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Abstract

We study a coarsening model describing the dynamics of interfaces in the one-

dimensional Allen-Cahn equation. Given a partition of the real line into intervals of

length greater than one, the model consists in repeatedly eliminating the shortest

interval of the partition by merging it with its two neighbors. We show that the

mean-field equation for the time-dependent distribution of interval lengths can be

explicitly solved using a global linearization transformation. This allows us to derive

rigorous results on the long-time asymptotics of the solutions. If the average length

of the intervals is finite, we prove that all distributions approach a uniquely deter-

mined self-similar solution. We also obtain global stability results for the family of

self-similar profiles which correspond to distributions with infinite expectation.

1 Introduction

Consider a domain D ⊂ Rn which is divided into a large number of subdomains (or
cells) of different sizes, separated by domain walls, and assume that the system evolves
in such a way that the larger subdomains grow with time while the smaller ones shrink
and eventually disappear. In particular, the average size of the cells increases, so that the
subdivision of D becomes rougher and rougher. Such a coarsening dynamics is observed
in many physical situations, especially near a phase transition when a system is quenched
from a homogeneous state into a state of coexisting phases. Typical examples are the
formation of microstructure in alloy solidification [LiS61, KoO02] and the phase separation
in lattice spin systems [De97, KBN97]. Closely related to coarsening is the coagulation
(or aggregation) process which describes the dynamics of growing and coalescing droplets
[DGY91, PeR92, Vo85]. In this case, the system consists of a large number of particles of
different masses which interact by forming clusters. Again, the total mass is preserved,
so that the average mass per cluster increases with time.
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Given a coarsening or a coagulation model, the main task is to predict the long-time
evolution of the size distribution of the cells, or the mass distribution of the clusters. In
many cases, experiments and numerical calculations show that this behavior is asymp-
totically self-similar: the system can be described by a single length scale L(t), and the
distribution approaches the scaling form L(t)−1Φ(x/L(t)) as t → ∞. The profile Φ and
the asymptotics of L(t) can sometimes be determined exactly [NaK86, BDG94]. How-
ever, even in simple situations, it is very difficult to prove that the distribution actually
converges to a self-similar profile.

In this work, we consider a simple coarsening model related to the one-dimensional
Allen-Cahn equation ∂tu = ∂2

xu + 1
2
(u− u3), where x ∈ R. The equilibria of this system

are the homogeneous steady states u = ±1, together with the kinks u(x) = ± tanh(x/2)
which represent domain walls separating regions of different “phases”. If u is any bounded
solution of this equation, then for t > 0 sufficiently large the graph of u(t, ·) will typically
look like a (countable) family of kinks separated by large intervals on which u ≈ ±1. If
we denote by xj(t) the position of the jth kink and if we assume that xj+1(t)− xj(t) � 1
for all j ∈ Z, a rigorous asymptotic analysis shows that ẋj ≈ F (xj+1−xj)−F (xj −xj−1),
where F (y) = 24e−y [CaP89]. In other words, the positions of the domain walls behave
like a system of point particles with short range attractive pair interactions. Thus, on
an appropriate time scale, only the closest pairs of kinks will really move; in such pairs,
kinks will attract each other until they eventually annihilate.

This kink dynamics suggests the following coarsening model [NaK86, DGY91, CaP92,
BDG94, RuB94, BrD95, CaP00]. Consider a partition of the real line R into a countable
union of disjoint intervals Ij , with `(Ij) ≥ 1 for all j ∈ Z. In the previous picture, the
intervals Ij correspond to regions where u is close to ±1. A dynamics on this configuration
space is defined by iterating the following coarsening step: choose the “smallest” interval
in the partition, and merge it with its two nearest neighbors. This model clearly mimics
the dynamics of the domain walls in the one-dimensional Allen-Cahn equation. However,
proving that the formal procedure described above actually defines a well-posed evolution
(e.g. for almost all initial configurations) and investigating its statistical properties after
many coarsening iterations is a non-trivial task, which has not been accomplished so far.
Instead, the coarsening model has been studied in the mean field approximation, which
consists in merging the minimal interval not with its true neighbors, but with two intervals
chosen at random in the configuration {Ij}j∈Z. This approximation is valid provided
the lengths of consecutive intervals stay uncorrelated during the coarsening process, see
[BDG94] for an argument indicating that the correlations indeed disappear if the number
of intervals tends to infinity.

Under this assumption, it is possible to write a closed evolution equation for the
distribution f(t, x) (per unit length) of intervals of length x ≥ 1 at time t [CaP92].
Denoting by N(t) =

∫∞

0
f(t, x) dx the total number of intervals per unit length, and by

L(t) the length of the smallest interval, the equation reads

∂tf(t, x) =
L̇(t)f(t,L(t))

N(t)2

(∫ x−L(t)

0

f(t, y)f(t, x−y−L(t))dy − 2f(t, x)N(t)

)
, (1.1)

for x ≥ L(t), whereas f(t, x) = 0 for x < L(t) by the definition of L(t). By construc-
tion, N(t) decreases with time, while the total length of the intervals

∫∞

0
xf(t, x) dx is
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conserved.

We prefer to work with the distribution density ρ(t, x) = f(t, x)/N(t), which satisfies
ρ(t, x) = 0 for x < L(t) and the normalization

∫∞

0
ρ(t, x) dx = 1 for all t. The evolution

equation for ρ reads

∂tρ(t, x) = L̇(t)ρ(t,L(t))

∫ x−L(t)

0

ρ(t, y)ρ(t, x−y−L(t))dy for x ≥ L(t). (1.2)

Of course, systems (1.1) and (1.2) are equivalent. In particular, once the density ρ(t, x) is
known, the total number N(t) can be recovered by solving the ordinary differential equa-
tion Ṅ(t) = −2L̇(t)ρ(t,L(t))N(t), and the distribution f(t, x) is then given byN(t)ρ(t, x).

It is important to note that equations (1.1), (1.2) are invariant under reparametriza-
tions of time. As a consequence, the minimal length L(t) is not determined by the initial
data, but can be prescribed to be an arbitrary (increasing) function of time. In [CaP92],
the authors define an “intrinsic time” by imposing the relation f(t,L(t))L̇(t) = 1, which
means that the number of merging events per unit time is constant. We find it more
convenient to use the “coarsening time” defined by the simple relation L(t) = t. In other
words, we choose to parameterize the coarsening process by the length of the smallest
remaining interval, forgetting about how much physical time elapses between or during
the merging events. With our choice, equation (1.2) becomes

∂tρ(t, x) = ρ(t, t)

∫ x−t

0

ρ(t, y)ρ(t, x−y−t)dy for x ≥ t. (1.3)

Since we do not allow for intervals of length smaller than 1, we impose our initial condition
at time t = 1: ρ(1, x) = ρ1(x).

The aim of this paper is to show that the dynamics of (1.3) can be completely under-
stood using a global linearization transformation. As a consequence, we are able to prove
that solutions of (1.3) satisfying

∫∞

0
xρ(t, x) dx < ∞ approach a non-trivial self-similar

profile as t → ∞. To achieve this goal, we first rewrite (1.3) in similarity coordinates by
setting

ρ(t, x) =
1

t
η(log t, x/t), or η(τ, y) = eτρ(eτ , eτy),

where τ = log t ≥ 0 and y = x/t ∈ [1,∞). Then the rescaled density η(τ, ·) lies in the
time-independent space

P =
{
η ∈ L1((1,∞),R+)

∣∣∣
∫ ∞

1

η(y)dy = 1
}
, (1.4)

which is a closed convex subset of L1((1,∞)). Moreover, (1.3) is transformed into the
autonomous evolution equation

∂τη(τ, y) = ∂y

(
y η(τ, y)

)
+ η(τ, 1)

∫ y−2

1

η(τ, z)η(τ, y−z−1)dz for y ≥ 1. (1.5)

In Section 3 we show that, for all initial data η0 ∈ P, (1.5) has a unique global solution
η ∈ C0([0,∞),P) with η(0) = η0.
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We now define a nonlinear map N : P → L1
loc([1,∞),R+) by

N = F−1 ◦ φ ◦ F ,

where F is the Fourier transform and φ(z) = 1
2
log 1+z

1−z
. If η(τ, ·) is a solution of (1.5)

in P, a direct calculation reveals that w(τ, ·) = N (η(τ, ·)) satisfies the linear equation
∂τw(τ, y) = ∂y(yw(τ, y)). As a consequence,

w(τ, y) = (Sτw0)(y) =

{
eτw0(e

τy) if y ≥ 1,
0 if y < 1,

where w0 = N (η0). It follows that any solution η ∈ C0([0,∞),P) of (1.5) satisfies
N (η(τ)) = SτN (η0) for all τ ≥ 0. In other words, the nonlinear evolution defined by (1.5)
is conjugated (via the map N ) to the linear semigroup (Sτ ). Thus, the difficulty of solving
(1.5) is carried over to the study of the mapping N and of its inverse N−1 = F−1◦φ−1◦F .
Although the properties of these maps are not fully understood, it possible to obtain some
information on them using the analyticity properties of the Fourier-Laplace transform.

In Section 4 we investigate the steady states of (1.5), which form a one-parameter
family {η∗θ}θ∈R. Here η∗θ = N−1( θ

2
w∗), where w∗(y) = y−11{y≥1}. More explicitly, we have

η̂∗θ(ξ) = (Fη∗θ)(ξ) = tanh
(θ

2
E1(iξ)

)
for ξ ∈ R, (1.6)

where E1 is the exponential integral [AS72]. We prove that η∗θ ∈ P if and only if θ ∈ (0, 1].
Moreover, η∗1(y) decays exponentially as y → ∞, while η∗θ(y) ∼ y−(1+θ) if 0 < θ < 1. In
particular, η∗1 is the only steady state for which the average length

∫∞

1
yη∗1(y)dy is finite.

Finally, Section 5 is devoted to the convergence results. If the initial data η0 ∈ P

satisfy yγη0 ∈ L2((1,∞)) for some γ > 3/2 (so that
∫∞

1
yη0(y) dy < ∞), we prove that

the corresponding solution of (1.5) converges exponentially to the steady state η∗1:

‖yγ−1(η(τ) − η∗1)‖L2((1,∞)) = O(e−(γ−3/2)τ ) for τ → ∞.

In terms of the original variables, this shows that the density ρ(t, x) asymptotically
approaches the self-similar solution t−1η∗1(x/t) of (1.3). Moreover, the remainder is
O(t−(γ−3/2)), so that the convergence is very fast if γ is large, i.e., the initial data decay
rapidly at infinity. Similarly, if 0 < θ < 1 and if η0 ∈ P satisfies yγ(η0−νη∗θ) ∈ L2((1,∞))
for some γ > θ+1/2 and some ν > 0, we prove that the solution of (1.5) with initial data
η0 converges to the steady state η∗θ .

To conclude this section, we briefly comment on previous results and possible general-
izations. The mean field equations (1.1) and especially the self-similar solutions (1.6) can
be found in the physics literature [NaK86, DGY91, BDG94, RuB94, BrD95]. The first
mathematical work is [CaP92], where the authors prove the existence of global solutions
to (1.1). They also show that the profile η∗1 is a positive function (a crucial property
that is often tacitly assumed!) and study its asymptotic behavior as y → ∞. Our main
contribution is the introduction of the linearization transformation N which allows to
prove the convergence results. We also extend the analysis of [CaP92] to the equilibria η∗θ
with 0 < θ < 1.
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The “two-sided” coarsening model discussed in this introduction is clearly not the
most general system to which our analysis applies. For instance, we can consider the
“one-sided” variant in which the minimal interval is merged with one of its neighbors
only [CaP00]. More generally, we can assume that, for j = 1, . . . , N , the minimal interval
has a probability pj of being merged with j of its neighbors, where p1 + · · ·+ pN = 1. In
the mean field approximation, this leads to an evolution equation similar to (1.3), where
the quadratic convolution in the right-hand side is replaced by a more general convolution
polynomial. Except for a modified definition of the mapping N , this extension does not
affect our analysis in any essential way. Therefore, in the rest of this paper, all results
will be stated and proved in this general situation.

Acknowledgments. The authors are grateful for financial support through the French-
German grant: PROCOPE 00307 TK, Attractors for Extended Systems.

2 The coarsening equation and its solution

As is explained in the introduction, we shall study a general coarsening model for which
the number of intervals involved in each merging event is not necessarily fixed. Instead,
we allow for some randomness by choosing nonnegative real numbers p1, . . . , pN satisfying
p1 + · · · + pN = 1, where pj is interpreted as the probability for an interval of minimal
length to merge with j other intervals. We define the polynomial

Q(z) =
N∑

j=1

pjz
j ,

which satisfies Q(1) = 1. The original coarsening model related to the Allen-Cahn equa-
tion corresponds to the particular case where Q(z) = z2.

If ρ ∈ L1(R), we set

Q[ρ] =
N∑

j=1

pjρ
∗j , (2.1)

where ρ∗j = ρ ∗ ρ ∗ · · · ∗ ρ (j factors) and ∗ denotes the convolution product in L1(R).
In particular, we have

∫∞

0
Q[ρ](x) dx = Q(

∫∞

0
ρ(x) dx). In what follows, we shall mainly

use the space P of probability densities defined by (1.4). Any ρ ∈ P can be extended to
the whole real line by setting ρ(x) = 0 for x < 1. This natural extension, still denoted
by ρ, will be used in the sequel without further mention. As an example of this abuse of
notation, if ρ ∈ P, we have Q[ρ] ∈ P and supp(Q[ρ]) ⊂ [2,∞) (here and in the sequel, we
denote by supp(f) the support of a function f).

The problem we are interested in can now be stated as follows. Given ρ1 ∈ P, find a
density ρ : [1,∞)2 → R+ satisfying ρ(1, x) = ρ1(x) for x ≥ 1, ρ(t, x) = 0 for 1 ≤ x < t,
and

∂tρ(t, x) = ρ(t, t)Q[ρ(t, ·)](x−t) for x ≥ t ≥ 1. (2.2)

If Q(z) = z2, the evolution equation (2.2) reduces to (1.3).
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By assumption, the density ρ(t, x) is nonzero only in the sector {(t, x) ∈ R2|1 ≤ t ≤ x},
where it satisfies (2.2). An important role will be played by the values of ρ on the
boundaries of this domain, namely the initial density ρ1 and the trace of ρ on the diagonal
x = t, which we denote by α:

α(t) = ρ(t, t) for t ≥ 1.

Any sufficiently smooth solution of (2.2) satisfies ρ(t, ·) ∈ P for all t ≥ 1 provided
ρ1 ∈ P. Indeed, it is obvious from (2.2) that ρ stays nonnegative. Moreover, if m(t) =∫∞

t
ρ(t, x)dx, a direct calculation shows that

d

dt
m(t) = α(t)

(
Q(m(t)) − 1

)
for t ≥ 1. (2.3)

Therefore, if m(1) = 1, then m(t) = 1 for all t ≥ 1.

A very remarkable property of equation (2.2) is that it can be explicitly solved using
Fourier (or Laplace) transform. If ρ ∈ P, we define

ρ̂(ξ) = (Fρ)(ξ) =

∫ ∞

1

e−iξxρ(x)dx for ξ ∈ R.

Then ρ̂ ∈ C0(R,C) satisfies ρ̂(0) = 1, |ρ̂(ξ)| < 1 for all ξ 6= 0, and ρ̂(ξ) → 0 as ξ → ±∞.
Moreover, ρ̂ is a positive definite function (in the sense of Bochner). Since supp(ρ) ⊂
[1,∞), the Fourier transform ρ̂ can be continuously extended to the lower complex half
plane

L− = {ξ ∈ C | Im ξ ≤ 0}.

This extension (still denoted by ρ̂) is analytic in the interior of L− and satisfies the bound
|ρ̂(ξ)| ≤ eIm ξ for all ξ ∈ L−.

Remark. The closely related Laplace transform is defined by

ρ̃(p) = (Lρ)(p) =

∫ ∞

1

e−pxρ(x)dx for Re p ≥ 0,

so that ρ̃(p) = ρ̂(−ip). In the sequel, we prefer using Fourier transform instead of Laplace
because the inversion formula is more natural.

Applying Fourier transform to (2.2) and using the fact that convolutions are turned
into multiplications, we find the equation

∂tρ̂(t, ξ) = α(t) e−iξt
(
Q(ρ̂(t, ξ)) − 1

)
for t ≥ 1, (2.4)

where α(t) = ρ(t, t). To solve (2.4), we introduce the nonlinear complex transformation
φ defined by

φ′(z) =
1

1 −Q(z)
, φ(0) = 0. (2.5)

Remark that φ′(z) =
∑∞

k=0[Q(z)]k, so that φ has a power series expansion with non-
negative coefficients whose radius of convergence is equal to 1. In particular, the map
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φ : [0, 1) → [0,∞) is one-to-one and onto. Let ψ = φ−1 be the inverse map, which
satisfies

ψ′(w) = 1 −Q(ψ(w)), ψ(0) = 0. (2.6)

By construction, ψ is analytic in a neighborhood of the real positive axis. In the particular
case where Q(z) = z2, one finds

φ(z) =
1

2
log

1 + z

1 − z
and ψ(w) = tanh(w).

Applying the nonlinear transformation φ simplifies equation (2.4) a lot. The function
ŵ(t, ξ) = φ(ρ̂(t, ξ)), which is defined at least for Im ξ < 0, satisfies the differential equation

∂tŵ(t, ξ) = −α(t)e−iξt for t ≥ 1,

which has the explicit solution

ŵ(t, ξ) = ŵ(1, ξ) −

∫ t

1

α(s)e−iξs ds for t ≥ 1 and Im ξ < 0. (2.7)

Remark that |ρ̂(t, ξ)| ≤ et Im ξ for all t ≥ 1 and all ξ ∈ L−, because ρ(t, ·) ∈ P and
supp(ρ(t, ·)) ⊂ [t,∞). Since φ(z) = z + O(|z|2) as z → 0, it follows that |ŵ(t, ξ)| =
|φ(ρ̂(t, ξ))| → 0 as t → ∞ if Im ξ < 0. Thus, taking the limit t → ∞ in (2.7), we find
ŵ(1, ξ) =

∫∞

1
α(t) e−iξt dt, which in turn implies

ŵ(t, ξ) =

∫ ∞

t

α(s)e−iξs ds for t ≥ 1 and Im ξ < 0. (2.8)

This formula has a very nice interpretation. Let N be the nonlinear transformation
defined (at least formally) by

N = F−1 ◦ φ ◦ F or N−1 = F−1 ◦ ψ ◦ F . (2.9)

Setting t = 1 in (2.8), we obtain φ(ρ̂1) = α̂, that is α = N (ρ1). In other words, the trace
α(t) = ρ(t, t) is obtained from the initial density ρ1(x) = ρ(1, x) by applying the nonlinear
map N . Moreover, if U(t) is the linear operator defined for t ≥ 1 by

(U(t)w)(s) = 1{s≥t}w(s) =

{
0 if s < t,

w(s) if s ≥ t,
(2.10)

then (2.8) reads ŵ(t, ·) = φ(ρ̂(t, ·)) = F(U(t)α), which means N (ρ(t, ·)) = U(t)α. There-
fore, the solution of (2.2) satisfies

N (ρ(t, ·)) = U(t)N (ρ1) for t ≥ 1. (2.11)

This shows that the dynamics of the nonlinear system (2.2) is conjugated via the nonlinear
mapping N to the linear evolution U . Since N (ρ1) is the trace function defined by
α(t) = ρ(t, t), it is very natural that the evolution of α is obtained just by cutting off the
history in [1, t).

It is not difficult to show that the map N is well-defined on the space P, cf. (1.4):
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Proposition 2.1 If ρ ∈ P, then N (ρ) ∈ L1
loc([1,∞),R+), and the mapping ρ 7→ N (ρ) is

one-to-one.

Proof. For ρ ∈ P we construct w = N (ρ) as follows. Define ŵ : L−
∗ → C by ŵ(ξ) =

φ(ρ̂(ξ)), where L−
∗ = L− \ {0} . We recall that ρ̂ is continuous on L−, analytic in the

interior of L−, and that |ρ̂(ξ)| < 1 for ξ 6= 0. Since φ is analytic in the unit disk of
C, it follows that ŵ is continuous on L−

∗ and analytic in the interior of L−. Moreover,
|ŵ(ξ)| ≤ φ(|ρ̂(ξ)|) ≤ φ(eIm ξ), hence |ŵ(ξ)| = O(eIm ξ) as Im ξ → −∞. These properties
imply (see [Sch66], Ch. VIII) that ŵ is the Fourier transform of a uniquely determined
distribution w ∈ D′(R) with support in [1,∞).

The injectivity of N follows from the facts that the mapping φ : {z | |z| < 1} → C is
locally injective (as φ′(z) = 1/(1−Q(z)) 6= 0) and that φ : [0, 1) → R is globally injective
(as φ′(s) ≥ 1 for s ∈ [0, 1)). If N (ρ1) = N (ρ2), then, by the above, we have φ(ρ̂1(ξ)) =
φ(ρ̂2(ξ)) for ξ ∈ L−

∗ . This proves ρ̂1(−ip) = ρ̂2(−ip) for p > 0, as ρ̂j(−ip) ∈ [0, 1). By
continuity of ρ̂j and local invertibility we obtain ρ̂1 = ρ̂2 on L−

∗ , and hence ρ1 = ρ2.

To prove w = N (ρ) ∈ L1
loc([1,∞)), choose any ε > 0 and consider the distribution

wε : x 7→ e−εxw(x). It belongs to S ′(R) (the space of tempered distributions) and its
Fourier transform satisfies

ŵε(ξ) = ŵ(ξ−iε) = φ(ρ̂(ξ−iε)) for Im ξ ≤ 0.

Now we observe that ρ̂(ξ−iε) = ρ̂ε(ξ), where ρε(x) = e−εxρ(x). Since ‖ρε‖L1 ≤ e−ε < 1,

the series
∑∞

k=1
φ(k)(0)

k!
ρ∗kε converges in L1(R) to some function Wε ∈ L1([1,∞),R+). (Here

we use the crucial fact that φ(k)(0) ≥ 0 for all k ∈ N.) By construction,

Ŵε(ξ) =
∞∑

k=1

φ(k)(0)

k!

(
ρ̂ε(ξ)

)k
= φ(ρ̂(ξ−iε)) = ŵε(ξ) for Im ξ ≤ 0,

giving wε = Wε ∈ L1((1,∞),R+), and hence w : x 7→ eεxwε(x) lies in L1
loc([1,∞),R+).

Remarks.
1. Under the assumptions of Proposition 2.1, one has that w = N (ρ) ∈ S ′(R), i.e., w
is a tempered distribution. In fact, there exists a constant C > 0 such that |ŵ(ξ)| =
|φ(ρ̂(ξ))| ≤ Cmax{1,− log |ξ|} for ξ 6= 0, see the proof of Proposition 5.1 below. This
means that the singularity of ŵ(ξ) at ξ = 0 is (not worse than) logarithmic.

2. More information on N can be extracted from the proof of Proposition 2.1. For
instance, if ρ ∈ P, then N (ρ)(x) = ρ(x) for almost all x ∈ (1, n+1), where

n = min
{
j ∈ {1, . . . , N}

∣∣ pj > 0
}
≥ 1 (2.12)

is the largest integer such that |Q(z)| = O(|z|n) as z → 0. Indeed, in view of (2.5), one
has φ(z) = z + O(|z|n+1) as z → 0. It follows that

Wε = ρε +
∞∑

k=n+1

φ(k)(0)

k!
ρ∗kε ,

where the second term in the right-hand side is supported in the interval [n+1,∞). Thus
Wε = ρε almost everywhere in [1, n+1], which proves the claim. Similarly, using the
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observation that supp(ρ∗kε ) ⊂ [k,∞), it is easy to show that, if ρ : [1,∞) → R+ is
continuous, so is N (ρ).

The formula (2.11) is very nice, but does not provide an effective method for solving the
Cauchy problem associated with (2.2). Indeed, Proposition 2.1 does not give a sufficient
characterization of the set N (P), which is also the domain of N−1. It is not even clear a
priori that this set in left invariant by the linear evolution U(t). For this reason, we shall
use standard PDE techniques to prove existence of solutions to (2.2) in the next section.
But the representation (2.11) will be very useful to find self-similar solutions of (2.2) in
Section 4, and to study their stability in Section 5.

3 The Cauchy problem for the rescaled system

The evolution equation (2.2) is not autonomous, and it is defined on the time-dependent
domain {x ∈ R+ |x ≥ t}. These drawbacks are eliminated if we rescale the density ρ(t, x)
by setting

ρ(t, x) =
1

t
η(log t, x/t) for x ≥ t ≥ 1, (3.1)

or equivalently
η(τ, y) = eτρ(eτ , eτy) for τ ≥ 0, y ≥ 1. (3.2)

In what follows, we denote by τ = log t and y = x/t the new time and space coordinates.
The rescaled density η(τ, ·) now belongs to the fixed space P defined in (1.4). Moreover,
it satisfies the autonomous evolution equation

∂τη(τ, y) = ∂y(y η(τ, y)) + β(τ)Q[η(τ, ·)](y−1) for y ≥ 1, (3.3)

where β(τ) = η(τ, 1) is the new trace which relates to α(t) via β(τ) = eτα(eτ ). The initial
condition for (3.3) is η(0, y) = η0(y), where η0 = ρ1 ∈ P.

The nonlinearity in (3.3) has the form β(τ)T1Q[η(τ)], where T1 : P → P is the shift
operator defined by

(T1η)(y) =

{
η(y−1) if y ≥ 2;

0 if y < 2.
(3.4)

In particular, for all η ∈ P, the support of T1Q[η] is contained in [2,∞), or even in
[n+1,∞), where n ≥ 1 is defined in (2.12). Thus, any solution of (3.3) satisfies the
linear equation ∂τη = ∂y(yη) in the strip {(τ, y) | τ ≥ 0, 1 ≤ y ≤ 2}. It follows that
η(τ, y) = eτ−τ0η(τ0, e

τ−τ0y) for all τ ≥ τ0 ≥ 0 and all y ≥ 1 such that eτ−τ0y ≤ 2. Setting
y = 1, we obtain the important relation

β(τ) = eτ−τ0 η(τ0, e
τ−τ0) for 0 ≤ τ−τ0 ≤ log 2, (3.5)

which means that the trace β(τ) for τ ∈ [τ0, τ0+ log 2] can be determined from the solution
η(τ0, ·). This formula will be useful to define the trace β properly when the solution η(τ, ·)
of (3.3) is not continuous. For instance, if η(τ, ·) ∈ P for all τ ≥ 0 and if β satisfies (3.5),
then β ∈ L1

loc([0,∞),R+).
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The main purpose of this section is to show that (3.3) defines a well-posed evolution
in the space P. To do this, we consider the associated integral equation

η(τ) = Sτη0 +

∫ τ

0

β(s)Sτ−sT1Q[η(s)]ds for τ ≥ 0, (3.6)

where (Sτ )τ≥0 is the linear semigroup on P defined by

(Sτη)(y) =

{
eτη(eτy) if y ≥ 1;

0 if y < 1.
(3.7)

To formulate our convergence results in Section 5, we shall need some weighted Lp spaces
which we now introduce. For p ∈ [1,∞) and γ ≥ 0, we denote by Lp

γ the function space

Lp
γ = {w ∈ L1

loc([1,∞),R) | ‖w‖p,γ <∞}, (3.8)

where

‖w‖p,γ = ‖yγw‖Lp =

(∫ ∞

1

(yγ|w(y)|)pdy

)1/p

.

When γ = 0, we simply write Lp instead of Lp
0 and ‖w‖p instead of ‖w‖p,0. Remark that

Lp
γ ↪→ L1 if and only if γ > 1− 1/p (when p > 1) or γ ≥ 0 (when p = 1). In what follows,

we shall often restrict ourselves to such values of p, γ.

We first give a few basic estimates on the semigroup (Sτ ) and the nonlinearity Q acting
on Lp

γ .

Lemma 3.1 Let p ∈ [1,∞) and γ ≥ 0. Then (3.7) defines a strongly continuous semi-
group (Sτ )τ≥0 in Lp

γ, and

‖Sτη‖p,γ ≤ e−τ(γ−1+1/p)‖η‖p,γ, (3.9)

for all η ∈ Lp
γ and all τ ≥ 0. Moreover, equality holds in (3.9) if and only if η(y) = 0 for

almost all y ∈ [1, eτ ].

Lemma 3.2 Let Q be the nonlinear map defined by (2.1).
a) If η ∈ L1, then Q[η] ∈ L1 and ‖Q[η]‖1 ≤ Q(‖η‖1). If η, η̃ ∈ L1, then

‖Q[η] − Q[η̃]‖1 ≤ Q′(r)‖η − η̃‖1,

where r = max{‖η‖1, ‖η̃‖1}. Finally, if η ∈ P, then Q[η] ∈ P.

b) Let p ∈ [1,∞) and γ > 1 − 1/p. If η ∈ Lp
γ, then Q[η] ∈ Lp

γ, and there exists C > 0
(independent of η) such that

‖T1Q[η]‖p,γ ≤ CQ′(‖η‖1)‖η‖p,γ. (3.10)

If η, η̃ ∈ Lp
γ and R = max{‖η‖p,γ, ‖η̃‖p,γ}, then

‖T1Q[η] − T1Q[η̃]‖p,γ ≤ CQ′(R)‖η − η̃‖p,γ.
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Proof. Estimate (3.9) is a straightforward calculation, and the proof of Lemma 3.2 will
be outlined in Appendix C.

We are now ready to state the main result of this section:

Theorem 3.3 For any η0 ∈ L1((1,∞),R) with ‖η0‖1 ≤ 1, equations (3.6), (3.5) have a
unique global solution η ∈ C0([0,∞), L1), which satisfies ‖η(τ)‖1 ≤ 1 for all τ ≥ 0. In
addition,
1) if η0 ∈ P, then η(τ) ∈ P for all τ ≥ 0;
2) if η0 ∈ Lp

γ for some p ≥ 1 and some γ > 1 − 1/p, then η ∈ C0([0,∞), Lp
γ).

Proof. Fix η0 ∈ B1, where B1 = {η ∈ L1 | ‖η‖1 ≤ 1}. Setting τ0 = 0 in (3.5), we obtain

β(τ) = eτη0(e
τ ) for 0 ≤ τ ≤ log 2. (3.11)

The first step is to show that (3.6),(3.11) have a unique solution η ∈ C0([0, log 2], L1).

Let q = Q′(1) ≥ 1, and let T = (log 2)/m, where m ∈ N∗ is sufficiently large so that,
for all k = 1, . . . , m, ∫ kT

(k−1)T

es|η0(e
s)|ds <

1

q
. (3.12)

We introduce the Banach space X = C0([0, T ], L1) equipped with the norm

‖η‖X = sup
0≤τ≤T

‖η(τ)‖1.

Let B = {η ∈ X | ‖η‖X ≤ 1}, and let F : X 7→ X be the nonlinear map defined by

(F [η])(τ) = Sτη0 +

∫ τ

0

β(s)Sτ−sT1Q[η(s)]ds for 0 ≤ τ ≤ T,

where β(s) is given by (3.11). We claim that F (B) ⊂ B and that F is a strict contraction
in B. Indeed:

a) Assume that η ∈ B. Using Lemmas 3.1 and 3.2, we find, for all τ ∈ [0, T ],

‖(F [η])(τ)‖1 ≤ ‖Sτη0‖1 +

∫ τ

0

|β(s)|‖Sτ−sT1Q[η(s)]‖1 ds

=

∫ ∞

1

eτ |η0(e
τy)|dy +

∫ τ

0

|β(s)|‖T1Q[η(s)]‖1 ds

=

∫ ∞

eτ

|η0(y)|dy +

∫ τ

0

es|η0(e
s)|‖Q[η(s)]‖1 ds (3.13)

≤

∫ ∞

eτ

|η0(y)|dy +Q(‖η‖X)

∫ eτ

1

|η0(y)|dy ≤ 1,

since Q(‖η‖X) ≤ Q(1) = 1 and ‖η0‖1 ≤ 1. This shows that F (B) ⊂ B.
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b) If η, η̃ ∈ B, then for all τ ∈ [0, T ],

‖(F [η])(τ)−(F [η̃])(τ)‖1 ≤

∫ τ

0

|β(s)|‖Sτ−s(T1Q[η(s)]−T1Q[η̃(s)])‖1 ds

=

∫ τ

0

es|η0(e
s)|‖Q[η(s)]−Q[η̃(s)])‖1 ds

≤

∫ τ

0

es|η0(e
s)|Q′(1)‖η(s)−η̃(s)‖1 ds

≤ q
(∫ T

0

es|η0(e
s)|ds

)
‖η−η̃‖X .

In view of (3.12), this shows that F is a strict contraction in B.

Let η ∈ X be the unique fixed point of F in the ball B. Then η satisfies (3.6), and
using Gronwall’s lemma it is readily verified that η is in fact the unique solution of (3.6)
in the whole space X = C0([0, T ], L1). Repeating the same argument m times (where m
is such that (3.12) holds), we conclude that equations (3.6), (3.11) have a unique solution
η ∈ C0([0, log 2], L1), which satisfies ‖η(τ)‖1 ≤ 1 for all τ ∈ [0, log 2]. Moreover, it is clear
that (3.5) holds for all τ0 ∈ [0, log 2] and almost all τ ∈ [τ0, log 2].

For τ ∈ [0, log 2], let Ξτ : B1 → B1 be the nonlinear map defined by Ξτη0 = η(τ),
where η(τ) is the solution of (3.6) we have just constructed. Then it is easy to verify that
Ξτ1+τ2 = Ξτ1 ◦Ξτ2 for 0 ≤ τ1 + τ2 ≤ log 2. It follows that the family (Ξτ ) can be extended
to a continuous semiflow (Ξτ )τ≥0. By construction, if η0 ∈ B1 and if we set η(τ) = Ξτη0

for all τ ≥ 0, then η ∈ C0([0,∞), L1) is the unique solution of (3.6), (3.5), and η(τ) ∈ B1

for all τ ≥ 0. This proves the first part of Theorem 3.3.

Assume now that η0 ∈ P. Keeping the same notations as above, we define

B̃ = {η ∈ X | η(τ) ∈ P for all τ ∈ [0, T ]}.

In particular, B̃ is a closed subset of B, as P is closed in B1 ⊂ L1. If η ∈ B̃, it is clear
that (F [η])(τ) ∈ L1((1,∞),R+) for all τ ∈ [0, T ], and that all inequalities in (3.13) can
be replaced by equalities. Thus F (B̃) ⊂ B̃, hence the solution η ∈ C0([0,∞), L1) of (3.6)
satisfies η(τ) ∈ P for all τ ∈ [0, T ]. Proceeding as above, we then show that η(τ) ∈ P for
all τ ∈ [0, log 2], hence for all τ ≥ 0. This proves assertion 1) in Theorem 3.3.

Finally, assume that η0 ∈ Lp
γ for some p ≥ 1 and some γ > 1−1/p, and that ‖η0‖1 ≤ 1.

Using Lemmas 3.1, 3.2 and a fixed point argument as before, it is straightforward to show
that the solution η ∈ C0([0,∞), L1) of (3.6) satisfies η ∈ C0([0, T ], Lp

γ) for some T > 0
(depending on η0). Let

T ∗ = sup
{
T > 0

∣∣ η ∈ C0([0, T ], Lp
γ)
}
∈ (0,∞].

We claim that T ∗ = ∞. Indeed, assume on the contrary that 0 < T ∗ < ∞. Since
‖η(τ)‖1 ≤ 1 for all τ ≥ 0, it follows from (3.6), (3.9), (3.10) that

‖η(τ)‖p,γ ≤ ‖η0‖p,γ + Cq

∫ τ

0

|β(s)|‖η(s)‖p,γ ds for 0 ≤ τ < T ∗.

Using Gronwall’s lemma and the fact that β ∈ L1
loc([0,∞)), we deduce that ‖η(τ)‖p,γ ≤ C ′

for all τ ∈ [0, T ∗). In view of (3.6), (3.10), this in turn implies that η(τ) has a limit in
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Lp
γ as τ ↗ T ∗, giving η ∈ C0([0, T ∗], Lp

γ). Since we have a local existence result in Lp
γ , we

conclude that η ∈ C0([0, T ], Lp
γ) for some T > T ∗, which contradicts the definition of T ∗.

This proves assertion 2) in Theorem 3.3.

The nonlinear map N introduced in the previous section can also be used to linearize
(3.3). Indeed, the Fourier transforms of ρ and η are related via ρ̂(t, ξ) = η̂(log t, tξ),
so that (3.1) is just a rescaling of the Fourier variable ξ. As is clear from (2.9), this
transformation commutes with the action of N . Thus, if ρ is a solution of (2.2) with
initial data ρ1 and if η is the corresponding solution of (3.3) given by (3.2), it follows from
(2.11) that

1

t
N
(
η(log t, ·)

)
(x/t) = N (η0)(x) for x ≥ t ≥ 1, (3.14)

where η0 = ρ1. Setting τ = log t and y = x/t, we obtain the representation formula

N (η(τ)) = Sτ N (η0) for τ ≥ 0, (3.15)

where (Sτ ) is the linear semigroup (3.7). The last result of this section shows that this
formula is indeed correct:

Proposition 3.4 Let η0 ∈ P, and let η ∈ C0([0,∞),P) be the solution of (3.6) given by
Theorem 3.3. Then N (η(τ)) = Sτ N (η0) for all τ ≥ 0.

Proof. We establish the formula by returning to the unscaled variables (t, x) and by
showing that the formal steps of Section 2 can be made rigorous for the solutions of
(3.3). Define ρ : [1,∞)2 → R+ by ρ(t, x) = 1

t
η(log t, x/t) if x ≥ t ≥ 1 and ρ(t, x) = 0 if

1 ≤ x < t. Then ρ ∈ C0([1,∞),P), and rescaling (3.6) we find

ρ(t) = U(t)

(
ρ1 +

∫ t

1

α(s)TsQ[ρ(s)]ds

)
for t ≥ 1, (3.16)

where ρ1 = η0 ∈ P, α(t) = 1
t
β(log t), U(t) is the linear operator (2.10), and Ts is the shift

operator defined as in (3.4). To simplify the notation, we set f(s, x) = (TsQ[ρ(s)])(x).
Then f ∈ C0([1,∞), L1), so that (s, x) 7→ α(s)f(s, x) ∈ L1

loc([1,∞), L1). By construction,
the trace α satisfies the identity

α(t) = ρ1(t) +

∫ t

1

α(s)f(s, t)ds for a.a. t ≥ 1.

We now apply the Fourier transform to (3.16). For any ξ ∈ L− and any t ≥ 1, we find

ρ̂(t, ξ) =

∫ ∞

t

ρ1(x)e
−iξx dx+

∫ ∞

t

{∫ t

1

α(s)f(s, x)ds
}

e−iξx dx.

Since ρ1 ∈ P, the first term in the right-hand side is absolutely continuous with respect
to t, and

∂t

∫ ∞

t

ρ1(x)e
−iξx dx = −ρ1(t)e

−iξt for a.a. t ≥ 1.
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The second term can be decomposed as h1(t, ξ) − h2(t, ξ), where

h1(t, ξ) =

∫ ∞

1

{∫ t

1

α(s)f(s, x)ds
}

e−iξx dx =

∫ t

1

α(s)f̂(s, ξ)ds,

h2(t, ξ) =

∫ t

1

{∫ t

1

α(s)f(s, x)ds
}

e−iξx dx.

Clearly, h1(t, ξ) is absolutely continuous with respect to t, and

∂th1(t, ξ) = α(t)f̂(t, ξ) = α(t)e−iξtQ(ρ̂(t, ξ)) for a.a. t ≥ 1.

Next, since f(s, x) = 0 for x < s, we have
∫ t

1
α(s)f(s, x) ds =

∫ x

1
α(s)f(s, x) ds, and

this expression is a locally integrable function of x. It follows that h2(t, ξ) is absolutely
continuous with respect to t, and

∂th2(t, ξ) = e−iξt

∫ t

1

α(s)f(s, t)ds for a.a. t ≥ 1.

Summarizing, we have shown that, for any ξ ∈ L−, the Fourier transform ρ̂(t, ξ) is abso-
lutely continuous with respect to t and satisfies

∂tρ̂(t, ξ) = −e−iξt

(
ρ1(t) +

∫ t

1

α(s)f(s, t)ds

)
+ α(t)e−iξtQ(ρ̂(t, ξ))

= α(t) e−iξt
(
Q(ρ̂(t, ξ)) − 1

)
for a.a. t ≥ 1.

This gives (2.4). Now, proceeding exactly as in Section 2, we deduce that (2.8) holds
for all t ≥ 1 if Im ξ < 0, and this in turn is equivalent to (2.11). Finally, using the
transformation (3.14) we obtain (3.15).

4 Properties of the steady states

This section is devoted to the time-independent solutions of (3.3) in the space P defined
by (1.4).

Definition. We say that η0 ∈ P is a steady state of (3.3) if the solution η ∈ C0([0,∞),P)
of (3.6) given by Theorem 3.3 satisfies η(τ) = η0 for all τ ≥ 0.

The steady states of (3.3) will also be called “equilibria” or “stationary solutions”.

Lemma 4.1 If η0 ∈ P is a steady state of (3.3), there exists β ≥ 0 such that η0(y) = β/y
for almost all y ∈ [1, 2].

Proof. If η(τ) ≡ η0, (3.6) implies that η0(y) = eτη0(e
τy) for all τ ∈ [0, log 2] and

a.a. y ∈ [1, 2 e−τ ], because the nonlinearity in (3.6) vanishes identically for such values of

τ, y. We define F : x 7→
∫ ex

1
η0(y)dy ≥ 0 and obtain

F (x+y) = F (x) + F (y) for x, y ≥ 0 and x+y ≤ log 2.
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Since F is continuous, we conclude that F (x) = βx for some β ≥ 0. Differentiating
implies β = exη0(e

x) for a.a. x ∈ [0, log 2] which gives the desired result.

Let η0 ∈ P be a steady state. Since η0 coincides almost everywhere in [1, 2] with a
continuous function, the constant β in Lemma 4.1 can be identified with η0(1). Clearly,
the trace function defined by (3.5) satisfies β(τ) = β for all τ ≥ 0. In particular, the
integral equation (3.6) reduces to

η0 = Sτη0 + β

∫ τ

0

SsT1Q[η0]ds for τ ≥ 0. (4.1)

From η0 ∈ P we now conclude that β > 0.

On the other hand, if η0 ∈ P and w = N (η0), it follows from Propositions 2.1 and 3.4
that η0 is a steady state if and only if Sτw = w for all τ ≥ 0. In view of (3.7), this is the
case if and only if there exists β ′ ∈ R such that w = β ′w∗, where

w∗(y) =

{
1/y if y ≥ 1,
0 if y < 1.

(4.2)

But since w(y) = η0(y) for a.a. y ∈ [1, 2] (see Remark 2 after Proposition 2.1), we neces-
sarily have β ′ = β = η0(1).

Finally, since equilibria are time-independent solutions of (3.3), we certainly expect
them to solve the ordinary differential equation

(yη)′(y) + β(T1Q[η])(y) = 0 for y ≥ 1, η(1) = β. (4.3)

Remark that the initial value β also appears as a parameter in front of the nonlinear term.
It is not difficult to show that (4.3) has global solutions:

Lemma 4.2 For any β ∈ R, equation (4.3) has a unique global solution η : [1,∞) → R.

Proof. For any k ∈ N, let Ik = [kn + 1, (k+1)n + 1], where n ∈ N∗ is defined in (2.12).
For any η ∈ L1

loc([1,∞),R), the nonlinear term (T1Q[η])(y) only depends on the values of
η(z) for z ≤ y − n. In particular, (T1Q[η])(y) = 0 for y ≤ n + 1, so that any solution of
(4.3) satisfies η(y) = β/y for y ∈ I0 = [1, n+ 1]. Using this information, one can compute
(T1Q[η])(y) explicitly for y ∈ I1 = [n + 1, 2n + 1], and then solve (4.3) on this interval
to determine η(y) for y ∈ I1. By construction, η is smooth on both I0 and I1, but η
has a discontinuity of order n at y = n + 1, in the sense that the derivatives η(k)(y) are
continuous for k = 0, . . . , n− 1, whereas η(n)(y) has different limits to the left and to the
right at y = n + 1 (if β 6= 0). Iterating this procedure, we find that (4.3) has a unique
global solution η ∈ Cn−1,1([1,∞),R), which satisfies η ∈ C∞(Ik) for all k ∈ N.

The following result shows that equilibria of (3.3) indeed correspond to solutions of
the differential equation (4.3).

Proposition 4.3 If η0 ∈ P and β > 0, the following assertions are equivalent:
a) η0 is a steady state of (3.3) with η0(1) = β.
b) η0 coincides almost everywhere with the solution of (4.3).
c) N (η0) = βw∗.
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Proof. We already proved that a) ⇔ c). If η0 ∈ P is a steady state with η0(1) = β, it
follows from (4.1) that

Sτη0 − η0

τ
+
β

τ

∫ τ

0

SsT1Q[η0]ds = 0,

for all τ > 0. Using (3.7), it is not difficult to verify that the first term converges to (yη0)
′

in D′((1,∞)) as τ → 0, while the second one tends to βT1Q[η0] in L1((1,∞)). This shows
that (after modification on a set of measure zero) η0 is absolutely continuous on (1,∞)
and satisfies the differential equation (4.3) for almost all y > 1. It follows easily that η0

is the solution of (4.3) in the sense of Lemma 4.2. Thus a) ⇒ b).

Conversely, assume that η0 ∈ P satisfies (4.3). Applying the semi-group Sτ to (4.3)
and integrating over τ , we immediately obtain (4.1), which implies that η0 is a steady
state. This proves that b) ⇒ a).

The main goal of this section is to determine for which values of β > 0 the solution η
of (4.3) belongs to P. Our strategy is to use the characterization c) in Proposition 4.3.
Therefore, we are led to study the image of βw∗ under the map N−1, and this requires
very precise information on the complex transformations (2.5) and (2.6). The following
quantities, related to the polynomial Q(z), will play an important role in the sequel:

q = Q′(1) ≥ 1 and κ = exp

(∫ 1

0

( 1

1 − z
−

q

1 −Q(z)

)
dz

)
≤ 1. (4.4)

Lemma 4.4 Let
Φ(z) = 1 − e−qφ(z) for |z| < 1,

where φ is defined in (2.5). Then Φ can be extended analytically to a neighborhood of the
real positive axis R+. This extension satisfies Φ(z) ≥ 0 and Φ′(z) > 0 for all z ≥ 0.
Moreover, Φ(0) = 0, Φ′(0) = q, Φ(1) = 1, Φ′(1) = κ, and Φ(z) → R as z → ∞, where

R = 1 + exp

(∫ 2

0

( 1

1 − z
−

q

1 −Q(z)

)
dz −

∫ ∞

2

q

1 −Q(z)
dz

)
. (4.5)

Note that R = ∞ if Q(z) = z and 1 < R <∞ otherwise.

Proof. Since the polynomial 1−Q(z) has the unique real positive root z = 1, which is a
simple root because Q′(1) = q 6= 0, it is clear that the function

χ(z) = exp

(∫ z

0

( 1

1 − t
−

q

1 −Q(t)

)
dt

)
=

e−qφ(z)

1 − z
for |z| < 1,

can be extended to an analytic map in a neighborhood of the real positive axis R+.
Moreover, χ(0) = 1, χ(1) = κ, and using z−1 = exp(−

∫ z

2
dt

1−t
) shows that (z−1)χ(z) →

R−1 for z → ∞, where R is defined in (4.5). Since Φ(z) = 1 − (1−z)χ(z), we conclude
that the function Φ has the desired properties. In particular,

Φ′(z) = qχ(z)
1 − z

1 −Q(z)
,
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so that Φ′(z) > 0 for all z ≥ 0.

It follows from Lemma 4.4 that the map Φ : [0,∞) → [0, R) is one-to-one and onto.
Let Ψ = Φ−1 : [0, R) → [0,∞) be the inverse map. Then Ψ(0) = 0, Ψ′(0) = 1/q, Ψ(1) = 1,
Ψ′(1) = 1/κ, and Ψ′(u) > 0 for all u ∈ [0, R). By construction,

Ψ(u) = ψ
(
−

1

q
log(1−u)

)
for 0 ≤ u < 1. (4.6)

Lemma 4.5 The function Ψ : [0, R) → [0,∞) is absolutely monotone, i.e. Ψ(k)(u) ≥ 0
for all k ∈ N and all u ∈ [0, R). In particular, Ψ can be extended to an analytic function
on the disc |u| < R, and there exist nonnegative coefficients (Ψk)k∈N∗

such that

Ψ(u) =

∞∑

k=1

Ψku
k for |u| < R.

Proof. Since Ψ = Φ−1, we already know that Ψ is analytic in a neighborhood of [0, R).
We first show by induction that, for all n ∈ N∗, there exists a polynomial Pn such that

Ψ(n)(u) =
Pn(Ψ(u))

qn (1−u)n
for 0 < u < 1. (4.7)

Indeed, differentiating (4.6) and using (2.6), we obtain

Ψ′(u) =
1 −Q(Ψ(u))

q (1−u)
for 0 < u < 1. (4.8)

Thus (4.7) holds for n = 1 with P1(z) = 1 − Q(z). On the other hand, differentiating
(4.7) and using (4.8), we find, for 0 < u < 1,

Ψ(n+1)(u) =
Pn+1(Ψ(u))

qn+1 (1−u)n+1
with Pn+1(z) = P ′

n(z)(1−Q(z)) + nqPn(z). (4.9)

Therefore, (4.7) is established.

We next show that, for all n ∈ N∗, there exists a polynomial Rn(z) with nonnegative

coefficients such that
Pn(z) = (1−Q(z))(1−z)n−1Rn(z). (4.10)

Obviously, (4.10) holds for n = 1 with R1(z) = 1. Combining (4.9) and (4.10), we obtain
the recursion relation

Rn+1(z) = A1(z)R
′
n(z) + A2(z)Rn(z) + (n−1)A3(z)Rn(z),

where the coefficient functions Aj are given by

A1(z) =
1 −Q(z)

1 − z
=

N∑

j=1

pj
1 − zj

1 − z
,

A2(z) =
q −Q′(z)

1 − z
=

N∑

j=2

jpj
1 − zj−1

1 − z
,

A3(z) =
q

1 − z
−

1 −Q(z)

(1 − z)2
=

N∑

j=2

pj

j−1∑

k=1

1 − zk

1 − z
.
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Because of pj ≥ 0 all A1, A2, A3 are polynomials (in z) with nonnegative coefficients.
Thus, the same property holds for Rn by induction over n.

Since 0 < Ψ(u) < 1 and 0 < Q(Ψ(u)) < 1 for all u ∈ (0, 1), it follows from (4.7) and
(4.10) that Ψ(n)(u) ≥ 0 for all n ∈ N and all u ∈ (0, 1), hence also for u ∈ [0, 1]. By a
classical result of Bernstein (see [Fe71], Section VII.2), the power series

∞∑

k=1

Ψku
k, where Ψk =

1

k!
Ψ(k)(0) ≥ 0, (4.11)

converges absolutely and uniformly for |u| ≤ 1, and defines an analytic continuation of
Ψ to the unit disk. Moreover, if R1 ≥ 1 denotes the radius of convergence of the series
(4.11), it is well-known (see for instance [Ru87], exercise 16.1) that the analytic function
defined by (4.11) has a singularity at u = R1. Since Ψ(u) → ∞ as u ↗ R, it follows that
R = R1. This concludes the proof.

Example. To conclude this study of the mappings Φ and Ψ, we give an explicit example
of a nonlinearity Q for which these functions can be calculated explicitly. Let Q(z) =
(1−a)z + az2, where a ∈ [0, 1]. The value a = 1 corresponds to the coarsening equation
(1.3), while a = 0 is a particular case of a model studied in [CaP00]. Then q = 1+a = 1/κ,
R = 1 + 1/a, and

φ(z) =
1

1 + a
log

1 + az

1 − z
, ψ(w) =

1 − e−qw

1 + ae−qw
.

The auxiliary functions Φ, Ψ are:

Φ(z) =
(1+a)z

1 + az
, Ψ(u) =

u

1+a− au
.

We are now ready to state and prove the main result of this section.

Theorem 4.6 (Steady states of (3.3))
Fix θ > 0 and let η∗θ : [1,∞) → R be the solution of (4.3) with β = θ/q. Then
a) η∗θ ∈ P if and only if 0 < θ ≤ 1.
b) If θ ∈ (0, 1], η∗θ ∈ P is positive and strictly decreasing, so that yη∗θ(y) → 0 as y → ∞.
c) If 0 < θ < 1, then

lim
y→∞

y1+θη∗θ(y) =
θ eθγE

κΓ(1−θ)
, (4.12)

where Γ is the Gamma function and γE = −Γ′(1) ≈ 0.577216 is Euler’s constant.
d) If θ = 1, then ∫ ∞

1

yη∗1(y)dy =
eγE

κ
. (4.13)

Moreover, if degQ > 1, there exists λ > 0 such that

lim
y→∞

log η∗1(y)

y
= −λ. (4.14)

For Q(z) = z we have

lim
y→∞

log η∗1(y)

y log y
= −1. (4.15)
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Remark. It follows from Theorem 4.6 and Proposition 4.3 that (3.3) has a unique steady
state η∗1 ∈ P such that

∫∞

1
yη∗1(y)dy <∞.

Proof. We first show that η∗θ ∈ P if 0 < θ ≤ 1. According to Proposition 4.3, it
is sufficient to prove that there exists an element of P (still denoted by η∗θ) such that
N (η∗θ) = (θ/q)w∗. Since N−1 = F−1 ◦ ψ ◦ F and ψ(w) = Ψ(1−e−qw) by (4.6), this
relation is equivalent to

η̂∗θ = Ψ
(
1−e−θŵ∗

)
, (4.16)

where η̂∗θ = Fη∗θ and ŵ∗ = Fw∗. In view of (4.2),

ŵ∗(ξ) =

∫ ∞

1

e−iξy

y
dy = E1(iξ), (4.17)

where E1 is the exponential integral, see [AS72]. It is well-known that

E1(z) = − log z − γE + χ(z) for |arg z| < π, (4.18)

where χ : C → C is an entire function with χ(0) = 0 and χ′(0) = 1. Thus, ŵ∗ is analytic
in the interior of L−, where L− = {ξ ∈ C | Im ξ ≤ 0}. Moreover, Re(ŵ∗(ξ)) → ∞ as
ξ → 0 within L−.

In Appendix A, we prove that |1− e−θŵ∗(ξ)| < 1 for all ξ ∈ L− \ {0} and all θ ∈ (0, 1],
see also Figure A.1. From Lemma 4.5, we also know that Ψ is analytic in the disk of radius
R > 1 centered at the origin. Therefore, the map η̂∗θ defined by (4.16) is continuous over
L− (with η̂∗θ(0) = 1) and analytic in the interior of L−. In addition, since |Ψ(u)| ≤ |u|
whenever |u| ≤ 1, we have the bound

|η̂∗θ(ξ)| ≤ |1−e−θŵ∗(ξ)| ≤ 2θ|ŵ∗(ξ)| for ξ ∈ L− \ {0}.

In particular, |η̂∗θ(ξ)| = O(eIm ξ) as Im ξ → −∞. By the Paley-Wiener Theorem (see for
instance [Ru87]), we conclude that η∗θ = F−1η̂∗θ ∈ L2((1,∞)).

To prove that η∗θ is nonnegative, we argue as in [CaP92]. Consider the Laplace
transform η̃∗θ = Lη∗θ , which satisfies η̃∗θ(p) = η̂∗θ(−ip). As is well-known (see [Fe71],
Section XIII.4), positivity of η∗θ is equivalent to complete monotonicity of η̃∗θ , namely
(−1)kη̃∗θ

(k)(p) ≥ 0 for all k ∈ N and p > 0. Recall that

η̃∗θ(p) = Ψ(1−e−θw̃∗(p)) = Ψ(1−e−θE1(p)) for p > 0. (4.19)

We apply Lemma 4.7 below with

f1 :

{
(0, 1) → R,
u 7→ Ψ(1−u);

and g1 :

{
(0,∞) → (0, 1),
p 7→ e−θE1(p).

By Lemma 4.5, f1 is completely monotone, thus it remains to show that g′1 is completely
monotone. Observe that g′1 = f2 ◦ g2, where f2 : R → R is defined by f2(w) = θe−w and
g2 : (0,∞) → R by

g2(p) = θE1(p) − log(−E′
1(p)) = θE1(p) + p+ log p.
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Clearly, f2 is completely monotone, thus (again by Lemma 4.7) it remains to prove that
g′2 is completely monotone. This follows from the representation

g′2(p) = −θ
e−p

p
+ 1 +

1

p
= 1 + (1−θ)

1

p
+ θ

∫ 1

0

e−sp ds.

Thus, we have shown that η∗θ ∈ L2((1,∞),R+). Since η̃(p) → 1 as p ↘ 0, we conclude
that η∗θ ∈ L1 and

∫∞

1
η∗θ(y)dy = 1, i.e., η∗θ ∈ P.

Now, fix θ > 1 and assume that η∗θ ∈ P, where η∗θ is the solution of (4.3) with β = θ/q.
According to Proposition 4.3, N (η∗θ) = (θ/q)w∗, so that (4.19) holds. Thus, in view of
(4.18), the Laplace transform of η∗θ satisfies

η̃∗θ(p) = Ψ
(
1 − pθ eθ(γE−χ(p))

)
= 1 − κ−1pθ eθγE + O(p1+θ) for p↘ 0. (4.20)

Since θ > 1, it follows that
∫∞

1
yη∗θ(y) dy = −(η̃∗θ)

′(0) = 0, which clearly contradicts the
hypothesis η∗θ ∈ P. This proves a).

Next, fix θ ∈ (0, 1]. To prove that η∗θ is strictly decreasing, it is sufficient to show that
η∗θ(y) > 0 for all y ≥ 1, since y(η∗θ)

′(y) + η∗θ(y) ≤ 0 by (4.3). Assume on the contrary that
there exists y0 > 1 such that η∗θ(y0) = 0 and η∗θ(y) > 0 for 1 ≤ y < y0. It is clear that
y0 > n+1, where n is defined in (2.12). Thus, (T1Q[η])(y0) > 0, hence η∗θ

′(y0) < 0 by
(4.3), which contradicts the fact that η∗θ ∈ P. This proves b).

Assume now that 0 < θ < 1. In Appendix B, we prove that the limit in the left-hand
side of (4.12) exists. Let L(θ) denote this limit, and let

Hθ(y) =

∫ ∞

y

η∗θ(x)dx for y ≥ 1.

Clearly, yθHθ(y) → L(θ)/θ as y → ∞. Thus, the Laplace transform of Hθ satisfies

p1−θH̃θ(p) =

∫ ∞

p

e−tt−θ
( t
p

)θ

Hθ

( t
p

)
dt→ Γ(1−θ)

L(θ)

θ
as p↘ 0.

Since η̃∗θ(p) = e−p −pH̃θ(p) = 1−pθΓ(1−θ)L(θ)/θ+O(pθ) as p↘ 0, it follows from (4.20)
that Γ(1−θ)L(θ)/θ = eθγE/κ. This proves (4.12).

Finally, let θ = 1. Then (4.19), (4.20) show that the Laplace transform η̂∗1 is analytic
in the half-plane {p ∈ C | Re p > −λ}, where λ > 0 is the unique real root of the equation
1 − e−E1(−λ) = R (if Q(z) = z, then R = ∞, hence also λ = ∞.) In particular, η∗1(y)
decays exponentially as y → ∞, and

−η̃∗1
′(0) =

∫ ∞

1

yη∗1(y)dy =
eγE

κ
.

If degQ > 1, then λ < ∞, and the arguments given in [CaP92] (in the particular case
Q(z) = z2) show that (4.14) holds. If Q(z) = z, then λ = ∞ and η∗1(y) = ρ(y−1)/y, where
ρ : [0,∞) → R+ is the Dickmann function studied in [CaP00]. From the asymptotics of
ρ given there, we deduce that (4.15) holds. This concludes the proof.
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Figure 4.1: The steady state η∗

θ of the coarsening equation (3.3) with Q(z) = z2 is represented for

four values of the parameter θ. The first two graphs (θ = 0.5 and θ = 1.0) illustrate the conclusions of

Theorem 4.6, and the other two (θ = 2.0 and θ = 3.5) the remarks after Lemma 4.7. The pictures were

produced using the explicit formula (1.6) and a FFT routine to compute the Fourier transforms.

The following lemma was used in the proof of Theorem 4.6. For its proof see [Fe71],
Section XIII.4.

Definition. Let I ⊂ R be an open interval, and let f ∈ C∞(I,R). The function f is
called completely monotone if (−1)kf (k)(x) ≥ 0 for all x ∈ I and all k ∈ N.

Lemma 4.7 (Composition lemma)
Let I, J ⊂ R be open intervals. If f : J → R is completely monotone and g : I → J has a
derivative g′ which is completely monotone, then f ◦ g : I → R is completely monotone.

Remarks. The (generalized) steady states η∗θ with θ > 1 will not be studied in this paper,
because they do not lie in our function space P. We just mention here a few properties
that can established using the techniques developed in the proof of Theorem 4.6. There
exists a critical value θ∗ ∈ (1,∞] such that

1) If 1 < θ < θ∗, then η∗θ ∈ L1((1,∞),R) and
∫∞

1
η∗θ(y) dy = 1. However, η∗θ is not a

positive function. In particular, ‖η∗θ‖1 > 1, so that η∗θ does not belong to the unit ball of
L1 where existence of global solutions is known from Theorem 3.3.

2) If θ > θ∗, then η∗θ /∈ L1((1,∞),R).
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Moreover, θ∗ = ∞ if Q(z) = z, whereas θ∗ <∞ if degQ > 1. In the particular case where
Q(z) = z2, one has θ∗ ≈ 3.24826. These statements are illustrated in Figure 4.1.

5 Global convergence results

In this final section, we use the explicit representation formula (3.15) to study the long-
time behavior of the solutions of (3.3). In particular, we obtain global stability results for
the steady states η∗θ with 0 < θ ≤ 1.

Since the nonlinear map N , which allows us to linearize (3.3), has a simple expression
in Fourier variables, it is convenient to use L2–based function spaces instead of the L1–
based function spaces which are more natural for the existence theory. Our basic space
will be

Pγ = P ∩ L2
γ for γ ≥ 0,

where P is defined in (1.4) and L2
γ in (3.8). Remark that Pγ is a closed subspace of L2

γ if
γ > 1/2, since L2

γ ↪→ L1.

The image of Pγ under the Fourier transform F can be characterized completely. Let
H

γ
1 be the space of all functions z : L− → C satisfying the following three conditions:

(i) z is analytic in the interior of L−,

(ii) for each ξ2 ≤ 0, the map ξ1 7→ z(ξ1+iξ2) lies in the Sobolev space Hγ(R),

(iii)
‖z‖H

γ
1

= sup
ξ2≤0

e−ξ2‖z(·+iξ2)‖Hγ(R) <∞. (5.1)

(In (5.1), the supremum over ξ2 ≤ 0 is always attained at ξ2 = 0.)

Then η ∈ L2
γ if and only if η̂ = Fη ∈ H

γ
1 (when γ = 0, this is just the Paley-Wiener

theorem, see [Ru87]; the general case follows using the Fourier characterization of the
Sobolev space Hγ(R).) Moreover, the map η 7→ ‖η̂‖H

γ
1

= ‖η̂‖Hγ(R) is a norm on L2
γ

which is equivalent to ‖η‖2,γ. If in addition η ∈ Pγ, then η̂(0) = 1 and ξ1 7→ η̂(ξ1) is a
positive definite function on R (in the sense of Bochner). Furthermore, |η̂(ξ)| < 1 for all
ξ ∈ L− \ {0}.

Assume now that η ∈ Pγ for some γ > 1/2, and let w = N (η), namely ŵ(ξ) = φ(η̂(ξ)).
Since φ is analytic in the unit disk, it is clear that ŵ is analytic in the interior of L−.
Moreover, the fact that φ(z) = z + O(|z|2) as z → 0 guarantees that ŵ(ξ) has the same
decay properties as η̂(ξ) as |ξ| → ∞. However, since η̂(0) = 1 and since φ(z) has a
singularity at z = 1, we see that ŵ(ξ) necessarily has a singularity at ξ = 0. This is
the reason why the nonlinear transformation N does not map Pγ into itself. To handle
this difficulty, our strategy is to subtract from ŵ(ξ) a suitable function with the same
singularity at ξ = 0 and whose inverse Fourier transform is explicitly known.

If γ > 3/2, a natural candidate for this counter-term is 1
q
ŵ∗(ξ) = φ(η̂∗1(ξ)), where η∗1

is the unique steady state of (3.3) that belongs to L2
γ, see Theorem 4.6. We recall that

w∗ is defined in (4.2).

Proposition 5.1 Let γ > 3/2 and η ∈ Pγ. Then N (η) = 1
q
w∗ + d with d ∈ L2

γ−1.
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Proof. We first show that N (η) ∈ L2 = L2((1,∞)). As explained above, it is sufficient
to prove that ŵ ≡ φ(η̂) satisfies (5.1) with γ = 0. Choose a > 0 sufficiently small so
that |φ(z)| ≤ 2|z| for all z ∈ C with |z| ≤ a. Since η ∈ L2

γ , there exists b < 0 such that
|η̂(ξ)| ≤ a whenever Im ξ ≤ b. Thus

sup
ξ2≤b

e−ξ2‖ŵ(·+iξ2)‖L2 ≤ 2 sup
ξ2≤b

e−ξ2‖η̂(·+iξ2)‖L2 <∞.

On the other hand, by a variant of the Riemann-Lebesgue lemma, there exists c > 0 such
that |η̂(ξ)| ≤ a for all ξ ∈ L− with |Re ξ| ≥ c. Arguing as before, we thus get

sup
b≤ξ2≤0

∫

|ξ1|≥c

|ŵ(ξ1+iξ2)|
2 dξ1 <∞ .

It remains to verify that
∫

|ξ1|≤c

|ŵ(ξ1+iξ2)|
2 dξ1 ≤ C uniformly in ξ2 ∈ [b, 0]. (5.2)

Since ŵ : L− → C is continuous except at the origin, it is sufficient to establish (5.2) for
b, c sufficiently small. Now, as ξ → 0 in L−, we have the expansion

η̂(ξ) = 1 − iµξ + r1(ξ), with r1(ξ) =

{
O(|ξ|2) if γ > 5/2,
O(|ξ|γ−1/2) if 3/2 < γ < 5/2,

where µ =
∫∞

1
yη(y) dy > 1. Using the representation φ(z) = −(1/q) log(1−Φ(z)) to-

gether with the properties of Φ listed in Lemma 4.4, we thus obtain

ŵ(ξ) = −
1

q
log(1−Φ(η̂(ξ))) = −

1

q
log(iκµξ+r2(ξ)),

where κ = Φ′(1) and r2(ξ) satisfies the same bounds as r1(ξ). This expansion immediately
implies (5.2) if b, c are sufficiently small. Thus, we have shown that N (η) ∈ L2. Since
obviously 1

q
w∗ ∈ L2, we deduce that d = N (η) − 1

q
w∗ ∈ L2, too.

To prove that d ∈ L2
γ−1, it remains to verify that d̂ ∈ Hγ−1(R). Again, by a localization

argument, it is sufficient to show that d̂ ∈ Hγ−1((−c, c)) for some c > 0 sufficiently small.
If ξ ∈ R, |ξ| < c, we use the representation

d̂(ξ) = φ(η̂(ξ)) −
1

q
ŵ∗(ξ) = −

1

q
log
(1 − Φ(η̂(ξ))

e−ŵ∗(ξ)

)
. (5.3)

From (4.18), we know that e−ŵ∗(ξ) = iξeγEe−χ(iξ), where χ is an entire function vanishing

at the origin. It follows that d̂(ξ) = −(1/q) log(D(ξ)/ξ), where D ∈ Hγ((−c, c)) satisfies
D(0) = 0 and D′(0) = κµe−γE . The claim is now a direct consequence of Lemma 5.2
below. This concludes the proof of Proposition 5.1.

Remark. It follows immediately from the proof of Proposition 5.1 that

d̂(0) =

∫ ∞

1

d(y)dy =
1

q
(γE − log(κµ)), where µ =

∫ ∞

1

yη(y)dy. (5.4)
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Lemma 5.2 Let γ ≥ 1, and let I ⊂ R be an open interval containing 0. There exists a
constant C(I, γ) > 0 such that, for each f ∈ Hγ(I) with f(0) = 0, there exists g ∈ Hγ−1(I)
such that f(x) = xg(x) for all x ∈ I and

‖g‖Hγ−1(I) ≤ C(I, γ)‖f‖Hγ(I).

Proof. It is sufficient to prove the claim for I = R (the general case can be reduced to
this one using a bounded extension operator). If f ∈ Hγ(R) and f(0) = 0, the Fourier

transform f̂ has zero mean and satisfies λγ f̂ ∈ L2(R), where λ(ξ) = (1+ξ2)1/2. Define
g ∈ L2(R) by its Fourier transform

iĝ(ξ) =

∫ ξ

−∞

f̂(s)ds = −

∫ ∞

ξ

f̂(s)ds for ξ ∈ R.

Then xg(x) = f(x) for (almost) all x ∈ R. Moreover, since

λ(ξ)γ−1|ĝ(ξ)| ≤

{ ∫∞

ξ
λ(s)γ−1|f̂(s)|ds if ξ ≥ 0,

∫ ξ

−∞
λ(s)γ−1|f̂(s)|ds if ξ ≤ 0,

it follows from Theorem 328 in [HLP59] that ‖λγ−1ĝ‖L2 ≤ 2‖λγ f̂‖L2, which is the desired
bound.

We next show that the inverse map N−1 is well-defined in a neighborhood of 1
q
w∗ in

L2
γ .

Proposition 5.3 Let γ > 1/2. There exists ε > 0 such that, for all d ∈ L2
γ with ‖d‖2,γ ≤

ε, the function N−1(1
q
w∗+d) is well-defined and lies in L2

γ. Moreover, there exists C > 0
such that

‖N−1(1
q
w∗+d) − η∗1‖2,γ ≤ C‖d‖2,γ,

where η∗1 = N−1(1
q
w∗).

Proof. Throughout the proof, we denote by ‖ · ‖γ instead of ‖ · ‖H
γ
1

the norm on H
γ
1

defined by (5.1). We first remark that the space H
γ
1 is an algebra if γ > 1/2: there exists

C1 > 0 such that ‖rs‖γ ≤ C1‖r‖γ‖s‖γ for all r, s ∈ H
γ
1 . Moreover, as is well known (see

for instance Section 1 in [Esc88]), there exists C2 > 0 such that, for all integer k ≥ 1,

‖rk‖γ ≤ C2k
γ+1‖r‖k−1

∞ ‖r‖γ, (5.5)

where ‖r‖∞ = sup{|r(ξ)| | ξ ∈ L−} ≤ C‖r‖γ.

Assume that d ∈ L2
γ for some γ > 1/2, so that d̂ ∈ H

γ
1 . For all ξ ∈ L−, we define

r(ξ) = 1 − e−ŵ∗(ξ) and s(ξ) = e−ŵ∗(ξ)(1−e−qd̂(ξ)). (5.6)

From (4.17), (4.18), it is easy to see that r ∈ H
γ
1 , and we prove in Appendix A that

‖r‖∞ ≤ 1. On the other hand, since H
γ
1 is an algebra, it is clear that σ = 1−e−qd̂ ∈ H

γ
1 ,
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hence s = (1−r)σ ∈ H
γ
1 . In addition, if ‖d‖2,γ ≤ ε for some ε ≤ 1, there exists C3 > 0

such that ‖s‖γ ≤ C3‖d‖2,γ ≤ C3ε. In particular, ‖s‖∞ ≤ Cε.

We now fix R1 ∈ (1, R), where R > 1 is defined in (4.5), and we assume that ε ≤ 1 is
sufficiently small so that ‖s‖∞ ≤ R1 − 1. We then define η̂ ∈ H

γ
1 by

η̂ = ψ(1
q
ŵ∗+d̂) = Ψ(1−e−q( 1

q
ŵ∗+d̂)) = Ψ(r+s),

where Ψ is given by (4.6). From Lemma 4.5, we know that Ψ is analytic in the disk
{u ∈ C | |u| < R}, with the expansion Ψ(u) =

∑
k≥1 Ψku

k. Since r + s ∈ H
γ
1 and

‖r+ s‖∞ ≤ R1 < R, it follows from (5.5) that the series Ψ(r+s) converges in H
γ
1 , so that

η̂ ∈ H
γ
1 . By construction, η̂ = Fη for some η ∈ L2

γ with N (η) = 1
q
w∗ + d.

It remains to show that ‖η̂ − η̂∗1‖γ ≤ C‖d‖2,γ, where η̂∗1 = Ψ(r), see (4.19). For all
k ≥ 2, we have

‖(r+s)k − rk‖γ ≤ C1 sup
{
‖k(r+θs)k−1‖γ

∣∣ θ ∈ [0, 1]
}
‖s‖γ.

Using (5.5), we deduce that there exists C4 > 0 such that, for all k ≥ 1,

‖(r+s)k − rk‖γ ≤ C4k
γ+2Rk−1

1 ‖s‖γ. (5.7)

Since

η̂ − η̂∗1 = Ψ(r+s) − Ψ(r) =

∞∑

k=1

Ψk((r+s)
k − rk),

it follows that

‖η̂ − η̂∗1‖γ ≤ C4

( ∞∑

k=1

kγ+2ΨkR
k−1
1

)
‖s‖γ ≤ C5‖d‖2,γ.

This concludes the proof.

Remark. Unlike N , the inverse mapping N−1 is not positivity preserving. However, if
in Proposition 5.3 we assume in addition that η = N−1(1

q
w∗+d) is a positive function,

then y 7→ yη(y) ∈ L1((1,∞)) and
∫ ∞

1

yη(y)dy =
1

κ
eγE−qd0, where d0 =

∫ ∞

1

d(y)dy. (5.8)

Indeed, on the one hand the Laplace transform η̃(p) = η̂(−ip) satisfies

1 − η̃(p)

p
=

1

p

(
1 − Ψ(1−p eγE−χ(p)−qd̃(p))

)
−→

1

κ
eγE−qd0 for p↘ 0,

and on the other hand, using η(y) ≥ 0, we find

1 − η̃(p)

p
=

∫ ∞

1

yη(y)
1− e−py

py
dy −→

∫ ∞

1

yη(y)dy = ‖η‖1,1 for p↘ 0,

by Lebesgue’s monotone convergence theorem.

In addition to Lemma 3.2, the following bounds on the nonlinearity Q[η] will be used
to prove our convergence results:
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Lemma 5.4 Fix γ > 3/2. For any M > 0, there exists C > 0 such that the following
estimates hold:

a) For all η ∈ Pγ with ‖η‖2,γ−1 ≤M and ‖η‖1,1 ≤M ,

‖T1Q[η]‖2,γ ≤ q‖η‖2,γ + C. (5.9)

b) If γ ≥ 2, then for all η, η̃ ∈ Pγ with ‖η‖2,γ ≤M and ‖η̃‖2,γ ≤M ,

‖T1Q[η]−T1Q[η̃]‖2,γ ≤ q‖η−η̃‖2,γ + C‖η−η̃‖2,γ−1. (5.10)

Proof. See Appendix C.

We are now ready to state the main result of this section, which shows that all solutions
of (3.3) in Pγ with γ > 3/2 converge towards the limiting profile η∗1.

Theorem 5.5 Assume that η0 ∈ Pγ for some γ > 3/2, and let η ∈ C0([0,∞), Pγ) be the
solution of (3.6) given by Theorem 3.3. Then η is bounded in L2

γ and there exists C > 0
such that

‖η(τ) − η∗1‖2,γ−1 ≤ C e−(γ−3/2)τ for τ ≥ 0. (5.11)

Moreover, if γ ≥ 2, then

‖η(τ) − η∗1‖2,γ ≤ C(1+τ) e−(γ−3/2)τ for τ ≥ 0.

Remarkably, the faster the initial data decay at infinity, the faster the solution con-
verges to the steady state. For compactly supported data, it should be possible to obtain
faster decay than exponential.

Proof. We first prove (5.11) using the representation formula (3.15). By Proposi-
tion (5.1), N (η0) = 1

q
w∗ + d for some d ∈ L2

γ−1. Since the semigroup Sτ is linear and

leaves 1
q
w∗ invariant, we have SτN (η0) = 1

q
w∗ + Sτd. By Lemma (3.1), ‖Sτd‖2,γ−1 ≤

e−(γ−3/2)τ‖d‖2,γ−1, so that Sτd→ 0 in L2
γ−1 as τ → ∞. Thus, when τ is sufficiently large,

we can apply Proposition 5.3 which gives

‖η(τ) − η∗1‖2,γ−1 = ‖N−1(1
q
w∗+Sτd) − η∗1‖2,γ−1 ≤ C1 e−(γ−3/2)τ ,

for some C1 > 0. This estimate holds in fact for all τ ≥ 0 with a possibly larger constant
C1, which proves (5.11). Remark that, since η(τ) is nonnegative and ‖Sτd‖1 → 0, it
follows from (5.8) that ‖η(τ)‖1,1 →

1
κ

eγE as τ → ∞.

We next show that ‖η(τ)‖2,γ is uniformly bounded for all τ ≥ 0. We already know
that ‖η(τ)‖2,γ−1 and ‖η(τ)‖1,1 remain bounded. Thus, using the integral equation (3.6)
together with the bounds (3.9) and (5.9), we obtain

‖η(τ)‖2,γ ≤ e−(γ−1/2)τ‖η0‖2,γ +

∫ τ

0

β(s) e−(γ−1/2)(τ−s)(q‖η(s)‖2,γ + C)ds,

for some C > 0. Remark that β(τ) = η(τ, 1) = N (η(τ))|y=1 = 1
q
+eτd(eτ ). Since d ∈ L2

γ−1,

it follows that β(τ) = 1
q

+ ε(τ) with ε ∈ L1(R+). Setting H(τ) = e(γ−1/2)τ‖η(τ)‖2,γ, we
thus find

H(τ) ≤ H(0) +

∫ τ

0

(1+q|ε(s)|)H(s)ds+ C e(γ−1/2)τ for τ ≥ 0,
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for some C > 0. Since γ − 1/2 > 1 and ε ∈ L1(R+), it follows from Gronwall’s lemma
that H(τ) ≤ C2 e(γ−1/2)τ for some C2 > 0, hence ‖η(τ)‖2,γ ≤ C2 for all τ ≥ 0.

Finally, if γ ≥ 2, we show that η(τ) converges to η∗1 in L2
γ . To do this, we consider the

integral equation satisfied by r(τ) = η(τ) − η∗1, namely

r(τ) = Sτr(0) +

∫ τ

0

Sτ−s

{
ε(s)T1Q[η(s)] +

1

q

(
T1Q[η∗1+r(s)] − T1Q[η∗1 ]

)}
ds.

In view of (5.11) and Lemma 5.4, there exists C3 > 0 such that

‖T1Q[η(s)]‖2,γ ≤ C3, ‖T1Q[η∗1+r(s)] − T1Q[η∗1 ]‖2,γ ≤ q‖r(s)‖2,γ + C3 e−(γ−3/2)s.

Using Lemma 3.1 again, we find that R(τ) = ‖r(τ)‖2,γ satisfies the integral inequality

R(τ) ≤ e−(γ−1/2)τR(0) +

∫ τ

0

e−(γ−1/2)(τ−s)
{
C3|ε(s)| +R(s) + C3e

−(γ−3/2)s
}

ds.

Since ε(τ) = eτd(eτ ) with d ∈ L2
γ−1, we have

∫ τ

0

e(γ−1/2)s|ε(s)|ds =

∫ eτ

1

yγ−1/2|d(y)|dy ≤
(∫ eτ

0

ydy
)1/2

‖d‖2,γ−1 ≤ eτ‖d‖2,γ−1,

hence there exists C4 > 0 such that

R(τ) ≤ C4 e−(γ−3/2)τ +

∫ τ

0

e−(γ−1/2)(τ−s)R(s)ds.

Using Gronwall’s lemma, we conclude that R(τ) ≤ C5(1+τ) e−(γ−3/2)τ for some C5 > 0,
which is the desired result.

We now argue that the convergence towards the steady state η∗1 cannot be faster than
e−(γ−3/2)τ in the norm of L2

γ, so that the result of Theorem 5.5 is optimal. To see this,
we study the linearization of (3.3) around η∗1. Setting η(τ) = η∗1 + b(τ), we obtain the
linearized equation ∂τ b = Ab, where

(Ab)(y) = (yb)′(y) +
(1

q
T1(Q

′[η∗1 ] ∗ b) + b(1)T1Q[η∗1 ]
)
(y).

Since we are interested in solutions η(τ) ∈ Pγ, we study this operator in the space

Xγ =
{
b ∈ L2

γ

∣∣∣
∫ ∞

1

b(y)dy = 0
}
.

Proposition 5.6 If γ > 3/2, the operator A on Xγ has σ = −(γ−3/2) in its spectrum.

Proof. For δ > γ+1/2 we define a Lipschitz function bδ ∈ Xγ by

bδ(y) =





−1 for y ∈ [1, Yδ],
−1 + (1+(Yδ+1)−δ)(y − Yδ) for y ∈ (Yδ, Yδ + 1),

y−δ for y ≥ Yδ + 1,
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where Yδ is chosen such that bδ has mean 0. Note that Yδ has a finite limit as δ ↘ γ+1/2.

Our aim is to show that Abδ +(γ−3/2)bδ stays bounded in Xγ as δ ↘ γ+1/2, while bδ
is unbounded. For this purpose, we compute the asymptotic behavior of Abδ as y → ∞.
Since η∗1 decays faster than e−λy for some λ > 0 and since

∫∞

1
η∗1(y) dy = 1, we obtain

(Q′[η∗1] ∗ bδ)(y) = qbδ(y) + O(y−δ−1) as y → ∞, where q = Q′(1). It follows that

(Abδ)(y) = (−δ+1)y−δ + (y−1)−δ + O(y−δ−1) + O(e−λy)
= (−δ+2)y−δ + O(y−δ−1) for y → ∞,

where the remainder term is uniform in δ for δ ≈ γ+1/2. This implies the estimate

‖Abδ + (γ−3/2)bδ‖2,γ ≤ (δ−γ−1/2)‖bδ‖2,γ + C ≤ 2C

as δ ↘ γ+1/2, since ‖bδ‖2,γ ≈ 1/
√
δ−γ−1/2. This proves the claim.

To conclude this section, we also give a global stability result for the steady states η∗θ
with 0 < θ < 1.

Theorem 5.7 Let 0 < θ < 1 and θ+1/2 < γ < min{3/2, 2θ+1/2}. Assume that the
initial value η0 ∈ P satisfies η0−νη∗θ ∈ L2

γ for some ν > 0, and let η ∈ C0([0,∞),P) be
the solution of (3.6) given by Theorem 3.3. Then there exists C > 0 such that

‖η(τ) − η∗θ‖2,γ−θ ≤ Ce−(γ−θ−1/2)τ for τ ≥ 0. (5.12)

Remarks.
1. From (4.12), we know that η∗θ(y) ∼ y−1−θ as y → ∞, so that η∗θ ∈ L2

γ′ if and only
if γ′ < θ+1/2. Thus, the assumption γ > θ+1/2 guarantees that the difference η0−νη∗θ
decays faster than η∗θ at infinity (otherwise, we could just choose η0 = η∗θ′ for some θ′ < θ,
in which case η(τ) = η∗θ′ for all τ ≥ 0 so that (5.12) certainly fails.) For instance, if
η0 ∈ P ∩ L2 is such that

η0(y) =
C

y1+θ
+ O

( 1

y1+θ+ε

)
for y → ∞,

where C > 0 and ε > 0, then the assumptions of Theorem 5.7 are satisfied for some ν
and γ. On the other hand, the hypothesis γ < 2θ+1/2 ensures that η∗θ and hence η0 lie
in L2

γ−θ, so that η(τ) ∈ L2
γ−θ for all τ ≥ 0.

2. Setting formally θ = 1 in (5.12), we recover (5.11). However, the main difference
between the two results is the upper bound γ < 3/2 in Theorem 5.7 which limits the
decay rate in time of the perturbations. Even for compactly supported perturbations, the
convergence in (5.12) is not faster than O(e−δτ ), where δ = min{θ, 1−θ}.

Proof. The proof is quite similar to that of (5.11), so we just indicate the main differences
here. Proceeding as in the proof of Proposition 5.1, we first show that N (η0) = θ

q
w∗+d

for some d ∈ L2
γ−θ. In analogy with (5.3), we find

d̂(ξ) = −
1

q
log
(1 − Φ(η̂0(ξ))

e−θŵ∗(ξ)

)
.
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The crucial point is the behavior of d̂(ξ) as ξ → 0, which we now analyze. By assumption,
η0 = νη∗θ + ζ for some ζ ∈ L2

γ with
∫∞

1
ζ(y)dy = 1−ν. From (4.16), we have

η̂∗θ(ξ) = Ψ
(
1−e−θŵ∗(ξ)

)
= 1 − e−θŵ∗(ξ)H

(
e−θŵ∗(ξ)

)
,

where H : z 7→ (1−Ψ(1−z))/z is analytic in a neighborhood of zero, with H(0) =
Ψ′(1) = 1/κ. We recall that e−θŵ∗(ξ) = (iξ)θeθγEe−θχ(iξ) where χ is entire, see (4.18). Since
γ < 2θ+1/2, we deduce that r1 : ξ 7→ H(e−θŵ∗(ξ)) belongs to Hγ−θ((−c, c)) for some c > 0,

and that r1(0) = 1/κ. Next, we observe that ζ̂(ξ) = 1−ν − r2(ξ), where r2 ∈ Hγ((−c, c))
and r2(0) = 0. Since θ+ 1/2 < γ < 3/2, the analog of Lemma 5.2 (cf. Theorem 1.4.4.4 in
[Gri85]) implies that the function ξ 7→ r2(ξ)/(iξ)

θ belongs to Hγ−θ((−c, c)) and vanishes
at the origin. In particular, r2(ξ) = e−θŵ∗(ξ)r3(ξ), where r3 ∈ Hγ−θ((−c, c)) and r3(0) = 0.
Summarizing, we have shown

η̂0(ξ) = νη̂∗θ(ξ) + ζ̂(ξ) = 1 − e−θŵ∗(ξ)
(ν
κ

+ r4(ξ)
)
,

where r4 ∈ Hγ−θ((−c, c)) and r4(0) = 0. We now apply the inverse map Φ = Ψ−1 which
is analytic in a neighborhood of 1 with Φ′(1) = κ. Using the fact that Hγ−θ is an algebra,
we obtain

Φ(η̂0(ξ)) = 1 − e−θŵ∗(ξ)(ν + r5(ξ)),

where r5 has the same properties as r4. Since d̂(ξ) = −1
q
log(ν+r5(ξ)), we conclude that

d̂ ∈ Hγ−θ((−c, c)) with d̂(0) = −1
q
log ν.

Now, from (3.15) we have N (η(τ)) = Sτ (
θ
q
w∗+d) = θ

q
w∗ + Sτd, and ‖Sτd‖2,γ−θ ≤

e−(γ−θ−1/2)τ‖d‖2,γ−θ for all τ ≥ 0. Moreover, it is easy to check that Proposition 5.3 and
its proof remain valid if we replace everywhere w∗ with θw∗, η∗1 with η∗θ , and γ with
γ′ = γ − θ < θ+1/2 (as is explained above, this inequality ensures that η∗θ ∈ L2

γ′ .) Thus,
we conclude that

‖η(τ)−η∗θ‖2,γ−θ = ‖N−1( θ
q
w∗+Sτd) − η∗θ‖2,γ−θ ≤ C‖Sτd‖2,γ−θ = O(e−(γ−θ−1/2)τ ),

as τ → ∞, which is the desired result.

A Bounds on the exponential integral

Let ŵ∗(ξ) = E1(iξ), where E1(z) =
∫∞

1
y−1e−zy dy is the exponential integral. The goal of

this section is to prove that

|1 − e−θŵ∗(ξ)| < 1 for θ ∈ (0, 1] and ξ ∈ L− \ {0}. (A.1)

For θ = 1 and ξ ∈ R, this property is illustrated in Figure A.1.
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Figure A.1: (a) The region D ⊂ C delimited by the dotted line contains the curve {ŵ∗(ξ) |ξ ∈ R} (solid

line). (b) The curve {1−e−ŵ∗(ξ) | ξ ∈ R} (solid line) is contained in the unit disk of C.

Fix 0 < θ ≤ 1, and define Fθ : L− → C by Fθ(0) = 1 and Fθ(ξ) = 1 − e−θŵ∗(ξ) for
ξ ∈ L− \ {0}. Then Fθ is continuous on L−, and analytic in the interior of L−. Moreover,
Fθ is uniformly bounded, because |Fθ(ξ)| ≤ 1 + exp(−θRe(ŵ∗(ξ))) and

Re(ŵ∗(ξ)) =

∫ ∞

1

1

y
eξ2y cos(ξ1y)dy ≥

∫ ∞

π/2

cos(t)

t
dt ≈ −0.472,

for all ξ = ξ1+iξ2 with ξ1 ∈ R and ξ2 < 0. Finally, since |ŵ∗(ξ)| ≤ E1(−ξ2) → 0
as ξ2 → −∞, it is clear that |Fθ(ξ)| → 0 as ξ2 → −∞, uniformly in ξ1 ∈ R. Thus,
by the maximum modulus principle and the Phragmen-Lindelöf theory (see e.g. [Ru87],
Thm. 12.9), it is sufficient to show that (A.1) holds for all ξ ∈ R \ {0}.

Let D ⊂ C be the open region defined by

D = {x+iy ∈ C | |y| < π/2 , x+ log(2 cos(y)) > 0},

see Figure A.1. As is easily verified, w ∈ D implies |1−e−w| < 1. Thus, all we need to
show is that θŵ∗(ξ) ∈ D for all ξ ∈ R \ {0}. Since 0 ∈ D and D is convex, it is sufficient
to prove this property for θ = 1.

For ξ > 0 we define

x(ξ) =

∫ ∞

ξ

cos(t)

t
dt and y(ξ) =

∫ ∞

ξ

sin(t)

t
dt. (A.2)

Then ŵ∗(ξ) = E1(iξ) = x(ξ) − iy(ξ) for ξ > 0 and ŵ∗(ξ) = x(|ξ|) + iy(|ξ|) for ξ < 0.
Moreover, |y(ξ)| < π/2 for all ξ > 0. Thus, it is enough to verify that K(ξ) > 0 for all
ξ > 0, where

K(ξ) = x(ξ) + log(2 cos(y(ξ))) for ξ > 0.

We first observe that K(ξ) > 0 if ξ > 0 is sufficiently small. Indeed, in view of (4.18),
we have the expansions

x(ξ) = − log ξ − γE + O(ξ2) and y(ξ) =
π

2
− ξ + O(ξ3) for ξ ↘ 0,
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hence K(ξ) → log 2 − γE > 0 as ξ ↘ 0.

We next show that K(ξ) > 0 for 0 < ξ ≤ π/2. If not, there would exist ξ ∈
(0, π/2] such that K(ξ) = 0 and K ′(ξ) ≤ 0. In view of (A.2), K ′(ξ) ≤ 0 if and only if
sin(ξ) sin(y(ξ)) ≤ cos(ξ) cos(y(ξ)). Since 0 < y(ξ) < π/2, this is equivalent to ξ + y(ξ) ≤
π/2, or cos(y(ξ)) ≥ sin(ξ). Therefore, ξ ∈ (0, π/2] should satisfy x(ξ) + log(2 sin(ξ)) ≤
K(ξ) = 0. But this is impossible, because x(ξ) + log(2 sin(ξ)) → log 2− γE > 0 as ξ ↘ 0,
and

d

dξ

(
x(ξ) + log(2 sin(ξ))

)
=
ξ − sin(ξ)

ξ tan(ξ)
> 0 for 0 < ξ < π/2.

It remains to show that K(ξ) > 0 for ξ > π/2. Let

x̄ = −x(π/2) ≈ 0.472 and ȳ = max{y(π/2),−y(π)} = −y(π) ≈ 0.281.

(See [AS72] for rigorous bounds on x(ξ), y(ξ).) Using the definitions (A.2), it is easy to
show that |x(ξ)| ≤ x̄ and |y(ξ)| ≤ ȳ for all ξ ≥ π/2. Thus x(ξ) + log(2 cos(y(ξ))) ≥
−x̄+ log(2 cos(ȳ)) > 0 for ξ ≥ π/2. This concludes the proof.

B Asymptotic behavior of the steady states

Fix θ ∈ (0, 1), and let η = η∗θ : [1,∞) → R be the solution of (4.3) with β = θ/q. By
Theorem 4.6, η is positive, strictly decreasing, and

∫∞

1
η(y) dy = 1. The aim of this

section is to prove that the limit

L(θ) = lim
y→∞

y1+θη(y) (B.1)

exists (and is finite). This is especially easy in the particular case where Q(z) = z. Indeed,
since q = 1 and Q[η] = η in this case, it follows from (4.3) that

0 = yη′(y) + η(y) + θη(y−1) ≥ yη′(y) + (1+θ)η(y) for y ≥ 2,

hence y 7→ y1+θη(y) is decreasing (and positive) for y ≥ 2. In the general situation where
N = degQ > 1, we need the following estimate:

Lemma B.1 For all y ≥ N ,

Q[η](y) ≥ η(y)Q′
(∫ y/N

1

η(x)dx
)
. (B.2)

Proof. The only property of η that will be used in this proof is that η is nonnegative
and non-increasing. Thus, by linearity and monotonicity, it is sufficient to prove (B.2) in
the case where Q(z) = zj for some j ∈ N, j ≥ 2. For a ≥ 1, we denote

Dj(a) = {(x1, . . . , xj) | 1 ≤ x1, . . . , xj ≤ a} = [1, a]j ,

Sj(a) = {(x1, . . . , xj) | 1 ≤ x1 ≤ · · · ≤ xj ≤ a}.
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Then, for y ≥ j, we have

Q[η](y) =

∫

Dj(y+1−j)

η(x1) · . . . · η(xj)δ(x1 + · · ·+ xj − y)djx

= j!

∫

Sj(y+1−j)

η(x1) · . . . · η(xj)δ(x1 + · · ·+ xj − y)djx,

where δ denotes the Dirac measure. To obtain a lower bound, we replace η(xj) with η(y)
in the last integral, and we perform the (trivial) integration over xj . We obtain

Q[η](y) ≥ (j!)η(y)

∫

Rj−1(y)

η(x1) · . . . · η(xj−1)dj−1x,

where Rj−1(y) = {(x1, . . . , xj−1) | (x1, . . . , xj−1, y−x1− . . .−xj−1) ∈ Sj(y+1−j)}. Now, it
is straightforward to verify that Rj−1(y) ⊃ Sj−1(y/j). Thus

Q[η](y) ≥ (j!)η(y)

∫

Sj−1(y/j)

η(x1) · . . . · η(xj−1)dj−1x

= jη(y)

∫

Dj−1(y/j)

η(x1) · . . . · η(xj−1)dj−1x

= jη(y)
(∫ y/j

1

η(x)dx
)j−1

= η(y)Q′
(∫ y/j

1

η(x)dx
)
.

This concludes the proof.

Combining (4.3) and Lemma B.1, we obtain the inequality

yη′(y) + η(y) +
θ

q
η(y−1)Q′

(∫ y−1
N

1

η(x)dx
)
≤ 0 for y ≥ N+1,

where η(y−1) may also be replaced by η(y). It follows that

d

dy
(y1+θ/2η(y)) ≤ θyθ/2η(y)

(1

2
−

1

q
Q′
(∫ y−1

N

1

η(x)dx
))

for y ≥ N+1.

Since
∫∞

1
η(y)dy = 1 and q = Q′(1), the right-hand side becomes negative for y sufficiently

large. This shows that
sup
y≥1

y1+θ/2η(y) <∞. (B.3)

Similarly, for y ≥ N+1,

d

dy
(y1+θη(y)) ≤ y1+θη(y)Θ(y) with Θ(y) =

θ

y

(
1 −

1

q
Q′
(∫ y−1

N

1

η(x)dx
))

≥ 0. (B.4)

It follows from (B.3) that 1 −
∫ (y−1)/N

1
η(x) dx = O(y−θ/2) for y → ∞, which yields

Θ(y) = O(y−1−θ/2) and hence Θ ∈ L1((N+1,∞)). Thus, the differential inequality (B.4)
implies that the limit (B.1) exists.
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C Bounds on the nonlinearity

In this section, we sketch the proofs of Lemmas 3.2 and 5.4. Without loss of generality, we
assume here that Q(z) = zm for some m ∈ N∗ (the general case follows by linearity). To
bound the convolution products, we repeatedly use Young’s inequality ‖f∗g‖p ≤ ‖f‖p‖g‖1

where f ∈ Lp and g ∈ L1.

Proof of Lemma 3.2.
a) If η ∈ L1, then Q[η] = η∗m ∈ L1 and ‖Q[η]‖1 ≤ ‖η‖m

1 = Q(‖η‖1). If η, η̃ ∈ L1, then

Q[η] − Q[η̃] = (η−η̃) ∗ η ∗ · · · ∗ η + . . . + η̃ ∗ η̃ ∗ · · · ∗ (η−η̃) (C.1)

(m terms of m factors), hence ‖Q[η] − Q[η̃]‖1 ≤ mrm−1‖η − η̃‖1 = Q′(r)‖η − η̃‖1.

b) Assume now that η ∈ Lp
γ ↪→ L1. For all y ≥ 1,

yγ(T1Q[η])(y) =

∫

Rm

η(x1) . . . η(xm)(1+x1+ . . .+xm)γ δ(1+x1+ . . .+xm−y)dmx,

where δ denotes the Dirac measure. Due to the support property of η, only the values
x1, . . . , xm ≥ 1 contribute to the integral. For such values, we have the estimate

(1+x1+ . . .+xm)γ ≤ C(xγ
1+ . . .+xγ

m), (C.2)

where C > 0 depends on m, γ. Thus, |yγ(T1Q[η])| is bounded by a sum of m convolution
products of the form |yγη| ∗ |η|∗(m−1). Taking the Lp norm and using Young’s inequality,
we obtain

‖T1Q[η]‖p,γ ≤ Cm‖η‖m−1
1 ‖η‖p,γ = CQ′(‖η‖1)‖η‖p,γ.

Finally, using the decomposition (C.1) and proceeding as above, we find

‖T1Q[η] − T1Q[η̃]‖p,γ ≤ C(mrm−1‖η − η̃‖p,γ +m(m−1)rm−2R‖η − η̃‖1)

≤ C(Q′(r) +RQ′′(r))‖η − η̃‖p,γ,

where R = max{‖η‖p,γ, ‖η̃‖p,γ} and r = max{‖η‖1, ‖η̃‖1}. Since r ≤ R and RQ′′(R) ≤
CQ′(R), this is the desired result.

Proof of Lemma 5.4. The proof follows the same lines, except that (C.2) is replaced
with a different estimate, which can be established by induction over m. If γ ≥ 1 and
m ∈ N∗, there exists C > 0 such that, for all x1, . . . , xm ≥ 1,

(1+x1+ . . .+xm)γ ≤
m∑

i=1

(
xγ

i + Cxγ−1
i

∏

j 6=i

xj

)
.

a) If γ > 3/2 and η ∈ Pγ , then

‖T1Q[η]‖2,γ ≤ m‖η‖m−1
1 ‖η‖2,γ + Cm‖η‖m−1

1,1 ‖η‖2,γ−1

= Q′(1)‖η‖2,γ + CQ′(‖η‖m−1
1,1 )‖η‖2,γ−1.
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b) If η, η̃ ∈ Pγ , let M = max{‖η‖2,γ, ‖η̃‖2,γ}, r1 = max{‖η‖1,1, ‖η̃‖1,1} ≤ M , and r =
max{‖η‖1, ‖η̃‖1} = 1. Then

‖T1Q[η] − T1Q[η̃]‖2,γ ≤ mrm−1‖η − η̃‖2,γ +m(m−1)rm−2M‖η − η̃‖1

+Cmrm−1
1 ‖η − η̃‖2,γ−1 + Cm(m−1)rm−2

1 M‖η − η̃‖2,1

= Q′(1)‖η − η̃‖2,γ +Q′′(1)M‖η − η̃‖1

+CQ′(r1)‖η − η̃‖2,γ−1 + CQ′′(r1)M‖η − η̃‖2,1.

If γ ≥ 2, the last three terms in the right-hand side can be bounded by CQ′(M)‖η−η̃‖2,γ−1.
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