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Abstract

We propose two different proofs of the fact that Oseen’s vortex is the unique solution
of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity. The
first argument, due to C.E. Wayne and the second author, is based on an entropy estimate
for the vorticity equation in self-similar variables. The second proof is new and relies on
symmetrization techniques for parabolic equations.

1 Introduction

We consider the vorticity equation associated to the two-dimensional Navier-Stokes equation,
namely

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ∆ω(x, t) , x ∈ R2 , t > 0 . (1.1)

The velocity field u(x, t) ∈ R2 is obtained from the vorticity ω(x, t) ∈ R via the Biot-Savart law

u(x, t) =
1

2π

∫

R2

(x − y)⊥

|x − y|2 ω(y, t) dy , x ∈ R2 , t > 0 , (1.2)

where (x1, x2)
⊥ = (−x2, x1). It satisfies div u = 0 and ∂1u2 − ∂2u1 = ω. Equations (1.1), (1.2)

are invariant under the scaling transformation

ω(x, t) 7→ λ2ω(λx, λ2t) , u(x, t) 7→ λu(λx, λ2t) , λ > 0 . (1.3)

The Cauchy problem for the vorticity equation (1.1) is globally well-posed in the (scale
invariant) Lebesgue space L1(R2), see for instance [6]. To include more general initial data, such
as isolated vortices or vortex filaments, it is necessary to use larger function spaces. A natural
candidate is the space M(R2) of all finite real measures on R2, equipped with the total variation
norm. This space contains L1(R2) as a closed subspace, and its norm is invariant under (the
spatial part of) the rescaling (1.3). Another useful topology on M(R2) is the weak convergence,
defined as follows: µn ⇀ µ if

∫

R2 ϕdµn →
∫

R2 ϕdµ for any continuous function ϕ : R2 → R
vanishing at infinity.

1



Existence of solutions of (1.1) with initial data in M(R2) was first proved by Cottet [10],
and independently by Giga, Miyakawa and Osada [13], see also Kato [15]. Uniqueness can
be obtained by a standard Gronwall argument if the atomic part of the initial vorticity µ is
sufficiently small [13, 15], but this method is bound to fail if µ contains large Dirac masses. In
the particular case where µ = αδ0 for some α ∈ R, an explicit solution is known:

ω(x, t) =
α

t
G

( x√
t

)

, u(x, t) =
α√
t
vG

( x√
t

)

, x ∈ R2 , t > 0 , (1.4)

where

G(ξ) =
1

4π
e−|ξ|2/4 , vG(ξ) =

1

2π

ξ⊥

|ξ|2
(

1 − e−|ξ|2/4
)

, ξ ∈ R2 . (1.5)

This self-similar solution of the two-dimensional Navier-Stokes equation is often called the Lamb-
Oseen vortex with total circulation α. It is the unique solution with initial vorticity αδ0 in the
following precise sense:

Theorem 1.1 [12] Let T > 0, K > 0, α ∈ R, and assume that ω ∈ C 0((0, T ), L1(R2) ∩
L∞(R2)) is a solution of (1.1) satisfying ‖ω(·, t)‖L1 ≤ K for all t ∈ (0, T ) and ω(·, t) ⇀ αδ0 as
t → 0+. Then

ω(x, t) =
α

t
G

( x√
t

)

, x ∈ R2 , t ∈ (0, T ) .

Here and in the sequel, we say that ω ∈ C0((0, T ), L1(R2) ∩ L∞(R2)) is a (mild) solution
of (1.1) if the associated integral equation

ω(·, t2) = e(t2−t1)∆ω(·, t1) −
∫ t2

t1

∇ · e(t2−t)∆
(

u(·, t)ω(·, t)
)

dt (1.6)

is satisfied for all 0 < t1 < t2 < T .
The particular case covered by Theorem 1.1 is important for at least two reasons. First, it

has deep connections with the long-time behavior of smooth solutions. Indeed, if ω(x, t) is any
solution of (1.1) such that ω(·, t) ∈ L1(R2) and

∫

R2 ω(x, t) dx = α for all t > 0, it is shown
in [12] that ω(·, t) converges in L1(R2) to the Oseen vortex with circulation α as t → +∞.
This convergence result can in fact be deduced from Theorem 1.1 by a classical renormalization
argument, see [9] and [14]. On the other hand, combining the standard Gronwall argument
(which works if the initial measure has small atomic part) with Theorem 1.1 (which allows to
treat a large Dirac mass), it is possible to prove the uniqueness of the solution of (1.1) for
arbitrary data µ ∈ M(R2) [11]. Thus, the Cauchy problem for (1.1) is globally well-posed in
the space M(R2) too.

The proof of Theorem 1.1 in [12] is based on an entropy estimate for equation (1.1) rewritten
in self-similar variables. For completeness, this argument will be reproduced below in its simplest
form. The real purpose of this paper is to provide an alternative proof of Theorem 1.1 which relies
on completely different ideas: it is based on symmetrization techniques for elliptic and parabolic
equations which originate in the work of Talenti [18], see [2, 3]. These methods ultimately rely
on the maximum principle, whereas the original proof of [12] uses a Lyapunov function. We find
the comparison of both arguments very instructive, and this is why we chose to collect them in
the present article.

The rest of the text is organized as follows. Under the assumptions of Theorem 1.1, we
first derive a priori estimates on the solution ω(x, t) using Gaussian bounds on the fundamental
solution of the convection-diffusion equation, which are due to Osada in [17]. This prelimi-
nary part is common to both approaches. Following [12], we next introduce the self-similar
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variables ξ = x/
√

t, τ = log(t) and we show that the rescaled vorticity w(ξ, τ) = eτω(ξ e
τ
2 , eτ )

satisfies an entropy estimate which implies the conclusion of Theorem 1.1. The new proof begins
in Section 4, where we recall the definition of the symmetric nonincreasing rearrangement of a
function. In particular, we prove that the solution of a convection-diffusion equation of the
form (1.1) with initial data ω0 is “dominated” (in a sense to be precised) for all times by the

solution of the heat equation with symmetrized initial data ω#
0 . In the final section, we show

how this key estimate provides a new and short proof of Theorem 1.1.

2 Representation and a priori estimates

Assume that ω ∈ C0((0, T ), L1(R2) ∩ L∞(R2)) is a solution of (1.1) satisfying the hypotheses
of Theorem 1.1. From [7] we know that ω(x, t) coincides for t > 0 with a classical solution
of (1.1) in R2 as constructed for instance in [6]. In particular ω(x, t) is smooth for t > 0.
Since the Cauchy problem for (1.1) is globally well-posed in L1(R2)∩L∞(R2) and since the L1

norm of ω(·, t) is nonincreasing with time, we can assume that T = +∞ without loss of gen-
erality. By assumption ‖ω(·, t)‖L1 ≤ K for all t > 0, hence the associated velocity field satis-

fies t
1

2 ‖u(·, t)‖L∞ ≤ CK for all t > 0, where C > 0 is a universal constant, see ([6], Theorem B).
The solution ω(x, t) of (1.1) has an integral representation of the form

ω(x, t) =

∫

R2

Γu(x, t; y, s)ω(y, s) dy , x ∈ R2 , t > s > 0 , (2.1)

where Γu is the fundamental solution of the convection-diffusion equation ∂tω + u · ∇ω = ∆ω.
The following properties of Γu are due to Osada [17] and to Carlen and Loss [8].

• For any β ∈ (0, 1) there exists K1 > 0 (depending only on K and β) such that

0 < Γu(x, t; y, s) ≤ K1

t − s
exp

(

−β
|x − y|2
4(t − s)

)

, (2.2)

for all x, y ∈ R2 and t > s > 0, see [8]. A similar Gaussian lower bound is also known.

• There exists γ ∈ (0, 1) (depending only on K) and, for any δ > 0, there exists K2 > 0
(depending only on K and δ) such that

|Γu(x, t; y, s) − Γu(x′, t′; y′, s′)| ≤ K2

(

|x−x′|γ + |t−t′|γ/2 + |y−y′|γ + |s−s′|γ/2
)

, (2.3)

whenever t − s ≥ δ and t′ − s′ ≥ δ, see [17].

• For t > s > 0 and x, y ∈ R2,

∫

R2

Γu(x, t; y, s) dx = 1 ,

∫

R2

Γu(x, t; y, s) dy = 1 . (2.4)

If x, y ∈ R2 and t > 0, it follows from (2.3) that the function s 7→ Γu(x, t; y, s) can be continu-
ously extended up to s = 0, and that this extension (still denoted by Γu) satisfies properties (2.2)
to (2.4) with s = 0. Using this observation, we obtain for all x ∈ R2 and all t > 0

ω(x, t) =

∫

R2

Γu(x, t; y, 0)ω(y, s) dy

+

∫

R2

(

Γu(x, t; y, s) − Γu(x, t; y, 0)
)

ω(y, s) dy , 0 < s < t .
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Since ω(·, s) is bounded in L1(R2), it follows from (2.3) that the second integral in the right-hand
side converges to zero as s goes to zero. On the other hand, since y 7→ Γu(x, t; y, 0) is continuous
and vanishes at infinity, and since ω(·, s) ⇀ αδ0 as s → 0, we can take the limit s → 0 in the
first integral and we obtain the useful representation:

ω(x, t) = αΓu(x, t; 0, 0) , x ∈ R2 , t > 0 . (2.5)

This formula shows in particular that ω ≡ 0 if α = 0. Thus, upon replacing ω(x1, x2, t)
with −ω(x2, x1, t) if needed, we can assume from now on that α > 0. To simplify the notation,
we denote by Ω(x, t) the Oseen vortex with circulation α, namely

Ω(x, t) =
α

4πt
e−

|x|2

4t , x ∈ R2 , t > 0 . (2.6)

From (2.2), (2.5) we have

0 < ω(x, t) ≤ K1α

t
e−β

|x|2

4t , x ∈ R2 , t > 0 . (2.7)

Moreover, in view of (2.4),

∫

R2

ω(x, t) dx = α =

∫

R2

Ω(x, t) dx , t > 0 . (2.8)

In particular ‖ω(·, t)‖L1 = α for all t > 0, so that we can take K = |α| in the statement of
Theorem 1.1 without loss of generality. Finally, using (1.1) and integrating by parts, we find

d

dt

∫

R2

|x|2ω dx =

∫

R2

|x|2(∆ω − u · ∇ω) dx = 4α + 2

∫

R2

(x · u)ω dx . (2.9)

Here we also used the fact that ω(x, t) decays rapidly as |x| → ∞, see (2.7). Actually, the last
integral in (2.9) vanishes identically. This can be seen by replacing u with its expression (1.2) and
using the symmetry properties of the Biot-Savart kernel. Thus we find that d

dt

∫

R2 |x|2ω dx = 4α,
and in view of (2.7) we conclude that

∫

R2

|x|2ω(x, t) dx = 4αt =

∫

R2

|x|2Ω(x, t) dx , t > 0 . (2.10)

3 Uniqueness proof using entropy estimates

We first introduce the entropy functionals that will be used in the proof. Let f : R2 → (0,+∞)
be a C1 function satisfying

∫

R2 f(ξ) dξ = 1. We define

H(f) =

∫

R2

f(ξ) log
( f(ξ)

G(ξ)

)

dξ , I(f) =

∫

R2

f(ξ)
∣

∣

∣
∇ log

( f(ξ)

G(ξ)

)
∣

∣

∣

2
dξ , (3.1)

where G is as in (1.5). In kinetic theory, H(f) is the relative Boltzmann entropy of the distribu-
tion function f with respect to the Gaussian G. In information theory, H(f) is often called the
relative Kullback entropy of f with respect to G, and I(f) the relative Fisher information of f
with respect to G. The entropy H(f) satisfies the following bounds (see for instance [4])

1

2
‖f − G‖2

L1 ≤ H(f) ≤ I(f) , (3.2)
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where the first inequality is the Csiszár-Kullback inequality and the second bound is the Stam-
Gross logarithmic Sobolev inequality. It follows in particular from (3.2) that H(f) ≥ 0,
and H(f) = 0 if and only if f = G.

Now, let ω(x, t) be a solution of (1.1) satisfying the hypotheses of Theorem 1.1, and let u(x, t)
be the associated velocity field. As in the previous section, we assume without loss of gener-
ality that T = +∞ and that α =

∫

R2 ω(x, t) dx > 0. Following [12], we define the rescaled
vorticity w(ξ, τ) and the rescaled velocity field v(ξ, τ) by

w(ξ, τ) = eτω(ξ e
τ
2 , eτ ) , v(ξ, τ) = e

τ
2 u(ξ e

τ
2 , eτ ) , ξ ∈ R2 , τ ∈ R . (3.3)

The equation satisfied by w(ξ, τ) reads

∂τw + (v · ∇ξ)w = ∆ξw +
1

2
(ξ · ∇ξ)w + w . (3.4)

Since div v = 0 and ∂1v2 − ∂2v1 = w, the rescaled velocity v is obtained from the rescaled
vorticity w via the usual Biot-Savart law.

Our aim is to show that w(ξ, τ) = αG(ξ) for all ξ ∈ R2 and all τ ∈ R. To do that, we
consider the relative entropy h(τ) = H(w(·, τ)/α), where H is defined in (3.1). Since by (2.7)
we have 0 < w(ξ, τ) ≤ K1α e−β|ξ|2/4, there exists K3 > 0 such that 0 ≤ h(τ) ≤ K3 for all τ ∈ R.
On the other hand, using (3.4) and integrating by parts, it is not difficult to verify that

d

dτ
H

(w(·, τ)

α

)

= −I
(w(·, τ)

α

)

, τ ∈ R ,

see [12]. In view of the second inequality in (3.2), this implies that h′(τ) ≤ −h(τ) for all τ ∈ R.
Thus

h(τ) ≤ e−(τ−τ0)h(τ0) ≤ K3 e−(τ−τ0) whenever τ ≥ τ0 .

Letting τ0 → −∞, we obtain h(τ) = 0 for all τ ∈ R, hence w(ξ, τ) = αG(ξ) for all ξ ∈ R2 and
all τ ∈ R. This is the desired result. �

4 Symmetric rearrangements and applications

In this section, we recall the definition of the symmetric nonincreasing rearrangement of a
function f : RN → R, and we establish two results that will be used in the final section. We
refer to [1], [5], [16] for more information on rearrangements and their applications.

Let f : RN → R be a measurable function. We assume that f vanishes at infinity in
the sense that meas({x ∈ RN | |f(x)| > t}) < ∞ for all t > 0. We define the distribution
function µf : [0,+∞) → [0,+∞] by

µf (t) = meas({x ∈ RN | |f(x)| > t}) , t ≥ 0 ,

and the nonincreasing rearrangement f ∗ : [0,+∞) → [0,+∞] by

f∗(s) = sup{t ≥ 0 |µf (t) > s} , s ≥ 0 .

The symmetric nonincreasing rearrangement f # : RN → [0,+∞] is then defined by

f#(x) = f∗(cN |x|N ) , x ∈ RN ,

where cN = πN/2/Γ(N
2 + 1) is the measure of the unit ball in RN . By construction, f# is

radially symmetric and nonincreasing (along rays). Moreover, f # is lower semicontinuous (hence
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measurable) and meas({x ∈ RN | f#(x) > t}) = meas({x ∈ RN | |f(x)| > t}) for all t > 0. As a
consequence, if f ∈ Lp(RN ) for some p ∈ [1,∞], then f# ∈ Lp(RN ) and ‖f#‖Lp = ‖f‖Lp . More
generally, one has ‖f# − g#‖Lp ≤ ‖f − g‖Lp for all f, g ∈ Lp(RN ). Note also that f# = |f |#,
and that f# is a continuous function if f is continuous.

We next introduce a partial order on integrable functions which is based on rearrangements.

Definition 4.1 Let f, g : RN → R be integrable functions. We say that f is dominated by g if

∫

BR

f#(x) dx ≤
∫

BR

g#(x) dx for all R > 0 , (4.1)

where BR = {x ∈ RN | |x| < R}. In this case, we write f � g.

It can be shown that f � g if and only if

∫

RN

Φ(|f(x)|) dx ≤
∫

RN

Φ(|g(x)|) dx

for all convex functions Φ : [0,+∞) → [0,+∞) with Φ(0) = 0, see [1]. In particular, if f � g
and g ∈ L1(RN ) ∩ L∞(RN ), then ‖f‖Lp ≤ ‖g‖Lp for any p ≥ 1.

The uniqueness proof in Section 5 will be based on two properties of the domination relation
which we now describe. These results are rather standard, and the proofs will be outlined for
completeness only.

Proposition 4.2 Let f, g : RN → [0,+∞) be continuous and integrable functions satisfying:

a) f � g;

b) g = g#;

c)
∫

RN f(x) dx =
∫

RN g(x) dx;

d)
∫

RN |x|Nf(x) dx =
∫

RN |x|Ng(x) dx < ∞.

Then f = g.

Remark 4.3 As is clear from the proof, the same result holds if |x|N is replaced by ϕ(|x|) in
assumption d), where ϕ is any continuous, positive, and strictly increasing function on [0,+∞).

Proof: We first observe that
∫

RN

|x|Nf#(x) dx ≤
∫

RN

|x|Nf(x) dx , (4.2)

and that equality holds in (4.2) if and only if f = f #. Indeed, this is obvious if f is the
characteristic function of a bounded open set A ⊂ RN , because then f# = 1BR

where cNRN =
meas(A). The general case follows using the “layer cake representation” [16]

f(x) =

∫ ∞

0
1{f>t}(x) dt , f#(x) =

∫ ∞

0
1#
{f>t}(x) dt ,

together with Fubini’s theorem.
Now, let h = g∗−f∗, where f ∗, g∗ are the nonincreasing rearrangements of f, g. For all R > 0,

we have

∫

BR

f#(x) dx =

∫ cNRN

0
f∗(s) ds ,

∫

BR

|x|Nf#(x) dx =
1

cN

∫ cN RN

0
sf∗(s) ds .
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Using the first equality, we can rewrite assumptions a) and c) as follows:

a’)
∫ r
0 h(s) ds ≥ 0 for all r > 0,

c’)
∫ ∞
0 h(s) ds = 0.

In view of (4.2) and the second equality, assumptions b) and d) also imply

d’)
∫ ∞
0 sh(s) ds ≥ 0, with equality if and only if f = f#.

Let H(r) =
∫ r
0 h(s) ds = −

∫ ∞
r h(s) ds ≥ 0. Clearly, rH(r) ≤

∫ ∞
r s|h(s)|ds → 0 as r → +∞,

hence
∫ ∞

0
sh(s) ds +

∫ ∞

0
H(s) ds =

∫ ∞

0
(sh(s) + H(s)) ds = rH(r)

∣

∣

∣

r=∞

r=0
= 0 .

By a’) and d’), this implies that
∫ ∞
0 sh(s) ds = 0 (hence f = f#) and H ≡ 0 (hence we

have f# = g# = g). This concludes the proof. �

Assume now that f : RN × [0,+∞) → R is a solution of the convection-diffusion equation

∂tf(x, t) + U(x, t) · ∇f(x, t) = ∆f(x, t) , x ∈ RN , t > 0 , (4.3)

where U : RN × [0,+∞) → RN is a smooth, divergence-free vector field which is bounded
together with all its derivatives. Assume moreover that the initial condition f0(x) = f(x, 0) is
continuous and decays rapidly at infinity.

Proposition 4.4 Under the assumptions above, the solution of (4.3) with initial data f0 satisfies

f(·, t) � et∆f#
0 , for all t ≥ 0 .

Proof: The proof uses two main ingredients:

i) If f � g and g = g#, then et∆f � et∆g for all t > 0, see ([3], Proposition 3). This is because
the integral kernel of the heat semigroup is positive, radially symmetric, and decreasing along
rays (in other words, it coincides with its own rearrangement).

ii) Let S(t1, t2) be the evolution operator associated to the linear nonautonomous transport
equation

∂tf(x, t) + U(x, t) · ∇f(x, t) = 0 , x ∈ RN , t > 0 ,

so that f(·, t1) = S(t1, t2)f(·, t2). Since U(x, t) is globally Lipschitz and divergence-free, one
has S(t1, t2)f = f ◦ Ψ(t1, t2)

−1, where Ψ(t1, t2) : RN → RN is a measure preserving transfor-
mation. It follows immediately that (S(t1, t2)f)# = f#.

To prove the claim, we use an approximation procedure in the spirit of Trotter’s formula,
see ([19], Section 11.A). Fix t > 0. Given n ∈ N∗, we define finite sequences {fn

k }k=0,...,n

and {gn
k }k=0,...,n inductively by

fn
k+1 = S

((k+1)t

n
,
kt

n

)

e
t
n

∆fn
k , fn

0 = f0 ,

gn
k+1 = e

t
n

∆gn
k , gn

0 = f#
0 .

Using properties i) and ii) above, it is easy to verify by induction over k that f n
k � gn

k for

all k ∈ {0, . . . , n}. In particular, fn
n � gn

n. But gn
n = et∆f#

0 , and a classical result shows
that fn

n → f(·, t) in L1(RN ) as n → ∞, so that (fn
n )# → f#(·, t) also. Thus passing to the limit

we obtain f(·, t) � et∆f#
0 . �
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5 Uniqueness proof using symmetrization

Let again ω(x, t) be a solution of (1.1) satisfying the hypotheses of Theorem 1.1, and let u(x, t) be
the associated velocity field. As usual we assume that T = +∞ and that α =

∫

R2 ω(x, t) dx > 0.
For any t > 0, let ω#(x, t) be the symmetric nonincreasing rearrangement of ω(x, t) with respect
to the spatial variable x ∈ R2. Using (2.7) and the fact that the rearrangement is order
preserving, we find

0 < ω#(x, t) ≤ K1α

t
e−β

|x|2

4t , x ∈ R2 , t > 0 .

Since
∫

R2 ω#(x, t) dx =
∫

R2 ω(x, t) dx = α, we deduce that ω#(·, t) ⇀ αδ0 as t → 0+.
Fix t > s > 0. Applying Proposition 4.4 with N = 2, f(x, t′) = ω(x, t′ + s), and U(x, t′) =

u(x, t′ + s), we obtain
ω(·, t) � e(t−s)∆ω#(·, s) .

As s → 0+, the right-hand side converges pointwise (hence also in L1(R2) by the dominated
convergence theorem) to the Oseen vortex Ω(·, t) defined in (2.6). It follows that

ω(·, t) � Ω(·, t) , for all t > 0 . (5.1)

We now fix t > 0 and apply Proposition 4.2 with N = 2, f = ω(·, t), and g = Ω(·, t). All
assumptions are satisfied due to (2.8), (2.10), and (5.1). We conclude that ω(x, t) = Ω(x, t) for
all x ∈ R2, which is the desired result. �
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