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Abstract

We use the vorticity formulation to study the long-time behavior of solutions to the Navier-Stokes
equation on R

3. We assume that the initial vorticity is small and decays algebraically at infinity. After
introducing self-similar variables, we compute the long-time asymptotics of the rescaled vorticity
equation up to second order. Each term in the asymptotics is a self-similar divergence-free vector
field with Gaussian decay at infinity, and the coefficients in the expansion can be determined by
solving a finite system of ordinary differential equations. As a consequence of our results, we are
able to characterize the set of solutions for which the velocity field satisfies ‖u(·, t)‖L2 = o(t−5/4)
as t → +∞. In particular, we show that these solutions lie on a smooth invariant submanifold of
codimension 11 in our function space.

1 Introduction

We consider the motion of an incompressible viscous fluid filling the whole space R3. If no external force
is applied, the velocity u(x, t) of the fluid satisfies the Navier-Stokes equation

∂tu + (u · ∇)u = ν∆u − 1

ρ
∇p , div u = 0 , (1)

where ρ is the density of the fluid, ν is the kinematic viscosity, and p(x, t) is the pressure field. Replacing
x, t,u, p with the dimensionless quantities

x

L
,

νt

L2
,

Lu

ν
,

L2p

ρν2
,

where L is an arbitrary length scale, Eq.(1) is transformed into

∂tu + (u · ∇)u = ∆u−∇p , div u = 0 . (2)

Since the length L was arbitrary, Eq.(2) is still invariant under the scaling transformation

u(x, t) 7→ λu(λx, λ2t) , p(x, t) 7→ λ2p(λx, λ2t) , (3)

for any λ > 0.
As no external force is applied, it is intuitively clear that all finite-energy solutions of (2) should

converge, as time goes to infinity, to the rest state u ≡ 0, p ≡ const. As a matter of fact, if u(x, t) is
any global weak solution in L2(R3) satisfying the energy inequality, it is known that ‖u(·, t)‖L2 → 0 as
t→ ∞ (Masuda, 1984). Moreover, if

‖et∆u(·, 0)‖L2 ≤ C

(1 + t)α
, t ≥ 0 , (4)
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for some α ≥ 0, then

‖u(·, t)‖L2 ≤ C′

(1 + t)β
, t ≥ 0 , (5)

where β = min(α, 5/4) (Wiegner, 1987). This last result shows that the solutions of (2) decay to zero at
the same rate as those of the linear heat equation, provided this rate does not exceed t−5/4. As we shall
see below, the restriction β ≤ 5/4 in (5) is due to the nonlinearity in (2) and to the incompressibility
condition div u = 0.

Wiegner’s result raises a very natural question: can we characterize the set of solutions of (2) such that
t5/4‖u(·, t)‖L2 → 0 as t→ ∞? Put differently, given a solution u(x, t) satisfying (5) with β = 5/4, under
which conditions can we prove the corresponding lower bound ‖u(·, t)‖L2 ≥ C(1 + t)−5/4? This problem
has been intensively studied during the last 15 years, especially by M.E. Schonbek (Schonbek, 1985),
(Schonbek, 1986), (Schonbek, 1991), (Schonbek, 1992), who found sufficient conditions for such a lower
bound to hold. For technical reasons, these results were established assuming some additional decay of the
initial data u0 = u(·, 0) at infinity. Typically, it is assumed that u0 ∈ L2(R3)3 and (1+ |x|)u0 ∈ L1(R3)3,
so that (4) holds with α = 5/4.

Very recently, T. Miyakawa and M.E. Schonbek obtained an interesting characterization of the “rapidly
decreasing” solutions of the Navier-Stokes equation in RN , N ≥ 2. In the case N = 3, their result reads:

Theorem 1.1 (Miyakawa & Schonbek, 2000) Assume that u0 ∈ L2(R3)3, div u0 = 0, and (1 +
|x|)u0 ∈ L1(R3)3. Let u(x, t) be a global weak solution of (2) with initial data u(·, 0) = u0, satisfying the
bound (5) with β = 5/4. For all k, ` ∈ {1, 2, 3}, define

bk` =

∫

R3

xku`(x, 0) dx , ck` =

∫ ∞

0

∫

R3

uk(x, t)u`(x, t) dxdt . (6)

Then
lim

t→∞
t5/4‖u(·, t)‖L2 = 0 (7)

if and only if there exists c ≥ 0 such that

bk` = 0 and ck` = cδk` , k, ` ∈ {1, 2, 3} . (8)

The proof is a direct calculation using the integral equation satisfied by the solutions of (2). While
clearly written, this argument does not provide much intuition as to the meaning of the conditions (8).
From our point of view, the most surprising feature of Theorem 1.1 is the fact that assertion (7) is
translation invariant in time, whereas conditions (8) are not. More precisely, if u(·, t) satisfies (7), so will
any time translation of the solution; but if we restrict u(·, t) to a time interval [T,+∞) for some T > 0
and if we choose u(·, T ) as our initial data, then (8) may no longer hold. In fact, the first condition
in (8) may not even make sense, since in general (1 + |x|)u(·, T ) /∈ L1(R3)3. Thus Theorem 1.1 is a
characterization of the solutions of (2) that satisfy (7) and whose initial data lie in the noninvariant
subspace W = {u ∈ L2(R3)3 | (1 + |x|)u ∈ L1(R3)3}. Nontrivial examples of solutions that remain in W
for all times have been recently constructed (Brandolese, 2001), but as we will prove below there are other
solutions that satisfy (7) which do not have this property. We also note in anticipation of what follows
that the results of (Miyakawa & Schonbek, 2000) hold for solutions whose initial data are arbitrarily
large, while in what follows we will work solutions whose initial vorticity is small in an appropriate norm.
See Remark 5.2 for a further discussion of this point.

In this paper, we use the vorticity formulation to study the long-time behavior of the solutions of the
Navier-Stokes equation (2). Setting ω = rotu, Eq.(2) is transformed into

ωt + (u · ∇)ω − (ω · ∇)u = ∆ω , div ω = 0 . (9)

The velocity field u can be reconstructed from ω via the Biot-Savart law:

u(x) = − 1

4π

∫

R3

(x− y) ∧ ω(y)

|x− y|3 dy , x ∈ R
3 , (10)
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where ∧ denotes the cross product in R3. Although (2) and (9) are formally equivalent, we believe
that using the vorticity formulation to compute the long-time asymptotics has a crucial advantage:
roughly speaking, the spatial decay of ω is preserved under the evolution defined by (9). For instance,
if (1 + |x|)m

ω0 ∈ L2(R3)3 for some m ≥ 0, then (9) has a unique local solution ω(x, t) with initial data
ω0 satisfying (1 + |x|)m

ω(·, t) ∈ L2(R3)3 whenever it exists. Again, we point out that this property
does not hold for the velocity field u(x, t) if m ≥ 5/2. This is the reason why the integrability condition
(1 + |x|)u ∈ L1(R3)3 is not preserved under evolution.

In the sequel, we always assume that the vorticity ω(x, t) is small and decreases sufficiently fast as
|x| → ∞. The smallness assumption is not a restriction as far as the long-time behavior is concerned,
since all global solutions of the Navier-Stokes equation in our function space converge to zero as t→ ∞,
see Remark 2.4. Moreover, this hypothesis allows to deal with global strong solutions of (9). On the
other hand, assuming that the vorticity decreases rapidly as |x| → ∞ is very reasonable from a physical
point of view. This is the case, for instance, if the initial data are created by stirring the fluid with a
(finite size) tool. In addition, this property is very helpful to study the long-time asymptotics, since the
spatial and temporal behaviors of solutions of parabolic equations are intimately connected.

To actually compute the asymptotics, we express the vorticity ω(x, t) in terms of the self-similar
variables (ξ, τ) defined by ξ = x/

√
1+t, τ = log(1+t), see (18) below. Although the transformation is

time-dependent, the rescaled vorticity w(ξ, τ) still satisfies an autonomous equation, as a consequence of
the scaling invariance (3). Linearizing this equation around the origin w = 0, we find that the generator
Λ of the time evolution has a countable set of real, isolated eigenvalues with finite multiplicities, and
that the essential spectrum can be pushed arbitrarily far away into the left-half plane by choosing the
function space (i.e., the spatial decay of the vorticity) appropriately. Thus, the long-time asymptotics
in a neighborhood of the origin are determined, at any prescribed order, by a finite system of ordinary
differential equations.

This reduction procedure, or some variant of it, has been often applied to investigate the long-time
behavior of solutions of nonlinear parabolic or damped hyperbolic equations (Bricmont & Kupiainen,
1996), (Eckmann et al., 1997), (Eckmann & Wayne, 1998), (Escobedo et al., 1995), (Galaktionov &
Vázquez, 1991), (Gallay & Raugel, 1998), (Gallay & Raugel, 2000), (Kavian, 1987), (Wayne, 1997). In
the context of the Navier-Stokes equation, rescaling techniques have been used to study the vorticity
equations in two and three dimensions (Carpio, 1994), (Carpio, 1996). In (Cannone & Planchon, 1996),
a large family of self-similar solutions of the three-dimensional Navier-Stokes equation is constructed.
These solutions correspond to fixed points of our rescaled vorticity equation, but do not belong to the
function spaces we use, because they decay too slowly as |x| → ∞. In a companion paper (Gallay &
Wayne, 2002), we follow the procedure outlined above to study the solutions of the two-dimensional
Navier-Stokes and vorticity equations. In addition, we exploit the fact that the spectrum of the generator
Λ is discrete to construct finite-dimensional invariant manifolds that are approached, at a prescribed
rate, by all solutions in a neighborhood of the origin.

The rest of this paper is organized as follows. In Section 2, we prove the existence of global solutions
of the vorticity equation (9) in a neighborhood of the origin, and we estimate their decay rate as t→ ∞.
The results we obtain are comparable to those of (Wiegner, 1987). Section 3 is devoted to the first order
asymptotics. Under appropriate conditions, we show that

ω(x, t) ∼
3

∑

i=1

bi
(1 + t)2

fi

( x√
1 + t

)

, t→ ∞ ,

where f1, f2, f3 are explicit divergence-free vector fields with Gaussian decay at infinity, and b1, b2, b3
are real coefficients which can be computed from the initial data. Using (10), a similar result can
be obtained for the velocity field u(x, t). In Section 4, we give a higher order asymptotic expansion
of ω(x, t), including terms of the form (1 + t)−5/2g(x/

√
1 + t). This result is used in Section 5 to

characterize the set of solutions ω(x, t) of (9) for which the velocity field u(x, t) satisfies (7). It is shown
that these solutions lie on a smooth invariant manifold of finite codimension, which is tangent at the
origin to a spectral subspace of the generator Λ. Intersecting this manifold with the (noninvariant)
subspace {u0 ∈ L2(R3)3 | (1 + |x|)u0 ∈ L1(R3)3}, we recover exactly conditions (8) in Theorem 1.1.
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Finally, Appendix A describes the spectral properties of the generator Λ, and Appendix B collects various
estimates of the velocity field u in terms of the vorticity ω in weighted Lebesgue spaces.

Current notations. Throughout the paper, we use boldface letters for vector-valued functions, such
as u(x, t) and ω(x, t). However, to avoid a proliferation of boldface symbols, we use standard italic
characters for vector variables, such as x = (x1, x2, x3). In both cases, | · | denotes the Euclidean norm
in R3: |u| = (u2

1 + u2
2 + u2

3)
1/2, |x| = (x2

1 + x2
2 + x2

3)
1/2. For any p ∈ [1,∞], we denote by |f |p the norm

of a function f in the Lebesgue space Lp(R3). If f ∈ Lp(R3)3, we set |f |p = | |f | |p. Weighted norms play
a very important role in this paper. We always denote by ρ : R3 → R the weight function defined by
ρ(x) = 1 + |x|. For any m ≥ 0, we set ‖f‖m = |ρmf |2, and ‖f‖m = |ρmf |2. If f ∈ C0([0, T ], Lp(R3)),
we often write f(·, t) or simply f(t) to denote the map x 7→ f(x, t). Finally, we denote by C a generic
positive constant, which may differ from place to place, even in the same chain of inequalities.

Acknowledgments. Part of this work was done when C.E.W. visited the University of Paris-Sud and
Th.G. the Department of Mathematics and Center for BioDynamics of Boston University. The hospitality
of both institutions is gratefully acknowledged. We also thank I. Gallagher, A. Mielke, G. Raugel, J.-
C. Saut, M. Vishik, and P. Wittwer for stimulating discussions. We are especially indebted to A. Mielke
for bringing to our attention the work of (Miyakawa & Schonbek, 2000), which triggered our interest in
this problem. The research of C.E.W. is supported in part by the NSF under grant DMS-9803164.

2 The Cauchy problem for the vorticity equation

The aim of this section is to prove the existence of global solutions of the vorticity equation for small
initial data in weighted Lebesgue spaces. We first recall a few standard estimates for the velocity field
u in terms of the associated vorticity ω = rotu. Further estimates in weighted spaces can be found in
Appendix B.

Lemma 2.1 Let u be the velocity field obtained from ω via the Biot-Savart law (10).
(a) Assume that 1 < p < 3, 3

2 < q < ∞, and 1
q = 1

p − 1
3 . If ω ∈ Lp(R3)3, then u ∈ Lq(R3)3, and there

exists C > 0 such that
|u|q ≤ C|ω|p . (11)

(b) Assume that 1 ≤ p < 3 < q ≤ ∞, and define α ∈ (0, 1) by the relation 1
3 = α

p + 1−α
q . If ω ∈

Lp(R3)3 ∩ Lq(R3)3, then u ∈ L∞(R3)3, and there exists C > 0 such that

|u|∞ ≤ C|ω|αp |ω|1−α
q . (12)

(c) Assume that 1 < p <∞. If ω ∈ Lp(R3)3, then ∇u ∈ Lp(R3)9 and there exists C > 0 such that

|∇u|p ≤ C|ω|p . (13)

In addition, div u = 0 and, if div ω = 0, then rotu = ω.

Proof: Part (a) is a direct consequence of (10) and of the Hardy-Littlewood-Sobolev inequality, see for
instance (Stein, 1970), Theorem V.1. To prove (b), assume that ω 6≡ 0, and let R = (|ω|p/|ω|q)β , where
β = α

1−3/q = 1−α
3/p−1 . Using Hölder’s inequality, we find

|u(x)| ≤ 1

4π

∫

|y|≤R

|ω(x− y)| 1

|y|2 dy +
1

4π

∫

|y|≥R

|ω(x− y)| 1

|y|2 dy

≤ C|ω|qR1− 3
q + C|ω|p

1

R
3
p
−1

≤ 2C|ω|αp |ω|1−α
q .

Finally, ∇u is obtained from ω via a singular integral kernel of Calderón-Zygmund type, hence (13)
follows from Theorem II.3 in (Stein, 1970). �
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In the sequel, for any p ∈ [1,∞], we denote by Lp(R3) the function space

L
p(R3) =

{

f ∈ Lp(R3)3 | div f = 0
}

, (14)

equipped with the same norm as Lp(R3)3. As is well-known, the L3-norm of the velocity field u(x, t) is
invariant under the scaling transformation (3). For the vorticity ω(x, t), the corresponding critical space
is L3/2(R3). The following result shows that the Cauchy problem for (9) is globally well-posed for small
initial data in L3/2(R3).

Theorem 2.2 There exists ε0 > 0 such that, for all initial data ω0 ∈ L3/2(R3) with |ω0|3/2 ≤ ε0, (9)

has a unique solution ω ∈ C0([0,∞),L3/2(R3)) ∩ C0((0,∞),L∞(R3)) satisfying ω(0) = ω0. Moreover,
for all p ∈ [ 32 ,+∞], there exists Cp > 0 such that

|ω(t)|p ≤ Cp|ω0|3/2

t1−
3
2p

, t > 0 . (15)

Finally, if u(x, t) is the velocity field obtained from ω(x, t) via the Biot-Savart law (10), then u ∈ Lq(R3)
for all q ∈ [3,+∞] and there exists Cq > 0 such that

|u(t)|q ≤ Cq|ω0|3/2

t
1
2
− 3

2q

, t > 0 . (16)

Proof: The proof of Theorem 2.2 follows exactly the argument of (Kato, 1984) which shows that the
Navier-Stokes equation has global solutions for small initial data in L3(R3). The same argument also
shows that the Cauchy problem for (9) is locally well-posed in L3/2(R3), without smallness assumption
on the data. More generally, one can prove that (9) has global solutions for small data in the Morrey
space M3/2(R3), see (Giga & Miyakawa, 1989). �

Following (Gallay & Wayne, 2002), we now introduce the “scaling variables”

ξ =
x√

1 + t
, τ = log(1 + t) . (17)

If ω(x, t) is a solution of (9) and if u(x, t) is the corresponding velocity field, we set

ω(x, t) =
1

1 + t
w

( x√
1 + t

, log(1 + t)
)

, (18)

u(x, t) =
1√

1 + t
v
( x√

1 + t
, log(1 + t)

)

. (19)

Then the rescaled vorticity w(ξ, τ) satisfies the evolution equation

∂τw = Λw − (v · ∇)w + (w · ∇)v , div w = 0 , (20)

where Λ is the differential operator

Λ = ∆ξ +
1

2
ξ · ∇ξ + 1 , ξ ∈ R

3 . (21)

The rescaled velocity v is reconstructed from w via the Biot-Savart law:

v(ξ) = − 1

4π

∫

R3

(ξ − η) ∧ w(η)

|ξ − η|3 dη . (22)

As in the two-dimensional case (Gallay & Wayne, 2002), we shall solve the rescaled vorticity equation
in weighted L2 spaces. For any m ≥ 0, we define

L2(m) =
{

f ∈ L2(R3) | ‖f‖m <∞
}

, (23)
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where

‖f‖m =

(∫

R3

(1 + |ξ|)2m|f(ξ)|2 dξ

)1/2

= |ρmf |2 .

Here and in the sequel, we denote by ρ the weight function ρ(ξ) = 1 + |ξ|. In analogy with (14), we
introduce the space of divergence free vector fields

L
2(m) = {f ∈ L2(m)3 | div f = 0} , (24)

equipped with the norm ‖f‖m = |ρm|f ||2, where |f | = (f2
1 + f2

2 + f2
3 )1/2.

In Appendix A, we show that the operator Λ is the generator of a strongly continuous semigroup
eτΛ in L2(m), for any m ≥ 0. Since ∂iΛ = (Λ + 1

2 )∂i for i = 1, 2, 3 (where ∂i = ∂ξi
), it is clear that

∂ie
τΛ = e

τ
2 eτΛ∂i for all τ ≥ 0. Thus, using the fact that div v = div w = 0, we can rewrite (20) in

integral form as follows:

wi(τ) = eτΛwi(0) +

3
∑

j=1

∫ τ

0

∂je
(τ−s)(Λ− 1

2
)
(

wj(s)vi(s) − vj(s)wi(s)
)

ds , (25)

where i = 1, 2, 3. The main result of this section states that, if the initial data are small, (25) has global
solutions in L2(m) which decay exponentially to zero as τ → +∞.

Theorem 2.3 Let 0 < µ ≤ 1 and m > 2µ + 1
2 . There exists r0 > 0 such that, for all initial data w0 ∈

L2(m) with ‖w0‖m ≤ r0, equation (25) has a unique global solution w ∈ C0([0,∞),L2(m)) satisfying
w(0) = w0. In addition, there exists K0 ≥ 1 such that

‖w(τ)‖m ≤ K0 e−µτ‖w0‖m , τ ≥ 0 . (26)

Proof: Given w0 ∈ L2(m), we shall solve (25) in the Banach space

X =
{

w ∈ C0([0,+∞),L2(m))
∣

∣ ‖w‖X = sup
τ≥0

‖w(τ)‖meµτ <∞
}

.

We first note that τ 7→ eτΛw0 ∈ X ; namely, there exists C1 ≥ 1 such that

‖eτΛw0‖m ≤ C1e
−µτ‖w0‖m , τ ≥ 0 . (27)

This follows from the estimates on the semigroup eτΛ established in Proposition A.3. Indeed, if m ≤ 5
2 ,

(27) is nothing but (63) with ε = m− 2µ− 1
2 , α = 0, and n = −1 or 0. If m > 5

2 , (27) is a consequence
of (64) with α = 0 and n = 0.

Next, given w ∈ C0([0,+∞),L2(m)), we define F[w] ∈ C0([0,+∞),L2(m)) by

(Fi[w])(τ) =

3
∑

j=1

∫ τ

0

∂je
(τ−s)(Λ− 1

2
)
(

wj(s)vi(s) − vj(s)wi(s)
)

ds , τ ≥ 0 . (28)

We shall prove that F maps X into X , and that there exists C2 > 0 such that

‖F[w]‖X ≤ C2‖w‖2
X , ‖F[w] − F[w̃]‖X ≤ C2‖w−w̃‖X(‖w‖X + ‖w̃‖X) , (29)

for all w, w̃ ∈ X . As is easily verified, the bounds (27), (29) imply that the map w 7→ eτΛw0 + F[w] has
a unique fixed point in the ball {w ∈ X | ‖w‖X ≤ R} if R < (2C2)

−1 and ‖w0‖m ≤ (2C1)
−1R. This fixed

point is a global solution of (25) in the the space X . Moreover, since ‖w‖X ≤ C1‖w0‖m + C2‖w‖2
X ≤

C1‖w0‖m + 1
2‖w‖X , the bound (26) holds with K0 = 2C1.

To prove (29), we use the following estimate, which is a consequence of Propositions A.3 and A.4.
Assume that f : R3 → R satisfies ρmf ∈ L3/2(R3), where ρ(ξ) = 1 + |ξ|. Then there exists C3 > 0 such
that, for j = 1, 2, 3,

‖∂je
τΛf‖m ≤ C3

e−ντ

a(τ)3/4
|ρmf |3/2 , τ > 0 , (30)
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where a(τ) = 1 − e−τ and ν = min(µ, 1
2 ). Indeed, if 0 < τ < 2, then (30) follows from (65) with p = 2

and q = 3/2. If τ ≥ 2, we have

‖∂je
(τ−1)ΛeΛf‖m ≤ Ce−ν(τ−1)‖eΛf‖m ≤ C′e−ντ |ρmf |3/2 , (31)

where the second inequality is again a consequence of (65). The first inequality in (31) follows from (63)
with ε = m− 2µ− 1

2 and n = −1 if m ≤ 3/2, and from (64) with n = −1 if m > 3/2. This proves (30)
for all τ > 0.

Given w ∈ X and s ≥ 0, we apply (30) to f = wj(s)vi(s) − vj(s)wi(s), where i, j ∈ {1, 2, 3} and
v = (v1, v2, v3) is the velocity field obtained from w via the Biot-Savart law. Using Hölder’s inequality
and Lemma 2.1, we can bound

|ρmwjvi|3/2 ≤ |ρmwj |2|vi|6 ≤ C‖wj‖m|wi|2 ≤ C‖wj‖m‖wi‖m , (32)

so that |ρmf |3/2 ≤ C4‖w(s)‖2
m for some C4 > 0. Combining this bound with (30) and using (28), we

obtain, for all τ > 0,

‖Fi([w])(τ)‖m ≤ 3C3C4

∫ τ

0

e−(ν+ 1
2
)(τ−s)

a(τ−s)3/4
‖w(s)‖2

m ds (33)

≤ 3C3C4‖w‖2
X

∫ τ

0

e−(ν+ 1
2
)(τ−s)

a(τ−s)3/4
e−2µs ds ≤ C2‖w‖2

Xe−µτ ,

since ν+ 1
2 ≥ µ. This establishes the first inequality in (29), and the second one can be proved along the

same lines.
It remains to verify that the solution we constructed is unique. Assume that w, w̃ ∈ C0([0, T ],L2(m))

are two solutions of (25) with the same initial data w0 = w̃0 ∈ L2(m). Then w(τ)− w̃(τ) = (F[w])(τ)−
(F[w̃])(τ) for τ ∈ [0, T ]. Proceeding as above, we thus obtain

‖w(τ) − w̃(τ)‖m ≤ C5

∫ τ

0

‖w(s) − w̃(s)‖m(‖w(s)‖m + ‖w̃(s)‖m) ds ,

for some C5 > 0. By Gronwall’s lemma, ‖w(τ) − w̃(τ)‖m = 0 for τ ∈ [0, T ], which proves uniqueness.
This concludes the proof of Theorem 2.3. �

Remark 2.4 A slight modification of the above proof shows that, if w0 ∈ L2(m) for some m > 1/2, there
is a maximal time T ∗ = T ∗(w0) ∈ (0,∞] such that (25) has a (unique) solution w ∈ C0([0, T ∗),L2(m))
satisfying w(0) = w0. If T ∗ < ∞, then ‖w(τ)‖m → ∞ as τ → T ∗, i.e. the solution blows up at time
T ∗. On the other hand, if T ∗ = ∞, then in fact ‖w(τ)‖m → 0 as τ → ∞. To see this, we note that the
corresponding velocity field satisfies v(τ) ∈ L3(R3)3 for all τ ≥ 0, since |v|3 ≤ C|w|3/2 ≤ C|ρmw|2 if
m > 1/2. It follows that u(x, t) defined by (19) is a global mild solution of (2) in L3(R3)3. By a recent
result (Gallagher et al., 2002), |u(t)|3 → 0 as t → ∞, which is equivalent to |v(τ)|3 → 0 as τ → ∞.
Since the parabolic equation (20) is regularizing, it follows that |v(τ)|p → 0 as τ → ∞ for all p ≥ 3. Now,
from the proof of Theorem 2.3, we have

‖w(τ)‖m ≤ C1e
−µτ‖w0‖m + C6

∫ τ

0

e−(ν+ 1
2
)(τ−s)

a(τ−s)3/4
‖w(s)‖m|v(s)|6 ds , τ ≥ 0 ,

see in particular (32) and (33). Since |v(τ)|6 → 0, this estimate implies that ‖w(τ)‖m → 0 as τ → ∞.
Thus, we see that Theorem 2.3 applies in fact to all global solutions of (20) in L2(m), and not to small
solutions only.

Since the semigroup eτΛ is not analytic in L2(m), the solution w given by Theorem 2.3 is in general
not a smooth function of τ . In particular, τ 7→ w(τ) /∈ C1((0,+∞),L2(m)), so that w is not a classical
solution of (20) in L2(m). Nevertheless, following the common use, we shall often refer to w as to the
(mild) solution of (20) in L2(m). Remark that the evolution defined by (20) is regularizing in the sense
that w(ξ, τ) is a smooth function of ξ ∈ R3 for any τ > 0. This property is well-known, and will not be
proved here. We only quote the following result:
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Proposition 2.5 Let 0 < µ ≤ 1, m > 2µ + 1
2 , and let w ∈ C0([0,∞),L2(m)) be the solution of (20)

given by Theorem 2.3. There exists K1 > 0 such that, for all p ∈ [2,+∞],

|ρmw(τ)|p ≤ K1(1 + τ−γp) e−µτ‖w0‖m , τ > 0 , (34)

where ρ(ξ) = 1 + |ξ| and γp = 3
2 (1

2 − 1
p ).

Proof: In view of (26), it is clearly sufficient to prove (34) for 0 < τ ≤ 1. This can be done by a standard
bootstrap argument, using Proposition A.4, Lemma 2.1, and the integral equation (25) satisfied by w.
We omit the details. �

Corollary 2.6 Let 0 < µ ≤ 1 and m > 2µ+ 1
2 . Let w ∈ C0([0,∞),L2(m)) be the solution of (20) given

by Theorem 2.3, and let v be the corresponding velocity field. There exists K2 > 0 such that, for all
τ ≥ 1,

|w(τ)|p ≤ K2e
−µτ‖w0‖m for all

{

p ∈ (pm,∞] if 1
2 < m ≤ 3

2 ,
p ∈ [1,∞] if m > 3

2 ,
(35)

and

|v(τ)|q ≤ K2e
−µτ‖w0‖m for all

{

q ∈ (qm,∞] if 1
2 < m ≤ 5

2 ,
q ∈ (1,∞] if m > 5

2 ,
(36)

where pm = 6
3+2m and qm = 6

1+2m . Moreover, the bounds (35), (36) hold for all τ ≥ 0 if p ≤ 2, q ≤ 6.

Proof: If p > 2, (35) is a direct consequence of (34). If pm < p ≤ 2, then |w|p ≤ C|ρmw|2 by Hölder’s
inequality, and (35) again follows from (34). Using (35) and Lemma 2.1, we easily obtain (36) if q > 3/2.
Finally, if 3/2 < m < 5/2 and qm < q ≤ 3/2, then |v|q ≤ C|ρmv|6 ≤ C|ρmw|2 = C‖w‖m by Hölder’s
inequality and Proposition B.1. This proves (36) for m < 5/2, and the general case follows. �

Remark 2.7 The fact that the value q = 1 is excluded in (36) if m > 5
2 is not a technical restriction. As is

shown in Corollary B.4, the velocity field v(ξ, τ) is not integrable in this case, unless
∫

R3 ξiwj(ξ, τ) dξ = 0
for all i, j ∈ {1, 2, 3}.

For the vorticity ω(x, t) and the velocity u(x, t) in the original variables, Corollary 2.6 implies, for
the same values of p and q:

|ω(t)|p ≤ K2t
−1−µ+ 3

2p ‖ω0‖m , |u(t)|q ≤ K2t
− 1

2
−µ+ 3

2q ‖ω0‖m , t ≥ 1 .

We now explain our motivation for introducing the scaling variables (17). As is shown in Appendix A,
the spectrum of Λ acting on L2(m) can be decomposed as σ(Λ) = σd(Λ) ∪ σc(Λ), where

σd(Λ) =
{

−k + 1

2

∣

∣

∣ k ∈ N
∗
}

, σc(Λ) =
{

λ ∈ C

∣

∣

∣<(λ) ≤ 1

4
− m

2

}

.

(See Fig. 1.) Remark that the discrete spectrum σd(Λ) does not depend on m, whereas the continuous
spectrum σc(Λ) can be shifted arbitrarily far away from the origin by choosingm appropriately. Therefore,
if m ≥ 0 is sufficiently large, the long-time behavior of the solutions of (20) in a neighborhood of the origin
is governed by a finite system of ordinary differential equations. This system is obtained by projecting
(20) onto the finite-dimensional subspace of L2(m) spanned by the eigenfunctions of Λ corresponding to
the first eigenvalues λk = −k+1

2 , with k = 1, 2, . . . , k0.
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<(λ)

=(λ)
m
2 − 1

4

− 3
2 −1

σc(Λ)

Fig. 1: The spectrum of the linear operator Λ in L
2(m), when m = 4.

A rigorous justification of this reduction, using invariant manifold theory, can be found in (Gallay
& Wayne, 2002) for the two-dimensional vorticity equation. Specifically, given any ν > 0, we prove the
existence of a finite-dimensional locally invariant manifold, which is tangent at the origin to the spectral
subspace corresponding to the first eigenvalues of Λ, and which is approached at a rate O(e−ντ ) or faster
by any solution of (20) that stays in a neighborhood of the origin for all times. This method allows,
at least in principle, to compute the long-time asymptotics of the solutions to arbitrarily high order by
studying a finite-dimensional dynamical system – the restriction of the rescaled vorticity equation to the
manifold.

Invariant manifolds can be constructed in the three-dimensional case also, and we use them in our
discussion of the set of solutions of the Navier-Stokes equations which decay “faster than expected” in
Section 5. However, for computing the asymptotics, we show that one can also use a different approach.
Given k0 ∈ N∗ and m > k0 + 3

2 , we decompose any solution w of (20) in L2(m) as

w(ξ, τ) =

k0
∑

k=1

k(k+2)
∑

`=1

αk`(τ)wk`(ξ) + R(ξ, τ) ,

where αk` ∈ R and, for any k ∈ {1, . . . , k0}, {wk` | ` = 1, . . . , k(k+2)} is a basis of the eigenspace
{w |Λw = −k+1

2 w}. Using this decomposition, (20) becomes a system of ordinary differential equations
for the coefficients αk` coupled to a partial differential equation for the remainder R. A direct analysis
of this system allows to compute the asymptotics up to order O(e−ντ ), where ν = min(k0+2

2 , m
2 − 1

4 ).
This program is carried out in Section 3 for k0 = 1 (first order asymptotics) and in Section 4 for k0 = 2
(second order asymptotics).

3 First-order asymptotics

In this section, we consider the behavior of the solutions of (20) in L
2(m) with 5

2 < m ≤ 7
2 . In this

space, the discrete spectrum of Λ consists of a single isolated eigenvalue λ1 = −1, of multiplicity 3. A
convenient basis of eigenvectors is given by {f1, f2, f3}, where fi = rot(Gei). Here and in the sequel, G is
the Gaussian function

G(ξ) =
1

(4π)3/2
e−|ξ|2/4 , ξ ∈ R

3 ,
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and {e1, e2, e3} denotes the canonical basis of R3. A short calculation shows that fi = piG for i = 1, 2, 3,
where pi(ξ) = 1

2 (ei ∧ ξ). Explicitly,

p1(ξ) =
1

2





0
−ξ3
ξ2



 , p2(ξ) =
1

2





ξ3
0

−ξ1



 , p3(ξ) =
1

2





−ξ2
ξ1
0



 . (37)

The vector fields pi satisfy div pi = 0 and rotpi = ei. Integrating by parts, we thus find
∫

R3

pi · fj dξ =

∫

R3

rot(pi) · (Gej) dξ = (ei · ej)

∫

R3

Gdξ = δij .

Moreover, if Λ∗ = ∆ − 1
2 (ξ · ∇) − 1

2 is the formal adjoint of Λ, it is easy to verify that Λ∗pi = −pi for
i = 1, 2, 3. The velocity fields vfi corresponding to fi are computed in Appendix B. In particular, we
mention that |vfi (ξ)| ∼ |ξ|−3 as |ξ| → ∞, so that vfi /∈ L

1(R3). Using these notations, any solution w of
(20) in L2(m) can be decomposed as

w(ξ, τ) =

3
∑

i=1

βi(τ)fi(ξ) + R(ξ, τ) , (38)

where

βi(τ) =

∫

R3

pi(ξ) · w(ξ, τ) dξ , i = 1, 2, 3 . (39)

Then R(·, τ) belongs to the subspace W1 of L
2(m) defined in (62), which is the spectral subspace associ-

ated with the continuous spectrum {λ ∈ C | <(λ) ≤ 1
4 − m

2 } of the operator Λ. As in the two-dimensional
case (Gallay & Wayne, 2002), the coefficients βi obey a linear evolution equation:

Lemma 3.1 Assume that m > 5
2 , and let w ∈ C0([0, T ],L2(m)) be a solution of (20). Then the coeffi-

cients βi defined by (39) satisfy, for all τ ∈ [0, T ],

β̇i(τ) = −βi(τ) , i = 1, 2, 3 .

Proof: Since rot(v ∧ w) = (w · ∇)v − (v · ∇)w, (20) is equivalent to

∂τw = Λw + rot(v ∧w) , div w = 0 .

Differentiating (39) formally with respect to τ and integrating by parts, we thus find

β̇i =

∫

R3

pi ·
(

Λw + rot(v ∧ w)
)

dξ = −βi +

∫

R3

ei · (v ∧w) dξ , (40)

where we used the fact that Λ∗pi = −pi. Since the right-hand side of (40) belongs to C0([0, T ]) and
depends continuously on w, the calculations above can be justified by a density argument. In particular,
βi ∈ C1([0, T ]) for i = 1, 2, 3. Finally, using the identity v ∧ w = v ∧ rotv = 1

2∇|v|2 − (v · ∇)v and the

fact that div v = 0, we see that the last integral in (40) vanishes, hence β̇i = −βi. �

In particular, it follows from Lemma 3.1 that the subspace W1 is invariant under the evolution defined
by (20). The remainder R in (38) satisfies the equation

∂τR = ΛR +Q1

(

(w · ∇)v − (v · ∇)w
)

, div R = 0 ,

where Q1 : L
2(m) → W1 is the spectral projection (for the operator Λ) onto the subspace W1. Explicitly,

Q1w = w −
3

∑

i=1

(

∫

R3

pi ·w dξ
)

fi .

The following result describes the first order asymptotics of w(τ) as τ → ∞.
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Theorem 3.2 Let 1 < ν ≤ 3
2 , m > 2ν + 1

2 , and let w ∈ C0([0,∞),L2(m)) be the solution of (20) given
by Theorem 2.3 with µ = 1. Then there exists K3 ≥ 1 such that

∥

∥w(τ) −
3

∑

i=1

bie
−τ fi

∥

∥

m
≤ K3e

−ντ‖w0‖m , τ ≥ 0 ,

where bi =
∫

R3 pi · w0 dξ, i = 1, 2, 3.

Proof: If w ∈ C0([0,∞),L2(m)) is the solution of (20) given by Theorem 2.3 and v the corresponding
velocity field, we define βi and R by (38), (39). By Lemma 3.1, βi(τ) = bie

−τ for i = 1, 2, 3. To bound
the remainder R, we use the integral equation

R(τ) = eτΛR0 +

∫ τ

0

Q1Φ(τ − s,w(s),v(s)) ds , (41)

where R0 = Q1w0 and Φ(σ,w,v) = eσΛ((w · ∇)v − (v · ∇)w).
By Proposition A.3, there exists C1 > 0 such that

‖eτΛR0‖m ≤ C1e
−ντ‖w0‖m , τ ≥ 0 . (42)

Indeed, if 5
2 < m ≤ 7

2 , (42) is a consequence of (63) with α = 0, n = 1, and ε = m − 2ν − 1
2 . If m > 7

2 ,
(42) follows from (64) with α = 0 and n = 1.

To estimate the integral in (41), we proceed as in the proof of Theorem 2.3. Exchanging ∇ with eσΛ,
we can write Φ = (Φ1,Φ2,Φ3), where

Φi(σ,w,v) =
3

∑

j=1

∂je
σ(Λ− 1

2
)(wjvi − vjwi) , i = 1, 2, 3 ,

see (25). By (30), (32), there exists C2 > 0 such that ‖Q1Φ(σ,w,v)‖m ≤ C2σ
−3/4‖w‖2

m for all σ ∈ (0, 1].
Using (42) and (26), we thus find

‖R(τ)‖m ≤ C1‖w0‖m +

∫ τ

0

C2(τ−s)−3/4(K0‖w0‖m)2 ds ≤ C‖w0‖m ,

for all τ ∈ [0, 1]. (Here and in the sequel, we use the fact that ‖w0‖m ≤ r0, see Theorem 2.3.) If τ > 1,
we write R(τ) = eτΛR0 + R1(τ) + R2(τ), where

R1(τ) =

∫ τ−1

0

e(τ−1−s)ΛQ1Φ(1,w(s),v(s)) ds ,

R2(τ) =

∫ τ

τ−1

Q1Φ(τ − s,w(s),v(s)) ds .

Proceeding as above, we obtain

‖R1(τ)‖m ≤
∫ τ−1

0

C1e
−ν(τ−1−s)C2(K0e

−s‖w0‖m)2 ds ≤ Ce−ντ‖w0‖2
m ,

‖R2(τ)‖m ≤
∫ τ

τ−1

C2(τ−s)−3/4(K0e
−s‖w0‖m)2 ds ≤ Ce−2τ‖w0‖2

m .

Thus, there exists K3 > 0 such that ‖R(τ)‖m ≤ K3e
−ντ‖w0‖m, for all τ ≥ 0. �

Corollary 3.3 Let 1 < ν ≤ 3
2 and m > 2ν + 1

2 . Let w ∈ C0([0,∞),L2(m)) be the solution of (20) given
by Theorem 2.3 with µ = 1, and let v be the corresponding velocity field. There exists K4 > 0 such that,
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for all τ ≥ 1,

∣

∣

∣w(τ) −
3

∑

i=1

bie
−τ fi

∣

∣

∣

p
≤ K4e

−ντ‖w0‖m , 1 ≤ p ≤ ∞ , (43)

∣

∣

∣v(τ) −
3

∑

i=1

bie
−τvfi

∣

∣

∣

q
≤ K4e

−ντ‖w0‖m , 1 ≤ q ≤ ∞ , (44)

where vfi is given by (69). Moreover, the bounds (43), (44) hold for all τ ≥ 0 if p ≤ 2, q ≤ 6.

Proof: Using the analogue of Proposition 2.5 for R(ξ, τ) and proceeding as in the proof of Corollary 2.6,
we obtain (43) for 1 ≤ p ≤ ∞ and (44) for 1 < q ≤ ∞. If 5/2 < m < 7/2 and if vR is the velocity field
obtained from R via the Biot-Savart law (22), then using Hölder’s inequality and Proposition B.1 we can
bound |vR|1 ≤ C|ρmvR|6 ≤ C|ρmR|2 = C‖R‖m, which proves (44) for q = 1. �

In terms of the original variables, Corollary 3.3 shows that, for all t ≥ 1,

|ω(t) − ωapp(t)|p ≤ Ct−1−ν+ 3
2p ‖ω0‖m , 1 ≤ p ≤ ∞ ,

|u(t) − uapp(t)|q ≤ Ct−
1
2
−ν+ 3

2q ‖ω0‖m , 1 ≤ q ≤ ∞ ,

where ωapp(x, t), uapp(x, t) are the self-similar vector fields defined by

ωapp(x, t) =

3
∑

i=1

bi
(1 + t)2

fi

( x√
1 + t

)

, uapp(x, t) =

3
∑

i=1

bi
(1 + t)3/2

vfi

( x√
1 + t

)

.

Remark that uapp(·, t) /∈ L1(R3), unless b1 = b2 = b3 = 0.

4 Second-order asymptotics

We now turn our attention to the solutions of (20) in L2(m) with 7
2 < m < 9

2 . Acting on this space, the
operator Λ has exactly two isolated eigenvalues: λ1 = −1 (of multiplicity 3) and λ2 = − 3

2 (of multiplicity
8). Let E2 be the subspace of L2(m) spanned by the eigenfunctions corresponding to λ2, see Appendix A.
A convenient basis of E2 is provided by the vector fields gi and hij , which we now define.

a) For i = 1, 2, 3, let gi = rot fi = rot(piG) = G
4 ((4 − |ξ|2)ei + ξiξ). Explicitly,

g1 =
G

4





4−ξ22−ξ33
ξ1ξ2
ξ1ξ3



 , g2 =
G

4





ξ1ξ2
4−ξ21−ξ23
ξ2ξ3



 , g3 =
G

4





ξ1ξ3
ξ2ξ3

4−ξ21−ξ22



 . (45)

Then div gi = 0 and Λgi = − 3
2gi. By construction, the velocity field associated to gi is vgi ≡ fi. In

particular, vgi has a Gaussian decay as |ξ| → ∞. We also define

q1(ξ) =
1

2





2 − ξ21
ξ1ξ2
ξ1ξ3



 , q2(ξ) =
1

2





ξ1ξ2
2 − ξ22
ξ2ξ3



 , q3(ξ) =
1

2





ξ1ξ3
ξ2ξ3

2 − ξ23



 . (46)

Then div qi = 0, rotqi = pi, and Λ∗qi = − 3
2qi. It follows that

∫

R3

qi · gj dξ =

∫

R3

rot(qi) · fj dξ =

∫

R3

pi · fj dξ = δij .

b) For (ij) ∈ S = {(11), (12), (13), (22), (23)}, we define hij = ∂ifj +∂jfi. Explicitly, we have hii = −ξifi
for i = 1, 2 and

h12 =
G

4





−ξ1ξ3
ξ2ξ3

ξ21 − ξ22



 , h13 =
G

4





ξ1ξ2
ξ23 − ξ21
−ξ2ξ3



 , h23 =
G

4





ξ22 − ξ23
−ξ1ξ2
ξ1ξ3



 . (47)
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Then div hij = 0 and Λhij = − 3
2hij for all (ij) ∈ S. The velocity fields vhij corresponding to hij

are computed in Appendix B. In particular, we remark that |vhij (ξ)| ∼ |ξ|−4 as |ξ| → ∞, so that
ρvhij /∈ L1(R3)3. We also define r11 = 1

2ξ1ξ3e2, r22 = − 1
2ξ2ξ3e1, and

r12 =
1

2





−ξ1ξ3
ξ2ξ3
0



 , r13 =
1

2





ξ1ξ2
0

−ξ2ξ3



 , r23 =
1

2





0
−ξ1ξ2
ξ1ξ3



 . (48)

Then div rij = 0 and Λ∗rij = − 3
2rij for all (ij) ∈ S. A direct calculation shows that the following

orthogonality relations are satisfied:

∫

R3

rij · hkl dξ = δikδjl ,

∫

R3

rij · gk dξ =

∫

R3

qk · hij dξ = 0 .

Using these notations, any solution w of (20) in L2(m) can be decomposed as

w(ξ, τ) =

3
∑

i=1

βi(τ)fi(ξ) +

3
∑

i=1

γi(τ)gi(ξ) +
∑

(ij)∈S

ζij(τ)hij(ξ) + R(ξ, τ) , (49)

where βi(τ) is given by (39) and

γi(τ) =

∫

R3

qi(ξ) · w(ξ, τ) dξ , ζij(τ) =

∫

R3

rij(ξ) · w(ξ, τ) dξ . (50)

Then R(·, τ) belongs to the subspace W2 of L2(m) defined in (62), which coincides with the spectral
subspace associated with the continuous spectrum {λ ∈ C | <(λ) ≤ 1

4 − m
2 } of the operator Λ. The

coefficients γi and ζij satisfy the following evolution equations:

Lemma 4.1 Assume that m > 7
2 , and let w ∈ C0([0, T ],L2(m)) be a solution of (20). Then the coeffi-

cients γi, ζij defined by (50) satisfy, for all τ ∈ [0, T ],

γ̇i(τ) = −3

2
γi(τ) , i = 1, 2, 3 ,

ζ̇ii(τ) = −3

2
ζii(τ) +

1

2

∫

R3

(v3(ξ, τ)
2 − vi(ξ, τ)

2) dξ , i = 1, 2 , (51)

ζ̇ij(τ) = −3

2
ζij(τ) −

∫

R3

vi(ξ, τ)vj(ξ, τ) dξ , 1 ≤ i < j ≤ 3 ,

where v = (v1, v2, v3) is the velocity field obtained from w via the Biot-Savart law (22).

Proof: We proceed as in the proof of Lemma 3.1. Differentiating (50) and integrating by parts, we find

γ̇i =

∫

R3

qi ·
(

Λw + rot(v ∧ w)
)

dξ = −3

2
γi +

∫

R3

pi ·
(1

2
∇|v|2 − (v · ∇)v

)

dξ

= −3

2
γi +

∫

R3

v ·
(

(v · ∇)pi

)

dξ = −3

2
γi ,

because (v · ∇)pi = 1
2ei ∧ v ⊥ v. Similarly, for all (ij) ∈ S, we find

ζ̇ij = −3

2
ζij +

∫

R3

v ·
(

(v · ∇) rot rij

)

dξ .

But rot rii = 1
2 (ξ3e3 − ξiei) and rot rij = − 1

2 (ξiej + ξjei) for i 6= j, hence

v ·
(

(v · ∇) rot rii

)

=
1

2
(v2

3 − v2
i ) , v ·

(

(v · ∇) rot rij

)

= −vivj (i 6= j) .
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This concludes the proof. �

The remainder R in (49) satisfies the equation

∂τR = ΛR +Q2

(

(w · ∇)v − (v · ∇)w
)

, div R = 0 ,

where Q2 : L2(m) → W2 is the spectral projection (for the operator Λ) onto the subspace W2, see
Appendix A. Our next result describes the second order asymptotics of w(τ) as τ → ∞.

Theorem 4.2 Let 3
2 < ν < 2, m > 2ν + 1

2 , and let w ∈ C0([0,∞),L2(m)) be the solution of (20) given
by Theorem 2.3 with µ = 1. Then there exist constants bi, ci, dij , and K5 such that ‖w(τ)−wapp(τ)‖m ≤
K5e

−ντ‖w0‖m for all τ ≥ 0, where

wapp(ξ, τ) =

3
∑

i=1

bie
−τ fi(ξ) +

3
∑

i=1

cie
− 3

2
τgi(ξ) +

∑

(ij)∈S

dije
− 3

2
τhij(ξ) . (52)

Proof: If w ∈ C0([0,∞),L2(m)) is the solution of (20) given by Theorem 2.3 and v is the corresponding
velocity field, we define βi, γi, ζij , and R by (39), (49), (50). It is clear that βi(τ) = bie

−τ and

γi(τ) = cie
− 3

2
τ , where

bi =

∫

R3

pi(ξ) ·w0(ξ) dξ , ci =

∫

R3

qi(ξ) ·w0(ξ) dξ , i = 1, 2, 3 .

By Corollary 2.6, there exists C1 > 0 such that |v(τ)|2 ≤ C1e
−τ‖w0‖m for all τ ≥ 0. Thus, it follows

easily from Lemma 4.1 that |ζij(τ) − dije
− 3

2
τ | ≤ C2e

−2τ‖w0‖2
m for all τ ≥ 0, where

dii = ζii(0) +
1

2

∫ ∞

0

e
3
2
τ

∫

R3

(v3(ξ, τ)
2 − vi(ξ, τ)

2) dξ dτ , i = 1, 2 , (53)

dij = ζij(0) −
∫ ∞

0

e
3
2
τ

∫

R3

vi(ξ, τ)vj(ξ, τ) dξ dτ , 1 ≤ i < j ≤ 3 .

To bound the remainder R, we proceed exactly as in the proof of Theorem 3.2. By Proposition A.3,
there exists C3 > 0 such that ‖eτΛR0‖m ≤ C3e

−ντ‖w0‖m for all τ ≥ 0. Using the integral equation

R(τ) = eτΛR0 +

∫ τ

0

Q2Φ(τ − s,w(s),v(s)) ds ,

together with the bound ‖w(τ)‖m ≤ K0e
−τ‖w0‖m given by Theorem 2.3, it is easy to show that

‖R(τ)‖m ≤ C4e
−ντ‖w0‖m for all τ ≥ 0. �

Corollary 4.3 Let 3
2 < ν < 2 and m > 2ν + 1

2 . Let w ∈ C0([0,∞),L2(m)) be the solution of (20) given
by Theorem 2.3 with µ = 1, and let v be the corresponding velocity field. There exists K6 > 0 such that,
for all τ ≥ 1,

|w(τ) − wapp(τ)|p ≤ K6e
−ντ‖w0‖m , 1 ≤ p ≤ ∞ , (54)

|v(τ) − vapp(τ)|q ≤ K6e
−ντ‖w0‖m , 1 ≤ q ≤ ∞ , (55)

where

vapp(ξ, τ) =

3
∑

i=1

bie
−τvfi(ξ) +

3
∑

i=1

cie
− 3

2
τvgi(ξ) +

∑

(ij)∈S

dije
− 3

2
τvhij (ξ) .

Moreover, the bounds (54), (55) hold for all τ ≥ 0 if p ≤ 2, q ≤ 6.

14



In terms of the original variables, Corollary 4.3 shows that, for all t ≥ 1,

|ω(t) − ωapp(t)|p ≤ Ct−1−ν+ 3
2p ‖ω0‖m , 1 ≤ p ≤ ∞ ,

|u(t) − uapp(t)|q ≤ Ct−
1
2
−ν+ 3

2q ‖ω0‖m , 1 ≤ q ≤ ∞ , (56)

where ωapp(x, t), uapp(x, t) are the self-similar vector fields given by

ωapp(x, t) =
1

1 + t
wapp

( x√
1 + t

, log(1 + t)
)

,

uapp(x, t) =
1√

1 + t
vapp

( x√
1 + t

, log(1 + t)
)

. (57)

Remark 4.4 In contrast with the two-dimensional case, the second order asymptotic expansions of
ω(x, t) and u(x, t) contain only integer powers of (1 + t)−1/2, and not resonant terms of the form
(1 + t)−α log(1 + t). However, following (Gallay & Wayne, 2002), one can show that such logarith-
mic terms do appear in the third order asymptotics. This is the reason why the case ν = 2 is excluded in
Theorem 4.2. In fact, if m > 9/2, the proof of Theorem 4.2 yields the estimate

‖w(τ) − wapp(τ)‖m ≤ K5(1 + τ)e−2τ‖w0‖m , τ ≥ 0 ,

which appears to be optimal.

Two prior papers which discuss the second order asymptotics of solutions of the Navier-Stokes equa-
tions are those of (Carpio, 1996), and (Fujigaki & Miyakawa, 2001). As we demonstrate below, the
results of Corollary 4.3 extend the results of these two references. The extension results from the fact
that by imposing decay conditions on the initial velocity field (see the hypotheses of Theorem 0.6 in
(Carpio, 1996) and (1.4) of (Fujigaki & Miyakawa, 2001)) certain terms in the approximating velocity
field uapp are forced to be zero. Thus, certain solutions of (2) of finite energy (i.e. of finite L2 norm)
whose asymptotics Corollary 4.3 allows us to compute are excluded from consideration by the decay
conditions of (Carpio, 1996) and (Fujigaki & Miyakawa, 2001). This is a further reason that we feel it is
more natural to impose decay conditions on the vorticity rather than the velocity. Note that in deriving
the higher-order asymptotics in (Fujigaki & Miyakawa, 2001) (Theorem 2.2 (ii)) increasingly stringent
decay conditions are imposed on the velocity which results in more and more terms in the asymptotics
being zero. To compare the results of Corollary 4.3 with those of the previous references, first note that
the requirement that (1 + |x|)u0 ∈ L1(R3) implies that bi = 0 for i = 1, 2, 3 by Corollary B.4. Moreover,
by Corollary B.5, the remaining coefficients in vapp satisfy

c1 = b23 , c2 = b31 , c3 = b12 ,

and

d11 =
1

2
(c33 − c11) , d22 =

1

2
(c33 − c22) , d12 = −c12 , d23 = −c23 , d13 = −c13 ,

where bk` and ck` are defined in (6). The expressions for djk follow from (53), plus the assertion in
Corollary B.5 that ζjk = 0 under these conditions.

Now consider the term A(ξ) = e−3τ/2
∑3

j=1 cjv
gj (ξ), in vapp. Since vgj = fj = 1

2 (ej ∧ ξ)G (see the

line just following (45)), with G(ξ) = (4π)−3/2 exp(−|ξ|2/4), this sum can be rewritten as

A(ξ) =
1

2
e−

3
2

τ
3

∑

j=1

cj(ej ∧ ξ)G(ξ) =
1

2
e−

3
2
τG(ξ)(c ∧ ξ) .

Examining this expression component-by-component, we see that the first component is

1

2
e−

3
2
τG(ξ)(c2ξ3 − c3ξ2) =

1

2
e−

3
2
τG(ξ)(b31ξ3 − b12ξ2) = −e− 3

2
τ (b31∂3G− b12∂2G)

= −e− 3
2
τ

3
∑

k=1

bk1∂kG ,

15



using the anti-symmetry of the bjk. The other components are treated in like fashion and we find

Aj(ξ) = −e− 3
2

τ
3

∑

k=1

bkj∂kG .

To treat the term B(ξ) = e−
3
2
τ
∑

(ij)∈S dijv
hij (ξ) we note that using the expressions for vhij in Appendix

B one has
vhij = 2∂i∂j(∇Φ) + (∂iG)ej + (∂jG)ei ,

where −∆Φ = G. Then using the expressions for dij from above a straightforward computation shows
that

B(ξ) = −e− 3
2
τ

3
∑

i,j=1

cij (∂i∂j(∇Φ) + (∂iG)ej) .

If we now compare our notation with that of (Fujigaki & Miyakawa, 2001), we see that the self-similar
quantities Et and F`,jk(·, t) satisfy ∂kG = ∂kE1 and ∂k∂`(∂jΦ) + (∂`G)δkj = F`,jk(·, 1). Thus, written in
terms of this notation, Corollary 4.3 implies:

Corollary 4.5 If in addition to the hypotheses of Corollary 4.3, one assumes that the initial condition
for the velocity field satisfies ρu0 ∈ L1(R3)3, then one has the estimate, for all q ∈ [1,∞],

|uj(·, t− 1) + {
3

∑

k=1

bkj∂kEt +
3

∑

k,`=1

cklF`,jk(·, t)}|q ≤ Ct−
1
2
−ν+ 3

2q ‖ω0‖m , t ≥ 2 .

Comparing with (2.4) of (Fujigaki & Miyakawa, 2001) we see that this is compatible with the results of
Fujigaki and Miyakawa. Rewriting the asymptotics in a slightly different way one finds that they also
agree with Theorem 0.6 of (Carpio, 1996).

5 The strong-stable manifold of the origin

In this section, we assume that m > 7/2 and we consider in more detail the dynamics of (20) in the
invariant subspace W1 of L2(m) defined by (62). If w0 ∈ W1 satisfies ‖w0‖m ≤ r0, where r0 > 0 is as in
Theorem 2.3, the solution w(·, τ) of (20) with initial data w0 can be decomposed as

w(ξ, τ) =
3

∑

i=1

γi(τ)gi(ξ) +
∑

(ij)∈S

ζij(τ)hij(ξ) + R(ξ, τ) , (58)

where γi, ζij are defined in (50) and R(·, τ) belongs to the subspace W2 of L2(m). As for the velocity
field, we have

v(ξ, τ) =
3

∑

i=1

γi(τ)v
gi (ξ) +

∑

(ij)∈S

ζij(τ)v
hij (ξ) + vR(ξ, τ) .

Setting bi = 0 in Theorem 4.2, we see that ‖w(·, τ)‖m = O(e−
3
2
τ ) as τ → +∞. We now define the local

strong-stable manifold of the origin by

W loc
s =

{

w0 ∈ L
2(m)

∣

∣

∣ ‖w0‖m ≤ r0 , lim
τ→∞

e
3
2
τ‖Φτw0‖m = 0

}

, (59)

where Φτw0 = w(τ) is the solution of (20) in L
2(m) with initial data w0. It is clear from Theorem 3.2

that W loc
s ⊂ W1. However, as we shall see below, W loc

s 6⊂ W2.
By construction, W1 = W2 ⊕ V , where V is the eight-dimensional space spanned by the vector fields

gi for i = 1, 2, 3 and hij for (ij) ∈ S. Using invariant manifold theory as in (Gallay & Wayne, 2002), it is
rather straightforward to show that W loc

s is a smooth submanifold of W1 which is tangent at the origin
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to the subspace W2. In other words, there exists a smooth function f : W2 → V satisfying f(0) = 0,
f ′(0) = 0, and such that W loc

s = G(f) ∩B(r0), where

G(f) = {w + f(w) |w ∈ W2} ⊂ W1 , B(r0) = {w ∈ W1 | ‖w‖m ≤ r0} .

In particular, the manifold W loc
s is of codimension 8 in W1, hence of codimension 11 in L2(m). By

construction, W loc
s is locally positively invariant in the following sense: if w0 ∈ W loc

s , then w(τ) =
Φτw0 ∈ W loc

s as long as w(τ) ∈ B(r0). If in addition ‖w0‖m ≤ r0/K0, where K0 is as in Theorem 2.3,

then w(τ) ∈W loc
s for all τ ≥ 0 and e

3
2
τ‖w(τ)‖m → 0 as τ → +∞.

It follows from Lemma 4.1 that W loc
s 6⊂ W2, i.e. the map f : W2 → V is not identically zero. Indeed,

W loc
s ⊂ W2 would mean that W loc

s = W2 ∩B(r0), which would imply that the subspace W2 is positively
invariant in a neighborhood of the origin. But it is easy to verify that the integrals in the right-hand side
of (51) do not vanish identically for (small) vorticities w ∈ W2.

W2

V

W loc
s

Fig. 2: A schematic picture of the local strong-stable manifold W loc
s (shaded surface). The horizontal plane is the infinite-

dimensional subspace W2, and the vertical axis the eight-dimensional space V . The intersection W
loc
s ∩W2, which is also

infinite-dimensional, is represented by two line segments.

The following result is characterization of the local strong-stable manifold.

Proposition 5.1 Fix m > 7/2, and assume that w0 ∈ W1 ⊂ L2(m) satisfies ‖w0‖m ≤ r0, where r0 > 0
is as in Theorem 2.3. Let w(ξ, τ) be the solution of (20) with initial data w0, and let v(ξ, τ) be the
corresponding velocity field. Define the functions γi(τ), ζij(τ) by (50) and the coefficients ck` by (6), with

u(x, t) =
1√

1 + t
v
( x√

1 + t
, log(1 + t)

)

. (60)

Then the following three statements are equivalent:
1) lim

τ→∞
e

3
2
τ‖w(·, τ)‖m = 0, namely w0 ∈ W loc

s .

2) lim
t→∞

t5/4|u(·, t)|2 = 0.

3) γ1(0) = γ2(0) = γ3(0) = 0,
ζ11(0) = 1

2 (c11 − c33), ζ22(0) = 1
2 (c22 − c33), ζ12(0) = c12, ζ13(0) = c13, ζ23(0) = c23.

Proof: We apply Theorem 4.2 with 3
2 < ν < m

2 − 1
4 . Since w0 ∈ W1, we have bi = 0 for i = 1, 2, 3, so

that ‖w(τ)‖m = O(e−
3
2
τ ) as τ → +∞. We shall show that statements 1), 2), 3) in Proposition 5.1 are

all equivalent to
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4) ci = 0 for i = 1, 2, 3 and dij = 0 for all (ij) ∈ S.

Indeed, it is clear from (52) that ‖wapp(τ)‖m = Ke−
3
2
τ , where K = 0 if and only if 4) holds. Thus

1) ⇔ 4) by Theorem 4.2. Similarly, it follows from (57) that |uapp(t)|2 = K ′(1 + t)−5/4, where K ′ = 0 if

and only if 4) holds. Since |u(t) − uapp(t)|2 ≤ C(1 + t)
1
4
−ν by (56), we conclude that 2) ⇔ 4). Finally,

using (6), (53) and the change of variables (60), we obtain the relations

dii = ζii(0) +
1

2
(c33 − cii) , i = 1, 2 ,

dij = ζij(0) − cij , 1 ≤ i < j ≤ 3 .

We also know that ci = γi(0) for i = 1, 2, 3. Therefore, 3) ⇔ 4). �

Using Proposition 5.1, it is easy to prove Theorem 1.1 in the case where w0 = rot(u0) satisfies
‖w0‖m ≤ r0 for some m > 7/2. Indeed, let w(ξ, τ) be the solution of (20) with initial data w0, and
define γi(τ), ζij(τ) by (50). By Corollary B.5, the assumption ρu0 ∈ L1(R3)3 implies that w0 ∈ W1 (so
that w(τ) ∈ W1 for all τ ≥ 0) and that ζij(0) = 0 for all (ij) ∈ S.

a) Assume first that (7) holds, namely w0 ∈ W loc
s . Then point 3) in Proposition 5.1 shows that c11 =

c22 = c33 and cij = 0 if i 6= j, hence the matrix (ck`) is scalar. In addition, since γi(0) = 0, we have
bk` = 0 by Corollary B.5. This proves (8).

b) Conversely, assume that (8) holds. Then γi(0) = 0 by Corollary B.5, and since ζii(0) = 0 = 1
2 (cii−c33)

for i = 1, 2, ζij(0) = 0 = cij for i 6= j, it follows from Proposition 5.1 that w0 ∈ W loc
s . This concludes

the argument. �

As is clear from this proof, if w0 lies in W loc
s and if the corresponding velocity field v0 satisfies

ρv0 ∈ L1(R3)3, then necessarily w0 ∈ W2. Thus, from our point of view, Theorem 1.1 is a characterization
of the noninvariant set W loc

s ∩W2, and not of W loc
s itself. As was already observed, W loc

s is not contained
in W2, and it is not a priori obvious that W loc

s ∩ W2 6= {0}! In fact, using a nice argument due to L.
Brandolese, it turns out that W loc

s ∩ W2 is infinite dimensional. Following (Brandolese, 2001), we say
that a vector field u : R3 → R3 is symmetric if it satisfies the following two properties:
A) u1(x1, x2, x3) = u2(x3, x1, x2) = u3(x2, x3, x1) for all x = (x1, x2, x3) ∈ R3.
B) For all i ∈ {1, 2, 3}, ui(x1, x2, x3) is an odd function of xi and an even function of xj

for all j 6= i.
If u is symmetric, then ∆u and (u · ∇)u are also symmetric. This implies, roughly speaking, that the
space of symmetric velocity fields is invariant under the Navier-Stokes evolution (whenever defined).

Assume now that v : R3 → R3 is symmetric and that the vorticity w = rotv belongs to L2(m) for
some m > 7/2. Then w satisfies:
A) w1(ξ1, ξ2, ξ3) = w2(ξ3, ξ1, ξ2) = w3(ξ2, ξ3, ξ1) for all ξ ∈ R3.
B’) For all i ∈ {1, 2, 3}, wi(ξ1, ξ2, ξ3) is an even function of ξi and an odd function of ξj

for all j 6= i.
Using these properties together with (39), (50), we discover that βi = γi = ζij = 0 for all i, j, hence
w ∈ W2. On the other hand, it is clear that the integrals in the right-hand side of (51) vanish identically
if v is symmetric, so that ck` = 0 in (6). Thus, if ‖w‖m ≤ r0, it follows from Proposition 5.1 that
w ∈ W loc

s . Summarizing, we have shown:

W loc
s ∩W2 ⊃

{

w ∈ L
2(m)

∣

∣

∣ ‖w‖m ≤ r0 , w = rotv with v symmetric
}

.

Remark 5.2 Our discussion of the result of Theorem 1.1 above is apparently restricted to small solutions,
whereas Miyakawa and Schonbek impose no such restriction on the solutions they consider. However, a
better way to view the difference between our results and those of (Miyakawa & Schonbek, 2000) is that we
focus on strong (or classical) solutions while Miyakawa and Schonbek work with weak solutions. Indeed,
as is explained in Remark 2.4, our results describe in fact the long-time behavior of all global solutions
of (20) in our function space. In particular, in two dimensions where one has a global existence for
strong solutions our approach yields a global strong-stable manifold and hence a global characterization of
solutions satisfying (7), see (Gallay & Wayne, 2002). In the three-dimensional case, we have of course
to exclude the solutions that blow up in finite time (if there are any).
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We conclude this section with a somewhat surprising observation. Let Ψt be the local semiflow defined
by the vorticity equation (9) in L2(m) for m > 7/2. If ω ∈ L2(m), let Uω be the velocity field obtained
from ω via the Biot-Savart law (10). Then

W loc
s =

{

ω0 ∈ L
2(m)

∣

∣

∣ ‖ω0‖m ≤ r0 , lim
t→∞

t5/4|UΨtω0
|2 = 0

}

.

This characterization follows from the equivalence 1) ⇔ 2) in Proposition 5.1 and from the fact that
the change of variables (18), (19) reduces to the identity when t = 0. As a consequence, W loc

s is locally
invariant under both semiflows Ψt and Φτ , although the orbits of the same initial point under Ψt and Φτ

are of course different! This curious property originates in the fact that in both the original and rescaled
variables this manifold can be characterized in terms of the decay rate of solutions lying in it, see (Gallay
& Wayne, 2002) for a more detailed discussion. In concrete terms, the observation above implies that
the picture of W loc

s in Fig. 2 is not affected at all when we return to the original variables using (18).

A Spectrum of the operator Λ

In Appendix A of (Gallay & Wayne, 2002), we study in detail the linear operator

L = ∆ξ +
1

2
ξ · ∇ξ +

N

2
, ξ ∈ R

N , N ≥ 1 , (61)

acting on the function L2(m) = {f ∈ L2(RN ) | ‖f‖m <∞}, where

‖f‖m =

(∫

RN

(1 + |ξ|)2m|f(ξ)|2 dξ

)1/2

= |ρmf |2 .

In particular, we determine exactly the spectrum of L:

Theorem A.1 (Gallay & Wayne, 2002) Fix m ≥ 0, and let L be the linear operator (61) in L2(m),
defined on its maximal domain. Then the spectrum of L is

σ(L) =
{

λ ∈ C

∣

∣

∣<(λ) ≤ N

4
− m

2

}

∪
{

−k
2

∣

∣

∣ k ∈ N

}

.

Moreover, if m > N
2 and if k ∈ N satisfies k+ N

2 < m, then µk = −k
2 is an isolated eigenvalue of L, with

multiplicity
(

N+k−1
k

)

.

The eigenfunctions corresponding to the isolated eigenvalues µk = −k
2 can be computed explicitly.

Moreover, it is shown in (Gallay & Wayne, 2002) that L generates a C0 semigroup eτL in L2(m), and
sharp estimates are obtained for the norm of eτL in various spectral subspaces of L2(m).

In this section, we adapt the results in (Gallay & Wayne, 2002) to the particular case where N = 3
and where L ≡ Λ + 1

2 acts on the space of divergence free vector fields L2(m) defined in (24). Remark
that div(Λf) = Ldiv(f), so that Λ preserves the divergence free condition. The analogue of Theorem A.1
is:

Theorem A.2 Fix m ≥ 0, and let Λ be the linear operator (21) in L2(m), defined on its maximal
domain. Then the spectrum of Λ is

σ(Λ) =
{

λ ∈ C

∣

∣

∣<(λ) ≤ 1

4
− m

2

}

∪
{

−k + 1

2

∣

∣

∣ k ∈ N
∗
}

,

where N∗ = N \ {0}. Moreover, if m > 5
2 and if k ∈ N∗ satisfies k + 3

2 < m, then λk = −k+1
2 is an

isolated eigenvalue of L, with multiplicity k(k + 2).
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Proof: We first discuss the discrete spectrum of Λ. Fix k ∈ N, and take α = (α1, α2, α3) ∈ N3 such that
|α| = α1 + α2 + α3 = k. Then the Hermite function φα : R3 → R defined by

φα = ∂αG ≡ ∂α1

1 ∂α2

2 ∂α3

3 G , where G(ξ) =
1

(4π)3/2
e−|ξ|2/4 ,

is an eigenfunction of L with eigenvalue −k
2 . Let Ek = span{φα |α ∈ N3 , |α| = k} and

Ek = {f = (f1, f2, f3) | div f = 0 , fi ∈ Ek for i = 1, 2, 3} .

By construction, Ek ⊂ L2(m) for all m ≥ 0, and any f ∈ Ek satisfies Λf = −k+1
2 f . Moreover, using the

characterization of Ek in Fourier variables (see (Gallay & Wayne, 2002)), it is not difficult to show that
dim(Ek) = k(k+ 2). In particular, for any k ∈ N∗, λk = −k+1

2 is an eigenvalue of Λ with multiplicity (at
least) k(k + 2).

Next, fix λ ∈ C such that <(λ) < 1/4 and −(λ + 1) /∈ N. Proceeding as in (Gallay & Wayne, 2002),
it is easy to verify that the function ψλ : R3 → R defined in Fourier variables by

ψ̂λ(p) = |p|−2(λ+1)e−|p|2(−ip2, ip1, 0)

satisfies Λψλ = λψλ and divψλ = 0. Moreover, ψλ ∈ L2(m) if and only if <(λ) < 1
4 − m

2 . This shows
that σ(Λ) ⊃ {λ ∈ C | <(λ) ≤ 1

4 − m
2 }.

Now, fix n ∈ Z and assume that m ≥ 0, m > n+ 3
2 . Let

Wn =
{

f ∈ L2(m)
∣

∣

∣

∫

R3

ξαf(ξ) dξ = 0 for all α ∈ N
3 with |α| ≤ n

}

.

In particular, Wn = L2(m) if n < 0. We define closed subspaces Vn, Wn of L2(m) by Vn = ⊕n
k=1Ek and

Wn =
{

f ∈ L
2(m)

∣

∣ fi ∈ Wn for i = 1, 2, 3
}

. (62)

By definition, Vn = {0} and Wn = L2(m) if n ≤ 0. (We recall that any f ∈ L2(m) with m > 3
2

satisfies
∫

R3 f(ξ) dξ = 0 as a consequence of the divergence free condition; hence W0 = L2(m).) Using
again the characterization of L2(m) in Fourier variables, it is easy to verify that L2(m) = Vn ⊕Wn. Let
Pn : L2(m) → L2(m) be the (unique) continuous projection satisfying range(Pn) = Vn, ker(Pn) = Wn,
and let Qn = 1− Pn. In particular, Pn = 0 and Qn = 1 for all n ∈ Z, n ≤ 0. The following estimates on
the semigroup eτΛ = e−τ/2eτL are proved in (Gallay & Wayne, 2002) (Proposition A.2):

Proposition A.3 Let a(τ) = 1 − e−τ , τ ≥ 0.
(a) Fix m ≥ 0, and take n ∈ Z such that n+ 3

2 < m ≤ n+ 5
2 . For all α ∈ N3 and all ε > 0, there exists

C > 0 such that

‖∂αeτΛf‖m ≤ C

a(τ)|α|/2
e

τ
2
( 1
2
−m+ε)‖f‖m , τ > 0 , (63)

for all f ∈Wn ⊂ L2(m).

(b) Fix n ∈ N ∪ {−1}, and take m ∈ R such that m > n+ 5
2 . For all α ∈ N3 and all ε > 0, there exists

C > 0 such that

‖∂αeτΛf‖m ≤ C

a(τ)|α|/2
e−

n+2

2
τ‖f‖m , τ > 0 , (64)

for all f ∈Wn ⊂ L2(m).

If m and n are as in part (a) of Proposition A.3, it follows from (63) that

‖eτΛQnf‖m ≤ Ce
τ
2
( 1
2
−m+ε)‖f‖m , τ ≥ 0 ,

for all f ∈ L2(m). By the Hille-Yosida theorem, this implies that σ(ΛQn) ⊂ {λ ∈ C | <(λ) ≤ 1
4 − m

2 }.
On the other hand, by construction, we have σ(ΛPn) = ∅ if n ≤ 0 and σ(ΛPn) = {−1;− 3

2 ; . . . ;−n+1
2 } if
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n ∈ N∗. In particular, σ(ΛPn) ∩ σ(ΛQn) = ∅, hence the multiplicity of the eigenvalue λk (k = 1, . . . , n)
is exactly k(k + 2). Finally, since σ(Λ) ⊂ σ(ΛPn) ∪ σ(ΛQn), we have

σ(Λ) ⊂
{

λ ∈ C

∣

∣

∣<(λ) ≤ 1

4
− m

2

}

∪
{

−k + 1

2

∣

∣

∣ k ∈ N
∗
}

.

This concludes the proof of Theorem A.2. �

The estimates in Proposition A.3 can be generalized to weighted Lp spaces with p 6= 2, see (Gallay &
Wayne, 2002). For our purposes in this paper, the following result will be sufficient:

Proposition A.4 Let 1 ≤ q ≤ p ≤ ∞, m ≥ 0 and T > 0. For all α ∈ N3, there exists C > 0 such that,
for all f ∈ Lq(m),

|ρm∂αeτΛf |p ≤ C

a(τ)
3
2
( 1

q
− 1

p
)+ |α|

2

|ρmf |q , 0 < τ ≤ T , (65)

where ρ(ξ) = 1 + |ξ|.

Proof: See (Gallay & Wayne, 2002), Proposition A.5.

B Bounds on the velocity field

We first list a few identities that are satisfied by the vorticity w as a consequence of the divergence free
condition. If w ∈ L1(R3)3, then

∫

R3

wi(ξ) dξ = 0 for all i ∈ {1, 2, 3} , (66)

because wi = div(ξiw). This fact is not hard to prove in Fourier variables, but has been overlooked in
some papers on the subject until recently. If in addition ρw ∈ L1(R3)3 (where ρ(ξ) = 1 + |ξ|), then

∫

R3

(ξiwj(ξ) + ξjwi(ξ)) dξ = 0 for all i, j ∈ {1, 2, 3} , (67)

because ξiwj + ξjwi = div(ξiξjw). Thus only three first-order moments of w (out of nine) are possibly
nonzero. Finally, if we assume that ρ2w ∈ L1(R3)3, then

∫

R3

(ξiξjwk(ξ) + ξjξkwi(ξ) + ξkξiwj(ξ)) dξ = 0 for all i, j, k ∈ {1, 2, 3} , (68)

because ξiξjwk + ξjξkwi + ξkξiwj = div(ξiξjξkw). This means that only eight second-order moments of
w (out of eighteen) are possibly nonzero.

Next, we give explicit formulas for the velocity fields corresponding, via the Biot-Savart law (10), to
the first eigenfunctions of the linear operator Λ acting on L2(m).

1) If m > 5/2, the first eigenvalue λ2 = −1 has multiplicity three. A basis of eigenfunctions is {f1, f2, f3},
where fi = piG and p1,p2,p3 are defined in (37). The corresponding velocity fields are

vfi = ∂i(∇Φ) +Gei , i = 1, 2, 3 , (69)

where

Φ(ξ) =
1

(4π)3/2

2

|ξ|

∫ |ξ|

0

e−z2/4 dz , ξ ∈ R
3 \ {0} .

Remark that −∆Φ = G, so that div vfi = 0 and rotvfi = rot(Gei) = fi. A direct calculation shows that
vfi ∼ |ξ|−3 as |ξ| → ∞, hence vfi /∈ L1(R3).
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2) If m > 7/2, the second eigenvalue λ3 = −3/2 has multiplicity eight. A convenient basis of eigenfunc-
tions is given by {gi}i=1,2,3 and {hij}(ij)∈S , where gi are defined in (45) and hij in (47). (We recall that
S = {(11), (12), (13), (22), (23)}.) The corresponding velocity fields read

vgi = fi , vhij = ∂iv
fj + ∂jv

fi .

Clearly, vgi(ξ) has Gaussian decay as |ξ| → ∞, whereas vhij (ξ) ∼ |ξ|−4. In particular, vhij ∈ L1(R3),
but ρvhij /∈ L1(R3).

Now, we assume that w ∈ L2(m) for some m > 7/2. Then w can be decomposed as

w(ξ) =

3
∑

i=1

βifi(ξ) +

3
∑

i=1

γigi(ξ) +
∑

(ij)∈S

ζijhij(ξ) + w̃(ξ) , (70)

where the coefficients βi are defined in (39) and γi, ζij in (50). The velocity field v associated to w has
a similar decomposition:

v(ξ) =

3
∑

i=1

βiv
fi(ξ) +

3
∑

i=1

γiv
gi(ξ) +

∑

(ij)∈S

ζijv
hij (ξ) + ṽ(ξ) , (71)

where ṽ is obtained from w̃ via the Biot-Savart law (10). In view of (39) and (67), it is clear that βi = 0
for i = 1, 2, 3 if and only if

∫

R3

ξiwj(ξ) dξ = 0 for all i, j ∈ {1, 2, 3} . (72)

On the other hand, it follows from (50) and (68) that ζij = 0 for all (ij) ∈ S if and only if

M1
22 = M1

33 = −2M2
12 = −2M3

13 ,
M2

11 = M2
33 = −2M1

12 = −2M3
23 ,

M3
11 = M3

22 = −2M1
13 = −2M2

23 ,

M1
11 = M2

22 = M3
33 = 0 ,

M1
23 = M2

13 = M3
12 = 0 ,

(73)

where

M i
jk =

∫

R3

ξjξkwi(ξ) dξ = M i
kj , i, j, k ∈ {1, 2, 3} .

If in addition γi = 0 for i = 1, 2, 3, then M i
jk = 0 for all i, j, k ∈ {1, 2, 3}.

The main result of this section is the following estimate for the velocity field in terms of the vorticity:

Proposition B.1 Let w ∈ L2(m) for some m ≥ 0, and let v be the velocity field obtained from w via
the Biot-Savart law (10). Assume that either
1) 0 ≤ m < 3/2, or
2) 3/2 < m < 5/2, or
3) 5/2 < m < 7/2 and βi = 0 for i = 1, 2, 3, or
4) 7/2 < m < 9/2, βi = 0 for i = 1, 2, 3, and ζij = 0 for (ij) ∈ S.

Then there exists C > 0 such that
|ρmv|6 ≤ C|ρmw|2 , (74)

where ρ(ξ) = 1 + |ξ|.

Remarks.
1. More generally, Proposition B.1 holds for any (not necessarily divergence free) vector field w satisfying
ρmw ∈ L2(R3)3, provided that either
1) 0 ≤ m < 3/2, or
2) 3/2 < m < 5/2 and (66) holds, or
3) 5/2 < m < 7/2 and (66), (72) hold, or
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4) 7/2 < m < 9/2 and (66), (72), (73) hold.

Roughly speaking, the result means that v(ξ) decays like |ξ|−m− 1
2 as |ξ| → ∞.

2. The bound (74) is clearly a generalization of (11) with q = 6, p = 2. Of course, it is possible to obtain
such a result for other values of p, q satisfying 1/q = 1/p−1/3. One can also prove the following weighted
version of (12): If w ∈ L2(m) satisfies ρmw ∈ Lr(R3)3 for some r > 3, then

|ρmv|∞ ≤ C(|ρmw|2 + |ρmw|r) , (75)

under the same assumptions as in Proposition B.1. The proof of (75) is very similar to that of (74) and
is left to the reader.

The proof of Proposition B.1 is naturally divided into four steps. In the case 1), the bound (74) is a
direct consequence of (22) and of the following weighted Hardy-Littlewood-Sobolev inequality:

Lemma B.2 If −1/2 < m < 3/2 and

u(ξ) =

∫

R3

ω(η)

|ξ − η|2 dη , ξ ∈ R
3 ,

then |ρmu|6 ≤ C|ρmω|2.

Proof: We use the dyadic decomposition

R
3 =

∞
⋃

j=0

Bj ,

where B0 = {ξ ∈ R3 | |ξ| ≤ 1} and Bj = {ξ ∈ R3 | 2j−1 < |ξ| ≤ 2j} for j ∈ N∗. Let ui = u1Bi
and

ωi = ω1Bi
, i ∈ N. Clearly ui =

∑

j∈N
∆ij , where

∆ij(ξ) = 1Bi
(ξ)

∫

Bj

ωj(η)

|ξ − η|2 dη .

If |i − j| ≤ 1, it follows from (11) that |∆ij |6 ≤ C|ωj |2. If |i − j| ≥ 2, Young’s inequality implies that

|∆ij |6 ≤M
3/4
1 M

1/4
2 |ωj|2, where

M1 = sup
ξ∈Bi

(

∫

Bj

1

|ξ − η|3 dη
)2/3

, M2 = sup
η∈Bj

(

∫

Bi

1

|ξ − η|3 dξ
)2/3

.

If i ≥ j + 2, then |ξ − η| ≥ |ξ| − |η| ≥ 2i−1 − 2j ≥ 2i−2 for all ξ ∈ Bi, η ∈ Bj . Thus M1 ≤
C2−2iµ(Bj)

2/3 ≤ C2−2(i−j) and M2 ≤ C2−2iµ(Bi)
2/3 ≤ C for some C > 0 independent of i, j, hence

|∆ij |6 ≤ C2−
3
2
(i−j)|ωj |2. If j ≥ i+ 2, then |ξ− η| ≥ 2j−2 for all ξ ∈ Bi, η ∈ Bj , and a similar calculation

shows that |∆ij |6 ≤ C2−
1
2
(j−i)|ωj |2. Summarizing, we have shown that

|ui|6 ≤ C
∑

j∈N

Kij |ωj |2 , i ∈ N ,

where Kij = 2−|i−j|− 1
2
(i−j). Now, by definition of the sets Bi, we have |ρmui| ≤ C2mi|ui| and |ρmωj | ≥

C2mj |ωj| for all i, j ∈ N. It follows that

|ρmui|6 ≤ C
∑

j∈N

K
(m)
ij |ρmωj |2 , i ∈ N ,

where K
(m)
ij = 2−|i−j|+(m− 1

2
)(i−j). In particular, |K(m)

ij | ≤ 2−α|i−j| for some α > 0, hence K(m) defines a

bounded linear operator from `2(N) into `6(N). This concludes the proof. �

To prove (74) in the remaining cases, we also need the following variant of Lemma B.2:
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Lemma B.3 If − 1
2 < m < 1

2 and

u(ξ) =

∫

R3

ω(η)

|ξ − η| dη , ξ ∈ R
3 ,

then |ρmu|6 ≤ C|ρm+1ω|2.

Proof: We use the same notations as in the preceding proof. If |i − j| ≤ 1, it follows from the Hardy-
Littlewood-Sobolev inequality that |∆ij | ≤ C|ωj |6/5. By Hölder, |ωj |6/5 ≤ Cµ(Bj)

1/3|ωj |2 ≤ C2j|ωj |2,
hence |∆ij |6 ≤ C2j |ωj |2. If |i− j| ≥ 2, then |∆ij |6 ≤ N

3/4
1 N

1/4
2 |ωj |2, where

N1 = sup
ξ∈Bi

(

∫

Bj

1

|ξ − η|3/2
dη

)2/3

, N2 = sup
η∈Bj

(

∫

Bi

1

|ξ − η|3/2
dξ

)2/3

.

Proceeding as above, we deduce that |∆ij |6 ≤ C2−
1
2
|i−j|2j |ωj |2 for all i, j ∈ N. It follows that

|ρmui|6 ≤ C
∑

j∈N

K̃
(m)
ij |ρm+1ωj |2 ,

where K̃
(m)
ij = 2−

1
2
|i−j|+m(i−j). Thus, if |m| < 1/2, K̃(m) defines a bounded linear operator from `2(N)

into `6(N). �

We are now ready to prove Proposition B.1 in the case 2). If 3/2 < m < 5/2 and w ∈ L
2(m), then w

is integrable and (66) holds. As a consequence, we can rewrite (22) in the form

vi(ξ) = − 1

4π

3
∑

j,k=1

εijk

∫

R3

( ξj − ηj

|ξ − η|3 − ξj
|ξ|3

)

wk(η) dη , (76)

where εijk = sign(σ) if (ijk) is a permutation σ of (123), and εijk = 0 otherwise. Using the identity

|ξ|3(ξj−ηj) − |ξ−η|3ξj = (ξj−ηj)|ξ|2(|ξ| − |ξ−η|) + |ξ−η|(2ξj(ξ · η) − ηj |ξ|2 − ξj |η|2) ,

we obtain

∣

∣|ξ|3(ξj−ηj) − |ξ−η|3ξj
∣

∣ ≤ C|ξ−η||ξ||η|(|ξ| + |η|) (77)

≤ C(|ξ−η||ξ|2|η| + |ξ−η|2|ξ||η|) .

Thus, it follows from (76) that |v(ξ)| ≤ C(f(ξ) + g(ξ)), where

f(ξ) =
1

|ξ|

∫

R3

|η||w(η)|
|ξ − η|2 dη , g(ξ) =

1

|ξ|2
∫

R3

|η||w(η)|
|ξ − η| dη .

Since we already know that |v|6 ≤ C|w|2, it is sufficient to bound |ρm
0 v|6, where ρ0(ξ) = |ξ|1{|ξ|≥1}. Ap-

plying Lemma B.2 with u(ξ) = |ξ|f(ξ) and ω(η) = |η||w(η)|, we find |ρm
0 f |6 ≤ |ρm−1u|6 ≤ C|ρm−1ω|2 ≤

C|ρmw|2. Similarly, applying Lemma B.3 with u(ξ) = |ξ|2g(ξ) and ω(η) = |η||w(η)|, we find |ρm
0 g|6 ≤

C|ρm−2u|6 ≤ C|ρm−1ω|2 ≤ C|ρmw|2. Summarizing, we have shown that |ρmv|6 ≤ C|ρmw|2 if 3/2 <
m < 5/2.

We next assume that 5/2 < m < 7/2 and that βi = 0 for i = 1, 2, 3. As was already observed, this
implies that (72) holds. Thus (76) can be written in the form

vi(ξ) = − 1

4π

3
∑

j,k=1

εijk

∫

R3

( ξj − ηj

|ξ − η|3 − ξj − ηj

|ξ|3 − 3(ξ · η)ξj
|ξ|5

)

wk(η) dη . (78)
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To bound the right-hand side, we observe that

|ξ|5(ξj−ηj) − |ξ|2|ξ−η|3(ξj−ηj) − 3|ξ−η|3(ξ · η)ξj
= (ξj−ηj)|ξ|2(|ξ|3 − |ξ−η|3 − 3|ξ|(ξ · η))
+ 3(ξ · η)(|ξ|3(ξj−ηj) − |ξ − η|3ξj) .

(79)

We claim that
∣

∣|ξ|3 − |ξ−η|3 − 3|ξ|(ξ · η)
∣

∣ ≤ C|η|2(|ξ| + |η|) . (80)

Indeed, this follows from the identity

|ξ|3 − |ξ−η|3 − 3|ξ|(ξ · η) = 2(|ξ−η| − |ξ|)(ξ · η) − |ξ−η||η|2
− |ξ|(|ξ||ξ−η| + (ξ · η) − |ξ|2) ,

and from the bound

0 ≤ |ξ||ξ−η| + (ξ · η) − |ξ|2 ≤ 1

2
|η|2 , (81)

which is easily proved by setting η = ξ − ζ, ζ ∈ R
3.

Using (79) together with (77), (80), we obtain

∣

∣|ξ|5(ξj−ηj) − |ξ|2|ξ−η|3(ξj−ηj) − 3|ξ−η|3(ξ · η)ξj
∣

∣

≤ C|ξ−η||ξ|2|η|2(|ξ| + |η|)
≤ C(|ξ−η||ξ|3|η|2 + |ξ−η|2|ξ|2|η|2) .

Thus, it follows from (78) that |v(ξ)| ≤ C(f(ξ) + g(ξ)), where

f(ξ) =
1

|ξ|2
∫

R3

|η|2|w(η)|
|ξ − η|2 dη , g(ξ) =

1

|ξ|3
∫

R3

|η|2|w(η)|
|ξ − η| dη .

Applying Lemmas B.2 and B.3 as in the previous case, we easily obtain |ρm
0 f |6 + |ρm

0 g|6 ≤ C|ρmw|2.
This prove (74) in the case 3).

Finally, we assume that 7/2 < m < 9/2 and that βi = 0 for i = 1, 2, 3, ζij = 0 for (ij) ∈ S. As we
already remarked, this implies that (73) holds. Using (73), it is straightforward (but somewhat tedious)
to verify that

3
∑

j,k=1

εijk

∫

R3

(

2|ξ|2(ξ · η)ηj + ξj(|ξ|2|η|2 − 5(ξ · η)2)
)

wk(η) dη = 0 , i ∈ {1, 2, 3} . (82)

Assuming (82), we can rewrite (78) in the form

vi(ξ) = − 1

4π

3
∑

j,k=1

εijk

∫

R3

Aj(ξ, η)wk(η)

|ξ − η|3|ξ|7 dη , (83)

where

Aj(ξ, η) = |ξ|7(ξj−ηj) − |ξ|4|ξ−η|3(ξj−ηj)

− 3|ξ|2|ξ−η|3(ξ · η)(ξj−ηj) −
3

2
ξj |ξ−η|3(5(ξ · η)2 − |ξ|2|η|2) .

We claim that

|Aj | ≤ C|ξ−η||ξ|3|η|3(|ξ| + |η|) ≤ C(|ξ−η||ξ|4|η|3 + |ξ−η|2|ξ|3|η|3) . (84)

Assuming (84) for the moment, we deduce from (83) that |v(ξ)| ≤ C(f(ξ) + g(ξ)), where

f(ξ) =
1

|ξ|3
∫

R3

|η|3|w(η)|
|ξ − η|2 dη , g(ξ) =

1

|ξ|4
∫

R3

|η|3|w(η)|
|ξ − η| dη .
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Applying Lemmas B.2 and B.3 again, we obtain |ρm
0 f |6 + |ρm

0 g|6 ≤ C|ρmw|2. This proves (74) in the
case 4).

It remains to establish (84). We first remark that Aj = (ξj−ηj)|ξ|2B + Cj , where

B = |ξ|5 − |ξ|2|ξ−η|3 − 3|ξ−η|3(ξ · η) − 3

2
|ξ|(5(ξ · η)2 − |ξ|2|η|2) ,

Cj =
3

2

(

|ξ|3(ξj−ηj) − ξj |ξ−η|3
)(

5(ξ · η)2 − |ξ|2|η|2
)

.

In view of (77), it is clear that |Cj | ≤ C|ξ−η||ξ|3|η|3(|ξ| + |η|). Thus, it is sufficient to show that

|B| ≤ C|ξ||η|3(|ξ| + |η|) . (85)

To this end, we remark that

B = |ξ|D + (ξ · η)(|ξ|3 − |ξ−η|3 − 3|ξ|(ξ · η))
+ (|ξ−η| − |ξ|)(4(ξ · η)2 − |ξ|2|η|2) − 2|η|2(ξ · η)|ξ−η| , (86)

where

D = |ξ|4 − |ξ|2(ξ · η) +
1

2
|ξ|2|η|2 − 1

2
(ξ · η)2 − |ξ|3|ξ−η|

=
1

2

(

|ξ||ξ−η| + (ξ · η) − |ξ|2
)(

|ξ|(|ξ−η| − |ξ|) − (ξ · η)) .

Using (81), we find |D| ≤ 1
2 |ξ||η|3. Inserting this bound into (86) and using (80), we obtain (85). This

concludes the proof of Proposition B.1. �

We conclude with two corollaries which are used in the preceding sections.

Corollary B.4 Assume that w ∈ L2(m) for some m > 5
2 , and denote by v the velocity field obtained

from w via the Biot-Savart law (10). Then v ∈ L1(R3)3 if and only if βi = 0 for i = 1, 2, 3, and in this
case

∫

R3 vi(ξ) dξ = 0 for i = 1, 2, 3.

Proof: Without loss of generality, we assume that 5/2 < m < 7/2. For any w ∈ L
2(m), we have the

decomposition

w =

3
∑

i=1

βifi + w̃ , v =

3
∑

i=1

βiv
fi + ṽ ,

where the coefficients βi are defined in (39). Then the remainder w̃ ∈ L
2(m) fulfills the moment conditions

(72). By Proposition B.1, the corresponding velocity field satisfies ρmṽ ∈ L6(R3)3, hence ṽ ∈ L1(R3).
On the other hand, it is easy to verify that

∑

βiv
fi ∈ L1(R3) if and only if βi = 0 for i = 1, 2, 3. Thus

v ∈ L1(R3) if and only if β1 = β2 = β3 = 0. In this case,
∫

R3 vi(ξ) dξ = 0 for i = 1, 2, 3 because div v = 0,
see (66). �

Corollary B.5 Assume that w ∈ L2(m) for some m > 7
2 , and denote by v the velocity field obtained

from w via the Biot-Savart law (10). Then ρv ∈ L1(R3)3 if and only if βi = 0 for i = 1, 2, 3 and ζij = 0
for (ij) ∈ S. In this case, the matrix (bk`) defined by

bk` =

∫

R3

ξkv`(ξ) dξ , k, ` ∈ {1, 2, 3} , (87)

is skew-symmetric, and b12 = γ3, b23 = γ1, b31 = γ2.

Proof: Without loss of generality, we assume that 7/2 < m < 9/2. If w ∈ L2(m), then w and v can be
decomposed according to (70), (71). By construction, the remainder w̃ ∈ L2(m) has vanishing first-order
and second-order moments. Applying Proposition B.1, we deduce that the corresponding velocity field
satisfies ρmṽ ∈ L6(R3)3, hence ρṽ ∈ L1(R3)3. Therefore, using the expressions above of fi, gi, and hij ,
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it is not difficult to show that ρv ∈ L1(R3)3 if and only if βi = 0 for i = 1, 2, 3 and ζij = 0 for (ij) ∈ S.
In this case, the matrix (bk`) defined by (87) is skew-symmetric because div v = 0, see (67).

Assume now that ρv ∈ L1(R3)3, and consider the vector field A(ξ) = q3(ξ)∧v(ξ), where q3 is defined
in (46). Then A ∈ L3/2(R3)3 and div A = p3 ·v− q3 ·w, where p3 = rotq3 is defined in (37). It follows
that

0 =

∫

R3

div A dξ =

∫

R3

(p3 · v − q3 · w) dξ = b12 − γ3 ,

in view of (37), (87), and (50). The relations b23 = γ1 and b31 = γ2 are proved in a similar way. �
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