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Abstract

We investigate the linear stability of inviscid columnar vortices with respect to finite en-
ergy perturbations. For a large class of vortex profiles, we show that the linearized evolution
group has a sub-exponential growth in time, which means that the associated growth bound
is equal to zero. This implies in particular that the spectrum of the linearized operator is
entirely contained in the imaginary axis. This contribution complements the results of our
previous work [10], where spectral stability was established for the linearized operator in the
enstrophy space.

1 Introduction

It is well known that radially symmetric vortices in two-dimensional incompressible and inviscid
fluids are stable if the vorticity distribution is a monotone function of the distance to the vortex
center [3, 14]. In a three-dimensional framework, this result exactly means that columnar vortices
with no axial flow are stable with respect to two-dimensional perturbations, provided Arnold’s
monotonicity condition is satisfied. Vortex columns play an important role in nature, especially
in atmospheric flows, and are also often observed in laboratory experiments [2]. It is therefore
of great interest to determine their stability with respect to arbitrary perturbations, with no
particular symmetry, but this question appears to be very difficult and the only rigorous results
available so far are sufficient conditions for spectral stability.

In a celebrated paper [18], Lord Kelvin considered the particular case of Rankine’s vortex
and proved that the linearized operator has a countable family of eigenvalues on the imaginary
axis. The corresponding eigenfunctions, which are now referred to as Kelvin’s vibration modes,
have been extensively studied in the literature, also for more general vortex profiles [8, 13, 17].
An important contribution was made by Lord Rayleigh in [15], who gave a simple condition
for spectral stability with respect to axisymmetric perturbations. Rayleigh’s criterion, which
requires that the angular velocity Ω and the vorticity W have the same sign everywhere, is actu-
ally implied by Arnold’s monotonicity condition for localized vortices. In the non-axisymmetric
case, the only stability result one can obtain using the techniques introduced by Rayleigh is
restricted to perturbations in a particular subspace, where the angular Fourier mode m and the
vertical wave number k are fixed. In that subspace, we have a sufficient condition for spectral
stability, involving a quantity that can be interpreted as a local Richardson number. However,
as is emphasized by Howard and Gupta [12], that criterion always fails when the ratio k2/m2 is
sufficiently small, and therefore does note provide any unconditional stability result.
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In a recent work [10], we perform a rigorous mathematical study of the linearized operator
at a columnar vortex, using the vorticity formulation of the Euler equations. We assume that
the unperturbed vorticity profile satisfies Arnold’s monotonicity condition, hence Rayleigh’s
criterion as well, and we impose an additional condition which happens to be satisfied in all
classical examples and may only be technical. We work in the enstrophy space, assuming
periodicity (with arbitrary period) in the vertical direction. In this framework, we prove that
the spectrum of the linearized operator is entirely contained in the imaginary axis of the complex
plane, which gives the first spectral stability result for columnar vortices with smooth velocity
profile. More precisely, in any Fourier subspace characterized by its angular mode m 6= 0 and its
vertical wave number k 6= 0, we show that the spectrum of the linearized operator consists of an
essential part that fills an interval of the imaginary axis, and of a countable family of imaginary
eigenvalues which accumulate only on the essential spectrum (the latter correspond to Kelvin’s
vibration modes). The most difficult part of our analysis is to preclude the existence of isolated
eigenvalues with nonzero real part, which can eventually be done by combining Howard and
Gupta’s criterion, a homotopy argument, and a detailed analysis of the eigenvalue equation
when critical layers occur.

The goal of the present paper is to extend the results of [10] in several directions. First,
we use the velocity formulation of the Euler equations, and assume that the perturbations have
finite energy. This functional framework seems more natural than the enstrophy space used
in [10], but part of the analysis becomes more complicated. In particular, due to the pressure
term in the velocity formulation, it is not obvious that the linearized operator in a given Fourier
sector is the sum of a (nearly) skew-symmetric principal part and a compact perturbation. This
decomposition, however, is the starting point of our approach, as it shows that the spectrum
outside the imaginary axis is necessarily discrete. Also, unlike in [10], we do not have to assume
periodicity in the vertical direction, so that our result applies to localized perturbations as well.
Finally, we make a step towards linear stability by showing that the evolution group generated
by the linearized operator has a mild, sub-exponential growth as |t| → ∞. This is arguably the
strongest way to express spectral stability.

We now present our result in more detail. We consider the incompressible Euler equations
in the whole space R

3 :
∂tu+ (u · ∇)u = −∇p , div u = 0 , (1.1)

where u = u(x, t) ∈ R
3 denotes the velocity of the fluid at point x = (x1, x2, x3) ∈ R

3 and
time t ∈ R, and p = p(x, t) ∈ R is the associated pressure. The solutions we are interested in
are perturbations of flows with axial symmetry, and are therefore conveniently described using
cylindrical coordinates (r, θ, z) defined by x1 = r cos θ, x2 = r sin θ, and x3 = z. The velocity
field is decomposed as

u = ur(r, θ, z, t)er + uθ(r, θ, z, t)eθ + uz(r, θ, z, t)ez ,

where er, eθ, ez are unit vectors in the radial, azimuthal, and vertical directions, respectively.
The evolution equation in (1.1) is then written in the equivalent form

∂tur + (u · ∇)ur −
u2θ
r

= −∂rp ,

∂tuθ + (u · ∇)uθ +
uruθ
r

= −1

r
∂θp ,

∂tuz + (u · ∇)uz = −∂zp ,

(1.2)

where u · ∇ = ur∂r +
1
ruθ∂θ + uz∂z, and the incompressibility condition becomes

div u =
1

r
∂r(rur) +

1

r
∂θuθ + ∂zuz = 0 . (1.3)
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Columnar vortices are described by stationary solutions of (1.2), (1.3) of the following form

u = V (r) eθ , p = P (r) , (1.4)

where the velocity profile V : R+ → R is arbitrary, and the pressure P : R+ → R is determined
by the centrifugal balance rP ′(r) = V (r)2. Other physically relevant quantities that characterize
the vortex are the angular velocity Ω and the vorticity W :

Ω(r) =
V (r)

r
, W (r) =

1

r

d

dr

(

rV (r)
)

= rΩ′(r) + 2Ω(r) . (1.5)

To investigate the stability of the vortex (1.4), we consider perturbed solutions of the form

u(r, θ, z, t) = V (r) eθ + ũ(r, θ, z, t) , p(r, θ, z, t) = P (r) + p̃(r, θ, z, t) .

Inserting this Ansatz into (1.2) and neglecting the quadratic terms in ũ, we obtain the linearized
evolution equations

∂tur +Ω∂θur − 2Ωuθ = −∂rp ,

∂tuθ +Ω∂θuθ +Wur = −1

r
∂θp ,

∂tuz +Ω∂θuz = −∂zp ,

(1.6)

where we have dropped all tildes for notational simplicity. Remark that the incompressibility
condition (1.3) still holds for the velocity perturbations. Thus, taking the divergence of both
sides in (1.6), we see that the pressure p satisfies the second order elliptic equation

−∂∗r∂rp−
1

r2
∂2θp− ∂2zp = 2

(

∂∗rΩ
)

∂θur − 2∂∗r
(

Ωuθ
)

, (1.7)

where we introduced the shorthand notation ∂∗rf = 1
r∂r(rf) = ∂rf + 1

rf .

We want to solve the evolution equation (1.6) in the Hilbert space

X =
{

u = (ur, uθ, uz) ∈ L2(R3)3
∣

∣

∣
∂∗rur +

1

r
∂θuθ + ∂zuz = 0

}

,

equipped with the standard L2 norm. Note that the definition of X incorporates the incom-
pressibility condition (1.3). In Section 3 we shall verify that, for any u ∈ X, the elliptic equation
(1.7) has a unique solution (up to an irrelevant additive constant) that satisfies ∇p ∈ L2(R3)3.
Denoting that solution by p = P [u], we can write Eq. (1.6) in the abstract form ∂tu = Lu, where
L is the integro-differential operator in X defined by

Lu =







−Ω∂θur + 2Ωuθ − ∂rP [u]

−Ω∂θuθ −Wur − 1
r∂θP [u]

−Ω∂θuz − ∂zP [u]






. (1.8)

If the angular velocity Ω and the vorticityW are, for instance, bounded and continuous functions
on R+, it is not difficult to verify that the operator L generates a strongly continuous group
of bounded linear operators in X, see Section 2. Our goal is to show that, under additional
assumptions on the vortex profile, the norm of this evolution group has a mild growth as |t| → ∞.
Following [10], we make the following assumptions.
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Assumption H1: The vorticity profile W : R+ → R+ is a C2 function satisfying W ′(0) = 0,
W ′(r) < 0 for all r > 0, r3W ′(r) → 0 as r → ∞, and

Γ :=

∫ ∞

0
W (r)r dr < ∞ . (1.9)

According to (1.5), the angular velocity Ω can be expressed in terms of the vorticity W by
the formula

Ω(r) =
1

r2

∫ r

0
W (s)s ds , r > 0 , (1.10)

and the derivative Ω′ satisfies

Ω′(r) =
W (r)− 2Ω(r)

r
=

1

r3

∫ r

0
W ′(s)s2 ds , r > 0 . (1.11)

Thus Ω ∈ C2(R+)∩C3(R+) is a positive function satisfying Ω(0) =W (0)/2, Ω′(0) = 0, Ω′(r) < 0
for all r > 0, and r2Ω(r) → Γ as r → ∞. Moreover, since W is nonincreasing, it follows from
(1.9) that r2W (r) → 0 as r → ∞, and this implies that r3Ω′(r) → −2Γ as r → ∞. Similarly
r4Ω′′(r) → 6Γ as r → ∞. Finally, assumption H1 implies that the Rayleigh function is positive :

Φ(r) = 2Ω(r)W (r) > 0 , r ≥ 0 . (1.12)

Assumption H2: The C1 function J : R+ → R+ defined by

J(r) =
Φ(r)

Ω′(r)2
, r > 0 , (1.13)

satisfies J ′(r) < 0 for all r > 0 and rJ ′(r) → 0 as r → ∞.

The reader is referred to the previous work [10] for a discussion of these hypotheses. We
just recall here that assumptions H1, H2 are both satisfied in all classical examples that can be
found in the physical literature. In particular, they hold for the Lamb-Oseen vortex :

Ω(r) =
1

r2

(

1− e−r2
)

, W (r) = 2 e−r2 , (1.14)

and for the Kaufmann-Scully vortex :

Ω(r) =
1

1 + r2
, W (r) =

2

(1 + r2)2
. (1.15)

Our main result can now be stated as follows :

Theorem 1.1. Assume that the vorticity profile W satisfies assumptions H1, H2 above. Then
the linear operator L defined in (1.8) is the generator of a strongly continuous group (etL)t∈R
of bounded linear operators in X. Moreover, for any ǫ > 0, there exists a constant Cǫ ≥ 1 such
that

‖etL‖X→X ≤ Cǫ e
ǫ|t| , for all t ∈ R . (1.16)

Remark 1.2. Estimate (1.16) means that growth bound of the group etL is equal to zero, see
[7, Section I.5]. Equivalently, the spectrum of etL is contained in the unit circle {z ∈ C | |z| = 1}
for all t ∈ R. Invoking the Hille-Yosida theorem, we deduce from (1.16) that the spectrum of
the generator L is entirely contained in the imaginary axis of the complex plane, and that the
following resolvent bound holds for any a > 0 :

sup
{

‖(z − L)−1‖X→X

∣

∣

∣ z ∈ C , |Re(z)| ≥ a
}

< ∞ . (1.17)

In fact, since X is a Hilbert space, the Gearhart-Prüss theorem [7, Section V.1] asserts that the
resolvent bound (1.17) is also equivalent to the group estimate (1.16).
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Remark 1.3. The constant Cǫ in (1.16) may of course blow up as ǫ→ 0, but unfortunately our
proof does not give any precise information. It is reasonable to expect that Cǫ = O(ǫ−N ) for
some N > 0, which would imply that ‖etL‖ = O(|t|N ) as |t| → ∞, but proving such an estimate
is an open problem.

Remark 1.4. In (1.14), (1.15), and in all what follows, we always assume that the vortex profile
is normalized so that W (0) = 2, hence Ω(0) = 1. The general case can be easily deduced by a
rescaling argument.

The rest of this paper is organized as follows. In Section 2, we describe the main steps in the
proof of Theorem 1.1. In particular, we show that the linearized operator (1.8) is the generator
of a strongly continuous group in the Hilbert space X, and we reduce the linearized equations to
a family of one-dimensional problems using a Fourier series expansion in the angular variable θ
and a Fourier transform with respect to the vertical variable z. For a fixed value of the angular
Fourier mode m ∈ Z and of the vertical wave number k ∈ R, we show that the restricted
linearized operator Lm,k is the sum of a (nearly) skew-symmetric part Am and of a compact
perturbation Bm,k. Actually, proving compactness of Bm,k requires delicate estimates on the
pressure, which are postponed to Section 3. We then invoke the result of [10] to show that Lm,k

has no eigenvalue, hence no spectrum, outside the imaginary axis. The last step in the proof
consists in showing that, for any a 6= 0, the resolvent norm ‖(s−Lm,k)

−1‖ is uniformly bounded
for all m ∈ Z, all k ∈ R, and all s ∈ C with Re(s) = a. This crucial bound is obtained in
Section 4 using a priori estimates for the resolvent equation, which give explicit bounds in some
regions of the parameter space, combined with a contradiction argument which takes care of the
other regions. The proof of Theorem 1.1 is thus concluded at the end of Section 2, taking for
granted the results of Sections 3 and 4 which are the main original contributions of this paper.

Acknowledgements. This work was partially supported by grants ANR-18-CE40-0027 (Th.G.)
and ANR-14-CE25-0009-01 (D.S.) from the “Agence Nationale de la Recherche”. The authors
warmly thank an anonymous referee for suggesting a more natural way to prove compactness of
the operator Bm,k, which is now implemented in Section 3.2.

2 Main steps of the proof

The proof of Theorem 1.1 can be divided into four main steps, which are detailed in the following
subsections. The first two steps are rather elementary, but the remaining two require more
technical calculations which are postponed to Sections 3 and 4.

2.1 Splitting of the linearized operator

The linearized operator (1.8) can be decomposed as L = A + B, where A is the first order
differential operator

Au = −Ω(r)∂θu+ rΩ′(r)ur eθ , (2.1)

and B is the nonlocal operator

Bu = −∇P [u] + 2Ωuθer − 2(rΩ)′ureθ . (2.2)

We recall that W = rΩ′+2Ω, and that P [u] denotes the solution p of the elliptic equation (1.7).
As is easily verified, both operators A and B preserve the incompressibility condition div u = 0,
and this is precisely the reason for which we included the additional term rΩ′(r)ur eθ in the
definition (2.1) of the advection operator A.
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Lemma 2.1. Under assumption H1, the linear operator A is the generator of a strongly con-
tinuous group in the Hilbert space X, and B is a bounded linear operator in X.

Proof. The evolution equation ∂tu = Au is equivalent to the system

∂tur +Ω(r)∂θur = 0 , ∂tuθ +Ω(r)∂θuθ = rΩ′ur , ∂tuz +Ω(r)∂θuz = 0 ,

which has the explicit solution

ur(r, θ, z, t) = ur
(

r, θ − Ω(r)t, z, 0
)

,

uθ(r, θ, z, t) = uθ
(

r, θ − Ω(r)t, z, 0
)

+ rΩ′(r)t ur
(

r, θ − Ω(r)t, z, 0
)

, (2.3)

uz(r, θ, z, t) = uz
(

r, θ − Ω(r)t, z, 0
)

,

for any t ∈ R. Under assumption H1, the functions Ω and r 7→ rΩ′(r) are bounded on R+. With
this information at hand, it is straightforward to verify that the formulas (2.3) define a strongly
continuous group (etA)t∈R of bounded operators in X. Moreover, there exists a constant C > 0
such that ‖etA‖X→X ≤ C(1 + |t|) for all t ∈ R.

On the other hand, in view of definition (1.7), the pressure p = P [u] satisfies the energy
estimate

‖∂rp‖2L2(R3) + ‖1
r
∂θp‖2L2(R3) + ‖∂zp‖2L2(R3) ≤ C

(

‖ur‖2L2(R3) + ‖uθ‖2L2(R3)

)

, (2.4)

which is established in Section 3, see Remark 3.2 below. This shows that B is a bounded linear
operator in X.

It follows from Lemma 2.1 and standard perturbation theory [7, Section III.1] that the linear
operator L = A+B is the generator of a strongly continuous group of bounded operators in X.
Our goal is to show that, under appropriate assumptions on the vortex profile, this evolution
group has a mild (i.e., sub-exponential) growth as |t| → ∞, as specified in (1.16).

2.2 Fourier decomposition

To fully exploit the symmetries of the linearized operator (1.8), whose coefficients only depend
on the radial variable r, it is convenient to look for velocities and pressures of the following form

u(r, θ, z, t) = um,k(r, t) e
imθ eikz , p(r, θ, z, t) = pm,k(r, t) e

imθ eikz , (2.5)

where m ∈ Z is the angular Fourier mode and k ∈ R is the vertical wave number. Of course,
we assume that um,k = u−m,−k and pm,k = p−m,−k so as to obtain real-valued functions after
summing over all possible values of m,k. When restricted to the Fourier sector

Xm,k =
{

u = (ur, uθ, uz) ∈ L2(R+, r dr)
3
∣

∣

∣
∂∗rur +

im

r
uθ + ikuz = 0

}

, (2.6)

the linear operator (1.8) reduces to the one-dimensional operator

Lm,ku =







−imΩur + 2Ωuθ − ∂rPm,k[u]

−imΩuθ −Wur − im
r Pm,k[u]

−imΩuz − ikPm,k[u]






, (2.7)

where Pm,k[u] denotes the solution p of the following elliptic equation on R+ :

−∂∗r∂rp+
m2

r2
p+ k2p = 2im

(

∂∗rΩ
)

ur − 2∂∗r
(

Ωuθ
)

. (2.8)
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As in Section 2.1, we decompose Lm,k = Am +Bm,k, where

Amu =







−imΩur

−imΩuθ + rΩ′ur

−imΩuz






, Bm,ku =







−∂rPm,k[u] + 2Ωuθ

− im
r Pm,k[u]− 2(rΩ)′ur

−ikPm,k[u]






. (2.9)

The following result is the analog of [10, Proposition 2.1] in the present context.

Proposition 2.2. Assume that the vorticity profile W satisfies assumption H1 and the normal-
ization condition W (0) = 2. For any m ∈ Z and any k ∈ R,

1) The linear operator Am defined by (2.9) is bounded in Xm,k with spectrum given by

σ(Am) =
{

z ∈ C

∣

∣

∣ z = −imb for some b ∈ [0, 1]
}

; (2.10)

2) The linear operator Bm,k defined by (2.9) is compact in Xm,k.

Proof. Definition (2.9) shows that Am is essentially the multiplication operator by the function
−imΩ, whose range is precisely the imaginary interval (2.10) since the angular velocity is nor-
malized so that Ω(0) = 1. So the first assertion in Proposition 2.2 is rather obvious, and can be
established rigorously by studying the resolvent operator (z −Am)−1, see [10, Proposition 2.1].
The proof of the second assertion requires careful estimates on a number of quantities related
to the pressure, and is postponed to Section 3.2.

2.3 Control of the discrete spectrum

For any m ∈ Z and any k ∈ R, it follows from Proposition 2.2 and Weyl’s theorem [6, Theo-
rem I.4.1] that the essential spectrum of the operator Lm,k = Am+Bm,k is the purely imaginary
interval (2.10), whereas the rest of the spectrum entirely consists of isolated eigenvalues with
finite multiplicities1. To prove spectral stability, it is therefore sufficient to show that Lm,k has
no eigenvalue outside the imaginary axis. Given any s ∈ C with Re(s) 6= 0, the eigenvalue
equation (s− Lm,k)u = 0 is equivalent to the system

γ(r)ur − 2Ω(r)uθ = −∂rp ,
γ(r)uθ +W (r)ur = − im

r p ,

γ(r)uz = −ikp ,
∂∗rur +

im

r
uθ + ikuz = 0 , (2.11)

where γ(r) = s + imΩ(r). If (m,k) 6= (0, 0), one can eliminate the pressure p and the velocity
components uθ, uz from system (2.11), which then reduces to a scalar equation for the radial
velocity only :

−∂r
(

r2∂∗rur
m2 + k2r2

)

+

{

1 +
1

γ(r)2
k2r2Φ(r)

m2 + k2r2
+
imr

γ(r)
∂r

( W (r)

m2 + k2r2

)

}

ur = 0 , (2.12)

where Φ = 2ΩW is the Rayleigh function. The derivation of (2.12) is standard and can be found
in many textbooks, see e.g. [4, Section 15]. It is reproduced in Section 4.1 below in the more
general context of the resolvent equation.

The main result of our previous work on columnar vortices can be stated as follows.

1It is not difficult to verify that, in the present case, the various definitions of the essential spectrum given e.g.
in [6, Section I.4] are all equivalent.
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Proposition 2.3. [10] Under assumptions H1 and H2, the elliptic equation (2.12) has no
nontrivial solution ur ∈ L2(R+, r dr) if Re(s) 6= 0.

Corollary 2.4. Under assumptions H1 and H2, the operator Lm,k in Xm,k has no eigenvalue
outside the imaginary axis.

Proof. Assume that u ∈ Xm,k satisfies Lm,ku = su for some complex number s with Re(s) 6= 0.
If m = k = 0, the incompressibility condition shows that ∂∗rur = 0, hence ur = 0, and since
γ(r) = s 6= 0 the second and third relations in (2.11) imply that uθ = ur = uz = 0. If
(m,k) 6= (0, 0), the radial velocity ur satisfies (2.12), and Proposition 2.3 asserts that ur = 0.
Using the relations (4.6), (4.7) below (with f = 0), we conclude that uθ = uz = 0.

2.4 Uniform resolvent estimates

Under assumptions H1, H2, it follows from Proposition 2.2 and Corollary 2.4 that the spectrum
of the linear operator Lm,k = Am+Bm,k is entirely located on the imaginary axis. Equivalently,
for any s ∈ C with Re(s) 6= 0, the resolvent (s − Lm,k)

−1 is well defined as a bounded linear
operator in Xm,k. The main technical result of the present paper, whose proof is postponed
to Section 4 below, asserts that the resolvent bound is uniform with respect to the Fourier
parameters m and k, and to the spectral parameter s ∈ C if Re(s) is fixed.

Proposition 2.5. Assume that the vortex profile satisfies assumptions H1, H2. Then for any
real number a 6= 0, one has

sup
Re(s)=a

sup
m∈Z

sup
k∈R

∥

∥(s− Lm,k)
−1

∥

∥

Xm,k→Xm,k
< ∞ . (2.13)

Equipped with the uniform resolvent estimate given by Proposition 2.5, it is now straight-
forward to conclude the proof of our main result.

End of the proof of Theorem 1.1. We know from Lemma 2.1 that the operator L defined by
(1.8) is the generator of a strongly continuous group of bounded linear operators in the Hilbert
space X. For any a 6= 0, we set

F (a) = sup
Re(s)=a

∥

∥(s− L)−1
∥

∥

X→X
≤ sup

Re(s)=a
sup
m∈Z

sup
k∈R

∥

∥(s− Lm,k)
−1

∥

∥

Xm,k→Xm,k
, (2.14)

where the last inequality follows from Parseval’s theorem. The function F : R∗ → (0,∞) defined
by (2.14) is even by symmetry, and a straightforward perturbation argument shows that

F (a)

1 + |b|F (a) ≤ F (a+ b) ≤ F (a)

1− |b|F (a) ,

for all a 6= 0 and all b ∈ R with |b|F (a) < 1/2, so that F is continuous. Moreover, the Hille-
Yosida theorem [7, Theorem II.3.8] asserts that F (a) = O(|a|−1) as |a| → ∞, and it follows that
the resolvent bound (1.17) holds for any a > 0. In particular, given any ǫ > 0, the semigroup
(

et(L−ǫ)
)

t≥0
satisfies the assumptions of the Gearhart-Prüss theorem [7, Theorem V.1.11], and

is therefore uniformly bounded. This gives the desired bound (1.16) for positive times, and a
similar argument yields the corresponding estimate for t ≤ 0. The proof of Theorem 1.1 is thus
complete. �
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3 Estimates for the pressure

In this section, we give detailed estimates on the pressure p = Pm,k[u] satisfying (2.8). That
quantity appears in all components of the vector-valued operator Bm,k introduced in (2.9), and
our ultimate goal is to prove the last part of Proposition 2.2, which asserts that Bm,k is a
compact operator in the space Xm,k.

We assume henceforth that the vorticity profile W satisfies assumption H1 in Section 1. To
derive energy estimates, it is convenient in a first step to suppose that the divergence-free vector
field u ∈ Xm,k is smooth and has compact support in (0,+∞). As is shown in Proposition 5.2 in
the Appendix, the family of all such vector fields is dense in Xm,k, and the estimates obtained
in that particular case remain valid for all u ∈ Xm,k by a simple continuity argument. With this
observation in mind, we now proceed assuming that u is smooth and compactly supported.

Equation (2.8) has a unique solution p such that the quantities ∂rp, mp/r, and kp all belong
to L2(R+, r dr); the only exception is the particular case m = k = 0 where uniqueness holds
up to an additive constant. One possibility to justify this claim is to return to the cartesian
coordinates and to consider the elliptic equation (1.7) for the pressure p : R3 → R, which can
be written in the form

−∆p = 2rΩ′(r)
(

er, (∇u)eθ
)

− 2Ω(r)(curlu) · ez , (3.1)

where r = (x21 + x22)
1/2. Note that the right-hand side is regular (of class C2 under assumption

H1) and has compact support in the horizontal variables. Eq. (3.1) thus holds in the classical
sense, and uniqueness up to a constant of a bounded solution p is a consequence of Liouville’s
theorem for harmonic functions in R

3. In our framework, however, using (3.1) is not the easiest
way to prove existence, because according to (2.5) we are interested in solutions which depend
on the variables θ, z in a specific way, and do not decay to zero in the vertical direction.

If we restrict ourselves to the Fourier sector indexed by (m,k), existence of a solution to (2.8)
is conveniently established using the explicit representation formulas collected in Lemma 5.4
below. As can be seen from these expressions, the solution p of (2.8) is smooth near the origin
and satisfies the homogeneous Dirichlet condition at the artificial boundary r = 0 if |m| ≥ 1,
and the homogeneous Neumann condition if m = 0 or |m| ≥ 2. As r → ∞, it follows from (5.8),
(5.9) that p(r) decays to zero exponentially fast if k 6= 0, and behaves like r−|m| if m 6= 0 and
k = 0. In the very particular case where m = k = 0, the pressure vanishes near infinity if u
has compact support. Boundary conditions and decay properties for the derivatives of p can
be derived in a similar way, and will (often implicitly) be used in the proofs below to neglect
boundary terms when integrating by parts.

For functions or vector fields defined on R+, we always use in the sequel the notation ‖ · ‖L2

to denote the Lebesgue L2 norm with respect to the measure r dr. The corresponding Hermitian
inner product will be denoted by 〈·, ·〉.

3.1 Energy estimates

Throughout this section, we assume that u ∈ Xm,k and we denote by p = Pm,k[u] the solution
of (2.8) given by Lemma 5.4. We begin with a standard L2 energy estimate.

Lemma 3.1. For any u ∈ Xm,k we have

‖∂rp‖2L2 +
∥

∥

∥

mp

r

∥

∥

∥

2

L2
+ ‖kp‖2L2 ≤ C

(

‖ur‖2L2 + ‖uθ‖2L2

)

, (3.2)

where the constant C > 0 depends only on Ω.
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Proof. By density, it is sufficient to prove (3.2) under the additional assumption that u is
smooth and compactly supported in (0,+∞). To do so, we multiply both sides of (2.8) by rp̄
and integrate the result over R+. Integrating by parts and using Hölder’s inequality, we obtain

‖∂rp‖2L2 +
∥

∥

∥

mp

r

∥

∥

∥

2

L2
+ ‖kp‖2L2 =

∫ ∞

0
p̄
(2im

r
(rΩ)′ur − 2∂∗r (Ωuθ)

)

r dr

=

∫ ∞

0

(2im

r
(rΩ)′p̄ur + 2(∂r p̄)Ωuθ

)

r dr

≤ 2‖(rΩ)′‖L∞

∥

∥

∥

mp

r

∥

∥

∥

L2
‖ur‖L2 + 2‖Ω‖L∞‖∂rp‖L2‖uθ‖L2 ,

hence

‖∂rp‖2L2 +
∥

∥

∥

mp

r

∥

∥

∥

2

L2
+ ‖kp‖2L2 ≤ 4‖(rΩ)′‖2L∞‖ur‖2L2 + 4‖Ω‖2L∞‖uθ‖2L2 .

Note that, by assumption H1, ‖(1+r)2Ω‖L∞ + ‖(1+r)3Ω′‖L∞ + ‖(1+r)4Ω′′‖L∞ <∞.

Remark 3.2. The integrated pressure bound (2.4) can be established by an energy estimate as
in the proof of Lemma 3.1, or can be directly deduced from (3.2) using Parseval’s theorem.

For later use, we also show that the solution p = Pm,k[u] of (2.8) depends continuously on
the parameter k as long as k 6= 0.

Lemma 3.3. Assume that u1 ∈ Xm,k1 and u2 ∈ Xm,k2 , where m ∈ Z and k1, k2 6= 0. If we
denote p = Pm,k1 [u1]− Pm,k2 [u2], we have the estimate

‖∂rp‖2L2 +
∥

∥

∥

mp

r

∥

∥

∥

2

L2
+ ‖k1p‖2L2 ≤ C

(

‖u1−u2‖2L2 + ‖u2‖2L2

∣

∣

∣

k1
k2

− k2
k1

∣

∣

∣

2
)

, (3.3)

where the constant C > 0 depends only on Ω.

Proof. In view of (2.8), the difference p = p1− p2 ≡ Pm,k1 [u1]−Pm,k2[u2] satisfies the equation

−∂∗r∂rp+
m2

r2
p+ k21p =

2im

r

(

rΩ
)′
(u1,r−u2,r)− 2∂∗r

(

Ω (u1,θ−u2,θ)
)

+ (k22 − k21)p2 .

As in the proof of Lemma 3.1, we multiply both sides by rp̄ and we integrate over R+. Integrating
by parts and using Hölder’s inequality, we easily obtain

‖∂rp‖2L2 +
∥

∥

∥

mp

r

∥

∥

∥

2

L2
+ ‖k1p‖2L2 ≤ C

(

‖u1−u2‖2L2 + ‖k2p2‖2L2

∣

∣

∣

k1
k2

− k2
k1

∣

∣

∣

2
)

,

where the constant C > 0 depends only on ‖Ω‖L∞ and ‖(rΩ)′‖L∞ . As ‖k2p2‖L2 ≤ C‖u2‖L2 by
(3.2), this gives the desired result.

Finally, we derive a weighted estimate which allows us to control the pressure p = Pm,k[u]
in the far-field region where r ≫ 1.

Lemma 3.4. Assume that k 6= 0 or |m| ≥ 2. If u ∈ Xm,k and p = Pm,k[u], then

‖r∂rp‖2L2 + ‖mp‖2L2 + ‖krp‖2L2 ≤ 3‖p‖2L2 + C
(

‖ur‖2L2 + ‖uθ‖2L2

)

, (3.4)

where the constant C > 0 depends only on Ω. If |m| ≥ 2 the first term in the right-hand side
can be omitted.
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Proof. We multiply both sides of (2.8) by r3p̄ and integrate the result over R+. Note that the
integrand decays to zero exponentially fast if k 6= 0, and like r1−2|m| if k = 0, so that the integral
converges if we assume that k 6= 0 or |m| ≥ 2. After integrating by parts, we obtain the identity

‖r∂rp‖2L2 + ‖mp‖2L2 + ‖krp‖2L2 = 2‖p‖2L2 +Re
(

I1 + I2
)

, (3.5)

where I1 = 2im〈rp, (rΩ)′ur〉 and I2 = 2〈∂r(r2p),Ωuθ〉 = 2〈r∂rp, rΩuθ〉+4〈p, rΩuθ〉. We observe
that

|I1| ≤ 2‖r(rΩ)′‖L∞‖mp‖L2‖ur‖L2 ≤ 1

4
‖mp‖2L2 + 4‖r(rΩ)′‖2L∞‖ur‖2L2 ,

|I2| ≤ 2‖rΩ‖L∞

(

‖r∂rp‖L2 + 2‖p‖L2

)

‖uθ‖L2 ≤ 1

4

(

‖r∂rp‖2L2 + ‖p‖2L2

)

+ 20‖rΩ‖2L∞‖uθ‖2L2 ,

and replacing these estimates into (3.5) we obtain (3.4). If |m| ≥ 2, then 3‖p‖2L2 ≤ 3
4‖mp‖2L2 , so

that the first term in the right-hand side of (3.4) can be included in the left-hand side.

Corollary 3.5. For any m ∈ Z and any k ∈ R, the linear map u 7→ kPm,k[u] from Xm,k into
L2(R+, r dr) is compact.

Proof. We can of course assume that k 6= 0. If u lies in the unit ball of Xm,k, it follows
from estimates (3.2) and (3.4) that ‖k∂rp‖2L2 + ‖krp‖2L2 ≤ C(k,Ω) for some constant C(k,Ω)
independent of u. Applying Lemma 5.3, we conclude that the map u 7→ kp is compact.

3.2 Compactness results

The aim of this section is to complete the proof of Proposition 2.2, by showing the compactness
of the linear operator Bm,k defined in (2.9). In view of Corollary 3.5, which already settles the
case of the third component Bm,k,zu := −ikPm,k[u], we are left to prove that the linear mappings

u 7→ Bm,k,ru := −∂rPm,k[u] + 2Ωuθ , and

u 7→ Bm,k,θu := − im
r
Pm,k[u]− 2(rΩ)′ur ,

are compact from Xm,k to L2(R+, r dr), for any m ∈ Z and any k ∈ R. In the sequel, to simplify
the notation, we write Br, Bθ, Bz instead of Bm,k,ru, Bm,k,θu, Bm,k,zu, respectively.

We first treat the simple particular case where m = 0.

Lemma 3.6. If m = 0 and u ∈ X0,k, then

‖∂∗rBr‖L2 + ‖∂∗rBθ‖L2 + ‖rBr‖L2 + ‖rBθ‖L2 ≤ C(k,Ω)‖u‖L2 , (3.6)

where the constant C(k,Ω) depends only on k and Ω.

Proof. If m = 0 and k = 0, then ∂∗rur = div u = 0, and this implies that ur = 0. Similarly, the
incompressibility condition for the vector B implies that Br = 0, and in view of (2.9) it follows
that B vanishes identically. Thus estimate (3.6) is trivially satisfied in that case. If m = 0 and
k 6= 0, we deduce from (3.2) and (3.4) that

‖rBr‖L2 ≤ ‖r∂rp‖L2 + 2‖rΩ‖L∞‖uθ‖L2 ≤ C(k,Ω)
(

‖ur‖L2 + ‖uθ‖L2

)

,

and
‖rBθ‖L2 = 2‖r(rΩ)′ur‖L2 ≤ 2‖r(rΩ)′‖L∞‖ur‖L2 .
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As for the derivatives, we observe that ∂∗rBr = −∂∗r∂rp+2∂∗r (Ωuθ) = −k2p in view of (2.8), and
therefore we deduce from (3.2) that

‖∂∗rBr‖L2 = ‖k2p‖L2 ≤ C(k,Ω)
(

‖ur‖L2 + ‖uθ‖L2

)

.

Finally, as ∂∗rur+ikuz = 0, we have ∂∗rBθ = −2(rΩ)′′ur−2(rΩ)′∂∗rur = −2(rΩ)′′ur+2ik(rΩ)′uz,
and it follows that

‖∂∗rBθ‖L2 ≤ C(k,Ω)
(

‖ur‖L2 + ‖uz‖L2

)

.

Collecting these estimates, we arrive at (3.6).

When m 6= 0, useful estimates on the vector Bm,ku can be deduced from an elliptic equation
satisfied by the radial component Br, which also involves the quantities R1, R2 defined by

R1 = 2
(

−(rΩ)′′ur + imΩ′uθ + ik(rΩ)′uz
)

, and R2 =
2

r
p+ 2Ωuθ . (3.7)

To derive that equation, we first observe that, in view of the definitions (2.9) of Br, Bθ and of
the incompressibility condition for u, the following relation holds

∂r
(

rBθ

)

= −im∂rp− 2∂r
(

r(rΩ)′ur
)

= imBr + rR1 . (3.8)

Next, we have the incompressibility condition for B, which is equivalent to (2.8) :

∂∗rBr +
im

r
Bθ + ikBz = 0 . (3.9)

If we multiply both members of (3.9) by r2 and differentiate the resulting identity with respect
to r, we obtain using (3.8) the desired equation

−∂2rBr −
3

r
∂rBr +

(m2 − 1

r2
+ k2

)

Br =
im

r
R1 + k2R2 . (3.10)

If u ∈ Xm,k is smooth and compactly supported in (0,+∞), it is clear from the definition
(2.9) that the radial component Br satisfies exactly the same boundary conditions at r = 0 as
the pressure derivative ∂rp, and has also the same decay properties at infinity. In particular
Br decays to zero exponentially fast as r → ∞ if k 6= 0, and behaves like r−1−|m| if k = 0 and
m 6= 0. These observations also apply to the azimuthal component Bθ.

We now exploit (3.10) to estimate Br and Bθ, starting with the general case where |m| ≥ 2.

Lemma 3.7. If |m| ≥ 2 and u ∈ Xm,k, then

‖∂rBr‖L2 + ‖∂∗rBθ‖L2 + ‖rBr‖L2 + ‖rBθ‖L2 ≤ C(m,k,Ω)‖u‖L2 , (3.11)

where the constant C(m,k,Ω) depends only on m, k and Ω.

Proof. We first observe that ‖R1‖L2 + ‖r2R1‖L2 ≤ C‖u‖L2 , where the constant depends on m,
k, and Ω. Similarly, in view of (3.2) and (3.4), we have ‖krR2‖L2 + ‖kr2R2‖L2 ≤ C‖u‖L2 . Now,
we multiply (3.10) by rB̄r and integrate by parts. This leads to the identity

‖∂rBr‖2L2 + (m2 − 1)
∥

∥

∥

Br

r

∥

∥

∥

2

L2
+ ‖kBr‖2L2 = Re〈Br,

im

r
R1 + k2R2〉 . (3.12)

To control the right-hand side, we use the estimates

∣

∣

∣〈Br,
im

r
R1〉

∣

∣

∣ ≤
∥

∥

∥

mBr

r

∥

∥

∥

L2
‖R1‖L2 ≤ C(m,k,Ω)

∥

∥

∥

mBr

r

∥

∥

∥

L2
‖u‖L2 ,
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and
∣

∣〈Br, k
2R2〉

∣

∣ ≤ 2
∥

∥

∥

Br

r

∥

∥

∥
‖k2rR2‖L2 ≤ C(m,k,Ω)

∥

∥

∥

Br

r

∥

∥

∥
‖u‖L2 .

Inserting these bounds into (3.12) and using Young’s inequality together with the assumption
that |m| ≥ 2, we easily obtain

‖∂rBr‖2L2 +m2
∥

∥

∥

Br

r

∥

∥

∥

2

L2
+ k2‖Br‖2L2 ≤ C(m,k,Ω)‖u‖2L2 . (3.13)

In exactly the same way, if we multiply (3.10) by r3B̄r and integrate by parts, we arrive at the
weighted estimate

‖r∂rBr‖2L2 +m2‖Br‖2L2 + k2‖rBr‖2L2 ≤ C(m,k,Ω)‖u‖2L2 . (3.14)

When k = 0, estimates (3.13), (3.14) remain valid but they do not provide the desired control
on ‖rBr‖L2 . In that case, we multiply (3.10) by r5B̄r to derive the additional identity

‖r2∂rBr‖2L2 + (m2 − 1)‖rBr‖2L2 = −2Re〈rBr, r
2∂rBr〉+Re〈r4Br,

im

r
R1〉 .

To estimate the right-hand side, we use the following bounds

2
∣

∣〈rBr, r
2∂rBr〉

∣

∣ ≤ 3

4
‖r2∂rBr‖2L2 +

4

3
‖rBr‖2L2 ,

∣

∣〈rBr, imr
2R1〉

∣

∣ ≤ ‖mrBr‖L2‖r2R1‖L2 ≤ C(m,Ω)‖mrBr‖L2‖u‖L2 .

Taking into account the assumption that |m| ≥ 2, so that 4
3 ≤ m2−1

2 , we deduce that, for k = 0,

‖r2∂rBr‖2L2 +m2‖rBr‖2L2 ≤ C(m,Ω)‖u‖2L2 . (3.15)

Combining (3.13), (3.14) and (3.15) (when k = 0), we obtain in particular the inequality

‖∂rBr‖L2 + ‖rBr‖L2 ≤ C(m,k,Ω)‖u‖L2 . (3.16)

It remains to estimate the azimuthal component Bθ, which satisfies ∂∗rBθ = im
r Br + R1 by

(3.8). Using inequalities (3.13) and (3.4) (in the case where |m| ≥ 2), we easily obtain

‖∂∗rBθ‖L2 + ‖rBθ‖L2 ≤ C(m,k,Ω)‖u‖L2 , (3.17)

and estimate (3.11) follows by combining (3.16) and (3.17).

The case where m = ±1 requires a slightly different argument, because an essential term in
the elliptic equation (3.10) vanishes when m2 = 1. It can be shown that this phenomenon is
related to the translation invariance of the Euler equation in the original, cartesian coordinates.

Lemma 3.8. Assume that m = ±1, k 6= 0 and u ∈ Xm,k. Then

‖∂rBr‖L2 + ‖∂∗rD‖L2 + ‖rBr‖L2 + ‖rD‖L2 ≤ C(k,Ω)‖u‖L2 , (3.18)

where D = Br + imBθ and the constant C(k,Ω) depends only on k and Ω.
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Proof. We multiply both sides of (3.10) by r2∂rB̄r, take the real part, and integrate by parts.
We obtain the identity

2‖∂rBr‖2L2 + k2‖Br‖2L2 = −Re〈∂rBr, imR1 + k2rR2〉 ,

where the right-hand side is estimated as in the previous lemma. This yields the bound

‖∂rBr‖2L2 + k2‖Br‖2L2 ≤ C(k,Ω)‖u‖2L2 . (3.19)

In exactly the same way, multiplying (3.10) by r4∂rB̄r, we arrive at

‖r∂rBr‖2L2 + k2‖rBr‖2L2 ≤ C(k,Ω)‖u‖2L2 . (3.20)

In particular, combining (3.2), (3.4), (3.19) and (3.20), we find

‖D‖L2 + ‖rD‖L2 ≤ C(k,Ω)‖u‖L2 . (3.21)

In addition, using the identity ∂∗rD = ∂rBr +
1
rBr + im( imr Br +R1) = ∂rBr + imR1, we obtain

‖∂∗rD‖L2 ≤ C(k,Ω)‖u‖L2 . (3.22)

Estimate (3.18) follows directly from (3.19)–(3.22).

Lemma 3.9. Assume that m = ±1, k = 0, and u ∈ Xm,0. Then, for any α ∈ (0, 1),

‖∂rBr‖L2 + ‖∂∗rD‖L2 + ‖rαBr‖L2 + ‖rαD‖L2 ≤ C(α,Ω)‖u‖L2 , (3.23)

where D = Br + imBθ and the constant C(α,Ω) depends only on α and Ω.

Proof. If |m| = 1 and k = 0, equation (3.10) reduces to

− 1

r3
∂r

(

r3∂rBr

)

=
im

r
R1 ,

which can be explicitly integrated to give

∂rBr(r) = − im
r3

∫ r

0
s2R1(s) ds , r > 0 , (3.24)

and finally

Br(r) =
im

2

∫ r

0
R1(s)

s2

r2
ds+

im

2

∫ ∞

r
R1(s) ds , r > 0 . (3.25)

Since |m| = 1 and k = 0, it follows from (3.7) that ‖r−1R1‖L2 + ‖r3R1‖L2 ≤ C‖u‖L2 , where the
constant depends only on Ω. Using that information, it is straightforward to deduce from the
representations (3.24) and (3.25) that

‖∂rBr‖L2 + ‖rαBr‖L2 ≤ C(α,Ω)‖u‖L2 ,

for any α < 1. Note that rBr /∈ L2(R+, r dr) in general, because the first term in the right-hand
side of (3.25) decays exactly like r−2 as r → ∞.

On the other hand, it follows from (3.9) that imBθ = −r∂rBr − Br, which implies that
D = −r∂rBr. Moreover, as in the previous lemma, we have ∂∗rD = ∂rBr + imR1. So, using
the estimates above on R1, we easily obtain the bound ‖∂∗rD‖L2 + ‖rαD‖L2 ≤ C‖u‖L2 , which
concludes the proof.
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End of the Proof of Proposition 2.2. When |m| 6= 1, in view of Lemmas 3.6 and 3.7, the
compactness of the maps u 7→ Bm,k,ru and u 7→ Bm,k,θu is a direct consequence of Lemma 5.3
in the Appendix. When m = ±1, Lemma 5.3, combined with Lemma 3.8 or Lemma 3.9, shows
that the maps u 7→ Bm,k,ru and u 7→ Bm,k,ru + imBm,k,θu are compact, and so is the map
u 7→ Bm,k,θu.

Remark 3.10. It is also possible to obtain explicit representation formulas for the components
of the vector-valued operator Bm,k defined in (2.9), and to use them to prove that the map
u 7→ Bm,ku is compact in Xm,k. The computations, however, are rather cumbersome. That
approach was followed in a previous version of this work [11].

4 Resolvent bounds on vertical lines

This final section is entirely devoted to the proof of Proposition 2.5. Let a 6= 0 be a nonzero
real number. For any value of the angular Fourier mode m ∈ Z, of the vertical wave number
k ∈ R, and of the spectral parameter s ∈ C with Re(s) = a, we consider the resolvent equation
(s− Lm,k)u = f , which by definition (2.7) is equivalent to the system

γ(r)ur − 2Ω(r)uθ = −∂rp+ fr ,

γ(r)uθ +W (r)ur = − im
r p+ fθ ,

γ(r)uz = −ikp+ fz ,

(4.1)

where γ(r) = s+ imΩ(r) and p = Pm,k[u] is the solution of (2.8) given by Lemma 5.4. We recall
that u, f are divergence-free :

∂∗rur +
im

r
uθ + ikuz = 0 , ∂∗rfr +

im

r
fθ + ikfz = 0 . (4.2)

Our goal is to show that, given any f ∈ Xm,k, the (unique) solution u ∈ Xm,k of (4.1) satisfies
‖u‖L2 ≤ C‖f‖L2 , where the constant C > 0 depends only on the spectral abscissa a and on the
angular velocity profile Ω. In particular, the constant C is independent of m, k, and s provided
Re(s) = a.

Remark 4.1. It is interesting to observe how the resolvent system (4.1), (4.2) is transformed
under the action of the following isometries :

I1 : Xm,k → X−m,k , u 7→ ũ := (ur,−uθ, uz) ,
I2 : Xm,k → Xm,−k , u 7→ û := (ur, uθ,−uz) ,
I3 : Xm,k → X−m,−k , u 7→ ū := (ūr, ūθ, ūz) ,

where (as usual) ū denotes the complex conjugate of u. If u, f ∈ Xm,k and s ∈ C, the resolvent
equation (s− Lm,k)u = f is equivalent to any of the following three relations :

(

s+ L−m,k

)

ũ = f̃ ,
(

s− Lm,−k

)

û = f̂ ,
(

s̄− L−m,−k

)

ū = f̄ .

This implies in particular that the spectrum of the operator Lm,k in Xm,k satisfies

σ(Lm,k) = σ(Lm,−k) = −σ(L−m,k) , and σ(Lm,k) = −σ(Lm,k) . (4.3)

As the spectrum σ(Lm,k) is symmetric with respect to the imaginary axis, due to the last relation
in (4.3), we can assume in what follows that the spectral abscissa a is positive. Also, thanks to
the first two relations, we can suppose without loss of generality that m ∈ N and k ≥ 0.
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4.1 The scalar resolvent equation

A key ingredient in the proof of Proposition 2.5 is the observation that the resolvent system
(4.1) is equivalent to a second order differential equation for the radial velocity ur.

Lemma 4.2. Assume that (k,m) 6= (0, 0). If u ∈ Xm,k is the solution of the resolvent equation
(4.1) for some f ∈ Xm,k, the radial velocity ur satisfies, for all r > 0,

−∂r
(

A(r)∂∗rur
)

+

(

1 +
k2

γ2
A(r)Φ(r) +

imr

γ
∂r

( W (r)

m2 + k2r2

)

)

ur = F(r) , (4.4)

where A(r) = r2/(m2 + k2r2) and

F(r) =
1

γ
fr +A

(2ikΩ

γ2
+

2km

γ

1

m2 + k2r2

)

(

−ikfθ +
im

r
fz
)

+
im

γr
A∂∗rfθ +

ik

γ
A∂rfz . (4.5)

In addition, the azimuthal and vertical velocities are expressed in terms of ur by

uθ =
imA
r

∂∗rur −
k2A
γ

(

Wur − fθ
)

− mkA
γr

fz , (4.6)

uz = ikA∂∗rur +
mkA
γr

(

Wur − fθ
)

+
m2A
γr2

fz . (4.7)

Proof. If we eliminate the pressure p from the last two lines in (4.1), we obtain

kWur + kγuθ −
γm

r
uz = kfθ −

m

r
fz . (4.8)

This first relation can be combined with the incompressibility condition in (4.2) to eliminate the
azimuthal velocity uθ. This gives

k
(

∂∗r −
imW

γr

)

ur + i
(

k2 +
m2

r2

)

uz = g1 :=
im2

γr2
fz −

imk

γr
fθ , (4.9)

which is (4.7). As is easily verified, if in the previous step we eliminate the vertical velocity uz
from (4.8) and (4.2), we arrive at (4.6) instead of (4.7).

Alternatively, we can eliminate the pressure from the first and the last line in (4.1). This
gives the second relation

ikγur − 2ikΩuθ − ∂r(γuz) = ikfr − ∂rfz , (4.10)

which can in turn be combined with (4.8) to eliminate the azimuthal velocity uθ. Using the
relations γ′ = imΩ′ and W = rΩ′ + 2Ω, we obtain in this way

γ2
(

∂r +
imW

γr

)

uz − ik
(

γ2 +Φ
)

ur = g2 := 2iΩ
(m

r
fz − kfθ

)

+ γ
(

∂rfz − ikfr

)

, (4.11)

where Φ = 2ΩW is the Rayleigh function.

Now, we multiply the equality (4.9) byA = r2/(m2+k2r2) and apply the differential operator
∂r +

imW
γr to both members of the resulting expression. In view of (4.11), we find

k
(

∂r +
imW

γr

)

A
(

∂∗r −
imW

γr

)

ur − k
(

1 +
Φ

γ2

)

ur =
(

∂r +
imW

γr

)

Ag1 −
i

γ2
g2 . (4.12)

If k 6= 0, this equation is equivalent to (4.4), as is easily verified by expanding the expressions
in both sides of (4.12) and performing elementary simplifications. In the particular case where
k = 0 (and m 6= 0), equation (4.4) still holds but the derivation above is not valid anymore.
Instead, one must eliminate the pressure p from the first two lines in (4.1), and then express
the azimuthal velocity uθ using the incompressibility condition. The details are left to the
reader.
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Remark 4.3. If f = 0, then F = 0 and Eq. (4.4) reduces to the eigenvalue equation (2.12).

Corollary 4.4. Under the assumptions of Lemma 4.2, we have the estimate

max
{

‖uθ‖L2 , ‖uz‖L2

}

≤ ‖A 1

2∂∗rur‖L2 +
1

a

(

‖W‖L∞‖ur‖L2 + ‖fθ‖L2 + ‖fz‖L2

)

. (4.13)

Proof. As |γ(r)| ≥ Re(s) = a and

0 < A(r) ≤ min
{ 1

k2
,
r2

m2

}

, (4.14)

estimate (4.13) follows immediately from the representations (4.6), (4.7).

4.2 Explicit resolvent estimates in particular cases

We first establish the resolvent bound in the relatively simple case where m = 0, which corre-
sponds to axisymmetric perturbations of the columnar vortex.

Lemma 4.5. Assume that m = 0. For any f ∈ X0,k, the solution u ∈ X0,k of (4.1) satisfies

‖u‖L2 ≤ C0

(1

a
+

1

a4

)

‖f‖L2 , (4.15)

where the constant C0 > 0 depends only on Ω.

Proof. When k = 0, the incompressibility condition (4.2) implies that ur = 0, and since γ(r) = s
we deduce from the last two lines in (4.1) that uθ = fθ/s and uz = fz/s. As |s| ≥ Re(s) = a,
we thus have ‖u‖L2 ≤ ‖f‖L2/a, which is the desired conclusion.

If k 6= 0, we assume without loss of generality that k > 0. Since m = 0, equation (4.4)
satisfied by the radial velocity ur reduces to

−∂r∂∗rur + k2
(

1 +
Φ(r)

s2

)

ur =
k2

s
fr +

2k2Ω(r)

s2
fθ +

ik

s
∂rfz .

We multiply both sides by srūr and integrate the resulting equality over R+. After taking the
real part, we obtain the identity

a

∫ ∞

0

{

|∂∗rur|2 + k2
(

1 +
Φ(r)

|s|2
)

|ur|2
}

r dr = Re

∫ ∞

0
ūr

(

k2fr +
2k2Ω(r)

s
fθ + ik∂rfz

)

r dr .

As Φ(r) ≥ 0 by assumption H1, we easily deduce that

a
(

‖∂∗rur‖2L2 + k2‖ur‖2L2

)

≤ k2‖ur‖L2

(

‖fr‖L2 +
2‖Ω‖L∞

a
‖fθ‖L2

)

+ k‖∂∗rur‖L2‖fz‖L2 ,

and applying Young’s inequality we obtain

1

k2
‖∂∗rur‖2L2 + ‖ur‖2L2 ≤ C

a2
(

‖fr‖2L2 + ‖fz‖2L2

)

+
C

a4
‖fθ‖2L2 , (4.16)

where the constant C > 0 depends only on Ω.

With estimate (4.16) at hand, we deduce from the second line in (4.1) that

‖uθ‖L2 ≤ 1

|s|
(

‖W‖L∞‖ur‖L2 + ‖fθ‖L2

)

≤ C
(1

a
+

1

a3

)

‖f‖L2 . (4.17)

Similarly, using the third line in (4.1) and estimate (3.2) for the pressure, we obtain

‖uz‖L2 ≤ 1

|s|
(

‖kp‖L2 + ‖fz‖L2

)

≤ C

a

(

‖ur‖L2 + ‖uθ‖L2 + ‖fz‖L2

)

≤ C
(1

a
+

1

a4

)

‖f‖L2 . (4.18)

Combining (4.16), (4.17), and (4.18), we arrive at (4.15).
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In the rest of this section, we consider the more difficult case wherem 6= 0. In that situation,
given any s ∈ C with Re(s) = a, there exists a unique b ∈ R such that

s = a− imb , hence γ(r) = a+ im
(

Ω(r)− b
)

. (4.19)

Our goal is to obtain a resolvent bound that is uniform in the parameters m, k, and b. In view
of Remark 4.1, we can assume without loss of generality that m ≥ 1 and k ≥ 0.

Unlike in the axisymmetric case, we are not able to obtain here an explicit resolvent bound
of the form (4.15) for all values of the parameters m, k, and b. In some regions, we will have
to invoke Proposition 2.3, which was established in [10] using a contradiction argument that
does not provide any explicit estimate of the resolvent operator. Nevertheless, our strategy is
to obtain explicit bounds in the largest possible region of the parameter space, and to rely on
Proposition 2.3 only when the direct approach does not work.

We begin with the following elementary observation:

Lemma 4.6. If u, f ∈ Xm,k satisfy (4.1), then for any M > 0 we have the estimate

‖1{|γ|≥M} u‖L2 ≤ C1

M

(

‖u‖L2 + ‖f‖L2

)

, (4.20)

where the constant C1 depends only on Ω.

Proof. We multiply all three equations in (4.1) by γ(r)−11{|γ|≥M} and take the L2 norm of the
resulting expression. Using estimate (3.2) to control the pressure, we arrive at (4.20).

To obtain more general resolvent estimates, we exploit the differential equation (4.4) satisfied
by the radial velocity ur. As a preliminary step, we prove the following result.

Lemma 4.7. If u, f ∈ Xm,k ∩H1(R+, r dr) and F is defined by (4.5), we have

∣

∣

∣

∫ ∞

0
F(r)ūrr dr

∣

∣

∣ ≤ 2

a
‖A 1

2 ∂∗rur‖L2‖f‖L2 + C2

(1

a
+

1

a2

)

‖ur‖L2‖f‖L2 , (4.21)

where the constant C2 depends only on Ω.

Proof. We split the integral
∫∞
0 F(r)ūrr dr into four pieces, according to the expression of F

in (4.5). As |γ(r)| ≥ Re(s) = a, the first term is easily estimated :

∣

∣

∣

∫ ∞

0

1

γ(r)
ūrfrr dr

∣

∣

∣
≤ 1

a
‖ur‖L2‖fr‖L2 .

As for the second term, we observe that |kA(−ikfθ + im
r fz)| ≤ |fθ|+ |fz| by (4.14), so that

∣

∣

∣

∫ ∞

0
A
(2ikΩ

γ2
+
2km

γ

1

m2 + k2r2

)

(

−ikfθ+
im

r
fz
)

ūrr dr
∣

∣

∣
≤

( 2

a2
+

2

am

)

‖ur‖L2

(

‖fθ‖L2+‖fz‖L2

)

.

The third term is integrated by parts as follows :
∫ ∞

0
ūrim

A
γr2

∂r(rfθ) r dr = −
∫ ∞

0
(∂∗r ūr)im

A
γr
fθ r dr −

∫ ∞

0
imūr∂r

( A
γr2

)

rfθ r dr .

Since |mA 1

2 /r| ≤ 1 by (4.14), we have on the one hand

∣

∣

∣

∫ ∞

0
(∂∗r ūr)im

A
γr

fθ r dr
∣

∣

∣
≤ 1

a
‖A 1

2 ∂∗rur‖L2‖fθ‖L2 ,

18



and on the other hand

∣

∣

∣
mr∂r

( A
γr2

)∣

∣

∣
=

∣

∣

∣

im2Ω′A
γ2r

+
2mk2A2

γr2

∣

∣

∣
≤ ‖rΩ′‖L∞

a2
+

2

am
,

so that
∣

∣

∣

∫ ∞

0
im∂r

( A
γr2

)

rfθūr r dr
∣

∣

∣ ≤ C
( 1

a2
+

1

am

)

‖ur‖L2‖fθ‖L2 .

In a similar way, the fourth and last term is integrated by parts :

∫ ∞

0
ūr
ik

γ
A∂rfz r dr = −

∫ ∞

0
(∂∗r ūr)

ik

γ
Afz r dr −

∫ ∞

0
ikūr∂r

(A
γ

)

fz r dr . (4.22)

Since |kA 1

2 | ≤ 1 by (4.14), we have

∣

∣

∣

∫ ∞

0
(∂∗r ūr)

ik

γ
Afz r dr

∣

∣

∣
≤ 1

a
‖A 1

2 ∂∗rur‖L2‖fz‖L2 .

Moreover, using the relations rA′ = 2A(1 − k2A) and γ′ = imΩ′, we can estimate the last
integral in (4.22) as follows :

∣

∣

∣

∫ ∞

0
ikūr∂r

(A
γ

)

fz r dr
∣

∣

∣ ≤
∥

∥

∥

2kA
γr

(1− k2A)− imk
Ω′A
γ2

∥

∥

∥

L∞

‖ur‖L2‖fz‖L2

≤
( 2

am
+

‖rΩ′‖L∞

a2

)

‖ur‖L2‖fz‖L2 .

Collecting all estimates above and recalling that m ≥ 1, we arrive at (4.21).

We next establish an explicit estimate that will be useful when the vertical wave number k
is small compared to the angular Fourier mode m.

Lemma 4.8. If m ≥ 1 and u, f ∈ Xm,k satisfy (4.1), we have the estimate

‖A 1

2 ∂∗rur‖2L2 + ‖ur‖2L2 ≤ C3

( 1

a2
+

1

a4

) k2

m2 + k2
‖ur‖2L2 + C3

( 1

a2
+

1

a6

)

‖f‖2L2 , (4.23)

where the constant C3 > 0 depends only on Ω.

Proof. We start from the scalar resolvent equation (4.4) satisfied by the radial velocity ur.
Multiplying both sides by rūr and integrating the resulting expression over R+, we obtain the
following identity :

‖A 1

2 ∂∗rur‖2L2 + ‖ur‖2L2 + I1 + I2 =

∫ ∞

0
F(r)ūrr dr , (4.24)

where F(r) is defined in (4.5) and

I1 =

∫ ∞

0

k2

γ2
AΦ |ur|2r dr , I2 =

∫ ∞

0

imr

γ
∂r

( W

m2+k2r2

)

|ur|2r dr . (4.25)

The right-hand side of (4.24) is estimated in Lemma 4.7. On the other hand, using (4.14) and
the fact that |γ(r)| ≥ Re(s) = a, we can bound

∣

∣

∣

k2

γ2
AΦ

∣

∣

∣
≤ min

{‖Φ‖L∞

a2
,

k2

a2m2
‖r2Φ‖L∞

}

, so that |I1| ≤
C

a2
k2

m2 + k2
‖ur‖2L2 . (4.26)
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Moreover, we have
∣

∣

∣

mr

γ
∂r

( W

m2 + k2r2

)∣

∣

∣
≤ 1

am

(

‖rW ′‖L∞ + 2‖W‖L∞

)

, so that |I2| ≤
C

am
‖ur‖2L2 . (4.27)

Combining (4.24), (4.25), (4.26), (4.21) and using Young’s inequality, we obtain the preliminary
estimate

‖A 1

2∂∗rur‖2L2 + ‖ur‖2L2 ≤ C4

( k2

a2(m2 + k2)
+

1

am

)

‖ur‖2L2 + C4

( 1

a2
+

1

a4

)

‖f‖2L2 , (4.28)

where the constant C4 > 0 depends only on Ω.

If ma ≥ 2C4, it is clear that (4.28) implies (4.23). In the rest of the proof, we assume
therefore that ma ≤ 2C4. To obtain the improved bound (4.23), the idea is to control the
integral term I2 in a different way. Denoting

Z(r) = −r∂r
( W (r)

m2+k2r2

)

> 0 ,

we observe that

I2 = −
∫ ∞

0

im

γ
Z(r)|ur|2r dr =

∫ ∞

0

m2(b− Ω)− iam

|γ|2 Z(r)|ur|2r dr . (4.29)

As Ω(r) ≤ 1 for all r, a lower bound on Re I2 is obtained if we replace b− Ω by b− 1 in (4.29).
Thus, taking the real part of (4.24), we obtain the bound

‖A 1

2 ∂∗rur‖2L2 + ‖ur‖2L2 + (b− 1)

∫ ∞

0

m2

|γ|2 Z(r)|ur|
2r dr ≤ |I1|+ |I3| , (4.30)

where I3 =
∫∞
0 F(r)ūrr dr. If b ≥ 1, we can drop the integral in the left-hand side, and using the

estimates (4.26), (4.21) on |I1|, |I3| we arrive at (4.23). If b < 1, we consider also the imaginary
part of (4.24), which gives the inequality

∫ ∞

0

am

|γ|2 Z(r)|ur|
2r dr ≤ |I1|+ |I3| . (4.31)

Combining (4.30), (4.31) so as to eliminate the integral term, we obtain

‖A 1

2 ∂∗rur‖2L2 + ‖ur‖2L2 ≤
(

1 +
m(1− b)

a

)

(

|I1|+ |I3|
)

. (4.32)

If b ≥ −1, then m(1− b)/a ≤ 2m/a ≤ 4C4/a
2. If b ≤ −1, we can assume that m(1− b) ≤ 4C1,

because in the converse case we have

|γ(r)| ≥ m(Ω(r)− b) ≥ −mb ≥ m(1− b)

2
≥ 2C1 , for all r > 0 ,

so that we can apply Lemma 4.6 with M = 2C1 and deduce (4.23) from (4.20) and (4.28). So,
in all relevant cases, the right-hand side of (4.32) is smaller than C(1 + a−2)

(

|I1| + |I3|
)

, and
using the estimates (4.26), (4.21) on |I1|, |I3| we obtain (4.23).

Remark 4.9. Estimate (4.28) implies in particular that

‖A 1

2∂∗rur‖2L2 ≤ C4

(1

a
+

1

a2

)

‖ur‖2L2 + C4

( 1

a2
+

1

a4

)

‖f‖2L2 . (4.33)

In view of Corollary 4.4, this shows that controlling the quantity ‖ur‖L2 in terms of ‖f‖L2 is
equivalent to the full resolvent estimate, because the azimuthal and vertical velocities can be
estimated using (4.13), (4.33). As an aside, we also observe that (4.28) provides an explicit
resolvent estimate if a > 0 is sufficiently large, for instance if a ≥ 2C4+1. Thus we may assume
in the sequel that a is bounded from above by a constant depending only on Ω.
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To estimate the radial velocity ur in the regime where k is large compared to m, it is
convenient to introduce the auxiliary function v(r) = γ(r)−1/2ur(r) (this idea already used in
[10] is borrowed from [12]). The new function v satisfies the differential equation

−∂r
(

A(r)γ(r)∂∗rv
)

+ E(r)v = γ(r)1/2F(r) , r > 0 , (4.34)

where A(r), F(r) are as in (4.4) and

E(r) = γ(r) +
k2

γ(r)
A(r)Φ(r) +

imr

2
∂r

(W (r) + 2Ω(r)

m2 + k2r2

)

− m2Ω′(r)2

4γ(r)
A(r) .

Lemma 4.10. If m ≥ 1 and u, f ∈ Xm,k satisfy (4.1), there exists a constant C5 > 0 depending
only on Ω such that the function v(r) = γ(r)−1/2ur(r) satisfies the estimate

‖A1/2∂∗rv‖2L2 + ‖v‖2L2 ≤ C5

a2
m2

m2 + k2
‖1Bv‖2L2 +C5

( 1

a3
+

1

a5

)

‖f‖2L2 , (4.35)

where 1B is the indicator function of the set B = {r > 0 ; |γ(r)| ≤ r|Ω′(r)|}.

Proof. Multiplying both sides of (4.34) by rv̄, integrating the resulting expression over R+ and
taking the real part, we obtain the identity

a

∫ ∞

0

{

A|∂∗rv|2 +
(

1+
k2

|γ|2AΦ
)

|v|2
}

r dr = Re

∫ ∞

0
v̄γ

1

2Fr dr+ a

4

∫ ∞

0
m2Ω′2 A

|γ|2 |v|
2r dr . (4.36)

Since Φ ≥ 0, the left-hand side of (4.36) is bounded from below by a
(

‖A 1

2 ∂∗rv‖2L2 + ‖v‖2L2

)

.
On the other hand, repeating the proof of Lemma 4.7, we can estimate the first integral in the
right-hand side as follows :

∣

∣

∣

∫ ∞

0
v̄γ

1

2Fr dr
∣

∣

∣
≤ 2

a1/2
‖A 1

2 ∂∗rv‖L2‖f‖L2 + C
( 1

a1/2
+

1

a3/2

)

‖v‖L2‖f‖L2

≤ a

2

(

‖A 1

2∂∗rv‖2L2 + ‖v‖2L2

)

+ C
( 1

a2
+

1

a4

)

‖f‖2L2 ,

(4.37)

where the constant C > 0 depends only on Ω. It remains to estimate the second integral in the
right-hand side of (4.36). Defining G(r) = m2Ω′(r)2 A(r)

|γ(r)|2
, we observe that

a

4

∫ ∞

0
m2Ω′2 A

|γ|2 |v|
2r dr ≤ a

4
‖1{G≤1}v‖2L2 +

a

4
‖G‖L∞‖1{G≥1}v‖2L2

≤ a

4
‖v‖2L2 +

1

4a

m2

m2 + k2
‖(1+r2)Ω′2‖L∞‖1{G≥1}v‖2L2 ,

(4.38)

where the upper bound on the quantity ‖G‖L∞ is obtained using the definition of A and the
fact that |γ(r)| ≥ Re(s) = a. Now, if G(r) ≥ 1, then |γ(r)|2 ≤ m2Ω′(r)2A(r) ≤ r2Ω′(r)2, so that
the set {G ≥ 1} is contained in B = {r > 0 ; |γ(r)| ≤ r|Ω′(r)|}. Thus, combining (4.36), (4.37),
and (4.38), we obtain (4.35).

The following result is a rather direct consequence of Lemmas 4.6 and 4.10 :

Lemma 4.11. If m ≥ 1 and u, f ∈ Xm,k satisfy (4.1), there exists a constant C6 > 0, depending
only on Ω, such that the inequality

‖u‖L2 ≤ C6

(1

a
+

1

a7/2

)

‖f‖L2 (4.39)

holds in each of the following three situations :

i) ak ≥ C6m, ii) am ≥ C6 and C6(1− b) ≤ a , iii) am ≥ C6 and C6b ≤ a .
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Proof. Applying Lemma 4.6 with M = 3C1, we deduce from (4.20) that

‖1{|γ|≥M}u‖L2 ≤ 1

2
‖1{|γ|≤M}u‖L2 +

1

2
‖f‖L2 . (4.40)

In the sequel, we may thus focus our attention to the region where |γ| ≤ M . Our strategy is
to use Lemma 4.10, which requires a good control on the term involving 1Bv in the right-hand
side of (4.35). We consider three cases separately.

i) If ak ≥ m
√
2C5, we simply observe that

C5

a2
m2

m2 + k2
‖1Bv‖2L2 ≤ 1

2
‖1Bv‖2L2 ≤ 1

2
‖v‖2L2 . (4.41)

ii) By definition, for any r > 0, we have

r ∈ B if and only if a2 +m2(Ω(r)− b)2 ≤ r2Ω′(r)2 . (4.42)

Clearly B = ∅ if a > ‖rΩ′‖L∞ , hence we may assume that a ≤ ‖rΩ′‖L∞ . Since Ω′(r) = O(r)
as r → 0 by assumption H1, there exists a small constant ǫ > 0 (depending only on Ω) such
that inequality (4.42) cannot be satisfied if r ≤ ǫa1/2. On the other hand, if r ≥ ǫa1/2, then
Ω(r) ≤ Ω(ǫa1/2) ≤ 1− 2δa for some sufficiently small δ > 0. Thus, if we assume that b ≥ 1− δa
and mδa > ‖rΩ′‖L∞ , we see that m(b−Ω(r)) ≥ mδa > ‖rΩ′‖L∞ , so that inequality (4.42) is not
satisfied either. Summarizing, we have B = ∅ if ma ≥ C and C(1− b) ≤ a for some sufficiently
large C > 0.

iii) Similarly, since rΩ′(r) = O(r−2) as r → ∞ by assumption H1, there exists a large constant
ρ > 0 (depending only on Ω) such that (4.42) cannot be satisfied if r ≥ ρa−1/2. If r ≤ ρa−1/2,
we have Ω(r) ≥ Ω(ρa−1/2) ≥ 2σa for some σ > 0. Thus, if we assume that b ≤ σa and
mσa > ‖rΩ′‖L∞ , inequality (4.42) is never satisfied, so that B = ∅.

In all three cases, we deduce from (4.35) the estimate

‖A1/2∂∗rv‖2L2 +
1

2
‖v‖2L2 ≤ C5

( 1

a3
+

1

a5

)

‖f‖2L2 . (4.43)

As ur(r) = γ(r)1/2v(r), we have ‖1{|γ|≤M}ur‖L2 ≤M1/2‖1{|γ|≤M}v‖L2 ≤M1/2‖v‖L2 , and

∥

∥1{|γ|≤M}A
1

2∂∗rur
∥

∥

L2 ≤ M1/2
∥

∥1{|γ|≤M}A
1

2 ∂∗rv
∥

∥

L2 +
‖rΩ′‖L∞

2a1/2
‖v‖L2 .

Thus, using the representations (4.6), (4.7) of the azimuthal and vertical velocities, we deduce
from (4.43) that

‖1{|γ|≤M}ur‖L2 + ‖1{|γ|≤M}uθ‖L2 + ‖1{|γ|≤M}uz‖L2 ≤ C
(1

a
+

1

a7/2

)

‖f‖L2 .

Finally, invoking (4.40) to bound ‖1{|γ|≥M}u‖L2 in terms of ‖1{|γ|≤M}u‖L2 , and recalling that
we can assume a ≤ 2C4 + 1 by Remark 4.9, we arrive at (4.39).

Remark 4.12. Alternatively, one can obtain the resolvent estimate in case iii) by the following
argument. If m ≥ 1 is large and b > 0 is small, the inequality |γ(r)| ≤M := 3C1 can be satisfied
only if r ≫ 1. In that region, the coefficients Ω(r) and W (r) in (4.1) are very small, and so is
the pressure p in view of Lemma 3.4. It is thus easy to estimate ‖1{|γ|≤M}u‖L2 in terms ‖f‖L2

directly from (4.1). Combining this observation with Lemma 4.6 gives the desired result.
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4.3 End of the proof of Proposition 2.5

If we combine Lemma 4.5, Lemma 4.8, Remark 4.9, and Lemma 4.11, we obtain the following
statement which specifies the regions in the parameter space where we could obtain a uniform
resolvent estimate, with explicit (or at least computable) constant.

Corollary 4.13. Assume that m ∈ N, k ≥ 0, and s ∈ C with Re(s) = a > 0. There exists a
constant C > 0, depending only on Ω, such that the resolvent estimate

∥

∥(s− Lm,k)
−1

∥

∥

Xm,k→Xm,k
≤ C

(1

a
+

1

a4

)

(4.44)

holds in each of the following cases :

1) m = 0 , 2) a ≥ C , 3) ma2 ≥ Ck ,

4) ak ≥ Cm , 5) am ≥ C and C(1− b) ≤ a , 6) am ≥ C and Cb ≤ a .
(4.45)

We recall that b is defined by (4.19) when m 6= 0.

To conclude the proof of Proposition 2.5, we use a contradiction argument to establish a
resolvent estimate in the regions that are not covered by Corollary 4.13. More precisely, if we
consider a sequence of values of the parameters m,k, s (with Re(s) = a) such that none of the
conditions 1)–6) in (4.45) is satisfied, two possibilities can occur. Either the angular Fourier
mode m goes to infinity, as well as the vertical wave number k, and the parameter b remains in
the interval [a/C, 1−a/C] ⊂ (0, 1). In that case, after extracting a subsequence, we can assume
that b converges to some limit. So, to establish the resolvent estimate, we have to prove that,
for any b ∈ (0, 1),

sup
Re(s)=a

lim sup
m→+∞,

Im(s)/m→−b

∥

∥(s− Lm,k)
−1

∥

∥

Xm,k→Xm,k
< ∞ . (4.46)

The other possibility is that the angular Fourier mode m ≥ 1 stays bounded, as well as the
vertical wave number k ≥ k0 := a2/C. In that case, we have to prove that, for all N ≥ 1,

sup
Re(s)=a

sup
1≤m≤N,
k0≤k≤N

∥

∥(s− Lm,k)
−1

∥

∥

Xm,k→Xm,k
< ∞ . (4.47)

Proof of estimate (4.46) :
We argue by contradiction and assume the existence of sequences (mn)n∈N in N, (kn)n∈N in R+,
(bn)n∈N in R and (un)n∈N, (f

n)n∈N in Xmn,kn with the following properties : un, fn are solutions
of the resolvent system (sn − Lmn,kn)u

n = fn where sn = a − imnbn, ‖un‖L2 = 1 ∀n ∈ N, and
we have ‖fn‖L2 → 0, mn → +∞, and bn → b as n → +∞. Without loss of generality we may
assume that bn ∈ (0, 1) for all n ∈ N, and we define rn = Ω−1(bn); in particular rn → r̄ := Ω−1(b)
as n → +∞. We also denote by (pn)n∈N the sequence of pressures associated to un, namely
pn = Pmn,kn [u

n], and we set γn(r) = a+ imn(Ω(r)− bn).

In view of inequalities (4.13) and (4.33), the normalization condition ‖un‖L2 = 1 and the
assumption that ‖fn‖L2 → 0 as n→ ∞ imply that the quantity ‖unr ‖L2 is bounded from below
for large values of n, namely

Ir := lim inf
n→+∞

‖unr ‖2L2 > 0 . (4.48)

Setting M = C1

√

2/Ir, we deduce from (4.48) and Lemma 4.6 that

lim inf
n→+∞

∫

{|γn|≤M}
|unr (r)|2 r dr ≥ Ir

2
> 0 . (4.49)
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As the angular velocity Ω is continuously differentiable and strictly decreasing on R+, the set
{|γn| ≤M} is asymptotically contained in the interval [rn −R/mn, rn +R/mn], where R > 0 is
a constant that depends only on Ω and Ir (one may take R = 2M |Ω′(r)|−1). Since the length
of that interval shrinks to zero as n → ∞, it is useful to introduce rescaled vector fields and
functions by setting

un(r) = m1/2
n ũn(mn(r−rn)) , fn(r) = m1/2

n f̃n(mn(r−rn)) , pn(r) = m−1/2
n p̃n(mn(r−rn)) .

Note that the new variable y := mn(r−rn) is defined on the n-dependent domain (−mnrn,∞).
Likewise, we set Ω(r) = Ω̃n(mn(r−rn)), W (r) = W̃n(mn(r−rn)) and γn(r) = γ̃n(mn(r−rn)).
The system (4.1) may then be rewritten as

γ̃n(y)ũ
n
r − 2Ω̃n(y)ũ

n
θ = −∂yp̃n + f̃nr ,

γ̃n(y)ũ
n
θ + W̃n(y)ũ

n
r = − i

rn+y/mn
p̃n + f̃nθ ,

γ̃n(y)ũ
n
z = −i knmn

p̃n + f̃nz ,

(4.50)

and the incompressibility condition becomes

∂yũ
n
r + i

rn+y/mn
ũnθ + i knmn

ũnz = − 1
rnmn+y ũ

n
r . (4.51)

After this change of variables, inequality (4.49) implies the lower bound

lim inf
n→+∞

∫ R

−R
|ũnr (y)|2 dy ≥ Ir

2r
> 0 . (4.52)

Since, by assumption, inequalities 3) and 4) in (4.45) are not satisfied, we can suppose without
loss of generality that kn/mn → δ ∈ (0,+∞) as m → +∞. By construction, we also have
Ω̃n(y) → Ω(r̄), W̃n(y) → W (r̄) and γ̃n(y) → γ(y) := a+ iΩ′(r̄)y as n→ +∞, uniformly on any
compact subset of R.

Using the normalization condition for un, we observe that

1 =

∫ ∞

−mnrn

|ũn(y)|2
(

rn +
y

mn

)

dy ≥ rn
2

∫ ∞

−mn
rn
2

|ũn(y)|2 dy .

Extracting a subsequence if needed, we may therefore assume that ũn ⇀ U in L2(K) for each
compact subset K ⊂ R, where U ∈ L2(R) and ‖U‖2L2 ≤ 2/r. Similarly, using the uniform
bounds on the pressure given by Lemma 3.1, we may assume that p̃n → P and ∂yp̃n ⇀ P ′

in L2(K), for each compact subset K ⊂ R, where P ∈ H1
loc(R) and P ′ ∈ L2(R). The radial

velocities ũnr have even better convergence properties. Indeed, it follows from (4.33) that the

quantity ‖A1/2
n ∂∗ru

n
r ‖L2 is uniformly bounded for n large, and since ‖A1/2

n r−1unr ‖L2 ≤ 1/mn → 0

we deduce that ‖A1/2
n ∂ru

n
r ‖L2 is uniformly bounded too. After the change of variables, this

implies that

C ≥
∫ ∞

−mnrn

m2
nr

2

m2
n + k2nr

2
|∂yũnr (y)|2 r dy ≥ rn

2

r2n
4 + δ2nr

2
n

∫ ∞

−mn
rn
2

|∂yũnr (y)|2 dy ,

where r = rn+ y/mn and δn = kn/mn. Thus Ur ∈ H1(R), and extracting a further subsequence
if necessary we can assume that ∂yũ

n
r ⇀ U ′

r and ũnr → Ur in L2(K), for each compact subset
K ⊂ R. In particular, we deduce from (4.52) that Ur is not identically zero. Moreover, passing
to the limit in (4.50), (4.51), we obtain the asymptotic system

(a+ iΩ′(r)y)Ur − 2Ω(r)Uθ = −P ′ ,

(a+ iΩ′(r)y)Uθ +W (r)Ur = − i
rP ,

(a+ iΩ′(r)y)Uz = −iδP ,
U ′
r +

i
rUθ + iδUz = 0 , (4.53)
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where equalities hold almost everywhere. We claim that system (4.53) does not possess any
solution such that U ∈ L2

loc(R), P ∈ H1
loc(R) and such that Ur ∈ H1(R) is nontrivial. This will

provide the desired contradiction.

Indeed, if we repeat the proof of Lemma 4.2 (with f = 0), we can extract from system (4.53)
a second-order differential equation for the radial velocity Ur. Eliminating the pressure P and
the azimuthal velocity Uθ, we obtain as in (4.9), (4.11) :

δ
(

U ′
r −

iW (r)

r γ(y)
Ur

)

+ i
(

δ2 +
1

r2

)

Uz = 0 , U ′
z +

iW (r)

r γ(y)
Uz − iδ

(

1 +
Φ(r)

γ(y)2

)

= 0 ,

and combining these relations we arrive at

−U ′′
r +

[

(

δ2 +
1

r2

)

+
Φ(r)δ2

γ(y)2

]

Ur = 0 , y ∈ R , (4.54)

where Φ(r) = 2Ω(r)W (r) > 0. If we observe that γ(y) = a + iΩ′(r)y = iΩ′(r)(y + ic), where
c = −a/Ω′(r), we can write (4.54) in the equivalent form

−U ′′
r +

(

κ2 − J(r)δ2

(y + ic)2

)

Ur = 0 , y ∈ R , (4.55)

where κ2 = 1/r2 + δ2 and J(r) = Φ(r)/Ω′(r)2. Up to a multiplicative constant, the unique
solution of (4.55) that belongs to L2(R+) is

Ur(y) = (y + ic)1/2Kν

(

κ(y + ic)
)

, y ∈ R , (4.56)

where Kν is the modified Bessel function, see [1, Section 9.6], and ν ∈ C is determined, up to
an irrelevant sign, by the relation ν2 = 1

4 − J(r)δ2. In fact, any linearly independent solution
of (4.55) grows like exp(κy) as y → +∞. Now, it is well known that the function Kν(κ(y + ic))
has itself an exponential growth as y → −∞, see [1, Section 9.7], and this implies that (4.55)
has no nontrivial solution in L2(R).

Proof of estimate (4.47) :
This is the only place where we use our assumption H2 on the vorticity profile. According to
Proposition 2.3, which is the main result of [10], the resolvent operator (s − Lm,k)

−1 is well
defined as a bounded linear operator in Xm,k for any m ∈ N, any k ∈ R, and any s ∈ C with
Re(s) 6= 0. To prove (4.47), it remains to show that, for any fixed m, the resolvent estimate
holds uniformly in k on compact subsets of R+ = (0,∞), and uniformly in s on vertical lines.
Actually, we can assume that the spectral parameter lies in a compact set too, because if m is
fixed and | Im(s)| ≥ m + 2C1, we have |γ(r)| ≥ | Im(s)| − m ≥ 2C1 and the resolvent bound
follows from estimate (4.20) with M = 2C1. So the only missing step is :

Lemma 4.14. For any m ∈ Z, the resolvent norm ‖(s − Lm,k)
−1‖Xm,k→Xm,k

is uniformly
bounded in the neighborhood of any point (k, s) ∈ R× C with k 6= 0 and Re(s) > 0.

Proof. Since the function space Xm,k changes when k is varied, due to the incompressibility
condition, the result does not immediately follow from standard perturbation theory. However,
it is easy to reformulate the problem so that perturbation theory can be applied. It is sufficient
to note that, for any fixed k∗ 6= 0, the mappings

Mk : Xm,k∗ → Xm,k ,
(

ur, uθ, uz
)

7→
(

ur, uθ,
k∗

k
uz

)

,
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are linear homeomorphisms that depend continuously on k in a neighborhood of k∗. Given
s ∈ C, m ∈ Z, and k ∈ R close to k∗, the resolvent equation (s− Lm,k)u = f for u, f ∈ Xm,k is
equivalent to the conjugated equation (s− Lm,k)v = g, where u =Mkv, f =Mkg, and

Lm,k = M−1
k Lm,kMk : Xm,k∗ → Xm,k∗ . (4.57)

Now, using in particular estimate (3.3) in Lemma 3.3, it is straightforward to verify that the
operator Lm,k depends continuously on k as a bounded linear operator in Xm,k∗ , as long as
k 6= 0. This implies that the resolvent norm ‖(s − Lm,k)

−1‖Xm,k∗→Xm,k∗
depends continuously

on the parameters s and k, when k stays in a neighborhood of k∗, and the conclusion easily
follows.

5 Appendix : analysis in Xm,k

We collect here various auxiliary results that are useful for our analysis in Section 3. We first
show that smooth and compactly supported divergence-free vector fields are dense in the space
Xm,k defined by (2.6), and we give simple criteria for compactness in that space. Finally, we
establish explicit representations formulas for the pressure p satisfying (2.8).

5.1 Approximation in Xm,k

Truncating divergence-free vector fields is not straightforward, and a general solution to that
problem involves the so-called Bogovskii operator, see e.g. [9]. However, in the particular case
of the space Xm,k introduced in (2.6), localization can be performed in a rather elementary way,
which we now describe.

Lemma 5.1. For any m ∈ Z and any k ∈ R, the set of all u ∈ Xm,k with compact support in
(0,+∞) is dense in Xm,k.

Proof. Let φ,ψ : R+ → R be smooth, monotonic functions such that

φ(r) =

{

0 if r ≤ 1
2 ,

1 if r ≥ 1 ,
and ψ(r) =

{

1 if r ≤ 1 ,

0 if r ≥ 2 .

Given ǫ ∈ (0, 1), we define χǫ(r) = min{φ(r/ǫ), ψ(ǫr)}. By construction χǫ is smooth and
satisfies χǫ(r) = 0 if r ≤ ǫ/2 or r ≥ 2/ǫ, and χǫ(r) = 1 if ǫ ≤ r ≤ 1/ǫ.

Assume first that m 6= 0. Given u ∈ Xm,k, we define vǫ = uχǫ + wǫeθ, where

wǫ(r) =
i

m
rχ′

ǫ(r)ur(r) , r > 0 .

The corrector wǫ is tailored so that div vǫ = (div u)χǫ + urχ
′
ǫ +

im
r wǫ = 0. Moreover wǫ is

supported in the set [ǫ/2, 2/ǫ] by construction. Since χǫ(r) → 1 as ǫ → 0 for any r > 0, it is
clear that ‖uχǫ − u‖L2 → 0 as ǫ→ 0. Moreover

‖wǫ‖2L2 =
1

m2

∫ ǫ

ǫ/2

r2

ǫ2
|φ′(r/ǫ)|2 |ur(r)|2r dr +

1

m2

∫ 2/ǫ

1/ǫ
ǫ2r2|ψ′(ǫr)|2 |ur(r)|2r dr

≤ C

m2

(

∫ ǫ

0
|ur(r)|2r dr +

∫ ∞

1/ǫ
|ur(r)|2r dr

)

−−→
ǫ→0

0 .

Thus ‖vǫ − u‖L2 → 0 as ǫ→ 0, which is the desired result.
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Next we assume that m = 0 and k 6= 0. Given any u ∈ X0,k, the divergence-free condition
∂∗rur + ikuz = 0 implies that

ur(r) = − ik
r

∫ r

0
uz(s)s ds , hence |ur(r)|2 ≤ k2

2

∫ r

0
|uz(s)|2s ds , (5.1)

for any r > 0. We now define ṽǫ = uχǫ + w̃ǫez, where

w̃ǫ(r) =
i

k
χ′
ǫ(r)ur(r) , r > 0 .

As before ṽǫ is divergence-free and supported in [ǫ/2, 2/ǫ]. Moreover, using (5.1), we find

‖w̃ǫ‖2L2 =
1

k2

∫ ǫ

ǫ/2

1

ǫ2
|φ′(r/ǫ)|2 |ur(r)|2r dr +

1

k2

∫ 2/ǫ

1/ǫ
ǫ2|ψ′(ǫr)|2 |ur(r)|2r dr

≤ C

∫ ǫ

0
|uz(r)|2r dr +

Cǫ2

k2

∫ ∞

1/ǫ
|ur(r)|2r dr −−→

ǫ→0
0 ,

and this shows that ‖ṽǫ − u‖L2 → 0 as ǫ → 0.

Finally, if u ∈ X0,0, the divergence-free condition asserts that ∂∗rur = 0, hence ur = 0. It
follows that uχǫ is divergence-free, and we know that ‖uχǫ − u‖L2 → 0 as ǫ → 0.

Using Lemma 5.1 and a standard regularization procedure, we obtain:

Proposition 5.2. For any m ∈ Z and any k ∈ R, the set of all smooth, divergence-free vector
fields with compact support in (0,+∞) is dense in Xm,k.

Proof. According to Lemma 5.1, it is sufficient to prove that any u ∈ Xm,k with compact
support can be approximated by smooth, divergence-free and compactly supported vector fields.
Assume thus that u ∈ Xm,k is such that u(r) = 0 for r ≤ r1 and r ≥ r2, with 0 < r1 < r2 <∞.
We consider the vector field U = (U1, U2, U3) in R

3 defined by

U(r cos θ, r sin θ, z) =
(

ur(r)er(θ) + uθ(r)eθ(θ) + uz(r)ez

)

eimθ eikz , (5.2)

where r > 0, θ ∈ R/(2πZ), and z ∈ R. Then divU = 0 and, for any fixed x3 ∈ R, the
map (x1, x2) 7→ U(x1, x2, x3) belongs to L

2(R2,C3), because ‖U(·, ·, x3)‖2L2(R2) = 2π‖u‖2L2 <∞.
Given ǫ > 0, we define the approximation

U ǫ(x1, x2, x3) =
1

ǫ2

∫

R2

χ
(x1 − y1

ǫ
,
x2 − y2

ǫ

)

U(y1, y2, x3) dy1 dy2 ,

where χ : R2 → R+ is smooth, radially symmetric, supported in the unit ball, and normalized so
that

∫

χ dx1 dx2 = 1. By construction, the vector field U ǫ is smooth, divergence-free, and close
to U in the sense that ‖U ǫ(·, ·, x3)− U(·, ·, x3)‖L2(R2) → 0 as ǫ → 0 for any x3 ∈ R. If ǫ ≤ r1/2,

we also have U ǫ(x1, x2, x3) = 0 whenever r := (x21 + x22)
1/2 ≤ r1/2 or r ≥ r1 + r2. Under this

assumption, since χ is radially symmetric, we can represent U ǫ as

U ǫ(r cos θ, r sin θ, z) =
(

uǫr(r)er(θ) + uǫθ(r)eθ(θ) + uǫz(r)ez

)

eimθ eikz , (5.3)

for some smooth vector field uǫ = uǫrer +uǫθeθ +uǫzez ∈ Xm,k, which is supported in the compact
interval [r1/2, r2 + r1] ⊂ (0,∞). Here the condition on the support is essential, because the unit
vectors er, eθ are smooth only away from the axis r = 0. From (5.2), (5.3) we deduce that

‖uǫ − u‖2L2(R+,r dr) =
1

2π
‖U ǫ(·, ·, 0) − U(·, ·, 0)‖2L2(R2) −−→

ǫ→0
0 ,

and this gives the desired result.
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5.2 Compactness criteria

We next mention two simple compactness criteria in the space X = L2(R+, r dr).

Lemma 5.3. For any α > 0 and any M > 0, the sets

EM,α =
{

f ∈ X ; ‖∂rf‖L2 ≤M , ‖rαf‖L2 ≤M
}

, and

E∗
M,α =

{

f ∈ X ; ‖∂∗rf‖L2 ≤M , ‖rαf‖L2 ≤M
}

,

are compact in X. We recall that ∂∗r = ∂r +
1
r .

Proof. If f ∈ X, we define F : R2 → C by F (x) = (2π)−1/2f(|x|) for all x ∈ R
2. The linear

map f 7→ F is an isometric embedding of X into L2(R2), and the image of EM,α under that
map is included in the set

{

F ∈ L2(R2) ; ‖∇F‖L2 ≤M , ‖|x|αF‖L2 ≤M
}

,

which is known to be compact in L2(R2) by Rellich’s criterion, see [16, Theorem XIII.65]. This
shows that the closed subset EM,α ⊂ X is relatively compact, hence compact.

Compactness of E∗
M,α can be established by a variant of the previous argument, but for a

change we give here a direct proof based on the Arzelà-Ascoli theorem. If f ∈ E∗
M,α, we observe

that

f(r) =
1

r

∫ r

0
∂∗rf(s)s ds , for all r > 0 . (5.4)

This shows that |f(r)| ≤ ‖∂∗rf‖L2 ≤M for all r > 0, and we deduce that

∫ ǫ

0
|f(r)|2r dr ≤ M2ǫ2 ,

∫ ∞

L
|f(r)|2r dr ≤ 1

L2α
‖rαf‖2L2 ≤ M2

L2α
,

for any ǫ > 0 and any L > 0. In particular, the set E∗
M,α is bounded in X, and its elements

are uniformly small near the origin and at infinity. Moreover, it follows from (5.4) and Hölder’s
inequality that

|r1f(r1)− r2f(r2)| ≤ M |r1 − r2|1/2 , for all r1, r2 > 0 ,

which means that the elements of E∗
M,α are uniformly equicontinuous on any compact interval

[ǫ, L] ⊂ (0,∞). These properties altogether imply that E∗
M,α is a compact subset of X.

5.3 Representation formulas

Finally we give explicit representation formulas for the pressure p satisfying (2.8), in terms of
solutions of the homogeneous equation

−∂∗r∂rp(r) +
m2

r2
p(r) + k2p(r) = 0 . (5.5)

If k 6= 0, a pair of linearly independent solutions of (5.5) is given by the modified Bessel functions
Im(|k|r) and Km(|k|r), see e.g. [1, Section 9.6]. For later use, we recall that I−m(r) = Im(r),
K−m(r) = Km(r), and Km(r)I ′m(r)−K ′

m(r)Im(r) = 1/r for all r > 0. Moreover, if m ≥ 1, then

Im(r) ∼ 1

m!

(r

2

)m
, Km(r) ∼ (m−1)!

2

(2

r

)m
, as r → 0 , (5.6)
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whereas I0(r) → 1 and K0(r) ∼ − log(r) as r → 0. For all m ∈ Z, we also have

Im(r) ∼ 1√
2π

er√
r
, Km(r) ∼

√

π

2

e−r

√
r
, as r → +∞ . (5.7)

When k = 0 linearly independent solutions of (5.5) are r±m if m 6= 0, and {1, log(r)} if m = 0.

Lemma 5.4. Assume that the vorticity profile W satisfies assumption H1. For any m ∈ Z,
k ∈ R, and u ∈ Xm,k, the elliptic equation (2.8) has a unique solution p = Pm,k[u] such that
p(r) = O(| log r|1/2) as r → 0 and p(r) → 0 as r → +∞. If k 6= 0, we have p = 2imp1 + 2|k|p2
where

p1(r) = Km(|k|r)
∫ r

0
Im(|k|s)(sΩ)′ur(s) ds+ Im(|k|r)

∫ ∞

r
Km(|k|s)(sΩ)′ur(s) ds ,

p2(r) = Km(|k|r)
∫ r

0
I ′m(|k|s)Ω(s)uθ(s)s ds+ Im(|k|r)

∫ ∞

r
K ′

m(|k|s)Ω(s)uθ(s)s ds .
(5.8)

If k = 0 and m 6= 0, then p = σp1 + p2 where σ = m/|m| and

p1(r) =
i

r|m|

∫ r

0
s|m|(sΩ)′(s)ur(s) ds+ ir|m|

∫ ∞

r

1

s|m|
(sΩ)′(s)ur(s) ds ,

p2(r) =
1

r|m|

∫ r

0
s|m|Ω(s)uθ(s) ds− r|m|

∫ ∞

r

1

s|m|
Ω(s)uθ(s) ds .

(5.9)

Finally, if k = m = 0, then p(r) = −2
∫∞
r Ω(s)uθ(s) ds.

Proof. In view of (2.8) we can suppose without loss of generality that k ≥ 0. If k > 0, we first
assume that u ∈ Xm,k ∩ C1

c (R+) and we consider the linear elliptic equation

−∂∗r∂rp(r) +
m2

r2
p(r) + k2p(r) = f(r) , r > 0 , (5.10)

where f = 2im(∂∗rΩ)ur − 2∂∗r (Ωuθ). The unique solution of (5.10) that is regular at the origin
and decays to zero at infinity is

p(r) = Km(kr)

∫ r

0
Im(ks)f(s)s ds+ Im(kr)

∫ ∞

r
Km(ks)f(s)s ds , r > 0 . (5.11)

Replacing f by its expression and integrating by parts, we easily obtain the representation (5.8).
The general case where u is an arbitrary function in Xm,k follows by a density argument, using
Proposition 5.2.

If k = 0 and m 6= 0, the solutions of the homogeneous equation (5.5) are r|m| and r−|m|,
instead of Im(|k|r)) and Km(|k|r). Proceeding exactly as above, we thus arrive at (5.9) instead
of (5.8). Finally, if k = m = 0, any solution of (2.8) such that ∂rp ∈ L2(R+, r dr) satisfies
∂rp = 2Ωuθ, hence p(r) = −2

∫∞
r Ω(s)uθ(s) ds. In all cases, the solution of (2.8) given by the

above formulas satisfies p(r) = O(| log r|1/2) as r → 0 and p(r) → 0 as r → +∞, and is unique
in that class.
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