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Université de Grenoble I
BP 74

38402 Saint-Martin d’Hères

France

C. Eugene Wayne
Department of Mathematics

and Center for BioDynamics
Boston University

111 Cummington St.

Boston, MA 02215, USA

June 1, 2005

1 Introduction

Understanding the long-time evolution of fluid motions is facilitated by studying the coherent
structures of the flow. From an experimental perspective this has long been recognized since
visualizations of complicated flows often exhibit very obvious structures. Some of the most
commonly observed structures are vortices. These vortices may appear initially through
some instability in an underlying steady flow and then persist even after the flow becomes
turbulent.

From a mathematical point of view, identifying simple, persistent features of the solutions
of the equations describing fluid motions can also facilitate their analysis. These features
might be the vortex solutions themselves, though we’ll see that it is sometimes also possible
and useful to focus on more abstract structures such as invariant manifolds in the phase
space of the equations. Since fluid systems are governed by partial differential equations
(which means that their phase space is infinite dimensional) it is particularly useful if one
can identify finite dimensional invariant manifolds since this has the potential to greatly
simplify the problem.

In this article, which reviews results previously obtained in [2], [3] [5], [4] and [6], we show
that these two points of view can often be combined to yield fairly detailed insights into
the solutions of the Navier-Stokes equation. In particular, in two dimensions this leads to
a description of the long-time behavior of all solutions whose initial vorticity is integrable.
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Figure 1: Plots of the iso-vorticity contours in a numerical simulation of a two-dimensional
turbulent flow as a function of time. (Reprint of Figure 3 with permission from W. H.
Matthaeus, et al. Phys. Rev. Lett., vol. 66, 2731 (1991), Copyright (1991) by the American
Physical Society.)[9]

In three dimensions the resulting picture is necessarily much less complete but even there
we will see that it gives a better understanding of both the existence and stability of the
Burgers vortex and its variants.

The difference between two and three dimensions is not merely that the mathematical analy-
sis is more difficult in three dimensions but reflects differences in the underlying physics. For
instance, in two dimensions turbulent fluids undergo a so-called ”inverse cascade” whereby
energy flows from small scale motions to larger scales. This phenomenon is quite evident in
numerical simulations of two-dimensional flows (Like that in Figure 1) where one observes
that small scale structures originally present in the flow gradually coalesce into a smaller
and smaller number of larger and larger features.

As an anonymous author poetically put it1:

When little whirls meet little whirls,
they show a strong affection;
elope, or form a bigger whirl,
and so on by advection.

1Quoted without attribution on http://www.fluid.tue.nl/WDY/vort/2Dturb/2Dturb.html
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Figure 2: Plots of vorticity contours in a numerical simulation of a three-dimensional tur-
bulent flow showing the presence of vortex tubes in the flow. (Reprint of Figure 6 with
permission from Jimenez, et al. J. Fluid Mech. vol. 255, p. 65 (1993) Copyright (1993) by
the Cambridge University Press.)[7]

In three dimensions on the other hand, energy typically flows from large scale structures
to smaller and smaller scales until is is dissipated by viscosity. However, the vorticity of
turbulent three-dimensional flows is not distributed randomly throughout the flow but tends
to be organized in tubular structures. Figure 2 illustrates these tubes and also shows that
they are roughly elliptical in cross-section.

What is not obvious from this ”snapshot” of the fluid at one instant in time is that these
tubes persist in the fluid. They are advected about by the background flow but they display
a remarkable stability in their form for relatively long periods of time. This fact is quite
striking if one looks at animations of three-dimensional turbulent flows. The prominence
of these vortex tubes led to them being referred to as the “sinews of turbulence” in the
memorable phase of [11] and since shortly after the discovery by Burgers [1] of the explicit
vortex solutions of the three-dimensional Navier-Stokes equation which now bear his name,
these solutions have been used to quantitatively model various aspects of turbulent flows
[15].

2 The Navier-Stokes equations

The motion of an incompressible, viscous fluid is described by the Navier-Stokes equations,
a system of nonlinear partial differential equations for the fluid velocity u(x, t) and pressure
p(x, t). Depending on the context x and u are vectors in either R2 or R3. These equations
take the form

∂u

∂t
+ (u · ∇)u = ν∆u − 1

ρ
∇p , ∇ · u = 0 .
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Here, ν is the kinematic viscosity of the fluid and ρ its (constant) density.

The first of these equations is basically Newton’s Law – the terms ∂u

∂t
+ (u · ∇)u represent

the acceleration of the fluid, while the terms on the right are the forces acting on it – the
first term the internal frictional forces in the fluid and the second the pressure forces. The
second equation just enforces the fact that the fluid is incompressible. We will study flows in
unbounded domains – either R

2 or R
3 and thus by rescaling the spatial variable as x → x/

√
ν

we can assume without loss of generality that the viscosity is equal to one which we do from
now on. Our goal in what follows is to understand the long-time behavior of solutions of these
equations. More precisely, given the initial state of the fluid, we will attempt to characterize
the behavior of the resulting solution as t becomes large. In two dimensions we will find that
we can characterize this asymptotic behavior for essentially any initial conditions, while in
three dimensions we will be restricted to consider initial conditions which are either small in
norm or close to a vortex solution.

3 Two-dimensional flows

We’ll begin by focusing on the motion of two-dimensional fluids, including possibly turbulent
motions. Although, we live in a three-dimensional world, many phenomena occur in regions
in which one dimension is much smaller than the other two and my therefore be treated as
essentially two-dimensional – for instance, the behavior of the atmosphere on large scales
may for many purposes be treated as two-dimensional.

To study the long-time behavior of solutions of the Navier-Stokes equation in R2 or R3 it is
convenient to work with the vorticity of the fluid rather than directly with the velocity. This
is particularly true in two dimensions where the vorticity can be treated as a scalar. Roughly
speaking, the vorticity describes how much “swirl” there is in the fluid. Mathematically, it
is defined as the curl of the velocity:

ω = ∇× u = (0, 0, ∂1u2 − ∂2u1) .

If we let ω denote the one non-zero component of the vorticity, then taking the curl of the
Navier-Stokes equation we find:

∂tω + (u · ∇)ω = ∆ω .

One problem with the vorticity formulation of the Navier-Stokes equation is that the fluid
velocity still appears in the nonlinear term. However, we can recover the velocity given the
vorticity via the Biot-Savart law:

u(x) =
1

2π

∫

R2

(x − y)⊥

|x − y|2 ω(y)dy , x ∈ R
2 .
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Here and in the sequel, if x = (x1, x2) ∈ R
2, we denote x⊥ = (−x2, x1)

T.

Note that this means that the non-linear term is still quadratic (in the vorticity) but now
nonlocal. The velocity field constructed via the Biot-Savart law is automatically divergence
free, so if we can solve the vorticity equation the corresponding solution of the Navier-Stokes
equation can be reconstructed using the Biot-Savart law.

The mathematical study of the vorticity equation requires fairly detailed estimates which
relate the decay and smoothness properties of the velocity field to those of the vorticity. We
will not go into those details in this review but a number of such estimates are collected in
Appendix B of [2].

The numerical experiments on two-dimensional flows illustrated in Figure 1 indicate that
vortex solutions play an important role in the long-time asymptotics of the solutions. There
exists a family of explicit vortex solutions of the 2D Navier-Stokes equations known as the
Oseen vortices,

Ωα(x, t) =
α

4π(t + 1)
e−

x2

4(1+t) , (1)

with the associated velocity field

vα(x, t) =
α

2π

e−
x2

4(1+t) − 1

|x|2
(

x2

−x1

)

. (2)

Because of the normalization of the Gaussian, we see that
∫

R2 Ωα(x, t)dx = α, so α measures
the total circulation of the vortex. Note too that the formula for the Oseen vortices shows
that the spatial size of the vortex increases with time (like

√
t ). This is consistent with

the simulations mentioned above and suggests that the analysis of these vortices may be
more natural in rescaled coordinates. With this in mind we introduce “scaling variables” or
“similarity variables”:

ξ =
x√

1 + t
, τ = log(1 + t) .

We also rescale the dependent variables. If ω(x, t) is a solution of the vorticity equation and
if u(x, t) is the corresponding velocity field, we introduce new functions w(ξ, τ), v(ξ, τ) by

ω(x, t) =
1

1 + t
w(

x√
1 + t

, log(1 + t)) ,

and analogously for u:

u(x, t) =
1√

1 + t
v(

x√
1 + t

, log(1 + t)) .

In terms of these new variables the vorticity equation becomes
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∂τw = Lw − (v · ∇ξ)w , (3)

where

Lw = ∆ξw +
1

2
ξ · ∇ξw + w .

We note that the new variables were chosen in such a way that v is still related to w via the
Biot-Savart law. Also, in terms of these variables the Oseen vortices take the form

W α(ξ, τ) ≡ αG(ξ) ≡ α

4π
e−

ξ2

4 ,

Thus, they are fixed points of the vorticity equation in this formulation.

With this observation it is very natural to ask if these fixed points are stable. In fact, they
are actually globally stable. That is, any solution of the two-dimensional vorticity equation
whose initial vorticity is integrable will approach one of these Oseen vortices.

The proof of this result is based on the construction of a pair of Lyapunov functionals
for the two-dimensional vorticity equation. However, we also were able to give a more
detailed analysis of the behavior of solutions near one of the Oseen vortices by studying
the linearization of the vorticity equation about a vortex and we begin by describing that
analysis.

3.1 Local Stability

We begin with the linearization about the vortex solution. Linearizing about the vortex αG
the equation takes the form:

∂τw = Lw − αΛw , (4)

where

Lw = ∆w +
1

2
ξ · ∇w + w , (5)

and
Λw = VG · ∇w + v · ∇G . (6)

In this last expression VG is the velocity field associated via the Biot-Savart law with the
Gaussian vorticity, G, and v is the velocity field associated with w via the Biot–Savart law.

3.1.1 The operator L

In order to determine the local stability of the Oseen vortices we need to compute the
spectrum of the operator L − αΛ. The analysis of the operator L is facilitated by the
observation that it is can be rewritten as the quantum mechanical harmonic oscillator.
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Figure 3: The spectrum of the operator L on the space L2(m) with eigenvalues at the non-
positive half integers and a half plane of essential spectrum. (In the illustration, m = 4.)

In order to compute the spectrum we must specify precisely what function spaces we are
working on. For our purposes, square integrable functions with some decay at large distances
are appropriate and thus we define:

L2(m) = {f ∈ L2(R2) | ‖f‖m < ∞} ,

where

‖f‖m =

(
∫

R2

(1 + |ξ|2)m|f(ξ)|2dξ

)1/2

.

In these spaces, the spectrum of L consists of two pieces:

• Eigenvalues σd = {−k
2
| k = 0, 1, 2, . . .},

• Essential spectrum σc = {λ ∈ C | <λ ≤ −(m−1
2

)}.

For the details of this calculation we refer the reader to Appendix A of [2], but remark
that the basic idea is that if one rewrites the eigenvalue equation for L in Fourier transform
variables one can solve the resulting partial differential equation explicitly and imposing
the condition that the resulting solution lies in the spaces L2(m) results in the spectrum
above. In particular, this calculation shows that all of the isolated eigenvalues are of finite
multiplicity.
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If we think of this spectral picture in terms of dynamical systems theory we expect that
we should be able to construct finite dimensional invariant manifolds tangent at the origin
to the eigenspaces of the isolated eigenvalues, at least if we can ignore the effects of the
additional term αΛ in (4). For solutions whose total initial vorticity is small one can show
that this term is a small perturbation of L and in [2] we proved that the intuition provided
by dynamical systems theory is correct in the sense that one has:

Theorem 1 Fix k ∈ N and m > k + 2. Then in a sufficiently small neighborhood of the
origin in L2(m) there exists a submanifold that is invariant with respect to the semiflow
defined by (3). This manifold is tangent at the origin to the spectral subspaces corresponding
to the eigenvalues λ = −j/2 , j = 0, 1, 2 . . . , k. Furthermore, any solution of (3) in this
neighborhood of the origin either lies on this invariant manifold or approaches the manifold
at a rate O(t−µ) for some µ > k/2.

Thus, if we fix in advance some decay rate O(t−µ) up to which we wish to compute the
asymtotics of the solutions this theorem shows that at least for small solutions (or, as we
show in [2], for any solution of finite energy) the asymptotic behavior up to this order is
governed by the behavior of the solutions on a finite dimensional invariant manifold. Since the
evolution of solutions on this manifold can be computed as solutions of a finite dimensional
system of ordinary differential equations this means we have reduced the task of computing
the asymptotic behavior of (small) solutions of the Navier-Stokes equations to the task of
analyzing the behavior of solutions of ordinary differential equations – a much easier job.
Using this approach we showed:

• One could systematically compute the asymptotics of solutions of the Navier-Stokes
equation. This lead to phenomena which to the best of our knowledge had not been
observed before such as the appearance of logarithmic terms in the asymptotic expan-
sion.

• One could give a geometrical interpretation of analytical conditions previously derived
by Miyakawa and Schonbek, [10] on the optimal decay rate of solutions of the Navier-
Stokes equation. From this dynamical systems perspective, the conditions on moments
of the solution that Miyakawa and Schonbek derived are an analytical representation of
the fact that the initial conditions of the solution lie on particular invariant manifolds
in the phase space of the equation.

• One can also extend these methods to small solutions of the three-dimensional Navier-
Stokes equation [3].

3.1.2 The operator Λ

While the results described above give very precise information about solutions near the
origin if we want a more global view of the behavior of solutions of these equations we
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must include the effects of the term αΛ in (4). As mentioned above α describes the total
circulation of the vortex. Thus, if we are looking at perturbations of “strong” vortices this
term could at least formally be larger than L. However, the effects of Λ are “localized” in the
sense that the first term in (6) contains a factor of VG while the second contains the factor
∇G, both of which go to zero as |ξ| → ∞. This allows one to show that αΛ is a relatively
compact perturbation of L, regardless of how large α is and thus, the essential spectrum of
L − αΛ is the same as that of L, namely, σc = {λ ∈ C | <λ ≤ −(m−1

2
)}, regardless of the

size of α. Thus, the only way that αΛ can cause a vortex to become unstable is if one of the
eigenvalues is “pushed” into the right half plane.

To analyze the behavior of the eigenvalues of L − αΛ recall the earlier remark that L is
equivalent to the Hamiltonian operator of the quantum mechanical harmonic oscillator. This
fact is more obvious if we consider the action of L not on the Hilbert space L2(m), but rather
on the space

X =
{

w ∈ L2(R2)
∣

∣

∣
G−1/2w ∈ L2(R2)

}

,

equipped with the scalar product

(w1, w2)X =

∫

R2

1

G(ξ)
w̄1(ξ)w2(ξ)dξ .

We also introduce the closed subspace X0 defined by

X0 =
{

w ∈ X
∣

∣

∣

∫

R2

w(ξ)dξ = 0
}

.

One can show that all the eigenfunctions outside of the essential spectrum of L − αΛ lie in
this Hilbert space. If we conjugate the operator L with the Gaussian weight function we
find:

L = G−1/2LG1/2 = ∆ − |ξ|2
16

+
1

2
.

But this is just the usual representation of the quantum mechanical harmonic oscillator’s
Hamiltonian operator and using well known facts about this operator one can show without
difficulty that:

• The linear operator L is self-adjoint in X, and L ≤ 0.

• L ≤ −1/2 on X0.

One can show by explicit computation that 0 is an eigenvalue of the combined operator
L − αΛ for all α, with eigenfunction the Gaussian, G and that the projection onto this
eigenspace just consists of multiplying by 1 and integrating over all of R2. (This eigenvalue
corresponds to the fact that the vorticity equation conserves total circulation.) Thus, if we
focus now on the non-zero eigenvalues of L − αΛ it suffices to restrict our attention to the
Hilbert space X0 of functions with zero average.
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One can now prove by repeated integration by parts (see [5] for details) that the linear
operator Λ is skew-symmetric on X0.

Now we can demonstrate the local stability of the Oseen vortices for any value of α. Suppose
that λ is a non-zero eigenvalue of L − αΛ in L2(m), with <(λ) > 1−m

2
. Let w be the

corresponding eigenfunction – i.e assume (L−αΛ)w = λw. Note that by the remark above,
w ∈ X0. Then

λ(w, w)X = (w,Lw)X − α(w, Λw)X ,

and hence

<(λ)(w, w)X = (w,Lw)X ≤ −1

2
(w, w)X ,

since Λ is skew-symmetric and L ≤ −1/2 on X0. Thus, <(λ) ≤ −1/2.

Note that since we have rescaled all physical parameters like the viscosity to be equal to
1 in our equation, the parameter α can be thought of as the Reynolds number for this
solution and we see that this result says that all the non-zero eigenvalues of the linearization
of the vorticity equation around the Oseen vortex lie in the left half plane, regardless of
how large the Reynolds number is. This should be contrasted with the behavior of other
two-dimensional flows like the plane Poiseuille flow in which increasing the Reynolds number
has a destabilizing effect on the flow.

3.2 Global Stability

While the previous results about the linearization about the Oseen vortex can be used to
prove the local stability of the vortex solutions if we want more global stability results we
must use other methods, namely Lyapunov functionals. In [5] we developed two Lyapunov
functionals to prove that the Oseen vortices are not only locally but also globally stable.

The first of these functionals is motivated by the observation that the two-dimensional
vorticity equation is a nonlinear version of the heat equation and recalling that the heat
equation (and also the vorticity equation) satisfy a maximum principle. Decomposing the
solution of (3) into its positive and negative parts and applying the maximum principle to
each piece of the solution one sees that the function

Φ1[w](τ) =

∫

R2

|w(ξ, τ)|dξ

is a Lyapunov function for (3), namely it is monotonic non-increasing along solutions of this
equation and in fact is strictly decreasing except on solutions which are either everywhere
non-negative or everywhere non-positive. This last fact implies (by way of the LaSalle
invariance principle) that the ω-limit set of any solution, that is the function or functions
which determine its long-time behavior, must either be the zero function (which can occur
only if the total vorticity of the initial condition is zero) or be strictly positive or strictly
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negative. For the remainder of this section we assume without loss of generality that the
ω-limit set is strictly positive.

To determine precisely what positive function, or functions we approach we draw inspiration
for our second Lyapunov functional from the kinetic theory of gases. There one also is
searching for convergence to a Gaussian distribution of velocities, much as we are searching
for convergence to a Gaussian distribution of vorticity and in kinetic theory the relative
entropy function has been an extremely powerful and useful tool [16]. Motivated by this
example we define our second Lyapunov functional to be

Φ2[w](τ) =

∫

R2

w(ξ, τ) log

(

w(ξ, τ)

G(ξ)

)

dξ .

If we now compute the time derivative of Φ2 we find that

d

dτ
Φ2[w](τ) = −

∫

R2

w(ξ, τ)|∇ log
w(ξ, τ)

G(ξ)
|2dξ ≤ 0 .

Furthermore, d
dτ

Φ2[w](τ) is strictly less than zero unless the solution w(ξ, τ) is proportional
to the Gaussian. Thus, appealing again to the LaSalle Principle, we see that the ω-limit
set of this solution must coincide with the a multiple of the Gaussian – i.e. as time goes to
infinity, the vorticity of the solution will approach one of the Oseen vortices.

In fact, to make the above argument mathematically rigorous requires a certain amount of
additional work, but the two essential ideas are as above, namely one first uses the Lyapunov
functional based on the maximum principle to conclude that the limiting behavior of any
solution lies in the set of solutions with all one sign, and then uses the relative entropy
function to conclude that any solution that is everywhere positive (or everywhere negative)
will approach one of the Oseen vortices. More precisely, one can conclude:

Theorem 2 If ω0 ∈ L1(R2), with α =
∫

R2 ω0(x)dx, the two-dimensional vorticity equation
has a unique solution with initial condition ω0. This solution satisfies

lim
t→∞

t1−
1
p |ω(·, t) − α

t
G(

x√
t
)|Lp = 0 ,

for 1 ≤ p ≤ ∞.

One can draw a number of corollaries from this theorem – for instance, it implies that the only
self similar solutions of the the two-dimensional Navier-Stokes equation with integrable vor-
ticity are the Oseen vortices. Furthermore, we had mentioned earlier that the Oseen vortices
remain locally stable for any Reynolds number, in contrast to many other two-dimensional
flows, and from this theorem we see that this remains true even if the perturbations we
consider are no longer small perturbations of the vortices.
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4 Three-dimensional flows

In three dimensions one cannot, of course, hope for as complete a picture of the long-time
behavior of all flows as we obtained in two dimensions. For small initial data, one can again
construct finite dimensional invariant manifolds which describe the long-time asymptotics
of the solutions, just as in two dimensions [3]. However, for large initial data no such
description exists – indeed, the question of whether or not solutions with arbitrary smooth
initial velocity fields remain smooth for all time is one of the Clay Mathematics Institute’s
million dollar ”Millennium Prize Problems”. Nonetheless, it has been realized for some time
on the basis of both numerical and experimental studies that vortices play an important role
in understanding turbulent fluid motions. The difference between the behavior of two and
three-dimensional flows is due to a difference in the form of the vorticity equation in the two
cases. If one again computes the equation for the evolution of the vorticity by taking the
curl of the Navier-Stokes equation one finds that the (vector) vorticity evolves according to
the equation:

∂tω + (u · ∇)ω − (ω · ∇)u = ∆ω .

We have again rescaled lengths here so that the kinematic viscosity ν = 1. The additional
nonlinear term in this equation allows the velocity field to ”amplify” the vorticity and is
known as the ”vorticity stretching” term.

If one examines numerical simulations of turbulent solutions of this equation one observes
that the vorticity of the flow tends to be concentrated in long, roughly cylindrical, tubes2.
Closer examination shows that these tubes:

• Have a relatively stable shape as they evolve.

• Are not quite circular in cross section.

In particular, note that in marked contrast to the Oseen vortices that occur in two-dimensional
flows these vortices these vortices do not “spread out”, but remain roughly constant in di-
ameter. This is possible in three dimensions because of a balance between amplification
due to the vortex stretching term and the diffusive spreading due to viscosity. An explicit
example of such a stationary vortex solution is the Burgers vortex, an exact solution of the
Navier-Stokes equation that is a superposition of a background strain field with a swirling
motion in the plane perpendicular to the strain axis. The velocity field of the Burgers vortex
has the form:

U(x1, x2, x3) =





−1
2
x1

−1
2
x2

x3



 + α





u1(x1, x2)
u2(x1, x2)

0



 , (7)

where the components u1 and u2 of the velocity are exactly the same as those of the Oseen
vortex in rescaled coordinates. Note that in this case they do not spread with time.

2A nice, animated example of such numerics due to Prof. L. Collins’ research group can be seen at

http://gears.aset.psu.edu/viz/services/projectlist/lance collins/
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The vorticity of the Burgers vortex has only a single non-zero component, and this component
is a Gaussian, just as in the case of the Oseen vortex.

Ω(x1, x2, x3; α) = α





0
0

G(x1, x2)



 , where G = ∂1u2 − ∂2u1 .

Note that background strain field in Burgers vortex is irrotational, so the components u1

and u2 can be recovered from the vorticity of the solution via the Biot-Savart law.

Note further that there is a family of vortices, parameterized by the total circulation α.
We will see below that in the non-symmetric case we will also find families of vortices
parameterized by the total circulation but in that case, the families will no longer consist of
multiples of a single function as is true of these classical Burgers vortices.

This connection between the Oseen vortex and the Burgers vortex is an example of a
remarkable connection between two and three-dimensional flows discovered by Lundgren,
[8]. Namely, if ω(x1, x2, t) is a solution of the two-dimensional vorticity equation and if
S(t) = exp(

∫ t

0
γ(τ)dτ), then

Ω(x1, x2, x3, t) =





0
0

S(t)ω(
√

S(t)x1,
√

S(t)x2, (
∫ t

0
S(t′)dt′))





is a solution of the three-dimensional vorticity equation in a time-dependent background
strain field

us(x1, x2, x3, t) =





−γ(t)
2

x1

−γ(t)
2

x2

γ(t)x3



 .

Lundgren used this relationship to extend prior work of Townsend [15] which used random
distributions of Burgers vortices to quantitatively, but non-rigorously, model turbulent flows.
We will use it to transfer our understanding of the stability of Oseen vortices to questions
about perturbations of Burgers vortices.

The fact that the vortices observed in numerical studies of turbulent three-dimensional fluids
were not cylindrical as Burgers vortices are lead to a number of studies of perturbations of
these explicit solutions. Among the many studies we note particularly those of:

• Robinson and Saffman, [13] who introduced asymmetric vortices as more realistic mod-
els for the vortices which appear in turbulent flows. These are vortices in which neither
the strain field nor the vorticity of the vortex are axisymmetric. Robinson and Saffman:

– Constructed perturbative approximations to these vortices for small Reynolds
number and asymmetry parameter.
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– Conducted numerical investigations of their existence up to Reynolds number of
about 100.

• Moffatt, Kida and Ohkitani, [11] developed formal asymptotic expansions for the vor-
ticity field of these non-axisymmetric Burgers vortices for large Reynolds number.

• Prochazka and Pullin, [12] studied numerically the stability of these solutions with
respect to two-dimensional perturbations in the plane transverse to the strain axis.
They found that numerically the vortices were stable with respect to such perturbations
for all values of the Reynolds number and for all values of the asymmetry parameter
(which we define below) between zero and one.

With the aid of the results described in Section 3, and their extensions, along with the
relationship between two and three-dimensional flows encapsulated in the Lundgren trans-
formation we have recently shown ([4], [6]) how several aspects of this theory can be made
rigorous.

We begin by discussing the existence of non-symmetric, Burgers vortices. Instead of con-
sidering a symmetric background strain field like that of the Burgers vortex, we consider a
background field

us(x1, x2, x3) =





−1
2
(1 + λ)x1

−1
2
(1 − λ)x2

x3



 , (8)

where the asymmetry parameter λ ∈ [0, 1). We assume that the swirling part of the flow,
superimposed on this background strain, has only the first two components of its velocity
non-zero and that these two components depend only on x1 and x2 as in the case of Burgers
vortex, that is, we look for a stationary solution of the three-dimensional Navier-Stokes
equation of the form

U(x1, x2, x3) =





−1
2
(1 + λ)x1

−1
2
(1 − λ)x2

x3



 +





u1(x1, x2)
u2(x1, x2)

0



 ,

The vorticity Ω = ∇×U is aligned with the vertical axis and depends only on the horizontal
variable, namely

Ω(x1, x2, x3) =





0
0

ω(x1, x2)



 , where ω = ∂1u2 − ∂2u1 .

Inserting this expression into the three-dimensional vorticity equation we find that in order
for such a solution to exist the vorticity must satisfy

(u1 −
1

2
(1 + λ)x1)∂1ω + (u2 −

1

2
(1 − λ)x2)∂2ω = ∆ω + ω . (9)

As usual, u1 and u2 can be recovered from the vorticity via the Biot-Savart law.
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Existence and stability with respect to three−dimensional perturbation.
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Existence and stability with respect to two−dimensional perturbation.

Figure 4: An illustration of the regions in which we can prove the existence of non-
axisymmetric Burgers vortices

Our first result in this context proves rigorously that (9) has a solution if the asymmetry
parameter λ is not too large, for all Reynolds numbers. In Figure 4 this corresponds to
the horizontal rectangle extending off to infinity. One important thing to note is that the
allowed size of the asymmetry parameter for which we have existence of the vortex solution
is uniform in the Reynolds number R, for R large.

The existence proof is a rigorous perturbation argument, taking as our starting point the
known, symmetric Burgers vortex. The main steps of the proof are:

• We write the vorticity of the asymmetric vortex as ω = αG + w (i.e. we regard it as a
perturbation of the Burgers vortex. (Here α is proportional to the Reynolds number
and is chosen so that w has zero average with respect to x1 and x2.)

• w then satisfies the equation

(L − αΛ)w = −λM(αG + w) + v · ∇w ,

where Mw = (x1∂x1w − x2∂x2w)/2 and L and Λ are the same operators considered
earlier in Section 3.

• Given the information derived earlier about the spectrum of (L− αΛ) we see immedi-
ately that this operator is invertible on the space of functions of zero average and we
can rewrite this equation as a fixed point problem

w = (L − αΛ)−1( − λM(αG + w) + v · ∇w) .

• One now proves that the fixed point equation for the vorticity has a solution by the
contraction mapping theorem. Just as in the case of the classical Burgers vortices
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we obtain (for each fixed, sufficiently small, value of λ) a family of vortex solutions,
ΩB(x1, x2; α), parameterized by the total circulation, α.

• The uniformity with respect to the Reynolds number comes from analyzing (more or
less explicitly) the limit

lim
α→∞

(L − αΛ)−1M(αG) .

We refer the reader to [4] for more details but remark that as a by-product of the proof one
obtains the asymptotic expressions derived by Moffatt, Kida and Ohkitani as the leading
order terms in a rigorous expansion of these asymmetric vortices in the large Reynolds
number limit.

Given the existence of these non-symmetric vortices, or of the classical Burgers vortices for
that matter, it is natural to ask whether or not they are stable. As with any stability question
it is important to specify exactly what the allowed class or perturbations is. If we consider
only two-dimensional perturbations in the plane transverse to the vortex axis (i.e. only the
first two components of the velocity are non-zero and these depend only on the variables
x1 and x2) then Lundgren’s transformation plus the results of Section 3 on the stability
of two-dimensional vortices almost immediately implies stability in this three-dimensional
context.

The stability issue is much more complicated if we allow full three-dimensional perturbations,
however. The vorticity is a vector in this case and one can no longer reduce the problem
to a two-dimensional one – one must consider the full three-dimensional vorticity equation.
Nonetheless, also in this case we are able to show that the the Burgers vortices are “stable
with shift” if the Reynolds number is not too large. By this we mean that for small Reynolds
number, if one takes initial conditions which are a small perturbation of a vortex, the solution
with this initial condition will tend, as t → ∞, to one of these asymmetric vortices. In general
one will not converge back to the vortex which one initially perturbed but our results include
an explicit formula for the limiting vortex. The region in which we can prove stability in
this sense is the triangular shaded region in Figure 4. Note in particular, that as a part of
this investigation we also prove that one can find stable, asymmetric Burgers vortices for
any asymmetry parameter λ ∈ [0, 1), provided the Reynolds number is sufficiently small.

To state our stability result more precisely we limit ourselves to the classical symmetric
Burgers vortices since it is slightly simpler to state the result in that context. Let L2(m) be
the weighted Hilbert spaces introduced in Section 3. Note that if we look at the evolution
of a three-dimensional vorticity field Ω in a background strain field us as in (8) we find it
satisfies the equation

∂tΩ + (U · ∇)Ω − (Ω · ∇)U + (us · ∇)Ω − (Ω · ∇)us = ∆Ω , ∇ · Ω = 0 . (10)

Theorem 3 Fix m ≥ 2. There exists R0 > 0 and δ0 > 0 such that if |α| ≤ R0 and

sup
x3∈R

‖ω0(·, x3)‖L2(m) < δ0 ,
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then the solution of the three-dimensional vorticity equation, (10), with initial vorticity

Ω0(x1, x2, x3) =





0
0

αG(x1, x2)



 + ω0(x1, x2, x3) ,

converges as t → ∞ to the Burgers vortex

Ω̃(x1, x2, x3) =





0
0

(α + δα)G(x1, x2)



 .

The convergence toward the limiting vortex is with respect to the L2(m) norm in (x1, x2)
and uniformly on compact sets in x3. The parameter δα gives the difference between the
circulation of the initial vortex which we perturb and the limiting vortex toward which we
converge and can be computed in terms of the initial perturbation (see (13) below.)

The proof of this theorem is somewhat complicated and we refer the reader to [6] for details,
but just mention one important and somewhat surprising aspect of the proof. If we linearize
equation (10) about a Burgers vortex, then for small Reynolds number (or equivalently, small
α), one obtains a small perturbation of a linear operator for which we can compute an explicit
formula for the kernel of the corresponding semi-group. This semigroup is decaying if it acts
on perturbations whose third component has zero average with respect to the transverse
variables (x1, x2) in each x3 cross-section, i.e. if

∫

R2

ω3(x1, x2, x3, t)dx1dx2 = 0 , (11)

for each x3 ∈ R. In general, the perturbations we consider will not satisfy (11), but we force
it to hold by writing the third component of the vorticity as

(α + φ(x3, t))G(x1, x2) + ω3(x1, x2, x3, t) , (12)

where φ(x3, t) is chosen so that ω3 satisfies (11). One can think of this step as adjusting
the total circulation of the vortex which we are perturbing (in each x3-cross-section and at
each time, t) in such a way that the third component of the perturbation has zero average.
From the remark about the decay properties of the linearized semi-group this will insure that
ωj(·, t), j = 1, 2, 3, will decay with time, but it has the disadvantage that the background
vortex is no longer a stationary solution of the Navier-Stokes equation (due to the time and
space dependence of φ.) Thus, we must next compute the time evolution of φ.

Remarkably, its evolution decouples completely from that of the other components of the
vorticity (see the calculation in Section 3 of [6]) and we find that φ satisfies the linear partial
differential equation

∂tφ + x3∂3φ = ∂2
3φ .
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This equation can be solved explicitly and we find that if the initial value of φ is φ0 (which can
be computed from the initial value of the vorticity Ω0) then the solution φ(x3, t) converges
as t tends toward infinity to the constant value

δα =
1√
2π

∫

e−z2/2φ0(z)dz , (13)

which from (12) implies that the circulation of the limiting vortex is α + δα.

5 Conclusions

In both the two and three-dimensional Navier-Stokes equations ideas from dynamical systems
theory like invariant manifold theorems and Lyapunov functions give us insight into the long-
time asymptotics of solutions and the existence and stability of vortices.

In two dimensions these methods describe the long-time asymptotics of any solution with
integrable initial vorticity. However, it would be nice if one could also understand what
might be termed the “intermediate” asymptotics. As a start, for instance, one could look
in more detail at the interaction between a pair of vortices. The latter stages of such an
interaction for “small” vortices (i.e. those with small total vorticity) can be determined from
an analysis of the equations on the invariant manifolds near the origin described in Section
3, but for the moment we cannot extend this analysis to vortices of arbitrary size.

In three dimensions there are many more open questions. For instance, numerical inves-
tigations suggest that the non-axisymmetric vortices constructed in Section 4 should exist
for all values of the asymmetry parameter λ ∈ [0, 1), but so far we can only prove their
existence for small values of λ, except in the small Reynolds number regime. It would also
be very interesting to understand the stability properties of these vortices for large Reynolds
number. Here, it is not so clear whether even the symmetric Burgers vortices are stable with
respect to three-dimensional perturbations at large Reynolds number, though the persistence
of these vortex tubes in numerical simulations of very turbulent flows as well as the direct
numerical study of their linear stability by Schmid and Rossi [14] indicate that they have
some sort of stability properties.
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[7] Javier Jiménez, Alan A. Wray, Philip G. Saffman, and Robert S. Rogallo. The structure
of intense vorticity in isotropic turbulence. J. Fluid Mech., 255:65–90, 1993.

[8] T. S. Lundgren. A small-scale turbulence model. Phys. Fluids A, 5(6):1472–1483, 1993.

[9] William H. Matthaeus, W. Troy Stribling, Daniel Martinez, Sean Oughton, and David
Montgomery. Selective decay and coherent vortices in two-dimensional incompressible
turbulence. Physical Review Letters, 66(21), 1991.

[10] Tetsuro Miyakawa and Maria Elena Schonbek. On optimal decay rates for weak solutions
to the Navier-Stokes equations in Rn. In Proceedings of Partial Differential Equations
and Applications (Olomouc, 1999), volume 126, pages 443–455, 2001.

[11] H. K. Moffatt, S. Kida, and K. Ohkitani. Stretched vortices—the sinews of turbulence;
large-Reynolds-number asymptotics. J. Fluid Mech., 259:241–264, 1994.

[12] A. Prochazka and D. I. Pullin. Structure and stability of non-symmetric Burgers vor-
tices. J. Fluid Mech., 363:199–228, 1998.

[13] A. C. Robinson and P. G. Saffman. Stability and structure of stretched vortices. Stud.
Appl. Math., 70(2):163–181, 1984.

[14] P. J. Schmid and M. Rossi. Three-dimensional stability of a Burgers vortex. J. Fluid
Mech., 500:103–112, 2004.

[15] A. A. Townsend. On the fine-scale structure of turbulence. Proc. R. Soc. Lond. A,
208:534–542, 1951.

19



[16] Cédric Villani. A review of mathematical topics in collisional kinetic theory. In Handbook
of mathematical fluid dynamics, Vol. I, pages 71–305. North-Holland, Amsterdam, 2002.

20


