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Abstract. The aim of this work is to give a mathematically rigorous de-

scription of the Hawking effect for fermions in the setting of the collapse of a
rotating charged star.

1. Introduction

It was in 1975 that S. W. Hawking published his famous paper about the creation
of particles by black holes (see [10]). Later this effect was analyzed by other authors
in more detail (see e.g. [13]), and we can say that the effect was well-understood
from a physical point of view at the end of the 1970s. From a mathematical point
of view, however, fundamental questions linked to the Hawking radiation, such as
scattering theory for field equations on black hole space-times, were not addressed
at that time.

Scattering theory for field equations on the Schwarzschild metric has been stud-
ied from a mathematical point of view since the 1980s, see e.g. [7]. In 1999 A.
Bachelot [2] gave a mathematically rigorous description of the Hawking effect in
the spherically symmetric case. The methods used by Dimock, Kay and Bachelot
rely in an essential way on the spherical symmetry of the problem and can’t be
generalized to the rotating case.

The aim of the present work is to give a mathematically precise description of
the Hawking effect for spin-1/2 fields in the setting of the collapse of a rotating
charged star, see [9] for a detailed exposition. We show that an observer who is
located far away from the black hole and at rest with respect to the Boyer-Lindquist
coordinates observes the emergence of a thermal state when his proper time t goes
to infinity. In the proof we use the results of [8] as well as their generalizations to
the Kerr-Newman case in [4].

Let us give an idea of the theorem describing the effect. Let r∗ be the Regge-
Wheeler coordinate. We suppose that the boundary of the star is described by
r∗ = z(t, θ). The space-time is then given by

Mcol =
⋃
t

Σcolt , Σcolt =
{

(t, r∗, ω) ∈ Rt × Rr∗ × S2 ; r∗ ≥ z(t, θ)
}
.

The typical asymptotic behavior of z(t, θ) is (A(θ) > 0, κ+ > 0):

z(t, θ) = −t−A(θ)e−2κ+t +B(θ) +O(e−4κ+t), t→∞.
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Here κ+ is the surface gravity of the outer horizon. Let

Ht = L2
(
(Σcolt ,dVol); C4

)
.

The Dirac equation can be written as

∂tΨ = i /DtΨ + boundary condition.(1.1)

We will put an MIT boundary condition on the surface of the star. This condition
makes the boundary totally reflecting, we refer to [9, Section 4.5] for details. The
evolution of the Dirac field is then described by an isometric propagator U(s, t) :
Hs → Ht. The Dirac equation on the whole exterior Kerr-Newman space-time
MBH will be written as

∂tΨ = i /DΨ.

Here /D is a selfadjoint operator on H = L2((Rr∗ × S2, dr∗dω); C4). There exists
an asymptotic velocity operator P± such that for all continuous functions J with
lim|x|→∞ J(x) = 0 we have

J(P±) = s-lim
t→±∞

e−it/DJ
(r∗
t

)
eit/D.

Let Ucol(Mcol) (resp. UBH(MBH)) be the algebras of observables outside the col-
lapsing body (resp. on the space-time describing the eternal black hole) generated
by Ψ∗col(Φ1)Ψcol(Φ2) (resp. Ψ∗BH(Φ1)ΨBH(Φ2)). Here Ψcol(Φ) (resp. ΨBH(Φ)) are
the quantum spin fields on Mcol (resp. MBH). Let ωcol be a vacuum state on
Ucol(Mcol); ωvac a vacuum state on UBH(MBH) and ωη,σHaw be a KMS-state on
UBH(MBH) with inverse temperature σ > 0 and chemical potential µ = eση (see
Section 5 for details). For a function Φ ∈ C∞0 (MBH) we define:

ΦT (t, r∗, ω) = Φ(t− T, r∗, ω).

The theorem about the Hawking effect is the following:

Theorem 1.1 (Hawking effect). Let

Φj ∈
(
C∞0 (Mcol)

)4
, j = 1, 2.

Then we have

lim
T→∞

ωcol

(
Ψ∗col(Φ

T
1 )Ψcol(ΦT2 )

)
= ωη,σHaw

(
Ψ∗BH(1R+(P−)Φ1)ΨBH(1R+(P−)Φ2)

)
+ ωvac

(
Ψ∗BH(1R−(P−)Φ1)ΨBH(1R−(P−)Φ2)

)
,

(1.2)

THaw = 1/σ = κ+/2π, µ = eση, η =
qQr+
r2+ + a2

+
aDϕ

r2+ + a2
.

Here q is the charge of the field, Q the charge of the black hole, a is the angular
momentum per unit mass of the black hole, r+ = M+

√
M2 − (a2 +Q2) defines the

outer event horizon, and κ+ is the surface gravity of this horizon. The interpretation
of (1.2) is the following. We start with a vacuum state which we evolve in the
proper time of an observer at rest with respect to the Boyer-Lindquist coordinates.
The limit as the proper time of this observer goes to infinity is a thermal state
coming from the event horizon in formation and a vacuum state coming from infinity
as expressed on the R.H.S. of (1.2). The Hawking effect comes from an infinite
Doppler effect and the mixing of positive and negative frequencies. To explain
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Figure 1. The collapse of the star

this a little bit more, we describe the analytic problem behind the effect. Let
f(r∗, ω) ∈ C∞0 (R× S2). The key result about the Hawking effect is:

lim
T→∞

∥∥1[0,∞)(/D0)U(0, T )f
∥∥2

0
=
〈
1R+(P−)f, µeσ/D(1 + µeσ/D)−11R+(P−)f

〉
+
∥∥1[0,∞)(/D)1R−(P−)f

∥∥2
,

(1.3)

where µ, η, σ are as in the above theorem. Here 〈., .〉 and ‖.‖ (resp. ‖.‖0) are the
standard inner product and norm on H (resp. H0). Equation (1.3) implies (1.2).

The term on the L.H.S. comes from the vacuum state we consider. We have to
project onto the positive frequency solutions (see Section 5 for details). Note that
in (1.3) we consider the time-reversed evolution. This comes from the quantization
procedure. When time becomes large, the solution hits the surface of the star at a
point closer and closer to the future event horizon. Figure 1 shows the situation for
an asymptotic comparison dynamics, which satisfies Huygens’ principle. For this
asymptotic comparison dynamics the support of the solution concentrates more
and more when time becomes large, which means that the frequency increases.
The consequence of the change in frequency is that the system does not stay in the
vacuum state.
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2. The analytic problem

Let us consider a model where the eternal black hole is described by a static
space-time (although the Kerr-Newman space-time is not even stationary, the prob-
lem will be essentially reduced to this kind of situation). Then the problem can
be described as follows. Consider a Riemannian manifold Σ0 with one asymptot-
ically euclidean end and a boundary. The boundary will move when t becomes
large asymptotically with the speed of light. The manifold at time t is denoted Σt.
The ”limit” manifold Σ is a manifold with two ends, one asymptotically euclidean
and the other asymptotically hyperbolic (see Figure 2). The problem consists in
evaluating the limit

lim
T→∞

∥∥1[0,∞)(/D0)U(0, T )f
∥∥

0
,

where U(0, T ) is the isometric propagator for the Dirac equation on the manifold
with moving boundary and suitable boundary conditions and /D0 is the Dirac Hamil-
tonian at time t = 0. It is worth noting that the underlying scattering theory is
not the scattering theory for the problem with moving boundary but the scattering
theory on the ”limit” manifold. It is shown in [9] that the result does not depend
on the chiral angle in the MIT boundary condition. Note also that the bound-
ary viewed in

⋃
t{t} × Σt is only weakly timelike, a problem that has been rarely

considered (but see [1]).
One of the problems for the description of the Hawking effect is to derive a

reasonable model for the collapse of the star. We will suppose that the metric
outside the collapsing star is always given by the Kerr-Newman metric. Whereas
this is a genuine assumption in the rotational case, in the spherically symmetric
case Birkhoff’s theorem assures that the metric outside the star is the Reissner-
Nordström metric. We will suppose that a point on the surface of the star will
move along a curve which behaves asymptotically like a timelike geodesic with
L = Q = Ẽ = 0, where L is the angular momentum, Ẽ the rotational energy and
Q the Carter constant. The choice of geodesics is justified by the fact that the
collapse creates the space-time, i.e., angular momenta and rotational energy should
be zero with respect to the space-time. We will need an additional asymptotic
condition on the collapse. It turns out that there is a natural coordinate system
(t, r̂, ω) associated to the collapse. In this coordinate system the surface of the star
is described by r̂ = ẑ(t, θ). We need to assume the existence of a constant C such
that

|ẑ(t, θ) + t+ C| → 0, t→∞.(2.1)

It can be checked that this asymptotic condition is fulfilled if we use the above
geodesics for some appropriate initial condition. We think that it is more natu-
ral to impose a (symmetric) asymptotic condition than an initial condition. If we
would allow in (2.1) a function C(θ) rather than a constant, the problem would
become more difficult. Indeed one of the problems for treating the Hawking radia-
tion in the rotational case is the high frequencies of the solution. In contrast with
the spherically symmetric case, the difference between the Dirac operator and an
operator with constant coefficients is near the horizon always a differential opera-
tor of order one1. This explains that in the high-energy regime we are interested

1In the spherically symmetric case we can diagonalize the operator. After diagonalization the
difference is just a potential.
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Figure 2. The manifold at time t = 0 Σ0 and the limit manifold Σ.

in, the Dirac operator is not close to a constant-coefficient operator. Our method
for proving (1.3) is to use scattering arguments to reduce the problem to a prob-
lem with a constant-coefficient operator, for which we can compute the radiation
explicitly. If we do not impose a condition of type (2.1), then in all coordinate
systems the solution has high frequencies, in the radial as well as in the angular
directions. With condition (2.1) these high frequencies only occur in the radial
direction. Our asymptotic comparison dynamics will differ from the real dynamics
only by derivatives in angular directions and by potentials.

Let us now give some ideas of the proof of (1.3). We want to reduce the problem
to the evaluation of a limit that can be explicitly computed. To do so, we use the
asymptotic completeness results obtained in [8] and [4]. There exists a constant-
coefficient operator /D← such that the following limits exist:

W±← := s-lim
t→±∞

e−it/Deit/D← 1R∓(P±←),

Ω±← := s-lim
t→±∞

e−it/D←eit/D 1R∓(P±).

Here P±← is the asymptotic velocity operator associated to the dynamics eit/D← .
Then the R.H.S. of (1.3) equals:∥∥1[0,∞)(/D)1R−(P−)f

∥∥2 +
〈
Ω−←f, µe

σ/D←(1 + µeσ/D←)−1Ω−←f
〉
.

The aim is to show that the incoming part is:

lim
T→∞

∥∥1[0,∞)(D←,0)U←(0, T )Ω−←f
∥∥2

0
=
〈
Ω−←f, µe

σ/D←(1 + µeσ/D←)−1Ω−←f
〉
,
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where the equality can be shown by explicit calculation. Here /D←,t and U←(s, t) are
the asymptotic operator with boundary condition and the associated propagator.
The outgoing part is easy to treat.

Note that (1.3) is of course independent of the choice of the coordinate system
and the tetrad, i.e., both sides of (1.3) are independent of these choices.

The proofs of all the results stated in this work can be found in [9]. The work is
organized as follows:

• In Section 3 we present the model of the collapsing star. We first analyze
geodesics in the Kerr-Newman space-time and explain how the Carter con-
stant can be understood in terms of the Hamiltonian flow. We construct a
coordinate system which is well adapted to the collapse.

• In Section 4 we describe classical Dirac fields. The form of the Dirac equa-
tion with an adequate choice of the Newman-Penrose tetrad is given. Scat-
tering results are stated.

• Dirac quantum fields are discussed in Section 5. The theorem about the
Hawking effect is formulated and discussed in Subsection 5.2.

• In Section 6 we give the main ideas of the proof.

3. The model of the collapsing star

The purpose of this section is to describe the model of the collapsing star. We
will suppose that the metric outside the star is given by the Kerr-Newman metric.
Geodesics are discussed in Subsection 3.2. We give a description of the Carter
constant in terms of the associated Hamiltonian flow. A new position variable is
introduced. In Subsection 3.3 we give the asymptotic behavior of the boundary of
the star using this new position variable. We require that a point on the surface
behaves asymptotically like incoming timelike geodesics with L = Q = Ẽ = 0,
which are studied in Subsection 3.3.1.

3.1. The Kerr-Newman metric. We give a brief description of the Kerr-Newman
metric, which describes an eternal rotating charged black hole. In Boyer-Lindquist
coordinates, a Kerr-Newman black hole is described by a smooth 4-dimensional
Lorentzian manifoldMBH = Rt×Rr ×S2

ω, whose space-time metric g and electro-
magnetic vector potential Φa are given by:

g =
(

1 +
Q2 − 2Mr

ρ2

)
dt2 +

2a sin2 θ (2Mr −Q2)
ρ2

dtdϕ

− ρ2

∆
dr2 − ρ2 dθ2 − σ2

ρ2
sin2 θ dϕ2,

ρ2 = r2 + a2 cos2 θ,

∆ = r2 − 2Mr + a2 +Q2,

σ2 = (r2 + a2)2 − a2∆ sin2 θ,

Φa dxa = −Qr
ρ2

(dt− a sin2 θ dϕ).

(3.1)

Here M is the mass of the black hole, a its angular momentum per unit mass,
and Q the charge of the black hole. If Q = 0, g reduces to the Kerr metric, and
if Q = a = 0 we recover the Schwarzschild metric. The expression (3.1) of the
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Kerr metric has two types of singularities. While the set of points {ρ2 = 0} (the
equatorial ring {r = 0 , θ = π/2} of the {r = 0} sphere) is a true curvature
singularity, the spheres where ∆ vanishes, called horizons, are mere coordinate
singularities. We will consider in this work subextremal Kerr-Newman space-times,
that is, we suppose Q2 + a2 < M2. In this case ∆ has two real roots:

(3.2) r± = M ±
√
M2 − (a2 +Q2).

The spheres {r = r−} and {r = r+} are called event horizons. The two horizons
separateMBH into three connected components called Boyer-Lindquist blocks: BI ,
BII, BIII (r+ < r, r− < r < r+, r < r−). No Boyer-Lindquist block is stationary,
that is to say there exists no globally defined timelike Killing vector field on any
given block. In the following MBH will denote only block I of the Kerr-Newman
space-time.

3.2. Some remarks about geodesics in the Kerr-Newman space-time. It
is one of the most remarkable facts about the Kerr-Newman metric that there exist
four first integrals for the geodesic equations. If γ is a geodesic in the Kerr-Newman
space-time, then p := 〈γ′, γ′〉 is conserved. The two Killing vector fields ∂t, ∂ϕ
give two first integrals, the energy E := 〈γ′, ∂t〉 and the angular momentum L :=
−〈γ′, ∂ϕ〉. There exists a fourth constant of motion, the so-called Carter constant
K (see e.g. [3]). We will also use the Carter constant Q = K − (L − aE)2, which
has a somewhat more geometrical meaning, but gives in general more complicated
formulas. Let

P := (r2 + a2)E − aL, D := L− aE sin2 θ.(3.3)

Let 2g be the d’Alembertian associated to the Kerr-Newman metric. We will
consider the Hamiltonian flow of the principal symbol of 1

22g and then use the fact
that a geodesic can be understood as the projection of the Hamiltonian flow on
MBH. The principal symbol of 1

22g is:

P :=
1

2ρ2

(
σ2

∆
τ2 − 2a(Q2 − 2Mr)

∆
qϕτ −

∆− a2 sin2 θ

∆ sin2 θ
q2ϕ −∆|ξ|2 − q2θ

)
.(3.4)

Let

Cp :=
{

(t, r, θ, ϕ; τ, ξ, qθ, qϕ) ; P (t, r, θ, ϕ; τ, ξ, qθ, qϕ) =
1
2
p

}
.

Here (τ, ξ, qθ, qϕ) is dual to (t, r, θ, ϕ). We have the following:

Theorem 3.1. Let x0 = (t0, r0, ϕ0, θ0, τ0, ξ0, qθ0 , qϕ0) ∈ Cp, and let x(s) =(
t(s), r(s), θ(s), ϕ(s); τ(s), ξ(s), qθ(s), qϕ(s)

)
be the associated Hamiltonian flow

line. Then we have the following constants of motion:
p = 2P, E = τ, L = −qϕ,

K = q2θ +
D2

sin2 θ
+ pa2 cos2 θ =

P2

∆
−∆|ξ|2 − pr2,

(3.5)

where D, P are defined in (3.3).

The case L = Q = 0 is of particular interest. Let γ be a null geodesic with
energy E > 0, Carter constant Q = 0, angular momentum L = 0 and given signs
of ξ0 and qθ0 . We can associate a Hamiltonian flow line using (3.5) to define the
initial data τ0, ξ0, qθ0 , qϕ0 given t0, r0, θ0, ϕ0. From (3.5) we infer that ξ, qθ do not
change their signs. Note that γ is either in the equatorial plane or it does not cross
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it. Under the above conditions ξ (resp. qθ) can be understood as a function of r
(resp. θ) alone. In this case let k and l such that

dk(r)
dr

=
ξ(r)
E

, l′(θ) =
qθ(θ)
E

, r̂ := k(r) + l(θ).(3.6)

It is easy to check that (t, r̂, ω) is a coordinate system on block I.

Lemma 3.2. We have:

∂r̂

∂t
= −1 along γ,(3.7)

where t is the Boyer-Lindquist time.

We will suppose from now on that our construction is based on incoming null
geodesics. From the above lemma follows that for given sign of qθ0 the surfaces
Cc,± = {(t, r∗, θ, ϕ) ; ±t = r̂(r∗, θ) + c} are characteristic.

Remark 3.3. The variable r̂ is a Bondi-Sachs type coordinate. This coordinate
system is discussed in some detail in [12]. As in [12], we will call the null geodesics
with L = Q = 0 simple null geodesics (SNGs).

3.3. The model of the collapsing star. Let S0 be the surface of the star at
time t = 0. We suppose that elements x0 ∈ S0 will move along curves which be-
have asymptotically like certain incoming timelike geodesics γp. All these geodesics
should have the same energy E, angular momentum L, Carter constant K (resp.
Q = K − (L− aE)2) and “mass” p := 〈γ′p, γ′p〉. We will suppose:

(A) The angular momentum L vanishes: L = 0.
(B) The rotational energy vanishes: Ẽ = a2(E2 − p) = 0.
(C) The total angular momentum about the axis of symmetry vanishes: Q = 0.

The conditions (A)–(C) are imposed by the fact that the collapse itself creates the
space-time, so that momenta and rotational energy should be zero with respect to
the space-time.

3.3.1. Timelike geodesics with L = Q = Ẽ = 0. Next, we will study the above
family of geodesics. The starting point of the geodesic is denoted (0, r0, θ0, ϕ0).
Given a point in the space-time, the conditions (A)–(C) define a unique cotangent
vector provided one adds the condition that the corresponding tangent vector is
incoming. The choice of p is irrelevant because it just corresponds to a normalization
of the proper time.

Lemma 3.4. Let γp be a geodesic as above. Along this geodesic we have:

∂θ

∂t
= 0,

∂ϕ

∂t
=
a(2Mr −Q2)

σ2
,(3.8)

where t is the Boyer-Lindquist time.

The function ∂ϕ
∂t = a(2Mr−Q2)

σ2 is usually called the local angular velocity of the
space-time. Our next aim is to adapt our coordinate system to the collapse of the
star. The most natural way of doing this is to choose an incoming null geodesic γ
with L = Q = 0 and then use the Bondi-Sachs type coordinate as in the previous
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subsection. In addition we want that k(r∗) behaves like r∗ when r∗ → −∞. We
therefore put:

k(r∗) = r∗ +
∫ r∗

−∞

(√
1− a2∆(s)

(r(s)2 + a2)2
− 1

)
ds, l(θ) = a sin θ.(3.9)

The choice of the sign of l′ is not important, the opposite sign would have been
possible. Recall that cos θ does not change its sign along a null geodesic with
L = Q = 0. We put r̂ = k(r∗) + l(θ), and by Lemma 3.2 we have ∂r̂

∂t = −1 along γ.
In order to describe the model of the collapsing star we have to evaluate ∂r̂

∂t along
γp. Note that θ(t) = θ0 = const along γp.

Lemma 3.5. There exist smooth functions Â(θ, r0) > 0, B̂(θ, r0) such that along
γp we have uniformly in θ, r0 ∈ [r1, r2] ⊂ (r+,∞):

r̂ = −t− Â(θ, r0)e−2κ+t + B̂(θ, r0) +O(e−4κ+t), t→∞,(3.10)

where κ+ = r+−r−
2(r2++a2)

is the surface gravity of the outer horizon.

3.3.2. Assumptions. We will suppose that the surface at time t = 0 is given in
the (t, r̂, θ, ϕ) coordinate system by S0 =

{
(r̂0(θ0), θ0, ϕ0) ; (θ0, ϕ0) ∈ S2

}
, where

r̂0(θ0) is a smooth function. As r̂0 does not depend on ϕ0, we will suppose that
ẑ(t, θ0, ϕ0) will be independent of ϕ0 : ẑ(t, θ0, ϕ0) = ẑ(t, θ0) = ẑ(t, θ) as this is
the case for r̂(t) along timelike geodesics with L = Q = 0. We suppose that ẑ(t, θ)
satisfies the asymptotics (3.10) with B̂(θ, r0) independent of θ, see [9] for the precise
assumptions. Thus the surface of the star is given by:

S =
{

(t, ẑ(t, θ), ω) ; t ∈ R, ω ∈ S2
}
.(3.11)

The space-time of the collapsing star is given by:

Mcol =
{

(t, r̂, θ, ϕ) ; r̂ ≥ ẑ(t, θ)
}
.

We will also note:

Σcolt =
{

(r̂, θ, ϕ) ; r̂ ≥ ẑ(t, θ)
}
, thus Mcol =

⋃
t

Σcolt .

The asymptotic form (3.10) with B̂(θ, r0) can be achieved by incoming timelike
geodesics with L = Q = Ẽ = 0, see [9, Lemma 3.5].

4. Classical Dirac fields

In this section we will state some results on classical Dirac fields and explain
in particular how to overcome the difficulty linked to the high-frequency problem.
The key point is the appropriate choice of a Newman-Penrose tetrad. Let (M, g)
be a general globally hyperbolic space-time. Using the Newman-Penrose formalism,
the Dirac equation can be expressed as a system of partial differential equations
with respect to a coordinate basis. This formalism is based on the choice of a null
tetrad, i.e. a set of four vector fields la, na, ma and m̄a, the first two being real
and future oriented, m̄a being the complex conjugate of ma, such that all four
vector fields are null and ma is orthogonal to la and na, that is to say, lala =
nan

a = mam
a = lam

a = nam
a = 0. The tetrad is said to be normalized if in

addition lana = 1, mam̄
a = −1. The vectors la and na usually describe ”dynamic”

or scattering directions, i.e. directions along which light rays may escape towards
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infinity (or more generally asymptotic regions corresponding to scattering channels).
The vector ma tends to have, at least spatially, bounded integral curves; typically
ma and m̄a generate rotations. To this Newman-Penrose tetrad is associated a spin
frame. The Dirac equation is then a system of partial differential equations for the
components of the spinor in this spin frame. For the Weyl equation (m = 0) we
obtain: {

na∂aφ0 −ma∂aφ1 + (µ− γ)φ0 + (τ − β)φ1 = 0,
la∂aφ1 − m̄a∂aφ1 + (α− π)φ0 + (ε− ρ̃)φ1 = 0.

The µ, γ etc. are the so-called spin coefficients, for example

µ = −m̄aδna, δ = ma∇a.

For the formulas of the spin coefficients and details about the Newman-Penrose
formalism see e.g. [11].

Our first result is that there exists a tetrad well-adapted to the high-frequency
problem. Let H = L2((Rr̂ × S2,dr̂ dω); C4), Γ1 = Diag (1,−1,−1, 1).

Proposition 4.1. There exists a Newman-Penrose tetrad such that the Dirac equa-
tion in the Kerr-Newman space-time can be written as

∂tψ = iHψ; H = Γ1Dr̂ + Pω +W,

where W is a real potential and Pω is a differential operator of order one with
derivatives only in the angular directions. The operator H is selfadjoint with do-
main D(H) = {v ∈ H ; Hv ∈ H}.

Remark 4.2.
(i) la, na are chosen to be generators of the simple null geodesics.
(ii) Note that the local velocity in r̂ direction is ±1:

v = [r̂, H] = Γ1.

This comes from the fact that ∂r̂
∂t = ±1 along simple null geodesics (±

depending on whether the geodesic is incoming or outgoing).
(iii) Whereas the above tetrad is well-adapted to the high-frequency analysis,

it is not the good choice for the proof of asymptotic completeness results.
See [8] for an adequate choice.

(iv) ψ are the components of the spinor which is multiplied by some density.

Let

H← = Γ1Dr̂ −
a

r2+ + a2
Dϕ −

qQr+
r2+ + a2

,

H+ =
{
v = (v1, v2, v3, v4) ∈ H ; v1 = v4 = 0

}
,

H− =
{
v = (v1, v2, v3, v4) ∈ H ; v2 = v3 = 0

}
.

The operator H← is selfadjoint on H with domain

D(H←) =
{
v ∈ H ; H←v ∈ H

}
.

Remark 4.3. The above operator is our comparison dynamics. Note that the dif-
ference between the full dynamics and the comparison dynamics is a differential
operator with derivatives only in the angular directions. The high frequencies will
only be present in the r̂ directions; this solves the high-frequency problem.
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Proposition 4.4. There exist selfadjoint operators P± such that for all g ∈ C(R)
with lim|x|→∞ g(x) = 0, we have:

g(P±) = s-lim
t→±∞

e−itHg

(
r̂

t

)
eitH .(4.1)

Let PH∓ be the projections from H to H∓.

Theorem 4.5. The wave operators

W±← = s-lim
t→±∞

e−itHeitH← PH∓ ,

Ω±← = s-lim
t→±∞

e−itH←eitH 1R∓(P±)

exist.

Using the above tetrad, the Dirac equation with MIT boundary condition on the
surface of the star (chiral angle ν) can be written in the following form:

∂tΨ = iHΨ, ẑ(t, θ) < r̂,(∑
µ̂∈{t,r̂,θ,ϕ}Nµ̂γ̂µ̂

)
Ψ
(
t, ẑ(t, θ), ω

)
= −ie−iνγ5

Ψ
(
t, ẑ(t, θ), ω

)
,

Ψ(t = s, .) = Ψs(.).

(4.2)

Here Nµ̂ are the coordinates of the conormal, γ̂µ̂ are some appropriate Dirac ma-
trices and γ5 = Diag (1, 1,−1,−1). Let

Ht = L2
(({

(r̂, ω) ∈ R× S2 ; r̂ ≥ ẑ(t, θ)
}
,dr̂ dω

)
; C4

)
.

Proposition 4.6. The equation (4.2) can be solved by a unitary propagator U(t, s) :
Hs → Ht.

5. Dirac quantum fields

We adopt the approach of Dirac quantum fields in the spirit of [5] and [6]. This
approach is explained in Section 5.1. In Section 5.2 we present the theorem about
the Hawking effect.

5.1. Quantization in a globally hyperbolic space-time. Following J. Dimock
[6] we construct the local algebra of observables in the space-time outside the col-
lapsing star. This construction does not depend on the choice of the representation
of the CARs, or on the spin structure of the Dirac field, or on the choice of the
hypersurface. In particular we can consider the Fermi-Dirac-Fock representation
and the following foliation of our space-time (see Subsection 3.3):

Mcol =
⋃
t∈R

Σcolt , Σcolt =
{

(t, r̂, θ, ϕ) ; r̂ ≥ ẑ(t, θ)
}
.

We construct the Dirac field Ψ0 and the C∗-algebra U(H0) in the usual way. We
define the operator:

Scol : Φ ∈
(
C∞0 (Mcol)

)4 7→ ScolΦ :=
∫

R
U(0, t)Φ(t)dt ∈ H0,(5.1)

where U(0, t) is the propagator defined in Proposition 4.6. The quantum spin field
is defined by:

Ψcol : Φ ∈
(
C∞0 (Mcol)

)4 7→ Ψcol(Φ) := Ψ0(ScolΦ) ∈ L(F(H0)).
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Here F(H0) is the Dirac-Fermi-Fock space associated to H0. For an arbitrary set
O ⊂ Mcol, we introduce Ucol(O), the C∗-algebra generated by ψ∗col(Φ1)Ψcol(Φ2),
supp Φj ⊂ O, j = 1, 2. Eventually, we have:

Ucol(Mcol) =
⋃

O⊂Mcol

Ucol(O).

Then we define the fundamental state on Ucol(Mcol) as follows:

ωcol

(
Ψ∗col(Φ1)Ψcol(Φ2)

)
:= ωvac

(
Ψ∗0(ScolΦ1)Ψ0(ScolΦ2)

)
=
〈
1[0,∞)(H0)ScolΦ1, ScolΦ2

〉
.

Let us now consider the future black hole. The algebra UBH(MBH) and the vacuum
state ωvac are constructed as before working now with the group eitH rather than the
evolution system U(t, s). We also define the thermal Hawking state (S is analogous
to Scol, ΨBH to Ψcol, and Ψ to Ψ0):

ωη,σHaw

(
Ψ∗BH(Φ1)ΨBH(Φ2)

)
=
〈
µeσH(1 + µeσH)−1SΦ1, SΦ2

〉
H

=: ωη,σKMS

(
Ψ∗(SΦ1)Ψ(SΦ2)

)
with

THaw = σ−1, µ = eση, σ > 0,

where THaw is the Hawking temperature and µ is the chemical potential.

5.2. The Hawking effect. In this subsection we formulate the main result of this
work.
Let Φ ∈ (C∞0 (Mcol))4. We put

ΦT (t, r̂, ω) = Φ(t− T, r̂, ω).(5.2)

Theorem 5.1 (Hawking effect). Let

Φj ∈ (C∞0 (Mcol))4, j = 1, 2.

Then we have

lim
T→∞

ωcol

(
Ψ∗col(Φ

T
1 )Ψcol(ΦT2 )

)
= ωη,σHaw

(
Ψ∗BH(1R+(P−)Φ1)ΨBH(1R+(P−)Φ2)

)
+ ωvac

(
Ψ∗BH(1R−(P−)Φ1)ΨBH(1R−(P−)Φ2)

)
,

(5.3)

THaw = 1/σ = κ+/2π, µ = eση, η =
qQr+
r2+ + a2

+
aDϕ

r2+ + a2
.

In the above theorem P± is the asymptotic velocity introduced in Section 4. The
projections 1R±(P±) separate outgoing and incoming solutions.

Remark 5.2. The result is independent of the choices of coordinate system, tetrad
and chiral angle in the boundary condition.
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6. Strategy of the proof

The radiation can be explicitly computed for the asymptotic dynamics near
the horizon. For f = (0, f2, f3, 0) and T large, the time-reversed solution of the
mixed problem for the asymptotic dynamics is well approximated by the so called
geometric optics approximation:

FT (r̂, ω) :=
1√
−κ+r̂

(f3, 0, 0,−f2)
(
T +

1
κ+

ln(−r̂)− 1
κ+

ln Â(θ), ω
)
.

For this approximation the radiation can be computed explicitly:

Lemma 6.1. We have:

lim
T→∞

∥∥1[0,∞)(H←)FT
∥∥2 =

〈
f, e

2π
κ+

H←
(

1 + e
2π
κ+

H←
)−1

f

〉
.

The strategy of the proof is now the following:
i) We decouple the problem at infinity from the problem near the horizon by

cut-off functions. The problem at infinity is easy to treat.
ii) We consider U(t, T )f on a characteristic hypersurface Λ. The resulting

characteristic data is denoted gT . We will approximate Ω−←f by a func-
tion (Ω−←f)R with compact support and higher regularity in the angular
derivatives. Let U←(s, t) be the isometric propagator associated to the
asymptotic Hamiltonian H← with MIT boundary conditions. We also con-
sider U←(t, T )(Ω−←f)R on Λ. The resulting characteristic data is denoted
gT←,R. The situation for the asymptotic comparison dynamics is shown in
Figure 1.

iii) We solve a characteristic Cauchy problem for the Dirac equation with data
gT←,R. The solution at time zero can be written in a region near the bound-
ary as

G(gT←,R) = U(0, T/2 + c0) Φ(T/2 + c0),(6.1)

where Φ is the solution of a characteristic Cauchy problem in the whole
space (without the star). The solutions of the characteristic problems
for the asymptotic Hamiltonian are written in a similar way and denoted
G←(gT←,R) and Φ←, respectively.

iv) Using the asymptotic completeness result we show that gT − gT←,R → 0
when T,R →∞. By continuous dependence on the characteristic data we
see that:

G(gT )−G(gT←,R)→ 0, T,R→∞.
v) We write

G(gT←,R)−G←(gT←,R) = U(0, T/2 + c0)
(
Φ(T/2 + c0)− Φ←(T/2 + c0)

)
+
(
U(0,T/2+c0)−U←(0,T/2+c0)

)
Φ←(T/2+c0).

The first term becomes small near the boundary when T becomes large.
We then note that for all ε > 0 there exists tε > 0 such that∥∥(U(tε, T/2 + c0)− U←(tε, T/2 + c0)

)
Φ←(T/2 + c0)

∥∥ < ε

uniformly in T when T is large. We fix the angular momentum Dϕ = n.
The function U←(tε, T/2+c0) Φ←(T/2+c0) will be replaced by a geometric
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optics approximation FTtε which has the following properties:

suppFTtε ⊂
(
− tε − |O(e−κ+T )|, −tε

)
,(6.2)

FTtε ⇀ 0, T →∞,(6.3)

∀λ > 0 Op
(
χ(〈ξ〉 ≤ λ〈q〉)

)
FTtε → 0, T →∞.(6.4)

Here ξ and q are the dual coordinates to r̂ and θ, respectively. Op(a) is
the pseudo-differential operator associated to the symbol a (Weyl calculus).
The notation χ(〈ξ〉 ≤ λ〈q〉) means that the symbol is supported in 〈ξ〉 ≤
λ〈q〉.

vi) We show that for λ sufficiently large possible singularities of

Op
(
χ(〈ξ〉 ≥ λ〈q〉)

)
FTtε

are transported by the group e−itεH in such a way that they always stay
away from the surface of the star.

vii) The points i) to v) imply:

lim
T→∞

∥∥1[0,∞)(H0) j−U(0, T )f
∥∥2

0
= lim
T→∞

∥∥1[0,∞)(H0)U(0, tε)FTtε
∥∥2

0
,

where j− is a smooth cut-off which equals 1 near the boundary and 0 at
infinity. Let φδ be a cut-off outside the surface of the star at time 0. If
φδ = 1 sufficiently close to the surface of the star at time 0, we see by the
previous point that

(1− φδ)e−itεHFTtε → 0, T →∞.(6.5)

Using (6.5) we show that (modulo a small error term):(
U(0, tε)− φδe−itεH

)
FTtε → 0, T →∞.

Therefore it remains to consider:

lim
T→∞

∥∥1[0,∞)(H0)φδ e−itεHFTtε
∥∥

0
.

viii) We show that we can replace 1[0,∞)(H0) by 1[0,∞)(H). This will essentially
allow us to commute the energy cut-off and the group. We then show that
we can replace the energy cut-off by 1[0,∞)(H←). We end up with:

lim
T→∞

∥∥1[0,∞)(H←) e−itεH←FTtε
∥∥,(6.6)

which we have already computed.
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[8] D. Häfner and J.-P. Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev.

Math. Phys. 16, 29–123 (2004).
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