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Abstract

When the steady states at infinity become unstable througtitarp forming bifurca-
tion, a travelling wave may bifurcate into a modulated fraiich is time-periodic in a
moving frame. This scenario has been studied by B. Sandatetid. Scheel for a class
of reaction-diffusion systems on the real line. Under gaha@ssumptions, they showed
that the modulated fronts exist and are spectrally stalde the bifurcation point. Here
we consider a model problem for which we can prove the noatisgability of these
solutions with respect to small localized perturbationisisTesult does not follow from
the spectral stability, because the linearized operatourar the modulated front has
essential spectrum up to the imaginary axis. The analysikigrated by numerical

simulations.
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1 Introduction

Localized structures such as pulses and fronts play an tamorole in the mathematical
theory of information transport. Typical situations whereh nonlinear phenomena arise
are the propagation of electromagnetic waves in wires ordipgA97, NM92], and the
motion of electric pulses along nerve axons [Hux52]. An imi@ot issue, both from a theo-
retical and a practical point of view, is the robustness e$#solutions with respect to small
inhomogeneities of the propagation medium.

In a remarkable paper [SS99], B. Sandstede and A. Scheatdtachew bifurcation scena-
rio for traveling pulses in reaction-diffusion systems ba teal line. They investigated the
situation where the homogeneous steady state at infinityrbes unstable and bifurcates to
a spatially periodic Turing pattern. The originally stapldse thus undergoes an “essential
instability”, in the sense that the essential spectrum efliearized operator crosses the
imaginary axis at the bifurcation point. Under general agstions, the authors showed that
the original pulse bifurcates to a “modulated pulse” whighime-periodic in a uniformly
translating frame. They also proved that this bifurcatiolgiBon is spectrally stable [SS00].
However, since the spectrum of the linearization extendhalway to the imaginary axis
(without gap), this last result does not immediately imig honlinear stability of the mo-
dulated pulse. The analysis of [SS99, SS00] can be genedldbZront solutions connecting
two different stable equilibria [SS01a, SS01b]. In thisegasodulated fronts may bifurcate
from an existing traveling wave if one or both of the restestadt infinity become unstable.

In this paper, we go beyond the linear stability analysisS$(0, SS01b] and we show,
at least on a specific example, that modulated frontsxardinearly stable with respect to

spatially localized perturbations. In simple terms, tleisult implies that information can be
transported in a stable manner even if the propagation medacomes unstable through a



Turing bifurcation. To keep the analysis as simple as ptessitze do not consider abstract
reaction-diffusion systems as in [SS99], but we prefer tocemtrate on a model problem
that exhibits all features of the general case. Althougs tiais not been proved so far, we
certainly expect that all results below hold true for gehezaction-diffusion systems under
the same assumptions as in [SS00] (for pulses) or [SSO1ir(ots).

Our model problem is a Chaffee-Infante equation for the Wiastableu coupled to a Swift-
Hohenberg equation for the second variahlaamely:

Ou = Pu+ 3(u—co)(1 —u?) + v,

1
O = —(1+0*) %+ av—v*> —ywF(u), 1)

whereu(z,t),v(z,t) € R, z € R, andt > 0. This system is especially convenient to
analyze, because it couples two scalar equations whichatrerrwell understood. In what
follows, the speed paramet@yrand the coupling parametemwill be fixed, with0 < ¢y < 1
and~ > 0 not too big (see Theorem 2.3 below). Our bifurcation parametvill then vary

in a neighborhood of the bifurcation point= 0. To cover all interesting cases, we shall
consider three different functiorfs, namely

) F(u) =1—u? II) F(u) =1 — u, II) F(u) =14+ wu.

For all choices off’, system (1) possesses two spatially homogeneous ecqailibri) =
(£1,0) and a one-parameter family of front solutions

(u,v) = (tanh((z — cot — x0)/2),0), zo € R, (2)

connecting these equilibria. Far < 0, the equilibria and the family of front solutions
are asymptotically stable with some exponential rate. Whenosses the origin from left
to right, some of the equilibria become unstable, dependmthe particular choice aof'.

In case I, the steady states ahead of and behind the frontgmeeTuring bifurcation and
spatially periodic equilibria are created. In case I, thégpens only for the steady state
(u,v) = (1,0) ahead of the front, and in case Il only for the steady state) = (—1,0)
behind the front. In this respect, case | is close to the chagalse.

-50 0 50 -50 0 50

Figure 1: Modulated fronts for (1) in cases | (left) and ligfit). The snapshots show the
u-component obtained from generic initial data at some lirge; see also section 7.

At the bifurcation pointe = 0, the front solutions (2) become essentially unstable amnd, i
cases | and I, a family of modulated fronts is created. Tisedeations are time-periodic in

3



a moving frame with speed ~ ¢y, and they connect a spatially periodic Turing pattern at
x = 400 to another Turing pattern (case ) or to the uniform steadies$t-1, 0) (case ) at

r = —o0, see Fig. 1. We shall not consider case IIl any longer, sine@nalysis in [SS01a]
shows that at least generically no modulated fronts exigtahcase; typically the pattern is
outrun by the front, see fig.6 on page 44 for an illustratios.fér the stability, it turns out
that in case Il the family of modulated fronts is asymptdtycatable with exponential rate.
This can be proved rather easily using weighted spacesgsters6. Thus the challenging
case in proving stability is case I. In this situation, theelrization around the modulating
fronts has continuous spectrum up to the imaginary axiss e purpose of this paper to
explain how nevertheless the nonlinear stability of thedet®ns can be shown.

Remark 1.1 In case I, the model problem (1) seems non-generic, sindehHmnhogeneous
equilibria (+1, 0) undergo a Turing bifurcation at the same value of the paramet In fact,
we implicitly restrict our analysis to systems for which thestabilization of both equilibria
has the same origifin our example, this is the coupling of the bistakble@quation to a
singleSwift-Hohenberg equation). This also explains why the Veanggths of the bifurcating
patterns ahead of and behind the front coincide. As was @kseby one of the referees
of this paper, it would then be more natural to consider theecaf a pulse instead of a
front. But then we would have to replace the scalaequation in (1) by & x 2 system,
which makes the analysis even more intricate. Also, we faungbresting to encompass all
possible cases (I, I, and Ill) in a single, relatively siraphodel.

Acknowledgments: This work was supported by the French-German cooperatiojegir
PROCOPE 00307TK entitled “Attractors for extended systernike authors also thank B.
Sandstede and A. Scheel for stimulating discussions, atiidreferees for useful comments
and suggestions.

2 Main Results

In this section, we give our results in the most interestimgec i.e. whed (u)=1—u? in (1).
To simplify the notation, we rewrite (1) in the form

a,U = L(d,)U + N(U) (3)

whereU = (u,v) and

w1 ()= () ()= (B

In the invariant subspadgu, v) | v = 0}, system (1) has exactly three homogeneous equili-
bria, namelyl; = (cy,0) andU. = (£1,0). In addition, there exists a family of traveling
wavesUy,(z,t) = (h(x — cot,0)) connecting/_ to U,. The profileh satisfies the ordinary
differential equation

R + coh/ + (h —cy)(1 — h?)/2 =0, (4)
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together with the boundary conditioh$t+oco) = +1. Up to translations, the unique solu-
tion is h(y) = tanh(y/2). The functionU,(x,t) will be referred to as the “original front
solution”, as opposed to the “modulated front” which will t@ensidered below.

To study the stability of the front solutidr,, it is advantageous to go to a comoving frame.
The new space variable will be denotedigy.e. y = © — ¢ot. System (1) then reads

OU = L(9,)U + cod,U + N(U) . (5)

We first investigate the stability of the homogeneous eoudi’. = (+1,0). Linearizing
(5) atU = Uy, we obtaind,U = L(9,)U + ¢,0,U + DN (UL)U, or explicitly

du = Ou+ codyu — (1 F co)u + v,

6
v = —(1+97)v + codyv + av . (©)

The spectrum of the linear operator in the right-hand siéassly computed if we decompose
u, v in Fourier modeg™*¥. We findx* = {\F(k) |k € R} U {\y(k) | k € R}, where

~ ~

M (k) = —k* — (1 F o) + coik,  Ma(k) = —(1 — E*)? + a + coik . (7)

Sincel < ¢y < 1 we immediately conclude that the trivial equilibfia = (£1, 0) are stable
for o < 0 and unstable fos > 0.

We next consider the stability of the original frdift(y) = (h(y), 0), which is a steady state
of (5).

Notation: Forn € Ny = NU {0} we denote by’}*(R) the space of all functions: R — R
which are bounded and uniformly continuous together widtirtfirstn. derivatives. We equip
Cy(R) with the norm||ullcy = Y77 sup,cg [Ghu(z)].

Theorem 2.1 For a < 0 the family{U,(- — o) | yo € R} of front solutions is asymptotically
stable with exponential rate > 0 (depending omv). More precisely, given any > 0, there
existss > 0 such that, for alll,y € [C?(R)]? with

inf sup ||Uo(y) — Un(y — yo)||re <0,

yo€ER yeR

system (5) has a unique global solutibhe C°([0, +o0), [CP(R)]?) with initial data Uy,
and there existg; € R such that

sup |U(y,t) — Up(y — y1)||rz < Ce™ forallt >0.
yeR

Proof. The strategy is standard, see [Sat77] or section 5.4 in [Hehéearizing (5) at/;,
we obtaind,U = AU, whereA = L(0,) + ¢,0, + DN (Uy). Explicitly,

dyu = O2u + codyu + 5(1 + 2c0h — 3R )u + v,
v = —(1+95)°v + codyv + av — (1 = h*)v .



We have to study the spectrum of the linear operatar C7 (R), or equivalently inL.?(R).
Due to translation invariance of the original system, therajorA has a zero eigenvalue
with eigenfunction/; = (#’,0). If a < 0, we claim that the rest of the spectrum is strictly
contained in the left half-plane of the complex plane. Irjebe essential spectrum is de-
termined by the linearization around the steady stateshence it follows from (7) that
Yess(A) C{z € C|R(2) < Ao}, Where); = max(a, —1 + ¢p) < 0. Assume now thak is

an isolated eigenvalue éfwith R(\) > )\, and letl/ = (@, 0) be a (nonzero) eigenfunction.
ThenU(y) decays exponentially 88| — oo, andv satisfies the decoupled equation

—(1+92)%0 4 co0y0 + b — (1 — h?)0 = XD .

Taking the scalar product of both sides witrand using the fact that(1 — »2?) > 0, we
obtain the inequality

RNONZ < =1+ )0lLe + alldllz: < alld]z: ,

which implies thath = 0 due toa < 0. It follows that Au = \a, whereA is the second
order differential operator

1
A= a; + 008y + 5(1 + 200h — 3h2) .

We know that0 is a simple eigenvalue of,, and that the corresponding eigenfunctign
is positive. By Sturm-Liouville theory, the other isolategjenvalues ofA are all strictly
negative. We conclude that either= 0 (in which case: = C'h’' for someC > 0) or A < 0.
Thus, there exists > 0 such that(A) C {0} U {z € C|R(z) < —u}. Now, applying for
instance the center manifold theorem [Hen81], we obtairdésired result. a

According to Theorem 2.1, far < 0 information can be transported in the system using the
stable frontd/,,. We now consider the bifurcation that occurs whecrosses zero from left
to right. In what follows, we set

a=¢e2>0,

wheree > 0 is a small parameter. It is clear from (7) that the homogeseateady states
U, are now unstable, and so is the front solutign Remark that, when crosses zero, the
essential spectruraf the linearized operatak crosses the imaginary axis, so that classical
bifurcation theory is not applicable.

For later use we remark that, when- 0 is not too big, the spectrum df can be “stabilized”

if we introduce exponentially weighted spaces, see [SatTiTdeed, if we sel/(y,t) =
e~ (y, t) for somes > 0, the linear equation,U/ = AU becomes),U = AgU, where

Ag = L(9y — B) + co(0y — B) + DN(Up) -

Proposition 2.2 Fix 0 < ¢; < ¢. There existsd, > 0 such that, if0 < § < [, and
e? < ¢13, there existe > 0 (depending o) such that the spectrum df; satisfies

S(Ag) € {0}U{z € C|R(2) < 20} .
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Proof. The essential spectrum df; is
Yess(Ag) = {AF(k+i8) |k e R}U{A (k+iB) |k € RYU {\o(k +i0) | k € R},

see (7). ClearlyR(\(k+i3)) < —1+co(1—-6)+3% < 0if Fis sufficiently small. Similarly,
R(Ao(k +i0)) = % — cof +4k23% — (1 — k> + 52)% < &2 — ¢ + 45%(1 + 26%) .

Thus, ife? < ¢;8 and3 > 0 is sufficiently small, therL.(Ag) C {z € C|R(2) < Ao} for

some), < 0 depending orB.

Assume now thak is an isolated eigenvalue af; with R(\) > )\, and letU = (@, 7) be a
nonzero eigenfunction. Proceeding exactly as in Theordnw& show that = 0 and that
u(y) = e Pa(y) is an eigenfunction of the Sturm-Liouville operatér so that eithed = 0

(in which case: = C'h/ for someC' > 0) or A < 0. This concludes the proof. O

Of course, Proposition 2.2 does not imply stability of thentrU/;, whena > 0, because
the nonlinear terms cannot be controlled in the weightedespalevertheless, the spectral
stabilization property will be one of the key ingredientgha stability proof of the modulated
fronts, see section 5.1 and section 6. The proof of Projpositi2 is also the only place where
a particular structure of our model system is really useel Remark 2.10.

In order to find new stable structures near the original figptwe first consider the bifur-
cation scenario for the homogeneous steady statedf we restrict ourselves to the space
of periodic functions with periodr, we can apply classical bifurcation theory. Indeed, the
spectrum of the linearizatioh(0,) + DN (U.) consists of the eigenvalues

A(k) =~k —(1Fc), Xo(k)=-(1-k)"+a, (8)

wherek € Z (or k € Ny if we further restrict the space &venfunctions). In the latter case,
asa crosses zero, a single eigenvalugl) = « crosses the imaginary axis, while all the
other ones stay negative and bounded away from the originis Aasy to verify, this is a
supercritical pitchfork bifurcation. Thus, fer = 2 > 0 small enough, there exist stable
periodic equilibrial/3; () satisfying|U%, — U| = O(e). This pattern forming bifurcation
is often referred to as a “Turing bifurcation”, see [Tur52].

Theorem 2.3 Fix ¢, € (0, 1). There exist, > 0 and~, > 0 such that, for alk € (0, ¢,) and
all v € (0, 7o), there exist two familie§U= (x—z,) | 7o € R} of smooth periodic equilibria

per

of (3), satisfying/= () = UL, (x + 27) for all z € R, and

per per

+
Ufer(x) = (+1+ 262(; o cos z,ea” cos z) + O(e?)

with a*(cy, ) = % + O(y).

Proof. See section 3.1. O

For simplicity, we restrict ourselves to the case of pegaeljuilibria with period27, but
the bifurcation argument above also applies to periodictions with a nearby period, see
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[CEQQ] for a complete discussion in the case of the Swift-éfdderg equation. As is well-
known [Eck65], the bifurcating periodic equilibria are diaxly stable if and only if their
period is close enough tor.

In what follows, we fixcy € (0,1), v € (0,7), and we always assume that> 0 is suffi-
ciently small (in particular) < ¢ < g3). Although the linearization around the bifurcating
equilibriaU;Ler has continuous spectrum all the way to the imaginary axesntmnlinear sta-
bility of these solutions with respect to spatially localizperturbations can be shown using
the techniques developed in [Sch96, Sch98a, Sch98b].

Notation. Forn € N, let H"(R) be the (Sobolev) space of all functions= L?(R) whose
first n derivatives are also if*(R), equipped with the normul| = = (37— [|09ul|3.)"/>.
Fors > 0, we setl” = {u € H"(R) | p’u € H"(R)} wherep(x) = (1 + 22)'/2. The space
H? is equipped with the norru||u» = || p*ul| gn.

Theorem 2.4 Letes > 0 be sufficiently small, and l€t,., = U;—er or Uper = Up,,, Where
Upier are the periodic equilibria constructed in Theorem 2.3. fehexistC', § > 0 such that,
forall Vi, € (H3)? with [|[Vy[|z)2 < 9, equation (3) has a unique global soluti6f{(z, t) =
Uper(z) + V (2, t) with initial data U, 4+ Vo. Moreover,||V (t) ||z )2z < C(1 +¢)~/2 for
allt > 0.

Proof. See section 3.4. O

Remark 2.5 Much more is known about the asymptotic behavior of the peation V' (z, t)
ast — oo. Under the assumptions of Theorem 2.4 there eXists R andd > 0 such that

2

V, exp (—ﬁ) 0,Uper(1)| = Ot~ 1) ast — oo,

1
sup |V (z,t) — —

z€eR \/I_f

for some arbitray but fixeg > 0, see Theorem 2.8 below. Thus, spatially localized pertur-
bations vanish asymptotically as a solution of a linearudfon equation.

Finally, we study the bifurcation that the fralit undergoes when crosses zero. For = ¢2
sufficiently small, in addition to the (unstable) originabrt U}, equation (3) has a family
of modulated fronts connecting the stable equililéfjg, andU\... These bifurcating solu-
tions are time-periodic in a frame moving with speee ¢, + O(¢?), and their profile is
O(e)-close to the original front/,. This bifurcation scenario has been thoroughly studied by
B. Sandstede and A. Scheel for general reaction-diffugietesns in [SS99, SS01a]. Unfor-
tunately, our model problem (1) does not exactly fit into Hbstract framework, because the
fourth order Swift-Hohenberg equation is not a reactidfudion system. For this reason,
the proof of the following result will be outlined in sectidn

Theorem 2.6 For ¢ > 0 sufficiently small there exists a modulated front soluti63) of
the form
U(z,t) =Upt(x —ct,z), z€R, teR,



whereU,;(¢, ) is 2r-periodic in its second argument ard= ¢, + O(c?). Moreover, there
exist positive constants, ;, 5, (independent of) such that

sup [Unt(§,2) — Un(§)| < Ce,

&,xeR

and

Uit (€, 7) = Ui (- + 23 [ (r202my2 < Ce™™8 €20,
1Un(€, ) = Uper (- + 2 ) [(m2(0,2m2 < Ce™™, €<0,

for somer.. € [0, 27).
Proof. See section 4. O

Remark 2.7 Due to translation invariance of the original problefi,¢(z — ¢t — xo, x — 1)

is also a solution of (3) for alkq, z; € R. Thus, without loss of generality, we can assume
thatz_ = 0 in Theorem 2.6. We may also break the translation invarian¢he variable$

by imposing/,,¢(0,0) = 0.

We are now able to state our main result, which shows thatiiméyf of modulated fronts is
asymptotically stable with respect to small, localizedydrations. We recall that, is the
positive constant defined in Proposition 2.2.

Theorem 2.8 For 5 € (0, 5y) ande > 0 sufficiently small, there exist positive constafs
v, 8, d such that the following holds. For all; : R — R? with || Vp(2)(2? + €7)||(z2)2 < &
there exists a unique global solutidA x, ¢t) of (3) with initial datalU(x,0) = Up(z, z) +
Vo(z). Moreover, there exists a shift functipn R, — R and two real constantg., V., such
thatU(z, t) can be represented as

U(x,t) = Unt(x —ct —q(t),x) + V(z,t), xz€R,t>0,

where
sup |V (z,t) — iV exp (_x_2) 0,U- (z)] < < t>1 9)
z€R ’ N Adt ) e = 3/47 =
and
lq(t) — q.| + 3up V(€ +ct, )| <Ce™, t>0. (10)
€R
Proof. See section 5. O

Remark 2.9 From the proof it will be clear that the decay in (9) can be ioned tor—1+7
with arbitrary smalln > 0. For simplicity we stick ta—3/4,

Remark 2.10 As we explain in section 5.1, the essential properties aésy$§3) that we use
are the stability of the Turing patterti . behind the front, and the fact that the spectrum
of the linearized operator can be stabilized using apprafgiweighted spaces. Thus, Theo-
rem 2.8 will hold for any of the reaction-diffusion systeroasidered in [SS01a] provided

one can prove the analogue of Proposition 2.2 and Theorem 2.4
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a) t=0, localized perturbation ahead b) t=0(1), perturbation transportt
of the front behind the front

c) t>>1, diffusive decay way behind the front

A\
/\/\/\/\/\/\/\/\\

Figure 2: Spatially localized perturbations (a) are tramsgd behind the modulated front
(b), where they are damped diffusively (c).

Theorem 2.8 shows that small, spatially localized pertiwba of the modulated front do not
destroy the form of/,¢, but lead to a finite shifg,. In fact, the perturbation is transported
behind the front, where it vanishes diffusively, see fig.Bug, information can be transported
in a stable manner even in essentially unstable media éxigla Turing bifurcation.

Exponential weights have been widely used to prove theldtabf fronts propagating into
unstablestates, see [Sat77, CE90, Gal94, ES02]. In our case, thedd\steady state ., is

in fact stable, but this fact isotused in the proof of Theorem 2.8. If we use in addition the
stability of the equilibriuml/f,, it should be possible to replace the exponential weidht
with a polynomial one, in which case the convergence(of and the decay of (z + ct) in
(10) will be algebraic (i.e. like some inverse powertpfIn any case, the decay of(z, ¢)
in the laboratory frame will always be algebraic, becauseifwhat we have for localized
perturbations of the periodic steady stéig, (), see Theorem 2.4,

This paper stands in line with [BK92, ES02, ES00], where tiffeslve stability of a ground
state, here the spatially periodic equilibﬁfgfer, has been used to prove diffusive stability

of more complicated structures. In contrast to these paperdhave to deal here with an
additional zero eigenvalue which leads to the sfiift in Theorem 2.8.

We proceed as follows. In section 3 we prove the existencelandtability of the Turing
patternsU;.(x). Section 4 contains a short proof of Theorem 2.6, i.e. thestroation of
the modulated front solutions. In section 5 we prove Theo?dBn The proof is based on
a strategy similar to the one used in [ES02]. The method isorga in the sense that in
contrast to [ES02], wher@ = O(¢), here we can choose = O(1) which simplifies the
proof. Section 6 is devoted to the stability of modulatedfsoin case Il. As already said,
these solutions are asymptotically stable with an expaalenatte. In section 7 we illustrate
our analysis with numerical simulations, also showing catepexperiments for a model
with modulated pulses. These results indicate that thetemseof Theorem 2.8 remain true

for relatively large values of andJ.
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3 Existence and stability of Turing patterns

The aim of this section is to give a short proof of Theoremsat@ 2.4. This will be done
by adapting to system (1) some known results about exis@mmtstability of periodic solu-
tions for the Swift-Hohenberg equation. The existence igaatrather standard bifurcation
argument, see e.g. [CE90] for more details. The stabilibpopis based on previous results
by the second author [Sch96, Sch98a, Sch98b].

3.1 Existence

We are interested i@r-periodic stationary solutions of (3) that bifurcate frohe thomo-
geneous steady statés = (+1,0) as the parameter becomes positive. Since equation
(3) remains invariant ifU, ¢) is replaced with(—U, —cy), it is sufficient to investigate the
solutions that bifurcate froty_ = (—1,0). SettingU = U_ + W, we obtain the system

W = LW + N(W), (11)

where

ol Z 8§w1—(12+200)w1+w2 Ca () = %(? + co)wi — %wi 12
Wy —(1+ 02)*we + awsy ) —ws — ywe (2w —wy)
We study system (11) in the Hilbert spake= 1. , (R)?, where

Hl

per,+

(R) = {u € H. (R) |u(x) = u(x + 27), u(r) = u(—x), Vo € R}.

In other words, in the space 2f-periodic functions, we freeze the translation invariabge
assuming the functioll’ to be even, a symmetry that is preserved under evolutiorhdn t
spaceX, the linear operatof in (11) has compact resolvent, hence purely discrete spactr
Its eigenvalues aré\; (k) }ren, and{ Ao (k) }ren,, Where

AT(k) =~k — (14 o), Xolk)=—-(1-k)?+a,

see (8). As we shall show, when the largest eigenvalué) = « crosses the origin (from
left to right), a supercritical pitchfork bifurcation oawu the originl = (0, 0) looses its

stability, and a pair of stable equilibria is created at &atiseO(/«) of the origin.

If « > —(1 + ¢), the largest eigenvalue of the operatorl in Lﬁer,+ is simple, with

eigenvector
1

24+c+a

LetE. = {r®|r € R} andE, = (1 — P)X, whereP : X — X is the spectral projection
onto the one-dimensional eigenspaceof £. By construction,PW = (IIW)® for all
W € X, wherell : X — R is the bounded linear form defined by

I <;";) _ % /0 7 () cos(z) de.

11

®(z) = (Acos(z),cos(x)), whered =



From now on, we assume thigti < ~, for some~y, > 0 which will be fixed later. By the
center manifold theorem, j| is sufficiently small, system (11) has a one-dimensionallloc
center manifold of the form

Ve=A{r®+ f(r)|Ir| <ro},
whererq > 0andf : (—rg,m9) — E, is aC® function satisfyingf(0) = 0, f/(0) = 0. In
addition, f maps(—ro, o) into the domain ofZ, and the following identity holds:
) (ar + ING® + (1)) = L)+ (1= PN+ f(r),  Ir[ <70 (13)
The evolution defined by (11) oW. is given by the reduced system
r=ar+IN(@r®+ f(r)). (14)

Sincef(r) = O(r?) asr — 0, it follows from (12) that\' (r® + f(r)) = r?¥ + O(r?),
where

U(z) = <3+co

= A%cos*(x), —27A cosQ(x)> :

Remark thaflV = 0, so thatlIN (r® + f(r)) = O(r?). On the other hand, singee C?,
there exist&€ € E, such thatf(r) = =r? + O(r?®). Inserting this expansion into (13) and
keeping only the lowest order termsinwe obtain the relatiofl — 2a)= + ¥ = 0. It
follows that

(1]

(x) = (Bcos(2z) + D, bcos(2z) + d),

where

A A b e _ d+ Hea
9+ a’ 14+a’ 5+ co+ 2a’ 14 ¢+ 20
Using this information, we conclude thEIN (r® + f(r)) = —ar® + O(r?), where

a:Z+’y(B+2D+A(b+2d)—ZA2>.

It is clear thata > 0 if v € (0, ) for 7o > 0 sufficiently small. In this case, it = % is
small enough, equation (14) has exactly three equilibreameighborhood of size, of the
origin: » = 0 andr = r4, where
ry = +° 4 O(?), ase — 0.
a

7

By the center manifold theorem, equation (11) has also tegedibria in a neighborhood
of zero in X, namelyW = 0 andW = W, = r.® + f(ry). Since (11) is translation
invariant in the space variable it is straightforward to verify thatV_(z) = W (x + 7)
for all z € R. Thus, equation (11) has in fact a unique fam{ily,c.(z — x¢) | o € R} of
non-constan®r-periodic solutions in a neighborhood of the origin, where

£
7a
SettingU,., = (—1,0) + W, We obtain spatially periodic equilibria of (3) with the desl
properties. As was already mentiondd;, is obtained by replacing, with —c, in the
expression of-U__ . This concludes the proof of Theorem 2.3.

per*

Wper = — + O(2).
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3.2 Bloch waves

The first step in the stability analysis of the Turing patseisistudying the linearization of
3) aroundU;Ler SlnceUpier( x) are spatially periodic functions the associated eigemvalu
problem is naturally formulated in terms of Bloch waves. histsection we briefly recall
the definition of the Bloch wave transform and list a few idges that will be useful in the

sequel. For a rigorous introduction to Bloch waves techesqwe refer to [RS72].
The starting point of Bloch wave analysis in the case dfrgeriodic underlying pattern is
the following (formal) relation

u(w) = [ e uk) dk = X0 [T, €00 (0 + 0) df 15
= [y ep €0 (n+£) al = fjﬁZ g0, z)de |
wheret is the Fourier transform af defined by
1 [t ,
(Fu)(k) = u(k) = —/ u(x)e * dx |
2 J_
andu is the Bloch wave transform af defined by
(Tu)(l,x) = Zemm (n+10). (16)

nez

From Plancherel’'s theorem and Parseval’s identity weyedsilluce the relation

/R|u(x)|2dx - /11//22(/02ﬂ|ﬁ(€,x)|2dx) e

which shows that the Bloch wave transfoffmdefined in (16) is an isomorphism between
L*(R) andL?((—1/2,1/2)x(0, 27)). The inverse transform is given by (15), namely

1/2
u(z) = (T 7'a)(z) = / e, ) de .
—1/2
We note the useful elementary properties
w(l,r) = e*u(l +1,x),

u(l,z) = u(l,x + 2m)
a(¢,r) = a(—¢,x) forreal-valued .

The Bloch wave transform of the produet is a convolution

1/2
(wo) (4, x) = /_ wll =0, x)ol,x)dl = (ax0)(,z) .

1/2

On the other hand, if is 2r—periodic we simply have
(wo)(l,x) = u(l,z)v(x) .

13



Letn,s € N, and letH? = H?(R) be the weighted Sobolev space defined by the norm

1/2
lulle = (Z/ () 2(1 + 22)° da ) .

The image ofI? under the Bloch wave transformation is the spﬁgejefined by the norm

1/2
lillg, = (ZZ/W/ a(t,x) da ow) .

7=0 m=0

It is not difficult to show that there exists > 1 such that
CHullay < Nallgy < Cllullz ,

forall v € HY.
In the sequel, we mainly work with the spaces correspondingt n =2 ors =0, n = 2.
To bound the nonlinear terms we need the following estimdfes € H3 andv € H3, then
uv € H2 and

|l = llaxollg < Cllalgs 16]lgs -

If w e H3 andf € C(R), thenfu € H? and
g 2
[fullaz < Clifliez lallgz ,  where || fllez = ngglﬁif(x)
i=0"

Notation. If A is a linear operator, we define its Bloch wave transformby- 7.A47 .
For instance, iff; is the translation operator defined B8 f)(x) = f(x — (), then

(Tea)(fx) = e a(l,z —C).

3.3 Linear stability

In this section, we study the linearization of (3) aroundspatially periodic equilibrléfpier

Since only the stability of/__. will be used in the proof of Theorem 2.8, we shall concentrate

per
here on this case. Setting = + V' in (3), we obtain forl the linearized equation

per
o0V = MV, or equivalently oV = MV, (17)

with M = L(9,) + DN(U_,). Our goal is to localize the spectrum of the linear operator
M in the spacd.?(R) (actually, the result would be the sameHB.) Since this question is
well-documented in the literature, we just summarize hieeerésults. On this occasion, we

also introduce some notations which we will use in section 5.

As the linearized problem has periodic coefficients, theratoe M = 7 M7~ can be
represented as direct integrﬁﬁ9 M(¢) d¢, where, for eacld € [—-1/2,1/2], M({) is the
linear operator ond2_ ([0, 2x]) defined byM(f)w = e~ M(e*®w). The spectrum of

per
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M(?) is a sequence of eigenvalugs, () } e, WhereR(p,(¢)) — —oo asn — oo. The
corresponding eigenfunctions, which ae-periodic, will be denoted byv,,,. Then the
spectrum ofM is given by

(M) = {,,Ln(@ ]e € [-1/2,1/2], n e N} .

By construction, the Bloch waves‘w,,, satisfy M(e““w,) = p,(0)e""w,. As in
[Sch96], one has the following result:

Lemma 3.1 For ¢ > 0 sufficiently small, there exig§ > 0 andr, > 0 such that
a) If [¢] > 4o, thenR(u,,(¢)) < —vp forall n € N,
b) If |¢] < ¢y, the principal eigenvalug, (¢) is isolated and has the expansion

p(0) = —d®+0*), ast—0, (18)

whered = 4 + O(e). The corresponding eigenfunctiqri/) = w,, depends smoothly ah
and satisfieg(0) = cy0,U,, Wherecy > 0 is a normalization such thao(0)|| 22 (0,2x)=1.

er’

Finally, R(u.(¢)) < —1p forall n > 2.

Proof. For all¢ € [—1/2,1/2], the linear operataM (/) is explicitly given by

(0102 + fi 1
M“)‘( [ —(1+(3x+if)2)2+fs)’

whereU_ ., = (Uper, Vper) @Nd

fi= %(1 + 2¢oUper — 3u§er) =—(1+c)+0O(),
J2= 2’7/upervper = 0(5) , fa= e — 7(1 - Uger) - 3U[Q)er = O(S) :

Thus, M (¥) is a small, bounded perturbation of the constant coeffisieperator obtained
by settings = 0, namely

orn [ (0n+10)? = (1+co) 1
MO = ( 0 —(1+ (0, +w)2)2)

The eigenvalues aof1°(¢) are given by
ME+)=—Kk+0?—1+c), ME+0)=—-1-(k+0>*, keZ.

Observe that these eigenvalues are all bounded away framezarept for\,(£1 + ¢) which
touch the origin wher = 0. Therefore, ifd < ¢; < 1/2 ande > 0 is sufficiently small, the
following holds for the eigenvalugs, (¢) of the perturbed operatav1(¢):

i) If [¢] > ¢4, thenR(p,(€)) < —¢7 foralln € N,

i) If |€] < £y, thenR(p,(¢)) < —1/2foralln > 3.

As is clear from ii), we denote by, (¢) andu»(¢) the two eigenvalues o¥1(¢) that bifurcate
from \y(£1 + ¢) whene is nonzero.

15



On the other hand, when> 0 and/ = 0, we know thatM (0) has a zero eigenvalue with
eigenfunctiord, Uy, SO thafu, (0) = 0. Moreover, it follows from the analysis in section 3.1
thats»(0) = —2¢2 + O(e?). Indeed, by construction,(0) is the convergence rate in time
of 27-periodic solutions of (3) towards the circle of equilibfiél_ (v—x) | o € [0, 27]}.
This rate can be computed on the one-dimensional centerfoichi.. The motion onV, is
given byr = g(r) = e*r — ar® + O(r*), and the steady stai&, correspondsto = r, =
e/v/a+ O(e?). Theng(ry) = 0 andus(0) = ¢'(r) = —2¢? + O(&3). Thus, in contrast to
M?O(¢), the operatoM (¢) has asimplezero eigenvalue whehi= 0.

Now, a straightforward expansion in the paramétshows that the first eigenvalug (¢)

satisfies (18), and that the corresponding eigenfuncti@iis proportional to

1 2
( 2?0 ) sin(z) + il ( (2+60)2 ) cos(z) + O(e + ?) .

In particular,p(0) = cy0, U,

per*

Finally, the second eigenvalyg(¢) has the expansion
pa(l) = —2e* — di* + O(3 + %) | (19)

whered = 4 + O(e).

If /, > 0 ande > 0 are small enough, it follows from (18), (19) that

i) If [¢] < ¢y, thenuy(0) < —20% anduy(0) < —% — 2/,

iv) If |€] <e,then0 > 1y (€) > pa(l) > R(pun()) forall n > 3.

Combining i)—iv), we see that Lemma 3.1 holds with, for ime®&/, = ¢ andvy = 2. O

From now on, we fix > 0 small enough so that the conclusion of Lemma 3.1 holds. We
define the central projectiond (¢) : H2_, — H2_ by

per per

POf = (w(0), Nell), 10 <, (20)

where(-, ) is the usual scalar product It¥ ([0, 27])* and)(¢) is the solution of the adjoint
eigenvalue problenM* (€)Y (¢) = 1 (€)1 (¢) normalized so thaty (¢), ¢(¢)) = 1.

Since we work inﬁ%, we will also need a version of the projection that dependsaiiy
on the variabl¢. To do that, we fix once and for all a nonnegative smooth cltdoiction
x With support in[—¢,/2, ¢,/2] which is equal to 1 on—¢y/4,¢,/4]. Then we define the

A

operatorst,, B, : H2. — H2_. by

per per

~ ~

Eo(0) = x(OP(), Ey(0) = 1(0) — Eq(0) . (21)
It will be useful to define auxiliary mode filters" and £ by
EX(0) = X(/2)P(0), EX(0) = 1(0) = x(20)P(0)

These definitions are made in such away sk, = E. andE"E, = E,. As aconsequence
of Lemma 3.1, there exists > 0 andv, > 0 (depending om) such that, for al; € 2,

leMEill gy < Ce™? [l > 0. (22)
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Let V, € H2, and letV () = "™V be the solution of (17) with initial dat&,. Then the
Bloch wave transform of/ (¢) can be decomposed &8t) = E.V () + E,V (t). In view of
(22), the stable pa@sf/(t) converges exponentially to zerotas> +oc. On the other hand,
by Lemma 3.1, the central partt) = E.V (t) satisfies

(2 1t) = e 0(0,2) + Ot Y?), t— 4. (23)

To formulate this result more precisely, we introduce a fetations which will be useful to
handle the nonlinear problem also.

Foro € (0, 1], we introduce the rescaling operaﬁ,r defined by

~

(Lo0)(l,z) = a(ol,x) .

Note that the scaling does not act on theariable, only on the Bloch variable Since the
domain for/ is finite, it will change with the scaling. Therefore, we oduce the function
space

Kop = {0 (=1/(20),1/(20)) x (0,27) = C| Jldllx.., < o0} . (24)
where

1/(20) p2m
/ |50 00, 2))2(1 + £2)% dx de . (25)
0

wazii/

=0 m=0" —1/(20)

The polynomial weight in the Bloch variablewill be used in section 5 to control the nonli-
near terms. Indeed, if, v € K,, , for somep > 1/2 and if

1/20
w(l, ) = (ax0)(l,z) = / a(l =0 x)o(l,x)de
—1/2¢0
then there exist§’ > 0 independent of such that|w||x, , < Cli| k., |9 k..,

It follows from the definitions thak’, , = FI% with equivalent norms (note, however, that the
constants in the equivalence relation depeng)nMoreover,L, is an isomorphism from
H3 to K, ,, or more generally fronfC,.-1 , to K= , for anyn € N. In particular,

1£ofllkom, < 072 fllk,.., and [I£; flix < o flkpn, . (26)

o"_l,p

where in the first estimate the additional factor” is due to the weight in thé-variable.

Using the definitions above together with Lemma 3.1, it isdifficult to verify that (23) can
be written in the more precise form

A~ A a2 ~ c -
Hﬁl/\/iEcv(t) —e de PC(O)%(O, ')HICl/\/;’p < %”%”Hg , t=>1.
On the other hand, using (22) and (26), we find

1L g BV Dk, e, < VTHEV @)y < Ce [ Vollgg, ¢20.

Thus we have



Proposition 3.2 Fix p > 0. If e > 0 is small enough, the solutio\ﬁ(t) of (17) with initial
dataV/, satisfies

C

N o 92
IV (et 2, 1) — Ae™ (0, 2) |, ., < Yl

Vol -

forall ¢ > 1, whereA = (1, V;(0, -)). Moreover, there exists, > 0 such that

1B V)2 2,8k, < Ce Vol

1A/t,p
forall t > 1.

To translate this result into the original variables, weestss that

V(z,t) eI (02 ) de
\f/fm

= ([ et atv o(v))

Vi
ACN —x2/(4dt)

= v 0. U (x)+O(1/1) ,
e ) + O(L/1)

ast — +oo. This proves the analogue of Theorem 2.4 for the linearizstesm (17), see
also Remark 2.5. Sinc¥(z,t) behaves for large times like a solution of the linear heat
equationd,V = do*V multiplied by the derivative of the steady stdte,,, we say that
V(z,t) converges “diffusively” to zero.

3.4 Nonlinear stability

In [Sch96, EWW97, Sch98a, Sch98b] it has been observedphtaly periodic equilibria
with the above spectral properties are also nonlinearhyestaith respect to spatially locali-
zed perturbations. The proof relies on the fact that theineaf terms are “asymptotically
irrelevant” when compared to the linear diffusion. This & nbvious a priori, because the
nonlinearity contains quadratic terms that are potegt@ddingerous, but this happen to be
true due to nontrivial cancellations. Then a standard reaérzation procedure [BK92] can
be used to prove that the perturbatidnge, t) converge diffusively to zero in the nonlinear
case also. This is the statement of Theorem 2.4.

In section 5, we shall apply this renormalization procedara more difficult problem, na-
mely the stability of the modulated front§,;. The proof of Theorem 2.4 is a particular case
of this more complicated argument, see Remark 5.1 belowfdsdhe sake of brevity, we
shall not discuss Theorem 2.4 any longer, and refer to sebtfor more details.

4 Construction of modulated fronts

In this section, we follow closely [SS99] where modulatedspusolutions are constructed
for general reaction-diffusion systems. However, sinaeabsumptions of [SS99] are not
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exactly satisfied in our case, we give here a short proof obfidma 2.6. Throughout this
section we refer to [PSS97], [SS01b] for the functional gii@background and the relation
between temporal and spatial dynamics.

4.1 Theidea

As already said, the modulated fronts are time-periodic frame moving with a speed
close to the speeq) of the original front. In this frame, we shall denote the sgdatariable
by ¢ = x — ct, to distinguish it fromy = x — ¢ygt. Equation (3) then becomes

and we look for solution®/(¢, t) that are periodic in their second argument.

The key idea in the construction of the modulated fronspastial dynamicsi.e., system (27)
will be considered as an evolution system fowith respect to the variable= = — ¢t, in a
space of function§/ (&, ¢) which are periodic irt. The use of spatial dynamics goes back at
least to [Kir82] and is nowadays a well established methodhfe construction of fronts and
pulses.

Writing (27) as a first order system with respect tpields

0V = 0L,V +G(V), (28)
with
V = (v1,v9, 03,04, U5, 06) = (u,ﬁgu,v,ﬁgv,agv,ﬁgv)
and
0 U2
+uy —3(v1 = co)(1 = v}) — v3 — cvs
0
LV = L Gvy=| "
0 Vs
Ve
—v3 (=14 a)vg + cvg — 2v5 — v — y(1 — v})vsy

For a fixeds > 2, this system will be considered in the infinite-dimensigutase space

s s—1/2 s
X = H:..(0,T) x H:,'/?(0,T) x H3.,(0,T)
X HS V40, T) x H:V2(0,T) x HEL34(0,T)

per per per

whereT = (2x)/c. In the spatial dynamics formulation (28) we will easily fiaduilibria
V.. corresponding to the equilibrid, of (3), periodic solutiond . which correspond to the

per

spatially periodic equilibriaf;r of (3), and we also find a trivial heteroclinic connectign

betweenl”_ andV, which corresponds to the trivial frolf, of (3).

The linearization of the spatial dynamics formulation (28pund the trivial equilibrid/,
possesses two eigenvalues close to the imaginary axis ndiely many eigenvalues with
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(54—

W, (Vi)
W, (V)

Figure 3: The original front and the modulated front. Theieat planes symbolize the two-
dimensional center manifolds &t andV/, for the spatial dynamics formulation (28). Left
picture (x < 0): V. are unstable equilibria, and the solid line representsriialtfront V/,.
Right picture ¢ > 0): V.. are stable}/;;, are unstable, and the solid line is the modulated
front we want to construct.

positive real part and infinitely many eigenvalues with iegaeal part. Hence there will be
a two-dimensional center manifoltl. (V. ), an infinite-dimensional stable manifdid, (V.. )
and an infinite-dimensional unstable maniféld (V) of V.. Fora > 0 sufficiently small,
the periodic solutiorV;, lies in the two-dimensional center manifdlid. (V7. ).

The modulated front solutions we are interested in will benfb in the intersection of the
center-unstablenanifold 1., (V_) of V_ and thestablemanifold W (Vf,) of Vf.. The
reason is as follows. Sindg’ is unstable in the two-dimensional center manifidid(V, ) of
V.., solutions converging toward$?, for ¢ — oo have to be in the stable manifol, (V)
of Vt.. On the other hand faf — —oo the periodic solutiorV, . attracts all solutions in the
two-dimensional center manifold.(V_) of VV_, except for//_ itself. Therefore, to converge
towardsV, for § — —oo it is sufficient to be in the center-unstable manifdld, (V) of

V_. Thus, we will almost be done if we show that the center-unstenanifoldiv,,(V_) of
V_ and the stable manifold’, (V,f,) of V. intersect.

per
As is explained in [SS99], this is the case only if the paramets chosen appropriately. To
cope with this problem, we consider (27) as a dynamical sy$te the pair(c, V) € R x X,
wherec obeys the trivial equatioin= 0, and we look for an intersection of the corresponding

manifolds in the extended spakex X'. We proceed in three steps:

i) In Lemma 4.1 we prove that, for = 0, the center-unstable manifoldl., (I x{V_})
of the family of fixed points/ x {V_} and the stable manifol&/;(/x{V, }) of the
family of fixed points/ x {V.} intersect transversally in the extended sp&ce X
(herel C R is a closed neighborhood af). Moreover, there exists exactly ones [
such thatV,, (V_) intersectdV(V, ), namely the velocity, of the trivial front.

i) In Lemma 4.2 we reformulate the bifurcation of the spiiytiperiodic equilibriaUlj:e]r

for (3) atar = 0 as the bifurcation of time-periodic solutio;, for the spatial dyna-
mics formulation (28).
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lii) By a perturbation argument, we show that fer> 0 sufficiently small the center-
unstable manifold1,(Ix{V_}) and the stable manifoleV,(/ x {V,i}) intersect
transversally in the extended spakex X. SinceV is attractive for{ — —oo,

this implies the existence of a modulated front solutiorhveitvelocityc close to the
original velocityc.

4.2 Transversality in extended space

For alla, ¢ € R, system (28) possesses the fixed poinats-(+1, 0,0, 0,0,0). Moreover, for
all o and forec = ¢y we have the heteroclinic connection

V(gv t) = Vh(f) = (h(§>7 h/(€>7 0,0,0, O)

between/_ andV,, i.e.lim¢_.. ., V,(§) = V4. These solutions lie in the invariant subspaces
Xoo C Xy C X, whereX is the six-dimensional subspace that consistsiaflependent
solutions satisfying:V = G(V), and Xy is the two-dimensional subspadg, = {V €

Xo | v3 = vy = v5 = vg = 0}. We now prove the following result.

Lemmad4.l Fix ¢ € (0,1). There exisiny > 0 andy, > 0 such that for alla € R
with || < ap and ally € [0,~,) the following holds. There exists a closed neighborhood
I of ¢y such that the center-unstable manifdld., (I x{V_}) of the family of fixed points

I x {V_} and the stable manifold,(/x{V.}) of the family of fixed pointg x {V.}
intersect transversally in the extended spi&ceg X.

Proof. a) Existence of invariant manifolds. The linearization of (28) at’. is given by
OV =A*V  with  A* =0,L, + DG(VL). (29)

SinceV (¢, t) is T-periodic in its second argument with= 27 /¢, it is natural to decompose
it using Fourier series:

V() =D Vin(&)e™", wherew =c. (30)

meZ

The spacet then splits into a direct sum, .z X,,,, where for each € Z the six-dimensional
subspacet,, is invariant under (29). Restricting (29) £9,, yields

OV = ALV, with AL =imwL; + DG(Vy)

or explicitly
0 1 0 0 0 0
iwm+ (1 F¢) —c —1 0 0 0
AL — 0 0 0 1 0 0
" 0 0 0 0 1 0
0 0 0 0 0 1
0 0 —iwm—-14+a ¢ -2 0
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In order to solve the associated eigenvalue probléi#,, = \V,,, we analyze the condition
det(AEX — \Id) = 0. This equation splits into two parts and reduces to the syste

MA+e)—(1Fc)—iwm=0 or —(1+N) +cA—iwm+a=0, (31)

which can also be obtained directly from the temporal foatiah (27), see [HS99].

Fora = 0, we have exactly two eigenvalues on the imaginary axisji-e.i for m = 1 and
A = —ifor m = —1. Moreover there are infinitely many stable and infinitely yjnanstable
directions, and the associated eigenvalues are contairteaisectors. see fig.2 in [SS99].

We define projection®*, P and P* on the stable, unstable and central part of the linear
operatorsA®. This can be done for eacht with m € Z, and so these operators are well-
defined. Then the space splits into

X=X oX oX 5  with X" =P"X
The restrictions\jﬁ = A*| .+ generate analytic semigroups/lff satisfying

e

|yt xx < C forall ¢ € R,
vt ax < Ce % for all £ > 0,

||€A$§||X3[HX3 < Ce Pl forall¢ <0,

"¢

for some constants, 3 > 0. This can be proved by a rescaling argument, see Lemma 3.1 in
[SS99]. In the present case, the appropriate scaling is:

Vign = Vigns Vo = (L4 m2) Vo 0, Vi = Vs,

Vi = (L+m) Y3V, Vo = 1 +m*) Y Vs, and Vi, = (1+m?)*8V;,..
By construction) € X if and only if V € H3..(0,7).
Since the nonlinear teritv' (V) = 9,L,V +G(V) — A*V is smooth from¥ into X', [Hen81]
guarantees the existence of the following local smoothriamamanifolds inX: the center
manifoldsWW,(V..) which are tangent t&’* at V., the stable manifold®/, (V) tangent to
X*, the unstable manifold&/, (V) tangent toX:*, the center-stable manifolds., (V)
tangent to¥: = X @ A=, and finally the center-unstable manifolds, (V..) tangent to
XE = XF @ X, In addition, as in [SS99] the center-unstable manifiéid,(V_) and the
stable manifoldV(V, ) can be extended to a whole neighborhood of the trivial heligio
connection},. These global manifolds will still be denoted bly., (V_) andW (V).

b) Transversality. The manifolds¥.,(V_) andW(V.,) do not intersect transversally in the
spacet, see e.g. [SS99]. To obtain transversality the space haseéatended t®R x X’ by
adding one direction corresponding to the veloeity

The transversality ofV,, (I x {V_}) andW,(I x {V.}) in the extended spade x X for
(¢, V') means that the tangent spaces to these manifolds at a(pgiht,(0)) spanR x X,
namely

Rx & = {u+v|ue T, ) (Weull X {V-})), v € Tieov3,0p (Ws(I x {Vi}))}-
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Such a situation is robust under small perturbations, andéslightly perturbed manifolds
will also possess a non empty intersection.

To prove transversality, we follow again [SS99] and consilde linearization of (28) around
the heteroclinic connectiow,:

0:V = 0,L,V + DG(V,,)V . (32)

We first observe that, for = ¢, anda = 0, (32) has a unique nontrivial solutidi ¢
CY(R, X) that converges exponentially to zerof@s- +oco, namelyV = 9;V;. Indeed, if
V(¢,t) is any such solution and i (¢, ) = (3,(€, 1), 5(€, 1)), then by constructiob (¢, t)
is a time-periodic solution of the linearization of (27) andl U},:

0,U = L(9¢)U + co0:U + DN(U,)U .
Moreover, forg > 0 sufficiently small,U € C°, ([0, T], X;) where X5 = L2(R, e’ d¢).

By Proposition 2.2, the spectrum of the Iinegr operdtQ;) + co0¢ + DN (Uy) in X3 is
strictly contained in the left half-plane, except for a sienpigenvalue) with eigenvector
9¢Uy. Thus we necessarily hate = 9, U, hence alsé’ = 0, V},.

Next we observe that, for amy € Z, the six-dimensional subspadg, is left invariant by
the time-independent equation (32). This property allawsttdy the transversality of the
manifoldsW,,(V_) andW,(V,) in each subspac#,, separately, since the tangent spaces
Ty, &) (Weu(V2)) (resp.Ty, (W (V4))) for different values of are mapped onto each other
by solutions of (32). Remark that (32) defines a well-posedution in each subspact,,,

but not in the whole spac#.

For anym € Z, let
B =Ty Weu(V-))N X, B, =Ty 0 (Ws(Vi)) N A&y,

From (31), it is not difficult to verify thatlim(E;; ) = dim(£;, ,) = 3 forallm € Z.
Moreover, ifm # 0, the argument above shows thaf N E;, , = {0}, so thatX,,, =
Eqt @ By . Ifm =0, thendim(E§* N Ej ) = 1, so thattg" + £, has codimension
1in X,. Summarizing, we have shown that there exists X, such that

X ={u+v|uecTyopWulVo)), veTywW(Vy)} +span{¥}. (33)

If we further restrict system (28) to the two-dimensionakinant subspacg,, we obtain
the simple differential equation

1
aﬁvl = V2, ag'UQ = —CUg — 5(’01 — C())(l — ’U%)

which governs the travelling waves of the Chaffee-Infargaation. Forc = ¢, the one-
dimensional manifold$V., (V_)|x,, andW(V, )|, intersect (non transversally) along the
heteroclinic orbit/};| x,,. Thus the vectow can be chosen as the unit normalfd0) in Xo.
Moreover, it is easy to see that a variation with respecteégtrameter shifts the stable and
unstable manifolds through each other, namély, (I x {V_})|x,, andWs(I x {Vi})|xu,
intersect transversally in the three-dimensional spgace X,. Together with (33), this
implies thatW,.,(I x {V_}) andW,(I x {V, }) intersect transversally in the extended space
R x X. a
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4.3 Bifurcation of Turing patterns

The following lemma is the analogue of Theorem 2.3 for theiaprmulation (28).

Lemma4.2 Fix ¢y € (0,1). There exist, > 0 and~, > 0 such that for all= € (0, ), all
v € (0,7) and allc>0 equation (28) withv=¢? has two familie§ V5, ({+ct+&) | & € R}
of periodic solutions satisfying;5, (z) = Vi5.(« 4 27) and || V5 (z) — Vi |[ge = O(e).

per

Remark 4.3 We may prove Lemma 4.2 directly as follows. For the eigemvatablem (31)
in the proof of Lemma 4.1 all eigenvaluggxcept forn = £1 are uniformly bounded away
from the imaginary axis and contained in two sectors. &0 0 andw = ¢ we have two
eigenvalues on the imaginary axis, namegly i for m = 1 and A = —i for m = —1. With
a changing sign from- to + the real parts of these eigenvalues change sign froto —.
To see this we inseit = i + p into the second equation of (31) and obtain

— (i 4ip =P+ ep+a=0

and therefore N
n = —z —+ O(OéQ).

Now theS!'—equivariant Hopf-bifurcation theorem applies [GSS88hjein shows the requi-
red result. On the two-dimensional center manifoltfg(V,.) we have an unstable origin
for « < 0, and fora > 0 a stable origin and an unstable periodic solutibf[)tr with, e.g.,
Via(&t) = Vo + 0(Va) (¢ + c.c.) + O(a).

4.4 Bifurcation of the modulated front

In order to complete the proof of Theorem 2.6 it remains talds&h pointiii) of the program
of section 4.1.

As a consequence of the continuity with respectite= £2, the stable manifoldV, (I x
{V;E:}) of the bifurcating periodic solutioir}, staysO(e)-close toW,(I x {V,}) for { €
R*, see for instance [GH83, SS99]. Therefore, the interseatfolV,, (I x {V_}) and
Wi (I x {V;£.}) is still transversal foe > 0 sufficiently small. By [SS99, Lemma 3.9], there

existsc = ¢y + O(e?) such thatv,, (V_) andW, (V. ) intersect, which follows from

per

dist (W, (V_), Wy (VE)) = O(lc — ¢o|) + O(£2). (34)

per

This distance can be measuredAf, by the distance of the intersection points of these
manifolds with thev,-axis in Xyq. The dynamics inYy, is mainly described by the first
equation in (1). The linear termv in the first equation of (1) i®(¢). However, the)(¢)-
terms inv belong toX;, and by quadratic interaction they couidz?) back toX;. In all
otherX; with j # 0 due to transversality for = 0 the tangent spaces of,,(V_) N X; and
W(V,E) N &; also spant; for e > 0 sufficiently small and (34) follows.

A solution of (28) in the intersection converges for- oo to V.. with some rate —*¢ where

per

£ > 0 can be chosen independentsof For¢ — —oc all solutions in the center-unstable
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manifold of V. converge with some exponential rate to the two-dimensiceater manifold
of V_. On this manifold except for the origivi_ all solutions converge fof — —oco with
some rated (e~ )l towards the unstable periodic solutibjy,, cf. figure 3.

It remains to prove thaitV,(V,f,) is not connected withi,(V_). This can be shown as in
[SS99] by remarking that the distance betw&érntV, ) and, (V_) nearV;,(0) is of order=2,
since both manifolds are smoothdn= . One the other hand, sindést(V,},, V) > Ce,
one can verify by looking at that the distance betweéi, (V) and W, (V. ) nearV;(0)

is also bounded from below b§/c. Thus, ife > 0 is small enough, there cannot be an

intersection betweeW (V1 ) andW, (V_). In detail

per

dist(W(V_), Wy (VL)) > dist(W(Vy), Wo(VE)) — dist (W, (V2), We(V,))

per per

Z 018 - 0282 Z 016/2

for e > 0 sufficiently small.

Summarizing, we have found modulated front solutidig(¢, ¢) of (28) connecting/,, to
ViE with a velocityc = ¢y + O(e?). Moreover,supg yeg | Vi (€, 1) — Va(€)| < Ce. Setting

Unt(&,€ + ct) = (vmea(€,1), vme3(€,t)) we obtain a modulated frorit,,¢ satisfying the
conclusions of Theorem 2.6. O

45 Remarksoncasell and caselll

The following two remarks are an adaption of the theory givej$S01a] to our situation.

Remark 4.4 In case Il there is no Hopf-bifurcation &t_, but the same argument as above
shows the transversality oV, (7 x {V,{,}) andW, (I x {V_}) in R x X. Therefore, for
close tocy, there are modulated front solutiod§(x, t) = Uye(x — ct, x) of (3) which are
2m-periodic in the second argument and satisfy

glim Unt(&,2) = U;rer(x) and glirin Unt(&,2) =U_ .
Remark 4.5 In case lll there is no Hopf-bifurcation at, . There is still a transversal inter-
section betweei ., (I x {V_}) andW,(I x {V.}). But forc = ¢, we know thatV,, (V_)

and W, (V) intersect along the heteroclinic connectibj. By uniqueness there is no other
connection betweeW,,(V_) andW(V,) and so no modulated front in this case.

5 Thenonlinear stability proof

This section contains the proof of Theorem 2.8. As already, $he linearization around
the modulated fronts has continuous spectrum up to the maagaxis, because the periodic
patternU,, behind the front is only diffusively stable. In addition, wave an embedded

zero eigenvalue which is responsible for the shift alongdingly of modulated fronts. This
coexistence of discrete and continuous spectrum on themaggaxis is the main technical
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difficulty in proving the stability of the modulated front§o handle this problem, we follow
the approach developed in [ES02]. The basic idea is to assahénitially perturbations
decay with an exponential rate as— +oc. Even if the steady state ahead of the front
is weakly unstable (in our case, it is not), such perturlbatiovill be “overtaken” by the
propagating front before they have enough time to grow. Qineg are far behind the front,
they vanish diffusively because the periodic pattép, is stable. In case Il, the steady
stateU_ behind the front is exponentially stable, so that the pb#tions decay to zero
exponentially ag — oo, see section 6.

Throughout this section, we fix > 0 and3 > 0 small enough so that the conclusions of
Proposition 2.2, Theorem 2.3, Theorem 2.6 and Lemma 3.1 hdhdless explicitly stated,
the constants below will depend anand 5. The small parameters we shall use are the
size of the initial data, which we denote byand the rescaling parametemwhich will be
introduced in section 5.3.

51 Theidea

The zero eigenvalue of the linearized operator will lead $patial shift of the front. There-
fore, we write solutiong/ (z, t) of (3) as a shift of the modulated front plus some perturlpatio
V(z,t), namely

U(IL’,t) = Umf(x_Ct_Q(t)vx)+V(xvt) ) IL‘GR, t>0, (35)

whereq(t) € Ris the spatial shift. This representation is clearly notjuei, but we shall use
this freedom below to impose a condition Bifx, t) that will determine;(¢) uniquely. The
perturbationV (z, t) satisfies

+N1<Umf<x —ct— Q(t)v SC), V(I’, t)) + Q(t)alUmf(x —ct— Q(t)v ZC) )
With Ny (Upt, V) = N(Upt+V) = N(Ung) — DN Uy )V = O(V?). To analyze the behavior
of V(z,t) nearr = 400, it is convenient to go to the comoving frame and to use expisle

weights [Sat77]. Let € (0, 5y), wheref, is defined in Proposition 2.2. We introduce the
weighted variablél” defined by

W t) = V(E+ct,t)e?, ¢eR, t>0. (37)
The equation fo#V is

atW(ga t) = Lﬁ,cW(ga t) + DN(Umf(g - Q(t)v g + Ct))W(gv t)
+N2(Umf(£ - Q(t)7£+6t)7v(£+0tv t),W(g,f})) (38)
+4()0 U (€ — q(t), € + ct)e™

where
Loe=L(0: — B) +¢c(0: — B) and Ny(Uns, V, W)= O(VIV).
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Eq. (38) is coupled to (36) through the nonlinear terMgU,..¢, V, W), which are in fact
linear with respect tdV/, see section 5.2. Althoudgh and!V are simply related via (37), we
find it convenient to keep both variables in the sequel. W# absume thatV’ € H*(R) and
V € H2 = {f € H*(R) | 22f € H*(R)}, which is equivalent to requiring that? + %)V
lies in H?(R). This defines a weighted perturbation space which is an eidebthe product
of functions.

To understand the spectrum of the linear operator in (38) vite w
LB,CW + DN(Umf)W = L@cOW + DN(Uh)W + (C — Co)@gW + LA(Umf)W ,

whereLa (U)W = DN (U)W — DN (U,)W. Since|c — ¢o| = O(e2) and| DN (Upyt) —
DN(Uy)| = O(e + |q(t)|) by Theorem 2.6, we see that, providedndq are small enough,
the time-dependent operatédy; . + DN (Uy,;) can be considered as a perturbation of the
simpler operatot\s = Lg ., + DN (U,). By Proposition 2.2, the spectrum 4f; is strictly
contained in the left half-plane, except for a zero eigamwakhich is due to translation
invariance and is not affected by the exponential weight.ILe: H? — H? be the spectral
projection onto the one-dimensional eigenspacé&porresponding to the eigenvalue zero.
We also seil; = 1 —I1.. If W is defined by (37), we impose the conditidpi/(¢) = 0 for

all £, which amounts to fixing the shiét(t) in (35). Under this assumption dir, a standard
argument shows that any solutidiix, t) that stays sufficiently close to the modulated front
Unt(z — ct, z) can be decomposed in a unique way according to (35).

The evolution system foil” andq reads

6tW = HS(L@cW + DN(Umf)W + NQ(Umf, ‘/, W) + Cj(?lUmfeﬁg) s

. (39)
i = —(IL(0,Unse)) IL((c — )W + La(Unt)W + No(Uns, V, W),

wherell.(0,Uyee®) = 1+ O(e + |q|). By Proposition 2.2, there exists = v(3) > 0
such thafl|e? 'L || g2 = O(e=) ast — oo. If V(z,t) andg(t) are bounded and remain
sufficiently small, due tg = O(1/') we expect that the solutions of (39) will satisfyt)| +
IW(#)]|a2 = O(e™) ast — +oc.

In order to use this exponential decay of the auxiliary J@dadl’, we rewrite (36) in the
form

OV = L(0,)V + DN(U )V + N1 (U, V) + G0 Ung + G(Uns — U, V), (40)

per per?’ per’

where

GUnt — Uty V) = Ny (Ui, V) =Ny (User, V) + (DN (Unt)—~DN (U ))V .

per? per? per
To bound the last term in (40), we have to control the quantity
Qz,t) = [Uns(z — ct — q(t), z) — Upe, ()] [V (2, 1)) (41)
= |Umf(x —ct — Q(t)v {L‘) - U[;:r(x)|6_6(x_0t)|w(x - Cta t)| :

Taken > 0 small enough so that < v. By Theorem 2.6, we have

Ce*éﬁzntﬂ/(% t)] if v —ct—q(t)<-—-nt,
Qz,t) < :
CePt=aON W (z,t)| if x — ct —q(t) > —nt .
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It follows that G (Ups — U, V) = O(e V) + O(e”'W), where; = Bon. Thus, since

per>

W = O(e=?*), we conclude that(U,; — U, V') decays exponentially ds— co. As a

per’

consequence of these observations, (36) has the form

OV =LV + DN(U; )V + N(Us.., V) + O(G) + O(e V) + O(e"'W) . (42)

per per>

This is a small perturbation of the equation

8,V = LV + DN(U.)V + Ny (Us,, V) | (43)

per per’

which governs the evolution of the perturbatidngr, t) = U(xz,t) — U, (x) of the periodic
equilibriumU_,. As was already mentioned in section 3.4, sufficiently smaliitions of
(43) in H2 converge diffusively to zero als — oo, and due to the analysis in [ES02] the
exponentially decreasing terr@¥q), O(e=%'V), O(e**W) in (42) do not change the result.

This is the idea of the proof of Theorem 2.8, which we now dew@h more detail.

5.2 Theunscaled equations

We first give explicit formulas for the various quantitiepapring in equations (36), (38),
(39), and (40). In what followsl/ will either denotelU.,; or U,,.. If V' = (V1,V;) and
U = (Ui, Us), equation (36) holds with

Vi
w09 = (o s

L(L+ 2¢0U; — 3U2) ! i
DN =2 1
v ( 29U, U a—7+7Uf—3U22) <V2) |
Leg —3U0)V2 — 1V
I _ 5\Co 1 21
0V (Umvl? = 3V3) + UiV, — Vi +W3V2)

Next, if W = (W5, W) andUys = (ume, vme), then (38) holds with (for instance)

No(U,V, W) = ( ey — 3U AW — 1V, ) |

Us(Y VAW, = 3VoWa) + 24U ViWy — VEW, + A Vi VoW

The operato\s = Lg ., + DN (U}) has the expression

~ ((Oe=B)+co(0—B) 0
Ag = < 0 —(1+(8g—ﬁ)2)2+00(8§—5)>
1(142coh—3h?) 1
+( 0 a—v(l—hz)) '

Since0 < § < f,, we know that\ = 0 is a simple isolated eigenvalue &f with eigen-
functione® 9 U,,. The corresponding spectral projection is given by

h' eB

mw = (") [t v ac.

28



where »
U = Kh'elo e KZ( / <h'>2eC°5d£) ,
R

and) is the unique solution i7? of the differential equation

—(1+ (9 + B)*)*05 — co(0e + B)vs + (= 7(1 = h*))g5 + 47 = 0.
Finally, if G = (G, G») andUy,¢ — = U4 = (U4, Ug), then equation (40) holds with

per

Gl(Ud, V)= cOU1 Vi— (umf + uper)U1 Vi— U{Wf ,
Go(UL, V) = 29(0mi Ut + tpe,US Vi + (g + Uper) Ui Vo — 3 (Vs + 050, ) U5 Vo
—3Us V5 + yUVE + 29Uf i Vs

We now start the analysis of the evolution system (39), (d0)yT WV, ¢q. Our goal is to show
that, if the initial datal’(0), W (0), ¢(0) are sufficiently small, thei/(¢) andq(¢) will go to
zero exponentially, whil& (¢) tends to zero diffusively as described in Theorem 2.4. As was
explained in the previous section, we shall consider (4@ @erturbation of (43), which can
be treated using the techniques developed in [Sch96], @2[EIn particular, we shall use
the Bloch wave formalism introduced in section 3.2.

If V = TV is the Bloch wave transform df, we setd, = E.V andd, = E.V, where

E,, E, are the mode filters defined by (21). In particuldr= 7 1(9. + 9,). For notational
convenience, we also set= IV. Then system (39), (40) is equivalent to

Oyte = Mbe + BN (ie, 05) + EH(0e, 0,0, ¢, 1) |

Bty = M, + EN, (06, 0s) + EsH(be, b5, w, q, 1) ,

dw = Agw + I [(¢c — ¢p)Ocw + Na(0c, Us, w, ¢, )] ,
G = Ni(be, b5, w,q,t),

(44)

whereM = L(8,)+DN(Us,), Ag = Lg.e,+ DN(U,), andM = TMT . The remaining

per

terms in (44) are given by

Ni(be,05) = TN, (UpeNV)
H(0c, by w, ¢, 1) = TG (Ung — Uer, V) + 4T 01Ut
No(De, D5, w, q, 1) = La( mf)w+N2(Umf,T Vi w) + (0 Upng) e’ | (45)
Ni(0c, 05, w,q,t) = —(He(O1Upee™)) ™!

IT. | (c—co)Oew + LA(Umf)w + No(Unng, Tt V,w) |

whereV = 71, + 0s), (T_o:V) (&, t) = V(€ + ct, t), andg = N3 (., 0s, w, ¢, t). For later
use, we observe thaf; is alinear function of its third argument), and so is\V;.

As explained in [Sch96], it is useful to modify this systemddyninating the quadratic terms
with respect ta. in the equation fo,. We thus introduce the new variables i, defined

by
ﬁc = @c ) as = @s - _MilEle/l(())[@m@c] ) (46)



whereA7(0) = D%C%/\A/'l(@c, 0)|s.—0. As we shall see in the next section, this change of va-
riables eliminates the leading terms in the asymptotic bienhaf o, ast — oo and simplifies
therefore the analysis.

Applying this transformation to (44), we obtain our final ®m

Ol = MUC+N( Qe i) + Ho(de, s, w0, q)

Bhtls = Mg + Ni(fe, ) + Hs(fhe, G, w, ) 47

Ow = Agw + I ((c — ¢o)Ogw + Ny (e, Us, w, q)) ,

G = Ny(te, s, w,q)
where N A

Ne(tie, @) = EN1(0c, 0s)

AS@CaﬁQ = Eﬁl( ) — 1825( 1EN”( Moe, Be])
Helite, i, w,q) = EH(0e, 05,0,0,1) 48)
Hs (e, s, w, q) = EsH(De, s, w, q, 1),
Ny (e, Us, w, q) = No(0e, 0, w, q, ) ,

Nq(aca ﬁ/sv w, Q> = -/\/:3(607 @sa w,q, t) .
In the right-hand side of (48), the variablés v, have to be replaced everywhere by their
expression (46) in terms af,, u;. For simplicity, we also dropped the explicit dependence
ontin H., Hs, Ny, andNj,.
Remark 5.1 If we setw = ¢=0andU,s — U__. = 0, then (47) reduces to the system

per
Bhtie = Ml + No(ile, tis) ,  Oyity = Mty + Ny (e, @) | (49)

which governs the evolution of the perturbations of theigfigperiodic patternl/ .. All the

arguments in sections 5.3 and 5.4 apply a fortiori to (49)Y] ahow that these perturbations
satisfy (9). Thus Theorem 2.4 follows as a particular casehaforem 2.8.

5.3 Therenormalization procedure

In section 3.3, we described the asymptotic behavior of dh&isns of the linearized equa-
tion (3) around the periodic steady stdfg, . We showed that the rescaled central part
E.V(¢t~'/2 z.t) converges to the Gaussian functida=?* ast — oo, while the stable part

is exponentially damped. This continuous rescaling of tleelB variable/ can be used to
treat the nonlinear problem also, see [EWW97]. Howevegéinss somewhat easier to use
a discreteversion of the above rescaling, which is known as the “remtization group”
method, see [BK92, Sch96]. The idea is to fix some (sufficyesithall) o € (0,1) and to
define, for alln € N, the rescaled quantities

Ven(36,2,7) = Gc(0"s¢,x,072"1) = (L) (3¢, 2,072"T) |

Vs (26,2, 7) = 0*3”/2215(0”%@,0*2"7') = 0*3"/2(2”125)(%,30,0*2”7), (50)
2

wa(§,7) = €7 TTw(&,07T)  qu(7) = q(07"T),
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wherer > 0 is as in Proposition 2.2 and = Ea is the rescaling operator defined by

(LH(t,) = flot,x).

Inserting (50) into (47), we obtain an evolution system{or.,, 0s ., wy, ¢, } Which we de-
note by.sS,,.

For notational convenience, we take our initial data for) @#imet = 1 instead oft = 0.
Starting from these data, we first solve the evolution systenfor {v. 1,051, w1, ¢} On
the time intervalr € [02,1]. Evaluating the result at time = 1 provides the initial data
for the rescaled systerf, satisfied by{o. s, 052, w2, g2}, Which we again solve for ¢
[02,1]. Repeating this procedure, we see that solving (47} fer[1, o) is equivalent to
solving a sequence of rescaled systeinsn the fixed time intervdb?, 1]. Since (47) is not
autonomous, the rescaled systespawill also depend explicitly on time.

The advantage of this iterative procedure is that the redcgjstens,, becomes simpler as
n — oo because the asymptotically irrelevant termsSjnare multiplied by exponentially
small factors such as™. This is due to the prefactors in (50) which anticipate theageof
the quantitied., us, w, q. For instance, since the quadratic terms have been eliedriat
(46), we expect that,(¢, z, t) will decay like1/t ast — co. Now, sincet = o~2"7 andr
varies in a bounded interval, we can thinkdsdf as beingl/\/f. Thus, the rescaled variable
bsn(T) = o=3n/2(Lra) (0-2m7) still converges to zero as — co. Moreover, replacing
L, with o’"/24, . in the evolution syster,, produces small factors™/2. Similarly, since
w(t) = O(e™?*) ast — oo, we expect that the rescaled quantity(¢, 7) defined in (50)
will vanish rapidly as: — oo. In contrasty,. converges to a Gaussian aptb a finite limit
g, SO the corresponding rescaled quantities have no presact(s0).

Our starting point is the integral equation satisfied by gszaled quantities (50) on the time
interval T € [0?, 1]. Using (47), we find

oI Men(r=0®), en— 1(0% z,1)

72” f 72”./\/(0 " T T )-/i\/,c,n(vc,na @s,n)(%a ZL‘, T/) dT/
_2n f02 QnMC n(T—T7 )Hc,n(@c,n, @S,nv W, Qn)(%, z, 7_/) dT',

O'_Qn./(/t\s’"(’r—oj)o.

Ve (26,2, 7) = €7

=329, 1 (032, 7, 1)

o Tn/2 f 072" My n( ’)./\A/'Sm(@cm, Vsn) (5e, 2, 7') AT’ (51)
—7n/2 f 2"/\/1sn

Vs (o6, 2,7) =€

)ﬁs,n(@c,na 6S,n7 Wy, Qn)(%a T, T,) dT,v

W (&, 7) = e T Aet TNy, (€,1) + o I o P (A ptr) (=) o
[T, [(C—Co)ﬁgwn + Nw,n('ﬁqn, 60,117 Wy, qn):| (f, 7./) dT/,

@n(7) = @n1(1) + 072" [ 7, Ngn(Ocin, Os s Wi ¢) A7
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where/T/l\C,n = EA"E?M\E*", /T/l\s,n = E"E?/\//YEA*", and

New(lem Ban) = LN(L ", 02 L5 |

No(Bems D) = LoN(L 0, 0™ 2L )

ﬁc,n(@w,ﬁsm,wn,qn) = 2"7?(6(2_"1%,”,03"/22_”175,”,e‘”"fQ"Twn,qn) , (52)
ﬁs,n(ﬁc,n,@s,n,wn,qn) = A"ﬁs(f’”ﬁc,n,03”/22*"@5,,1,e*”"_QnTwn,qn),

Nw,n (’ﬁc,na ﬁs,na W, Qn> = Nw (E_n@c,na Ugn/Q‘c_n@s,m W, Qn> )

~ ~ _po—2n N 2 A
-/\/‘q,n(vc,navs,nawnac_Zn) =" 7—-/\/’q(‘C nvc,n703n/ L nvs,nawnaqn) .

We recall thatV,, and\/,, are linear functions of the third argument
We shall control the evolution aof. ,,, 75, in the n-dependent function spacés.., 3.,
where

’Cf, = ’Ca,3/27 ’ny - ICU,l ) (53)
andiC, , is defined in (24). The reason for these particular choicéisegparametes (which
measures the decay in the Bloch variaf)l@ill be explained in the proof of Lemma 5.4. On
the other hand, we shall use the fixed spa@é&R) andR to control the remaining variables
w, andg,, respectively.
To estimate the various terms in (51), we now list a numbereafrhas which are very
similar to the corresponding statements in [ES02, SectjonThe proofs use exactly the
same techniques, so we shall be rather brief and we refeetuer to [Sch96, ES02] for
more details.
We first bound the linear semigroups generated@y,n, ﬂ/l\s,n, andAg + v. The fact that
applying o " Mot improves the decay in the Bloch variable will be used to camspee
the “loss ofp” in estimate (55) below. Similarly, the smoothing propesfy:” " (A7 wil|
allow to control the ternfc — ¢)0:w, in the equation fotw,,.

Lemmab.2 Fix p; > py > 0. There exist positive constard$, 4, andv, such that, for all
€ (0,1],alln € N,and all7, 7" € [¢%, 1] with 7 > 7/, one has

e Men=mV R BY LG 0, < C(T = 722 (G,
Heafansm(T_T/)EnEA.sﬁ_ngH’Can’pl Cle—ulaﬂn(r—r/)(T _ T/>P2—P1 HgHKU"’m ,

<
|7 " (Aatw)(T=) < Cre 2o =) (p — 7Y (e2=p)/2)

swl| e wl[ e -

Proof. These estimates follow directly from Lemma 3.1 and Propwsi2.2. We recall that
vy = O(e?) andy, = O(B). O
Next, we estimate the nonlinear terms (52). Most of thesesare bounded in a straight-
forward way by “counting the powers of and using estimate (26) as well as the identity

LML+ L") = o™ (A D). (54)

However, to bound the critical termA/m, one has to use the structure of the system in a
deeper way and to exploit some non-trivial cancellatione W¥ed the following lemma
which generalizes the fact that derivatives produce powkssunder scaling. As we shall
see, although the nonlinearity. ,, does not contain any derivative, it has a “derivative-like”
structure, see also [Sch96].
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Lemmab.3 Letp, > p, > 0 and assume that € C2,.([—1/2,1/2], C*([0, 2x], C) satisfies
10 £ (£, Ml c2qo.2n.c) < CHPPP7 0 =0,1,2.
Then there exist§' > 0 such that, for all € (0, 1],

(Lo f)ilk,,, < Co®e=r2lal|x

a,p1 "

Proof. This follows fromsup,c;_; o 1 /o) |(00)21772) /(1 + £2)71=P2 | < g2er=r2), m

Lemma 5.4 There exist positive constands, ¢, andv; such that for alln > 2, all 0€(0, 1]
and all 7€[0?, 1] the following estimates hold. #hax{||tcnl[ice,,, 10snllics,,, [[wnllm2} < 1
and|q,| < g, then

INenllic, e < Coo™*(llienllie, + I8snlls,)? (55)
Wanllics, < Coo®(l[icnllice, + [Gsnllics,)? (56)
[Henllie, < Coe™ " ([[enllice, + [snllice, + llwallue) , (57)
Honllcs, < Coe™ " ([oenllie, + sl + llwallaz) | (58)
Wl < Cale +1aal + 0" (tenlle, + ldsallics, Dllwallzz . (59)

WNom| < Cae™ " lwall e - (60)

Proof. We start with (60). From (52), (50), (48) and (46) we have
Nq,n(@c,na '[}S,na W, Qn) = 6_1/0_2”7-/\/’3('{}07 @sa W,y Gn, t) )

wheret = 027, 0. = L ", andi, = 02 L "0, ,+ L M ENT(0)[L "By £ 0cn).
In particular, ifV = 7 -1(. + 05, it follows from (15), (25) that

Vligz < Co"2([[tcnllks, + 0 [lsnllks,)-
Therefore, using (45), we find

—vo 2y

—1
|-/\/:1,n (@c,na f}s,na W, Qn)| =e Hc(alUmf(g_Qna §+Ct)66£)’
T (=00 + Loy U)o +-No U, Vi) | (62)
< Cevo ™' (5 + |gn| + Un/Z(H@C,nHIan + ”@Sm”Kf,n>) 1wl g2 ,

sincell, (0, Unte™) = 1+ O(e+|qul), |c — co| = O(?), |La(Unt)| = O(e+]|gn]), and since
N, is a linear function of its third argument. This proves (6Bere and in the sequel, we
also implicitly use the assumptianax{||o. /[« [|9snllxs, , [wallm2} < 1. Following the
same lines and using in addition estimate (61)fer 02"¢, = N, .., we obtain (59). Finally,
from (53), (52), (48) and (26), we have

”ﬁc,n(@cmv@s,mwmqﬂ)HKf,n < 0‘777”/2”7/_2(@0768767110_2%“}117%715)”?15 )
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wheret, i, 9, are as above, arid is given by (45). To bound the new e (Ui —U,or, V),
whereV = 7 1(¢, + 05), we proceed as is suggested after (41) and obtain

|G Ut =Uper, Vg < Ce™?

per?

—2n

"Noemllie,, + [10snllis, + llwnllz2)

for somer; < min(ef,,v/2). Together with (61), this yields (57), and (58) is proved in a
similar way.

To estimate\Afm, we first note thaI\Afl(ﬁc, 0s) = TN (U, T (0. + 05)) where

per’

Lo — 38U 1)V ) 3
N (U, V per, +O(V?).
( Pe ) (Uper 2(7‘/1 - 3‘/2 ) + 2’)/Uper 1‘/1‘/2 ( )
Therefore,

_ E /i\/’ n@c . 3n/2£ 1M\71ES/§\/’1//(0) [Efnﬁcm’ Ein@c,n])

_ Z\ ( ( 3Uper 1)a1(@c mf}s n) )
per 2 ’7&1 UC ny Us n) - 3(1,2(UC ny Us n)) + 27U er, 1&3(UC n Us n)

Ue,n, Us n 5

wherea, as, ag are the quadratic termsin,,, vs ,, and/\/'c(,?;g contains the higher order convo-

lutions. Setting.,, = (6}, 9&2)), we find

01 (Do, Do) = (L7002 +20% (L0 % L700) + 0™ (L7002 =t an+antais

S'I’L

and similar expressions hold fes andas. Most of these terms can be bounded in a straight-
forward way, using (54) together with the fact tha" £.L " f[|, < C||f|x:, for some

C > 0 independent of andn. For instanceuE”auH,C;n < Co™2||be ke, Osmllics,, - HO-
wever, (54) is not sufficient for the quadratic (and cubiohewutions involvingd. ,, only:
proceeding as above, one would obtﬁ'[fﬂanﬂ,cg" < Co™||Ocn|}e . while we needr™/2

in the right-hand side, see (55). Thus, more careful bour&iaa:éssary.

Following [Sch96] we write/\A/’w =51+ 59+ J\A/'Cm wheres; ands, contain the quadratic
and cubic convolutions af. ,,, respectively, and\Afc,n,T contains the higher convolutions of
9., and all the convolutions with at least one factdt/20, ,,. Thus

WVl < Co™2(|[venllie, + snllics, )2

On the other hand; is given bys; = EA"ECTB(T*E*"@C”, T*lf*”f;cn) whereB is the
symmetric bilinear form defined b (Uy, U>) = £ (D%, N1 (U, V) |v=0)[Ux, Us). Thus

per’
1/2
TBU,V)(l,z) / Bo(2)[TU(C = m, ), TV (m, 2)] dm
—1/2
where B, is again a symmetric bilinear form, depending explicitly .omlue to the mul-
tiplication by U,. Writing 0., (s, z) = LMEPL 0 (32,2) = an(3¢)p(0" 3, x), Where
(¢, -) is the critical eigenfunction oM (¢) from Lemma 3.1, and using (20), (21), we ob-
tain s; (sr, ) = (0", x)x (0" 5) 51 (5) with
%) =o" f027T< (0", ), fl/2o” By () [V n (30—, )0 (M, )] dm> dz

1/20™ C2
= "flﬁgan (LK (52, 3¢ — m,m))an (3¢ — m)an(m) dm
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and where) (¢, -) is the critical eigenfunction aM (¢)*, and

Ki(0,0 —m,m) = /0 7r<@/}(£, x), Ba(x)[p(f — m, ), p(m, x)]>(c2 dz . (62)
Similarly, $;(s¢, ) = p(0" s, x)x (0" 3)59(3¢), Where
5y(5) = 0" //(CA”KQ(%, w—m,m —k,k))a,(>x —m)a,(m — k)a,(k)dkdm .

The kerneli (¢, ¢ — m, m — k, k) encodes the cubic convolutions®f,.

Next we show thatK; (¢, (—m, m)|=0({*+m?) and| Ky (¢, (—m, m—k, k)|=O(l{+m+k)
asl,m,k — 0. Then, using Lemma 5.3 withy = 3/2 andp, = 3/4, we gain a factos>"/
when estimating;,. Similarly, choosing for instance, = 1 andp, = 3/4, we gainc™/?
when estimating,. This gives the correct power ofin (55), and explains why we estimate
/\Afw in Kon 3,4 @and notinkCs... As was already mentioned, this lossiwill be compensated
by the smoothing properties QVMT, see Lemma5.2.

First, from the translation invariance of (3), we havg(0,0,0) = 0 and K5(0,0,0,0) = 0.
Indeed, the casé= m = k£ = 0 corresponds to the spatially periodic case, in which there
exists a center manifoll = {U_.(z—a)| a € R} of 2w-periodic equilibria, cf. section 4.
It is not difficult to verify (see [ES02]) that the flow inducéeg (3) onI is given by

a = K1(0,0,0)a* + K5(0,0,0,0)a® + O(a*) ,

which immediately yieldd<; (0, 0,0) = 0 and K»(0,0,0,0) = 0.

It remains to showk; (¢, ¢ — m,m)| = O(¢* + m?). FromB(U,V) = B(V,U) we have
Ki(0,6—m,m) = K(¢,m,{—m) and hencel-K,(0,0,0) = 0. Finally, £ K1(0,0,0) = 0

is a consequence of (/) = O(¢?), which can be seen as follows. As in [Sch98b] we write

(l) = o + L1 + O(?), (L) = o + by + O(?),
M) = Mo+ UMy + O%), M(0)* = Mj+ LM+ O(F2).

From M (£)p(€) = Moo + £(Mipo + Mopr) + O(€?) = O(¢?) and the similar relation
for M(¢)*(¢), we obtain

Mopy =0, oo =0,  Mopi + My =0, o1 + My =0.  (63)

Moreover, for any fixed and any2r-periodic functionl’, we have

per
— ite ((L+DN(Up*er))6xf/ + D2N(U5,)(V, axUp;r)) eite (64)
= M(0)8,V + 2B,(2)[V,8,Uz,] .

per

O (M(OV) = 0, (7 (L + DN (Uy, ) Vel

If we now choosd’ = ¢ + L1, we haveM (¢)V = O(¢2). Hence it follows from (64) that

MOaJJQOO + 232 [9007 8$U;;3r] =0 ) (65)
M0, 00 + MoOrp1 + 2Bs[p1, 0, U] = 0.

per
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Using (63), (65), andy = cn0,.U,
we thus obtain

$K1(0,0,0) = (¢1, Ba[eo, pol) + (@/10732[8007%])
- 20N< oU1 + M, Oppo) — ( oo, Ozp1) = 0.

wherecy is the normalization factor from Lemma 3.1,

per’

This concludes the proof of (55). Finally, estimate (56)]‘?1)’;}1 follows from expressing
Oyl IN —%at(/\?”ESJ\A/'{’(O)[@C, 0.]) by (47) and using (55), (54) and Lemma 5.3. This gives
the desired power aof, because\A/’sm contains no quadratic terms ip,, since these terms
were precisely eliminated by the change of variables (46g froof of Lemma 5.4 is now
complete. O

To estimate the integrals in (51), we introduce the quastiti

Ryn = sup iy H@c,n(T)”ngn + SUP¢p2 1) ”@s,n(T)”le,n )

Ryn = SUDPr¢[02,1] |wn(T)l[z2, Ry = SUPre[o2,1) |G (T)] -

Lemma5.5 There exist positive constants, C, such that for allo € (0,1], all 7 € [02, 1]
and alln > 2 the following estimates hold. tfiax(R, ,,, R,») < 1 andR,, < g, then

—2n||fa2 *2”Mcnr T)ﬁ ( /) dr Ke. S Cgo.n/zRgn’

—7n/2Hf _Q”M (T— T’)N ( /) dT,”ICin < CgUn/2R2

0| [T, e Fenle T () A s, < Co0™ (R + Ru)
SR [T o Mano T (7 A7 s, < C30™ Ry + Ruw) . (66)
o2n| [ e AT, | (eco)Ogwn + N (1) A7l
< (Cule +q) + C30™2Ry ) R
o~ f Noyn(T)d7'| < Cse™ " Ry .

Q Q Q9 Q9

Remark 5.6 The proof shows that'; — oo ase — 0, while C, can be chosen independent
ofe.

Proof. These estimates are easily obtained by comblnlng Lemmas8.8.4. The assump-
tion n > 2 is used to simplify the bounds dﬁcn anstn For instance, in the estimate
involving Hc,n, we use

T —2n -/ C C —zn
O_Qn/ C,Che V37 2nr dr’ < 12 V30 2n+2 < CgO'n/2
The last inequality is very crude if is large, but it is sufficient for our purposes because it

matches what we have fd?fc,n, /\Afsn Note however that we keep the exponential factor in
the estimate fol, ,,. O

Finally, the following bounds hold for the first terms on tihght-hand side of (51).
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Lemma5.7 There exist5,Cs > 0 andm € N such that, for allo € (0,1] and all
T € [02,1], one has

Heaﬂn/ﬂc,n(T—(ﬁ)EnE?E—nZgHKgn < C5U_mH§HIC§n,1 7
H€U—2n./\/ls,n(T—g2)£nEAl§£—nO.—3/2£g”K(S’n S C5O_—m€—ylaf2n(7._o.2)”g”K3n7

ler " Aot w2 < Coe™27 "= w]| g2 .

17

Proof. This follows immediately from Lemma 5.2 and estimate (26he Tonstants; can
be chosen independentaf O

In the sequel, we set = C(¢ + ¢) and assume that s sufficiently small so that
(206 +1p < 1/2. (67)

Combining the above Lemmas, we are now ready to give a proanbs on the solution of
(51) in terms of the initial data. Let

Pon = e Dllke, + [10snCs Dz, s pwn = llwnl Dllaz s pgn = laa(1)] -

Proposition 5.8 There existr, > 0 andC7 > 0 such that, for allo € (0, 0¢) and alln > 2,
the following holds. I, ,—1 < C7o™ withm as in Lemma 5.7, ang,, ,,_1 + pgn-1 < C7,
then (51) has a unique solutidfi. ,,, s, Wn, ¢x) € C([0?,1], K5 X KSn x H? x R). In
addition, we havenax (R, ,, Ry») <1, R,, < ¢, and

Rv,n S CBOimpv,n—l + 2030.71/2(}%12)7” + Rv,n + Rw,n) )
Rw,n S CGpw,nfl + (,u + CBUn/2Rv,n)Rw,n ) (68)
Rq,n S pq,nfl + 03 e—VU*2n+2 Rw,n .

Proof. Let U,, = (O, Dsn, Wy, ¢,) @and letX,, = C([o?, 1], K x K2 x H? x R) equipped
with the norm||U, || x, = Ry, + Ruwn + R,n/q. LetalsoB,, be the unit ball inX,,. Given
initial datao. ,,—1 (-, -, 1), Osn—1(-, -, 1), wn—1(-, 1), gn—1(1), the right-hand side of (51) defines
a mapF, : X,, — X,,. From Lemmas 5.5 and 5.7, we know that/jf € B,,, then

IF(U)|lx, < C5(0™ ™ pun-1+ pgn-1/7) + Copwn-1+ (n+ Ca™?)| U] x, -
Similarly, if U,, U,, € B, we find
IF(U,) = F(Un)llx, < (1+Co™?)|Uy = Usllx, -

By (67), we have: < 1/2. If we now assum&o < 5 ando " p, 1+ puwn—1+Pgn-1/7 <
C; for some sufficiently smal”; > 0, we see tha¥),, mapsB,, into itself and is a strict
contraction there. The unique fixed polit is the desired solution and satisfies (68). O
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5.4 lteration and Conclusion

To show that the recursion relation (68) can be iterated ammbmnclude the proof of Theo-
rem 2.8 we need a better control on the critical texm(s,z, 7). For eachn € N, we
decompose the solutian (-, -, 1) into a Gaussian part and a remainder, i.e.

Ven(st,2,1) = AV (se)p(0" s, 2) + (e, ) |

whereA, € Cand¥(x) = e % with d ande(¢, z) from Lemma 3.1. The amplitudé,,
is determined by the conditioh, (0, z) = 0, =z € [0, 2x]. Equivalently,A,, = IIo.,(, -, 1),
wherell : I, , — C is defined by

see (20). Then (51) can be decomposed accordingly and tadkésrn

An — Anfl _'_0-72”1/_\[(]0_12 egfznﬂcyn(lff’)(ﬁgn +7/_Zc7n)(7_l) dT/> ’ (69)

7271//\/1\&”(1702)72”71 (U%a ZC)

Tn(se,x) = €
+ U_analz 6072nMC’"(1_7/) (-/\A[C,n + ﬁc,n)(%a Z, T,) dr’ (70)
+ 60_27%7‘3’"(1_”2)14”_1\1/(U%)go(cr”%, x) — AV () p(o" s, ) .
We also defing,. ,=||7,/xe, +[[0sn (s -, )|k, . By construction we have, ,<C(|A,| +
Prn). OUr main estimate is now:

Proposition 5.9 Under the assumptions of Proposition 5.8, the solution bj atisfies

|An - An—1| S CSO-n/zo-im(|An—1| + pr,n—l + pw,n—l) )
Prn S CSO-pr,nfl + CSJn/QO-_m(‘Anfl‘ + Prn—1 + pw,nfl) )
) (71)
pw,n S (080 + §)pw,n—1 )
G0 — @1 < Cse™ " pynit,

for someCy > 0.

Proof. Since|Ilf| < C|f|
from (69) and (66) that

ke, for someC > 0 independent ofy, it follows immediately

|An - An—1| S Co-n/Z(RU,n + Rw,n) . (72)
Next, sincer,,_1(0,z) = 0, there exist€' > 0 such that
Heo_QnM\C’n(lioj)E'f,nfl”Kgn S CO’”f’nil H’Ccn71 s

see [Sch96, ES02]. This crucial estimate shows that, if sufficiently small, the linear
semigroupcontractsthe remainder term,, which is the reason for subtracting the Gaussian
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part fromd.,,. Moreover, the last line in the right-hand side of (70) carebgmated by
ClA, — A1 + Co" R, ,, see [ESO02]. Summarizing, we obtain

Pr.n S Capr,n—l + Co-n/Q(RU,n + Rw,n) . (73)
On the other hand, it follows from Lemma 5.7 that
leo " Wty gz < Ce™27 0w,y |l < Collwn]|ae

hence
pw,n S Co'pw,nfl + (,u + C3an/2)Rw,n . (74)

Finally,
Vo_—2n+2

|Qn - Qn—1| S C13 e Rw,n . (75)

Now, if we assume that'soy < min(u, 1/8), it follows from (68) that

Ryn < G Pon-1, Ron <2050 pypn1+ Ryn - (76)
: 1—2u P : : :
Inserting these bounds into (72), (73), (74), (75), andgiie fact tha2,.Cg/(1—2p) < 1/2
by (67), we obtain (71). 0
It is now straightforward to conclude the proof of Theore® Eirst, we choose € (0, o)
sufficiently small so thatsoc < ¢%4. Then, we set, = 2m + 2 and take initial data
Veng s Usngs Wng s Gne SUCH that

|Ano| + Prng T Pwne T Pame < 0,

for somed > 0. Remark that, since the original problem is autonomous, \ag without
loss of generality take our initial data at timyg= 02",

As is easy to verify, if > 0 is sufficiently small, the recursion relation (71) impliést

| Ay |+ prntpwntpen < Céforalln > ny. In particular, the assumptions of Proposition 5.8
are satisfied for alh > ny,. Moreover, there exist§y > 0, A, € C, andg, € R such that,
for all n > ny,

0.7277,

1A — Au] + prn < Codo™?, gn — ] < Code™ " pun < 0. (77)

It remains to show that these estimates imply (9) and (10%t,/éombining (77) with (76)
and using the last bound in (66), we obtain

Ry + e " sup |qn(7) —q] < Co, n>ng.

T€[02,1]

If we undo the change of variables (50), we thus find

e (IW (S Ollaz + la(t) —q.l) < Co, t>to,
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which implies (10), see (37). Similarly, remarking that
@c,n<%7 z, T) - A*\I](%\/F)SO(Ov ZC) =
Ve (26,2, 7) — 72" Men(r=0?) (@Cm,l(a%, x,1) = p_q1(03, a:))
+ A, (e"_QnMCv"(T"’Q)\II(a%) - W(%ﬁ)) o(o" s, x)
+ (Ano1 = AV (Gey/T)p(0" 52, 1) + AW (ey/T) (0(0" 50, 1) — (0, 7))

and using (77), (76), (66), (51) and Lemma 3.1, we arrive at

sup ({8l 7) = AW (V)0 )

T€[02,1]

K + 8sn (7] ,an) < Coo" . m>my.

In particular, using (24), we have for all> n,,
1/20™
sup  sup / (36,2, 7) = AT (/) 0, )| (. 2,7)] ) e < C™2.
T€l02,1] 2€[0,27] J —1/20™
If we now undo the changes of variables (50) and (46), we obtai

co

St (78)

/2
sup / \V(l,z,t) — AT (V1) p(0,2)| dl <
} —

z€[0,27 1/2

since [, =V (¢, 2,t) dl = V(z,t) and

-1/2

1/2 ) A )
/ AT (0VE) (0, ) Al = — =T 0 2 4 O

1/2 7 Vardt
we see that (78) implies (9). The proof of Theorem 2.8 is nomulete. O

6 Resultsin casell

In this section, we give the results about existence andlitsyadf modulated fronts in case

Il, namely with F'(u) = 1 — u in (1). Whena crosses zero, the homogeneous steady sate
U, ahead of the front destabilizes and undergoes a Turingdaifian, but the equilibrium

U_ behind the front remains asymptotically stable with sonmeential rate. As explained

in Remark 4.4, we have existence of a modulated front coingetite Turing patterd/
ahead of the front with the trivial solutidi_ behind.

Theorem 6.1 For ¢ > 0 sufficiently small, there exist a modulated front solutidrf3) of
the form
U(x,t) =Upt(z —ct,x), ze€R, teR,

whereU,; (&, ) is 2m-periodic in its second argument ard= ¢, + O(¢?). Moreover, there
exist positive constants, ;, 5, (independent of) such that

sup |Unme(§,7) — Upn(§)| < Ce,

&,xeR
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and

Ut (€, 7) = Ude (W2 0,2mp2 < Ce™™, €20,
U (&, ) — U—||(mr20,2m)2 < Ce™*, £<0.

Remark that, in contrast with Theorem 2.6, the convergeaiteeafU,,¢ (¢, ) towardsU_ as
¢ — —oo is independent of.

Proving the nonlinear stability of the modulated front isaheasier here than in case I

Theorem 6.2 If 8 € (0, 5y) ande > 0 is sufficiently small, there exist positive constafifs
v, 6 such that the following holds. For all; : R — R2 with || V;(z)(1 + ¢%)|| 5> < 4, there
exists a unique global solutidii(z, t) of (3) with initial datal (z,0) = Up¢(x, ) + Vo ().
Moreover, there exists a shift functign R, — R and a real constang, such thatl/(z,t)
can be represented as

U(l‘,t) = mf(x—ct—q(t),x)+V(x,t), $€R,t207
where

sup [V (z, )| +sup [V (§ + et 1)e™ | + |q(t) — q.] < Ce™, t>0. (79)
zeR £eR

Proof. We proceed exactly as in section 5.1. Setting
U(x,t) = Ups(x —ct —q(t),z) + V(x,t), and W( t) = V(€4 ct,t)e
we obtain equation (36) fdr and (39) forl} andq. However, we replace (40) with
YV = L(0,)V + DN(U_)V + Ny(U_, V) + G0, Upng + G(Upg — U_, V) .

In contrast with the previous case, the spectrum of thellioparatorC = L(0,)+ DN (U-)
is strictly contained in the left-half plane. In additiohwie assume that < 3 < 3, (where
(5 is defined in Theorem 6.1), we have

?IIIR? 1 Ume(§ = q(t), ) — U-|lz2(0,27) e < C.
S

Thus, proceeding as in (41), we find
|G(Uns = U_,V)[lm2 < ClIW[g2(1+ [V][52) ,
for someC > 0. Summarizing, the evolution system figr IV, ¢ has the form
OV =LV +0O(V?)+0(q) + OW),
oW = AgW + O((e+|¢)W) + O(VW) , (80)
¢ = O((e+lgh)W) + O(VW) .

By construction, there exists > 0 such that|e“!V || g2 < Ce ||V || 2 and||e*' W || g2 <
Ce "Y||W || = for all t > 0. Therefore, if= > 0 is small enough and if the initial data satisfy
IV (-,0)||z2 + [W(-,0)|lz= + |q(0)] < & for some sufficiently smalf > 0, it is clear that
(80) has a global solution iff? x H? x R. Moreover, there existg. € R such that

IV C Oz + IV D)l + la(t) — q.] < Ce™

ast — +oo. This concludes the proof. O
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7 Numerical smulations

Using numerical simulations, we illustrate the resultsifreection 2 concerning modulated
fronts, and, for a different model, the existence and stglof modulated pulses. These
computer experiments give the impression that the asasmibTheorem 2.6 and 2.8 are also
true fore andé not necessarily small, i.e. the existence and stability oflutated structures
also holds for non-small values of the bifurcation paramatel non-small perturbations.

7.1 Modulated fronts

To solve (5) numerically we subtract the (unmodulated) tfrofy) = tanh(y/2) from w,
i.e, we setu = h. + w and integrate the resulting system far, v) using finite differences,
periodic boundary conditions on the large domaia (—607, 607) (See Remark 7.1 below),
and implicit time stepping. The parameters= 0.5 and¢, = 0.5 are kept fixed. We
start with rather generic initial conditions and calculdte (discretized) modulated fronts
dynamically which of course is only possible if they are &glbor the discretized system).

Figure 4 shows the evolution towards a modulated frontfer 0.1 and initial conditions
(w,v)]4=0 = (1/cosh(y),0.01sin(y)). The hump inw|,—o is transformed into a shift in

u = h + w rather quick. The transient time in which essentially) reaches its proper
amplitudeO(e) and then couples back into theequation to produce the modulating pulse
is about 50 units. Convergence of the solution to the moddlabnt with similar transient
behavior was observed for more rather generic initial con. Starting with initial condi-
tions (w, v)|i=0 = (1/cosh(y),0.3sin(y)) we get a much shorter transient. We can also,
for instance, add)(1) humps away fromy = 0 to (w, v)|,—¢. These get damped out very
quickly.

f
i

Mo/l o

\
i

it

Figure 4: Evolution towards a modulated froat= 0.1.

Figure 5 shows snapshots of the solutions at some fixed timés a) ¢ = 80 with the
solution from fig.4) withn = 0.1 the different amplitudes of the periodic patterng at +-50
are clearly visible. In order to display the different decatges to the periodic patterns ahead
of and behind the front we take a smalter= 0.01; b) shows the modulated front, and c),d)
the functionsw = u,,s — tanh(y/2) andv. The effect of—yvF'(h. + w) is that the Turing
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pattern inv gets damped while passing through the modulated fronteh tonverges with
rateO(e~©©)l) to the Turing pattern in the recovery zone behind the front.

a) a=0.1u b) a=0.01,u
‘ : : ) ‘

1 ‘
-50 o 50 -100 0 100

c) «=0.01,u— tanh(y/2) d a=0.01,v
0.1
0.01
0
-0.01
0
-100 0 100 -100 0 100

Figure 5. Snapshots of modulated fronts.

Remark 7.1 There is a conceptual problem with periodic boundary caodg, in particu-
lar for very smalle > 0. Strictly speaking, on any finite domain with periodic boayd
conditions there is no "ahead and behind the front”. To miraethis effect we chose a large
domain, and see that at the center of mass, gay (—50, 50) the analytically predicted
dynamics of the modulated front are nicely recovered. Uswan larger domains it can be
checked that the influence of the boundary conditions neacéhter is indeed very small.

Finally, we illustrate what happens in case lll witi{u) = 1 + u. As an example of the
typical evolution of the unstable front, fig.6 shows, y) — tanh(y/2), i.e., theu component
of the perturbation of the front in the comoving frame, with= 0.01.

7.2 Modulated pulses

In order to obtain an example with modulated pulses we coapien symmetric complex
Ginzburg-Landau equation (nsGLe) with a Swift-Hohenbétg €quation. The nsGLe for
the complex fieldA(z, t) € C reads

6,514 = ClagA — (Ozo + iVQ)A + Ole + 41|A|2A (81)

wherec; = ¢y, + ic;; € C andag, a1,y € R are parameters withy, > «; > 0 and in
particulard < ¢y, ag, a1 < 1. Thus, the nsGLe is a dissipative perturbation of the nealin
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u(t,y) — tanh(y/2)
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Figure 6: Typical evolution in case IlI; the homogenous state behind the front is unstable,
and a Turing pattern develops behind the front. Howeverfrin@ travels away from the
pattern, and the resulting solution is not time periodicng eomoving frame.

Schrodinger equation, where due to the terpl the usualS'-symmetryA — ¢ A is
broken. It arises for instance as a modulation equationgtcal fibers with phase-sensitive
amplifiers, see [KK96] and the references therein, or fosigetive systems with a resonant
spatially periodic forcing [UecO1]. For suitable paramstihe nsGLe has an exponentially
stable one parameter fami{yd,.(- — zo) : zo € R} of pulse solutions. See [KS98] for this
result and a comprehensive discussion of the nsGLec et 0 the pulse is explicitly given

Apu(x) = V/bysech(y/bax)el?,

82
COS(2’19) = Ozo/Ozl, bg = (1/0 + o Sin(2’l9))/012‘, b1 = Clib2/2. ( )

For smallc;, > 0 this pulse persists, and the spectrum of the linearizati¢@1) aboutA,,,
is as follows. The continuous spectrum is given by the tweesir

)\172(]{3) = —Qg — Clrk’Q + i\/(Ch‘k’Q + 1/0)2 — Oz%.

Moreover, we obtain one simple eigenvalu&om the translational invariance and the rest
of the discrete spectrum, consisting of 5 more simple eiglei®s, is in the left complex half
plane, see [KS98].

We now couple the nsGLe fot = u; + iuy with the SHe forw € R, i.e. we consider

o,U = LU + N(U) (83)

whereU = (u1(z,t), us(z,t),v(z,t)) € R,

a1 — ag + 1,02 — 0y —c1;02 + v 1
cliﬁi — 1) —(Oél + Oéo) + clr&% — Coam 0 5
0 0 —(14+ 0%+ ay

NU) = (—4ful?us, 4lul?ur, =0 + pourv)’,  Jul? = u? + u,
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and wherey, a1, vy andc; are fixed in such a way that the nsGLe has a stable pulse sulutio
We useu; » € R as coupling parameters and as the bifurcation parameter. Moreover we
seth(&) = (u1(§),ua(€)) € R?, € = x — cot, Whereuy (x) + iug(z) = Apy(z) is the pulse
solution of the nsGLe.

Using the spectral properties of,, and settingu, = 0 it is clear that the analogue of
Theorem 2.1 holds for (83), i.e., that fay, < 0 the pulse(h,0) is exponentially stable.
Moreover, numerical simulations of the nsGLe reveal thed &r smallc;,, > 0 the pulse
Ay fulfills ReApu(z) = ui(xz) > 0 for all x € R. Using this, we can conclude as in the
proof of Theorem 2.1 that fax, < 0 the linearization of (83) aroungh, 0) has spectrum in
the left complex half-plane for all, < 0, and in fact even fob < p» < p. for a sufficiently
smallu, = p.(as) > 0. Hence we have roughly the same starting point for a bifionat
analysis for (83) as for (1), and may expect modulated putsbgurcate foras > 0.

This is now illustrated by numerical simulations of (83), ewt we fiX (ag, a, 19, ¢1) =
(0.6,0.8,1,0.1410i), ¢co = 1 andu; = 1, and integrate (83) in the moving frame= = — ¢,
again on the large domaie (—60m, 607) with periodic boundary conditions. In order to
obtain nice graphs, the valug = 10 has been chosen relatively large so that the pulse has
a width larger than the peridtir of periodic pattern.

a)py = —1 b) ps = 1

03 wie) | | w)

-100 -50 0 50 100 -100 -50 0 50 100

0.05 1
v(§)
0
-0.05 ) ) ) R ) ) )
-100 -50 0 50 100 -100 -50 0 50 100
Figure 7:u, andv for a modulated pulse, = 0.05. @) = —1,b) s = 1
In the first simulation we letv, = £ = 0.0025 andu, = —1. Again we choose a small

e = 0.05 in order to resolve the different convergence rates aheddehind the pulse.
We start with an approximation @f,,, in the formu, (¢, 0) + iu2(&,0) = A,u(€) with A,
from (82) andv(§) = e cos(§). The solution converges quickly to a modulated pulsg,
which illustrates the stability of the modulated pulses.fiture 7a) we showi,(t = 50)
ando(t = 50) for £ € (=100, 100), i.e., roughly half the computational domain; cf. Remark
7.1. The first component; is similar tou, butmax u; (&, t) ~ 1 so thatu, is more eligible
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for graphical purposes. The effect @f = —1 is that the Turing pattern gets damped while
passing through the pulse, with &{e~°©)vl) convergence to the Turing pattern behind the
pulse.

For s = 1 we get the converse effect, see figure 7b). The pattern ggttfiach while
passing through the pulse and decays to amplitQde) in the recovery zone behind the
pulse. Note however that this is now also a nonlinear efféth® damping—v?3 in the v
equation.

Finally, in figure 8 we present snapshots@&andv from a numerical simulation with=0.9,
o= — 1 and the remaining parameters as above. The convergence petiodic pattern
is equally fast ahead and behind the pulse. We remark thaencaily we could produce
stable modulated pulség, , up toe ~ 2. This works most easily by continuationdni.e., by
slowly increasing, integrating and waiting until the solution settledtg,, then increasing

¢ again. For > 2 this breaks down and the solution disintegrates into waaekqts.

0.9

0.6

03t

-40 -20 0 20 40 -40 -20 0 20 40

Figure 8:u; andv for a modulated pulsgy,, = —1,¢ = 0.9
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