmetric variables 
  

we can define the energy functional

 

is coercive provided that  [Miles-
Howard]

∂t (Z
Q) =

− 1
4

∂t p
p −β |k |p−1/2

β |k |p−1/2 1
4

∂t p
p

(Z
Q)

E(t, k, η) =
1
2 [ |Z |2 + |Q |2 +

1
2β

∂t p
|k |p1/2

Re(ZQ̄)]
β > 1/2

−
E

2(1 − 2β)
∂t ( ∂t p

|k |p1/2 ) ≤
d
dt

E ≤
E

2(1 − 2β)
∂t ( ∂t p

|k |p1/2 )
⇓

E(t) ≈β E(0)

Upper and lower bounds, point wise in  (k, η)

d
dt

E(t) =
1

4β
∂t ( ∂t p

|k |p1/2 ) Re(ZQ̄)

⇓



Linear inviscid damping by the energy method

|p−1/4Ω(t, k, η) |2 + |p1/4Θ(t, k, η) |2 ≈β | (k2 + η2)−1/4Ω(0,k, η) |2 + | (k2 + η2)1/4Θ(0,k, η) |2

⇓

 reads, more explicitelyE(t) ≈β E(0)

{∥θ(t) − ⟨θ⟩x∥L2 + ∥ux(t) − ⟨ux⟩x∥L2 + ⟨t⟩∥uy(t)∥L2 ≲ ⟨t⟩− 1
2 (∥ωin − ⟨ωin⟩x∥H1 + ∥θin − ⟨θin⟩x∥H2

∥ω − ⟨ω⟩x∥L2 + ∥∇θ − ⟨∇θ⟩x∥L2≈ Cin⟨t⟩1/2

The energy method applies to the case of exponentially stratified fluids  without the Boussinesq 

approximation and to shear flows close to Couette  such that

ρ̄eq(y) = e−by

U′ eq(y) ∼ 1, U′ ′ eq(y) ∼ 0
∥U′ eq(y) − 1∥Hs = O(ε), ∥U′ ′ eq(y)∥Hs−1 = O(ε)

[instability]

[damping]



Enhanced dissipation via the energy method for ν, κ > 0

The same energy functional  applied to the dissipative case E(t, k, η) =
1
2 [ |Z |2 + |Q |2 +

1
2β

∂t p
|k |p1/2

Re(ZQ̄)]
⇓

d
dt

E ≤
1

2(1 − 2β)
∂t ( ∂t p

|k |p1/2 ) −
4β

2β + 1
λν,κ pE

where  λν,κ = min {κ −
ν + κ

4β
, ν −

ν + κ
4β }

⇓

E(t) ≤ exp ( 1
2β − 1 ) exp (−

β
3(2β + 1)

λν,κk2t3) E(0)



Partial dissipation κ = 0, ν > 0

THEOREM 3 (Stability in the non-diffusive case, [19]). Let �, ⌫ > 0 and  = 0 in (1.11)-(1.12). Then
there hold the asymptotic stability estimates

k! 6=(t)kL2 + hti
��ux6=(t)

��
L2 + hti2 kuy(t)k

L2 . hti�2
h��!in

6=
��
H4 +

��✓in6=
��
H5

i
,

and
k✓ 6=(t)kL2 .

��!in

6=
��
H2 +

��✓in6=
��
H1 ,

for every t � 0.

The crucial differences with the previous cases is that ✓ does not decay and, despite dissipation, ! only
decays algebraically. It is worth noticing that the above theorem does not claim any enhanced dissipation,
as the constants hidden by . depend (in a quite bad way, in fact) on ⌫. Interestingly, no condition on � is
required.

In the usual moving frame (2.6), the linearized system (2.8) reads

@tb⌦ = �i�2kb⇥� ⌫pb⌦, @tb⇥ = � ik

p
b⌦.

The analysis of such system in nontrivial, as in the equation for b⌦ there is a competition between the
buoyancy force and the viscosity. This aspect is captured by the good unknown

⌃ := ��2ikb⇥� ⌫pb⌦, (2.15)

which satisfies the equation

@t⌃+ ⌫p⌃ = ��
2k2

p
b⌦+ ⌫@tpb⌦.

Writing the system for (⌃, b⇥), and performing an energy estimate on |⌃|2 + |b⇥|2, we find that

|⌃(t)|2 + |b⇥(t)|2 .⌫,� |⌃(0)|2 + |b⇥(0)|2,
and therefore (2.15) entails the algebraic decay estimate

|b⌦(t)| . 1

k2 + (⌘ � kt)2

h
|⌃(0)|+ |kb⇥(0)|

i
.

From this pointwise estimate in frequency space, it is not hard to obtain Theorem 3.

3. Inviscid nonlinear stability

Now we consider the full nonlinear inviscid system, i.e. (1.9)-(1.10) with ⌫ =  = 0. From the
linearized problem studied in the previous section, we know that the behavior of u0 and u 6= is fundamentally
different: for the x-average we do not have any inviscid decay mechanism acting, whereas for u6= we
have the inviscid damping estimates in Theorem 1. However, thanks to r · u = 0, we know that u0 =
(u0(t, y), 0), meaning that this part of the velocity field is a time-dependent shear flow. It is therefore
natural to rewrite the equations (1.9)-(1.10) as

@t! + (y + u0(t, y))@x! = ��2@x✓ � u 6= ·r!,
@t✓ + (y + u0(t, y))@x✓ = @x � u 6= ·r✓.

For an initial perturbation of size O("), we might hope to treat u0 perturbatively at most on a time-scale
O("�1), which is the natural time-scale on which the linearized dynamics can be thought to be a good
approximation. For longer times, we need to handle the zero x-mode differently: we remove it through a
nonlinear change of coordinates by defining

v = y +
1

t

Z
t

0
u0(⌧, y)d⌧, z = x� vt (3.1)

This was indeed one of the key ideas introduced in [3] for the 2D Euler equations. This approach can be
viewed as a hybrid perspective combining the Lagrangian and the Eulerian frameworks. The change of

Exp. no V— Symmetrization and asymptotic stability in non-homogeneous fluids

V–9

[Masmoudi et al ’20]

  does not decay at all
The velocity decays faster 
No any enhanced dissipation since  depends very badly  

θ

≲ ν

{
∂tΩ = − iβkΘ − νpΩ

∂tΘ = − ik
p Ω

Good unknown   Σ = − ikβΘ − νpΩ

Performing an energy estimate   |Σ(t) |2 + |Θ(t) |2 ≲ν,β |Σ(0) |2 + |Θ(0) |2 ⇒ |Ω(t) | ≲β,ν (k2 + (η − kt)2)−1



In ‘’more general’’ domains, another approach
 ‘’Limiting Absorption Principle’’  

• Doing resolvent estimates by hands [Jia 2019, Zhao…]
• Using the conjugate operator method [Grenier at al 2020]



Sketch of the approach via the LAP
The LAP [Limiting Absorption Principle] tells that the resolvent  of an operator  is uniformly 

bounded in terms of the spectral parameter  [and it actually decays in time] if it acts on a suitable 
weighted space

Linear inviscid damping of the 2D Boussinesq equations near the Couette flow in the periodic 
channel  [Marc Nualart ’23]

Mode decomposition in 

Write down  using Dunford [Cauchy integral] formula for operators 

  

[singular integral, OK only in the sense of the Principal Value]

R(c) L
c

𝕋 × [0,1]

x ⇒ ∂t (ψk
ρk) + iLk (ψk

ρk) = 0 ⇒ (ψk(t)
ρk(t)) = eiLkt (ψ0

k

ρ0
k )

eiLkt

(ψk
ρk) = eiLkt (ψ0

k

ρ0
k ) = ∫∂D

e−ikct (c − Lk)−1(ψ0
k

ρ0
k )

solutions to TG

dc ∼ ∫
. . .

(y − c)μ
dc



Sketch of the approach via the LAP

The decay estimates are obtained by a non stationary phase method (integration by parts in the 
spectral parameter ) that applies to this problem since the spectrum is continuous for c β > 1/2

LIMITING ABSORPTION PRINCIPLES AND INVISCID DAMPING IN EULER-BOUSSINESQ 7

– there is no eigenvalue c 2 C such that |Im(c)| � �/m or |Im(c)|  "0.

The three cases outlined above are depicted in Figure 1. Unstable eigenmodes can be ruled out by the
classical Miles-Howard stability criterion [17,25] when �2 � 1/4, so that any eigenvalue c 2 C of Lm must
have Im(c) = 0. However, spectral stability is typically not sufficient to deduce asymptotic stability. This
is particularly clear when �2 > 1/4, for which infinitely many eigenvalues exist, corresponding to neutral
(oscillatory) modes. This is a specific feature of the problem in the periodic channel. The same problem
on the periodic strip does not have any of these modes, as the essential spectrum is the whole real line, and
hence eigenvalues are “pushed away to infinity”. In the periodic channel, each of these discrete eigenvalues
are found to be zeroes of the Wronskian of the Green’s function and this is precisely how we characterize
them in Proposition 6.3.

Re(c)

Im(c)

� �
m 1 + �

m

0

"0

�"0

�
m

� �
m

1
⇤⇤⇤⇤⇤ ⇤⇤⇤

(A) �2 > 1/4

Re(c)

Im(c)

� �
m 1 + �

m

0

"0

�"0
1

�
m

� �
m

(B) �2 = 1/4

Re(c)

Im(c)

� �
m 1 + �

m

0

"0

�"0

�
m

� �
m

1

⇤

⇤

⇤

⇤

(C) �2 < 1/4

FIGURE 1. The essential spectrum �ess(Lm) = [0, 1] is in red. Eigenvalues are denotes
by ⇤. Theorem 3 shows their existence for �2 > 1/4, while when �2 < 1/4 we can only
discern that they do not exist close to the essential spectrum.

When �2 < 1/4, we are able to rule out the existence of eigenvalues in the proximity of the essential
spectrum, which is a consequence of suitable lower bounds on the Wronskian. Nonetheless, isolated unstable
eigenvalues in an intermediate region may exist in this case, although their presence does not affect the
conclusion of Theorem 1 if the data are orthogonal to them. The proof of their existence is an interesting
open question.

The proof of Theorem 1 is postponed to Section 6. It requires an extensive analysis of the resolvent
operator (c� Lm)�1 and of spectral integrals of the form (2.2), where the domain of integration containing
the essential spectrum is carefully designed.

2.6. Solutions to the inhomogeneous Taylor-Goldstein equation. Once the Green’s function is es-
tablished and (TG) is regularized due to the introduction of F±

m," and '±
m,", most of the analysis on  ±

m,"

will follow from the properties of generic solutions �±
m," to the general inhomogeneous Taylor-Goldstein

equation
TG±

m,"�
±
m," = f, (TGf)

for some f 2 L2 and with boundary conditions �±
m,"(0, y0) = �±

m,"(1, y0) = 0. To formally quantify the
distance to the critical layer, for y0 2 [0, 1] and n � 1 we introduce the nested sets

Jn = {y 2 [0, 1] : m|y � y0|  n�}

and Jc
n = [0, 1] \ Jn. A direct consequence of Theorem 2 are the asymptotic expansions of �±

m," near the
critical layer. That is, for all y 2 J3 we have

|y � y0 ± i"|�
1
2+µ

|�±
m,"(y, y0)|+ |y � y0 ± i"|

1
2+µ

|@y�
±
m,"(y, y0)| .

1

m1+µ
kfkL2

y
. (2.13)

RMK
Rates of decay in time depend on the order of singularity of the ODE equation TG (Taylor-Goldstein). 
The singularity of TG is worse than the Rayleigh equation (homogeneous case), then the decay is slower
The TG equation has the same order of singularity with and without the Boussinesq approximation, 
then the Boussinesq approximation should not affect the time behavior of the perturbations 

 



Stability in 3D
[Del Zotto’ 23]
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viscous and thermally diffusive Boussinesq equations










∂tV + (V ·∇)V +∇P = ν∆V + gΘŷ,

∂tΘ+ V ·∇Θ = κ∆Θ,

∇ · V = 0.

(1.1)

Above, V = (V 1, V 2, V 3) is the velocity of an incompressible fluid with pressure P and viscosity ν > 0,
and Θ is its temperature, with thermal diffusivity κ > 0. The equations for V and Θ are coupled through
buoyancy acting in the second component (as ŷ = (0, 1, 0)), with gravity constant g > 0.

1.1. The stably stratified Couette flow. We restrict ourselves to the spatial setting (x, y, z) ∈ T×R×
T, and study the linearized dynamics of solutions around the steady state

U s = (y, 0, 0), ∂yP
s = g(1 + αy), Θs = 1 + αy, α > 0, (1.2)

namely, a stably stratified Couette flow. Indeed, since α > 0 this solution represents the scenario in which
the fluid is flowing along the Couette flow whilst been thermally stratified in such a way that the warmer
(hence lighter) fluid is located at the top and the colder (hence denser) fluid at the bottom.

Linearizing (1.1) near (U s,Θs), hence writing V = U s + u, Θ = Θs −
√

α/g θ, and neglecting
nonlinear contributions, we find the system

{

∂tu+ y∂xu+ u2x̂+ 2∇(−∆)−1∂xu2 + β∇(−∆)−1∂yθ = ν∆u− βθŷ,

∂tθ + y∂xθ − βu2 = κ∆θ,
(1.3)

where β =
√
αg is the Brunt-Väisälä frequency, which describes the frequency at which a small parcel of

fluid, when displaced vertically in a stable, stratified environment, oscillates back and forth due to buoy-
ancy forces. It is also worth noticing that the terms 2∇(−∆)−1∂xu2 and β∇(−∆)−1∂yθ appear as the
linearization of the pressure term.

1.1.1. The lift-up effect. In their groundbreaking work [12], Ellingsen and Palm unveiled a fundamen-
tal linear mechanism capable of inducing instability in shear flows, a phenomenon now recognized as the
lift-up effect. Kline et al. [15] coined this term while studying turbulent boundary layers, observing that
in the laminar sublayer, streaks gradually moved away from the slow-moving fluid near the bottom wall
to the faster fluid above. They proposed that vortex filaments, generated perpendicular to the streaks due
to the flow’s 3D nature, drove this upward motion. Notably, the lift-up effect is absent in 2D flows due to
incompressibility. For further details, refer to [9,12,15,16,21] and related references. Building on Brandt’s
review [9], we quantify this mechanism by defining streak solutions and elucidating their growth origins.

For any function ϕ : T× R× T → R, we define

ϕ0 =
1

2π

∫

T

ϕ(x, ·, ·)dx, ϕ"= = ϕ− ϕ0. (1.4)

Solutions to (1.3) that are independent of x are called streaks. These correspond to x-averaged solutions,
which we will also refer to as the zero modes.

In view of periodicity, streaks solutions to (1.3) satisfy


















∂tu10 + u20 = ν∆y,zu10,

∂tu20 + β∂y(−∆y,z)−1∂yθ0 = ν∆y,zu20 − βθ0,

∂tu30 + β∂z(−∆y,z)−1∂yθ0 = ν∆y,zu30,

∂tθ0 + βu20 = κ∆y,zθ0.

(1.5)

When β = 0, the above system reduces to the homogeneous Navier-Stokes equations. In this case, (u20, u
3
0)

satisfy the two-dimensional heat the equation, while u10 is forced by u20 in a linear way. The explicit solution
can be written as

u0(t) = eν∆y,zt
(

u10(0) − tu20(0), u
2
0(0), u

3
0(0)

)

(1.6)

 and  is the Brunt-Väisälä frequency. The 3D Couette flow is u = (u1, u2, u3) β (y,0,0)

Linear enhanced dissipation

Assume  and . Define  and 

Then 

β > 1/2 ν = κ > 0 C2
β =

2β + 1
2β − 1

exp ( 1
2β − 1 ) λν := ν (1 −

1
2β )

∥(u1, u3)≠∥L2 + ⟨t⟩3/2∥u2
≠∥L2 + ⟨t⟩1/2∥θ≠∥L2 ≲ e−λνt3(∥u≠(0)∥H3 + ∥θ≠(0)∥L2)

∥(u0, θ0)(t)∥L2 ≲β e−νt∥(uin
0 , θin

0 )∥H4

RMK The last estimate implies suppression of the lift-up effect



Stability in 3D in the homogeneous setting
In the homogeneous setting, the x-average of the Navier-Stokes equations satisfies

Thus the x-average displays a linear growth in time as 

*****

In contrast, in the nonhomogeneous setting all the components decay at the rate of the 
heat equation as soon as  

While in the homogeneous case  replaces  

{
∂tu1

0 + u2
0 = νΔy,zu1

0

∂tui
0 = νΔy,zui

0, i = 1,2
u0(t) = eνΔy,zt(u1

0(0)−tu2
0(0), u2

0(0), u3
0(0))

ν → 0

β > 0

∥(u, θ)(t)∥L2 ≲ ν−8/9∥(u, θ)(0)∥H4 ≤ C if ∥(u, θ)(0)∥H4 ≲ ν8/9

ν ν8/9



The nonlinear 2D inviscid problem in  𝕋 × ℝ



Echoes in the homogeneous-density case

Since 

Homogeneous 2D Euler around Couette

  

The 0-th mode does not decay 
It’s time average + y is the final shear flow
The nonlinear term is important: toy model

∇ ⋅ u = 0 ⇒ u ⋅ ∇ = ux
0∂x + u≠ ⋅ ∇

{∂tω + (y+ux
0(t, y))∂xω = − u≠ ⋅ ∇ω

u = ∇⊥Δ−1ω

Toy model: X=x-yt; Y=y
∇⊥Δ−1ω ⋅ ∇ω → ∇⊥Δ−1

L Ω ⋅ ∇Ω

∂t
̂Ω k ≈ ℱ(∂vΔ−1

L Ω∂zΩ)k

ℱ(∂vΔ−1
L Ω)k =

η
k2

̂Ω k

1 + | t − η/k |2

An echo: Shinrelmann 2013

Paraproduct decomposition 
(u ⋅ ∇)ω = (u ⋅ ∇)ωHigh-Low + (u ⋅ ∇)ωLH + (u ⋅ ∇)ωHH



Echo cascade heuristic

For   and 

High-to-low frequency cascade may happen 

Gevrey 2 regularity

t ∼ η/k η/k2 ≫ 1

k → k − 1 → ⋯1

(η/k2)(η/(k − 1)2)⋯(η/12) ∼ e η

Initial perturbation by a single mode   

                     excites  at the resonant time 

       excites  at the resonant time 

δ exp(kx + iηy)

∂t fk−1 ∼
η
k2

fk
1 + (t − η/k)2 (k − 1,η) tk = η/k

∂t fk−2 ∼
η

(k − 1)2

fk−1

1 + (t − η/(k − 1))2
(k − 2,η) tk−1 = η/(k − 1)



Notion of damping

The velocity converges strongly in  as  

The vorticity converges only weakly 

Where  [scattering profile] solves a linear problem 

L2 t → + ∞

ux(t, x, y) →L2 ux
0 = ∫𝕋

ux( ⋅ , x) dx at rate t−1

uy(t, x, y) →L2 0 at rate t−2

ω(t, x, y) ⇀ ω∞(t, x − tu∞(y), y)

ω∞(t, x − tu∞(y), y)



Nonlinear Boussinesq in 2d

∂tω + (y + ux
0)∂xω = − β2∂xθ − u≠ ⋅ ∇ω

∂tθ + (y + ux
0)∂xθ = ∂xψ − u≠ ⋅ ∇θ

u = ∇⊥ψ Δψ = ω

𝕋 × ℝ

1) Pro/contro shared with the Euler

Decay of  due to inviscid damping

 does not decay  nonlinear change of 
coordinates to go beyond the linear time-scale 

 may create echoes at resonant times

u≠

ux
0

O(ε)
u≠

Guess: linear behavior persists for 
data of Gevrey norm  and O(ε)
t ∼ ε−2

2) Peculiarities of linear Boussinesq

Slower damping rates

  in 

 and      when     

 

                          

if     

∥ω∥ + ∥∇θ∥L2(𝕋×ℝ) ∼ εt1/2

L2(𝕋 × ℝ) ∼ O(1)
t ∼ ε−2

∂t(t(v′ − 1)) = ω0 ∼ εt1/2 < δ
t = O(δε−2)



NONLINEAR INVISCID DAMPING

Denote ∥f∥2
𝒢λ = ∑

k∈ℤ
∫ e2λ(|k|+|η|)s | ̂fk(η) |2 dη and f0(y) =

1
2π ∫𝕋

f(x, y)dx, f≠ = f − f0

Theorem [J. Bedrossian, R. Bianchini, M. Coti Zelati, M. Dolce] 
Let  For all , there exist  
such that for  and   mean-free initial data with 

   Define the phase shift     . Then, for all     

   Therefore

β > 1/2. 1/2 < s ≤ 1, λ0 > λ′ > 0 ε0 ≪ δ < 1 [δ2 ∼ (β2 − 1/4)]
ε ≤ ε0 ωin, θin

∥uin∥L2 + ∥ωin∥𝒢λ0 + ∥θin∥𝒢λ0 ≤ ε .

Φ(t, y) = ∫
t

0
ux

0(τ, y)dτ 0 ≤ t ≤ δ2ε−2

∥ux
0(t)∥𝒢λ′ + ∥θ0(t)∥𝒢λ′ ≲ ε

∥ω(t, x + ty + Φ(t, y), y)∥𝒢λ′ + ⟨t⟩∥θ≠(t, x + ty + Φ(t, y), y)∥𝒢λ′ ≲ ε⟨t⟩1/2

∥ux
≠(t)∥L2 + ∥θ≠(t)∥L2 +⟨t⟩∥uy

≠(t)∥L2 ≲ ε⟨t⟩− 1
2



Shear-Bouyancy Instability

Theorem [J. Bedrossian, R. Bianchini, M. Coti Zelati, M. Dolce 2021] 
Same hypotheses. There exists  such that, if     

Then 

K > 0
∥ωin

≠ ∥H−1 + ∥θin
≠ ∥L2 ≥ Kεδ

∥ω≠(t)∥L2 + ∥∇θ≠(t)∥L2≈ ε⟨t⟩1
2 for all 0 ≤ t ≤ δ2ε−2



Nonlinear dynamics: the change of coordinates

∂tω + y∂xω = − β2∂xθ − u ⋅ ∇ω
∂tθ + y∂xθ = ∂xψ − u ⋅ ∇θ
u = ∇⊥ψ Δψ = ω
in 𝕋 × ℝ

3 main ingredients:
1) nonlinear change of coordinates
2) change of variables [‘’symmetrization’’] to handle the linear dynamics 

3) dynamical weight inside the norm to control echo chains

 
                 
           where   should decay
                                    

                 

∇ ⋅ u = 0 ⇒ u ⋅ ∇ = ux
0∂x + u≠ ⋅ ∇

u≠

v = y +
1
t ∫

t

0
ux

0(s, y) ds z = x − vt

Ω(t, z, v) = ω(t, x, y)
Θ(t, z, v) = θ(t, x, y)
Ψ(t, z, v) = ψ(t, x, y)

RMK: to be invertible, the zero mode 
needs to stay small, thus we need a 
coordinate system control           

The system in the new coordinates

  

  ;   ;    

∂tΩ = − β2∂zΘ − U ⋅ ∇Ω
∂tΘ = ∂zΨ − U ⋅ ∇Θ
U = (0, ·v) + v′ ∇⊥Ψ≠ ΔtΨ = Ω

·v = ∂tv ∇ = ∇z,v Δt := ∂zz + (v′ )2(∂v − t∂z)2 + v′ ′ (∂v − t∂z)

1) change of coordinates 



Zoom in on the construction of the toy model
  high-low term    [as  is low ]
  nearest interaction  
  near critical times ‘’resonant interval’’  

For any   there is at most a critical  such that .    The toy model reduces to

                                                                       

                                               

(∂vΔ−1
L Ω)Hi ⋅ (∂zΩ)lo ∂zΩ ⇒ η ∼ 0
k ⇒ k − 1

| t − η/k | ≤ η/k2

t > 0 k t ≈
η
k

⇒ {k, k − 1}

∂tZk ≈ εt1/2 ( k2

η )
1
2 Zk−1(η)

(1 + | t − η/k |2 )1
4

∂tZk−1 ≈ εt1/2 ( η
k2 )

1
2 Zk(η)

(1 + | t − η/k |2 )3
4

Construct a weight  encoding the maximal growth predicted by the toy modelwk(t, η)

∂twR = ( k2

η )
1
2 wNR

(1 + | t − η/k |2 )1
4

∂twNR = ( η
k2 )

1
2 wR

(1 + | t − η/k |2 )3
4

wR = Zk; wNR = Zk−1 t ∈ [−η/k2, η/k2]

Proposition. The maximal growth of wk(t, η)

wk(tk−1,η, η)
wk(tk,η, η)

≈
wNR

wR
≲ ( η

k2 )
1
2



The dynamical weight



The strategy of the proof

The proof is based on a bootstrap argument with several ingredients. 

The most important are:

‘’Linear’’ energy functional [with the dynamical weight inside]

 where 

‘’nonlinear’’ energy functional [with the dynamical weight inside] 

Energy functional to control the change of coordinates 

   

The nonlinear terms are treated by using a para-product decomposition 

Elin(t) =
1
2

∥AZ∥2 + ∥AQ∥2 +
1

2β ⟨ ∂t p

|k |p1
2
AZ, AQ⟩ A ∼ wk−1e η

Enonlin(t) =
1
2 [∥AΩ∥2 + β2∥A∇LΘ∥2]



The main weight A

* For the variable Q we have the same bounds  we can use the same multiplier w 

* In [BM15], the amplification factor is  rather than  the regularity gap among resonant 

                                                                                                                     & non-resonant modes is different 
( η

k2 ) ( η
k2 )

1
2

We define the main weight: 

 and  is boundedAk(t, η) = ⟨k, η⟩σeλ(t)|k,η|s (m−1J)k
(t, η) where Jk(t, η) =

eμ|η|
1
2

wk(t, η)
+ eμ|k|

1
2 m

 ∂tA = ·λ(t) |k, η |s A −
∂tw
w

Ã −
∂tm
m

A (in Ã Jk is replaced with J̃k = eμ|η|
1
2w−1

k )

Restrict the radius of 

regularity by a finite a 

amount & continuously in time 

∂tλ = − ⟨t⟩−δ−1

Control the 

echo chain

Artificial dissipation that absorbs the 

integrable remainders 

of the linear dynamics   

∂tm
m

=
Cβ

1 + | t − η/k |2



The ‘’linear’’ energy functional

Symmetrized variables to handle the linear dynamics  

    where  A is a weight encoding Gevrey regularity

          

Z:= (p/k2)− 1
4 ̂Ω Q := (p/k2)1

4ikβ ̂Θ

EL(t) =
1
2

∥AZ∥2 + ∥AQ∥2 +
1

2β ⟨ ∂t p

|k |p1
2

AZ, AQ⟩

d
dt

EL + (1 −
1

2β ) ∑
j∈{λ,w,m}

(Gj[Z] + Gj[Q]) ≤ LZ,Q + NLZ,Q + ℰdiv + ℰΔt

NLZ,Q = ⟨ℱ A ( p
k2 )

− 1
4

, U ⋅ ∇Ω , AZ +
1

4β
∂t p

|k |p1
2

AQ⟩ +
1

4β ⟨[ ∂t p

|k |p1
2
, U] ⋅ ∇AZ, AQ⟩ = NLZ,Q

High-Low + NLZ,Q
Low-High + NLZ,Q

High-High



Instability  in  but in ? 

for  nonlinear?

After ? Gevrey losses?

More general shears? (Maybe monotone for now)

No Boussinesq approximation?

∼ t 𝕋 × ℝ 𝕋 × [0,1]

β ≤ 1/4

t ∼ O(ε−2)

Several open questions



Instability and ill-posedness near a shear with Ri(y) < 1/4

Choose a density profile of the form 

 this choice forces the violation of the Miles-Howard criterion 

Choose  

 the Taylor-Goldstein equation reads 

* If  and , it gives the hydrostatic Rayleigh equation ( )

−ρ̄′ (y) = α(1 − α)(U′ (y))2, α ∈ (0,1), α ≠
1
2

⇒ Ri(y) < 1/4

ψ = (U − c)αϕ

⇒

(U − c)(∂2
y−k2)ϕ + 2αU′ ∂yϕ+(α − 1)U′ ′ ϕ = 0

k = 0 α = 1 k = εk̃

(U − c)∂2
yϕ + 2αU′ ∂yϕ = 0



 the Taylor-Goldstein equation reads 

* If  and , it gives the hydrostatic Rayleigh equation ( )

for which we know at least one shear flow  having inflection point and providing 
an unstable eigenvalue [Renardy]

 the perturbations are both order 0 while the main operator is order 2. Apply a perturbation approach to 
deduce the existence of an unstable eigenvalue for the hydrostatic Boussinesq equations and for the non-
hydrostatic Boussinesq equations at small horizontal frequencies 
[it should give ill-posedness in  of the hydrostatic equations and a proof of invalidity of the hydrostatic 
limit in this setting] 

⇒

(U − c)(∂2
y−k2)ϕ + 2αU′ ∂yϕ+(α − 1)U′ ′ ϕ = 0

k = 0 α = 1 k = εk̃

(U − c)∂2
yϕ + 2αU′ ∂yϕ = 0

U(y) = tanh(y/d), 0 < d ≪ 1

⇒

Hs, s > 0

[ongoing project with Lucas ERTZBISCHOFF and Michele COTI ZELATI] 


